Linux 3.8-rc7
[cris-mirror.git] / arch / x86 / kernel / irqinit.c
blob7dc4e459c2b389c2126d679d1692856ea4caddb0
1 #include <linux/linkage.h>
2 #include <linux/errno.h>
3 #include <linux/signal.h>
4 #include <linux/sched.h>
5 #include <linux/ioport.h>
6 #include <linux/interrupt.h>
7 #include <linux/timex.h>
8 #include <linux/random.h>
9 #include <linux/kprobes.h>
10 #include <linux/init.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/device.h>
13 #include <linux/bitops.h>
14 #include <linux/acpi.h>
15 #include <linux/io.h>
16 #include <linux/delay.h>
18 #include <linux/atomic.h>
19 #include <asm/timer.h>
20 #include <asm/hw_irq.h>
21 #include <asm/pgtable.h>
22 #include <asm/desc.h>
23 #include <asm/apic.h>
24 #include <asm/setup.h>
25 #include <asm/i8259.h>
26 #include <asm/traps.h>
27 #include <asm/prom.h>
30 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
31 * (these are usually mapped to vectors 0x30-0x3f)
35 * The IO-APIC gives us many more interrupt sources. Most of these
36 * are unused but an SMP system is supposed to have enough memory ...
37 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
38 * across the spectrum, so we really want to be prepared to get all
39 * of these. Plus, more powerful systems might have more than 64
40 * IO-APIC registers.
42 * (these are usually mapped into the 0x30-0xff vector range)
46 * IRQ2 is cascade interrupt to second interrupt controller
48 static struct irqaction irq2 = {
49 .handler = no_action,
50 .name = "cascade",
51 .flags = IRQF_NO_THREAD,
54 DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
55 [0 ... NR_VECTORS - 1] = -1,
58 int vector_used_by_percpu_irq(unsigned int vector)
60 int cpu;
62 for_each_online_cpu(cpu) {
63 if (per_cpu(vector_irq, cpu)[vector] != -1)
64 return 1;
67 return 0;
70 void __init init_ISA_irqs(void)
72 struct irq_chip *chip = legacy_pic->chip;
73 const char *name = chip->name;
74 int i;
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
77 init_bsp_APIC();
78 #endif
79 legacy_pic->init(0);
81 for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
82 irq_set_chip_and_handler_name(i, chip, handle_level_irq, name);
85 void __init init_IRQ(void)
87 int i;
90 * We probably need a better place for this, but it works for
91 * now ...
93 x86_add_irq_domains();
96 * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15.
97 * If these IRQ's are handled by legacy interrupt-controllers like PIC,
98 * then this configuration will likely be static after the boot. If
99 * these IRQ's are handled by more mordern controllers like IO-APIC,
100 * then this vector space can be freed and re-used dynamically as the
101 * irq's migrate etc.
103 for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
104 per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i;
106 x86_init.irqs.intr_init();
110 * Setup the vector to irq mappings.
112 void setup_vector_irq(int cpu)
114 #ifndef CONFIG_X86_IO_APIC
115 int irq;
118 * On most of the platforms, legacy PIC delivers the interrupts on the
119 * boot cpu. But there are certain platforms where PIC interrupts are
120 * delivered to multiple cpu's. If the legacy IRQ is handled by the
121 * legacy PIC, for the new cpu that is coming online, setup the static
122 * legacy vector to irq mapping:
124 for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++)
125 per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq;
126 #endif
128 __setup_vector_irq(cpu);
131 static void __init smp_intr_init(void)
133 #ifdef CONFIG_SMP
134 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
136 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
137 * IPI, driven by wakeup.
139 alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
141 /* IPI for generic function call */
142 alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
144 /* IPI for generic single function call */
145 alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
146 call_function_single_interrupt);
148 /* Low priority IPI to cleanup after moving an irq */
149 set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
150 set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
152 /* IPI used for rebooting/stopping */
153 alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
154 #endif
155 #endif /* CONFIG_SMP */
158 static void __init apic_intr_init(void)
160 smp_intr_init();
162 #ifdef CONFIG_X86_THERMAL_VECTOR
163 alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
164 #endif
165 #ifdef CONFIG_X86_MCE_THRESHOLD
166 alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
167 #endif
169 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
170 /* self generated IPI for local APIC timer */
171 alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
173 /* IPI for X86 platform specific use */
174 alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
176 /* IPI vectors for APIC spurious and error interrupts */
177 alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
178 alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
180 /* IRQ work interrupts: */
181 # ifdef CONFIG_IRQ_WORK
182 alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt);
183 # endif
185 #endif
188 void __init native_init_IRQ(void)
190 int i;
192 /* Execute any quirks before the call gates are initialised: */
193 x86_init.irqs.pre_vector_init();
195 apic_intr_init();
198 * Cover the whole vector space, no vector can escape
199 * us. (some of these will be overridden and become
200 * 'special' SMP interrupts)
202 i = FIRST_EXTERNAL_VECTOR;
203 for_each_clear_bit_from(i, used_vectors, NR_VECTORS) {
204 /* IA32_SYSCALL_VECTOR could be used in trap_init already. */
205 set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
208 if (!acpi_ioapic && !of_ioapic)
209 setup_irq(2, &irq2);
211 #ifdef CONFIG_X86_32
212 irq_ctx_init(smp_processor_id());
213 #endif