Linux 3.8-rc7
[cris-mirror.git] / arch / x86 / kvm / x86.c
blobc243b81e3c74b56bb69d7d26e692ac4181d73320
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32 kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
106 #define KVM_NR_SHARED_MSRS 16
108 struct kvm_shared_msrs_global {
109 int nr;
110 u32 msrs[KVM_NR_SHARED_MSRS];
113 struct kvm_shared_msrs {
114 struct user_return_notifier urn;
115 bool registered;
116 struct kvm_shared_msr_values {
117 u64 host;
118 u64 curr;
119 } values[KVM_NR_SHARED_MSRS];
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 { "pf_fixed", VCPU_STAT(pf_fixed) },
127 { "pf_guest", VCPU_STAT(pf_guest) },
128 { "tlb_flush", VCPU_STAT(tlb_flush) },
129 { "invlpg", VCPU_STAT(invlpg) },
130 { "exits", VCPU_STAT(exits) },
131 { "io_exits", VCPU_STAT(io_exits) },
132 { "mmio_exits", VCPU_STAT(mmio_exits) },
133 { "signal_exits", VCPU_STAT(signal_exits) },
134 { "irq_window", VCPU_STAT(irq_window_exits) },
135 { "nmi_window", VCPU_STAT(nmi_window_exits) },
136 { "halt_exits", VCPU_STAT(halt_exits) },
137 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 { "hypercalls", VCPU_STAT(hypercalls) },
139 { "request_irq", VCPU_STAT(request_irq_exits) },
140 { "irq_exits", VCPU_STAT(irq_exits) },
141 { "host_state_reload", VCPU_STAT(host_state_reload) },
142 { "efer_reload", VCPU_STAT(efer_reload) },
143 { "fpu_reload", VCPU_STAT(fpu_reload) },
144 { "insn_emulation", VCPU_STAT(insn_emulation) },
145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 { "irq_injections", VCPU_STAT(irq_injections) },
147 { "nmi_injections", VCPU_STAT(nmi_injections) },
148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 { "mmu_flooded", VM_STAT(mmu_flooded) },
153 { "mmu_recycled", VM_STAT(mmu_recycled) },
154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 { "mmu_unsync", VM_STAT(mmu_unsync) },
156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 { "largepages", VM_STAT(lpages) },
158 { NULL }
161 u64 __read_mostly host_xcr0;
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 int i;
170 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
171 vcpu->arch.apf.gfns[i] = ~0;
174 static void kvm_on_user_return(struct user_return_notifier *urn)
176 unsigned slot;
177 struct kvm_shared_msrs *locals
178 = container_of(urn, struct kvm_shared_msrs, urn);
179 struct kvm_shared_msr_values *values;
181 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
182 values = &locals->values[slot];
183 if (values->host != values->curr) {
184 wrmsrl(shared_msrs_global.msrs[slot], values->host);
185 values->curr = values->host;
188 locals->registered = false;
189 user_return_notifier_unregister(urn);
192 static void shared_msr_update(unsigned slot, u32 msr)
194 u64 value;
195 unsigned int cpu = smp_processor_id();
196 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198 /* only read, and nobody should modify it at this time,
199 * so don't need lock */
200 if (slot >= shared_msrs_global.nr) {
201 printk(KERN_ERR "kvm: invalid MSR slot!");
202 return;
204 rdmsrl_safe(msr, &value);
205 smsr->values[slot].host = value;
206 smsr->values[slot].curr = value;
209 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 if (slot >= shared_msrs_global.nr)
212 shared_msrs_global.nr = slot + 1;
213 shared_msrs_global.msrs[slot] = msr;
214 /* we need ensured the shared_msr_global have been updated */
215 smp_wmb();
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219 static void kvm_shared_msr_cpu_online(void)
221 unsigned i;
223 for (i = 0; i < shared_msrs_global.nr; ++i)
224 shared_msr_update(i, shared_msrs_global.msrs[i]);
227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 unsigned int cpu = smp_processor_id();
230 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232 if (((value ^ smsr->values[slot].curr) & mask) == 0)
233 return;
234 smsr->values[slot].curr = value;
235 wrmsrl(shared_msrs_global.msrs[slot], value);
236 if (!smsr->registered) {
237 smsr->urn.on_user_return = kvm_on_user_return;
238 user_return_notifier_register(&smsr->urn);
239 smsr->registered = true;
242 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244 static void drop_user_return_notifiers(void *ignore)
246 unsigned int cpu = smp_processor_id();
247 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249 if (smsr->registered)
250 kvm_on_user_return(&smsr->urn);
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 return vcpu->arch.apic_base;
257 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
261 /* TODO: reserve bits check */
262 kvm_lapic_set_base(vcpu, data);
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
266 #define EXCPT_BENIGN 0
267 #define EXCPT_CONTRIBUTORY 1
268 #define EXCPT_PF 2
270 static int exception_class(int vector)
272 switch (vector) {
273 case PF_VECTOR:
274 return EXCPT_PF;
275 case DE_VECTOR:
276 case TS_VECTOR:
277 case NP_VECTOR:
278 case SS_VECTOR:
279 case GP_VECTOR:
280 return EXCPT_CONTRIBUTORY;
281 default:
282 break;
284 return EXCPT_BENIGN;
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 unsigned nr, bool has_error, u32 error_code,
289 bool reinject)
291 u32 prev_nr;
292 int class1, class2;
294 kvm_make_request(KVM_REQ_EVENT, vcpu);
296 if (!vcpu->arch.exception.pending) {
297 queue:
298 vcpu->arch.exception.pending = true;
299 vcpu->arch.exception.has_error_code = has_error;
300 vcpu->arch.exception.nr = nr;
301 vcpu->arch.exception.error_code = error_code;
302 vcpu->arch.exception.reinject = reinject;
303 return;
306 /* to check exception */
307 prev_nr = vcpu->arch.exception.nr;
308 if (prev_nr == DF_VECTOR) {
309 /* triple fault -> shutdown */
310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311 return;
313 class1 = exception_class(prev_nr);
314 class2 = exception_class(nr);
315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 /* generate double fault per SDM Table 5-5 */
318 vcpu->arch.exception.pending = true;
319 vcpu->arch.exception.has_error_code = true;
320 vcpu->arch.exception.nr = DF_VECTOR;
321 vcpu->arch.exception.error_code = 0;
322 } else
323 /* replace previous exception with a new one in a hope
324 that instruction re-execution will regenerate lost
325 exception */
326 goto queue;
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 kvm_multiple_exception(vcpu, nr, false, 0, false);
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
337 kvm_multiple_exception(vcpu, nr, false, 0, true);
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
343 if (err)
344 kvm_inject_gp(vcpu, 0);
345 else
346 kvm_x86_ops->skip_emulated_instruction(vcpu);
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
352 ++vcpu->stat.pf_guest;
353 vcpu->arch.cr2 = fault->address;
354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362 else
363 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
368 atomic_inc(&vcpu->arch.nmi_queued);
369 kvm_make_request(KVM_REQ_NMI, vcpu);
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 kvm_multiple_exception(vcpu, nr, true, error_code, false);
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
381 kvm_multiple_exception(vcpu, nr, true, error_code, true);
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
387 * a #GP and return false.
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392 return true;
393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394 return false;
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
399 * This function will be used to read from the physical memory of the currently
400 * running guest. The difference to kvm_read_guest_page is that this function
401 * can read from guest physical or from the guest's guest physical memory.
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 gfn_t ngfn, void *data, int offset, int len,
405 u32 access)
407 gfn_t real_gfn;
408 gpa_t ngpa;
410 ngpa = gfn_to_gpa(ngfn);
411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 if (real_gfn == UNMAPPED_GVA)
413 return -EFAULT;
415 real_gfn = gpa_to_gfn(real_gfn);
417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 void *data, int offset, int len, u32 access)
424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 data, offset, len, access);
429 * Load the pae pdptrs. Return true is they are all valid.
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435 int i;
436 int ret;
437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 offset * sizeof(u64), sizeof(pdpte),
441 PFERR_USER_MASK|PFERR_WRITE_MASK);
442 if (ret < 0) {
443 ret = 0;
444 goto out;
446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 if (is_present_gpte(pdpte[i]) &&
448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449 ret = 0;
450 goto out;
453 ret = 1;
455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 __set_bit(VCPU_EXREG_PDPTR,
457 (unsigned long *)&vcpu->arch.regs_avail);
458 __set_bit(VCPU_EXREG_PDPTR,
459 (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
462 return ret;
464 EXPORT_SYMBOL_GPL(load_pdptrs);
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469 bool changed = true;
470 int offset;
471 gfn_t gfn;
472 int r;
474 if (is_long_mode(vcpu) || !is_pae(vcpu))
475 return false;
477 if (!test_bit(VCPU_EXREG_PDPTR,
478 (unsigned long *)&vcpu->arch.regs_avail))
479 return true;
481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 PFERR_USER_MASK | PFERR_WRITE_MASK);
485 if (r < 0)
486 goto out;
487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
490 return changed;
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
495 unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 X86_CR0_CD | X86_CR0_NW;
499 cr0 |= X86_CR0_ET;
501 #ifdef CONFIG_X86_64
502 if (cr0 & 0xffffffff00000000UL)
503 return 1;
504 #endif
506 cr0 &= ~CR0_RESERVED_BITS;
508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509 return 1;
511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512 return 1;
514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516 if ((vcpu->arch.efer & EFER_LME)) {
517 int cs_db, cs_l;
519 if (!is_pae(vcpu))
520 return 1;
521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522 if (cs_l)
523 return 1;
524 } else
525 #endif
526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527 kvm_read_cr3(vcpu)))
528 return 1;
531 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532 return 1;
534 kvm_x86_ops->set_cr0(vcpu, cr0);
536 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537 kvm_clear_async_pf_completion_queue(vcpu);
538 kvm_async_pf_hash_reset(vcpu);
541 if ((cr0 ^ old_cr0) & update_bits)
542 kvm_mmu_reset_context(vcpu);
543 return 0;
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
549 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
555 u64 xcr0;
557 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
558 if (index != XCR_XFEATURE_ENABLED_MASK)
559 return 1;
560 xcr0 = xcr;
561 if (kvm_x86_ops->get_cpl(vcpu) != 0)
562 return 1;
563 if (!(xcr0 & XSTATE_FP))
564 return 1;
565 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566 return 1;
567 if (xcr0 & ~host_xcr0)
568 return 1;
569 vcpu->arch.xcr0 = xcr0;
570 vcpu->guest_xcr0_loaded = 0;
571 return 0;
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
576 if (__kvm_set_xcr(vcpu, index, xcr)) {
577 kvm_inject_gp(vcpu, 0);
578 return 1;
580 return 0;
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
586 unsigned long old_cr4 = kvm_read_cr4(vcpu);
587 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588 X86_CR4_PAE | X86_CR4_SMEP;
589 if (cr4 & CR4_RESERVED_BITS)
590 return 1;
592 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593 return 1;
595 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596 return 1;
598 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599 return 1;
601 if (is_long_mode(vcpu)) {
602 if (!(cr4 & X86_CR4_PAE))
603 return 1;
604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 && ((cr4 ^ old_cr4) & pdptr_bits)
606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 kvm_read_cr3(vcpu)))
608 return 1;
610 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611 if (!guest_cpuid_has_pcid(vcpu))
612 return 1;
614 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616 return 1;
619 if (kvm_x86_ops->set_cr4(vcpu, cr4))
620 return 1;
622 if (((cr4 ^ old_cr4) & pdptr_bits) ||
623 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624 kvm_mmu_reset_context(vcpu);
626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627 kvm_update_cpuid(vcpu);
629 return 0;
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 kvm_mmu_sync_roots(vcpu);
637 kvm_mmu_flush_tlb(vcpu);
638 return 0;
641 if (is_long_mode(vcpu)) {
642 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
643 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644 return 1;
645 } else
646 if (cr3 & CR3_L_MODE_RESERVED_BITS)
647 return 1;
648 } else {
649 if (is_pae(vcpu)) {
650 if (cr3 & CR3_PAE_RESERVED_BITS)
651 return 1;
652 if (is_paging(vcpu) &&
653 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654 return 1;
657 * We don't check reserved bits in nonpae mode, because
658 * this isn't enforced, and VMware depends on this.
663 * Does the new cr3 value map to physical memory? (Note, we
664 * catch an invalid cr3 even in real-mode, because it would
665 * cause trouble later on when we turn on paging anyway.)
667 * A real CPU would silently accept an invalid cr3 and would
668 * attempt to use it - with largely undefined (and often hard
669 * to debug) behavior on the guest side.
671 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672 return 1;
673 vcpu->arch.cr3 = cr3;
674 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675 vcpu->arch.mmu.new_cr3(vcpu);
676 return 0;
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
682 if (cr8 & CR8_RESERVED_BITS)
683 return 1;
684 if (irqchip_in_kernel(vcpu->kvm))
685 kvm_lapic_set_tpr(vcpu, cr8);
686 else
687 vcpu->arch.cr8 = cr8;
688 return 0;
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
694 if (irqchip_in_kernel(vcpu->kvm))
695 return kvm_lapic_get_cr8(vcpu);
696 else
697 return vcpu->arch.cr8;
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
701 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
703 unsigned long dr7;
705 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
706 dr7 = vcpu->arch.guest_debug_dr7;
707 else
708 dr7 = vcpu->arch.dr7;
709 kvm_x86_ops->set_dr7(vcpu, dr7);
710 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
713 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
715 switch (dr) {
716 case 0 ... 3:
717 vcpu->arch.db[dr] = val;
718 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
719 vcpu->arch.eff_db[dr] = val;
720 break;
721 case 4:
722 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
723 return 1; /* #UD */
724 /* fall through */
725 case 6:
726 if (val & 0xffffffff00000000ULL)
727 return -1; /* #GP */
728 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
729 break;
730 case 5:
731 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
732 return 1; /* #UD */
733 /* fall through */
734 default: /* 7 */
735 if (val & 0xffffffff00000000ULL)
736 return -1; /* #GP */
737 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
738 kvm_update_dr7(vcpu);
739 break;
742 return 0;
745 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
747 int res;
749 res = __kvm_set_dr(vcpu, dr, val);
750 if (res > 0)
751 kvm_queue_exception(vcpu, UD_VECTOR);
752 else if (res < 0)
753 kvm_inject_gp(vcpu, 0);
755 return res;
757 EXPORT_SYMBOL_GPL(kvm_set_dr);
759 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
761 switch (dr) {
762 case 0 ... 3:
763 *val = vcpu->arch.db[dr];
764 break;
765 case 4:
766 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
767 return 1;
768 /* fall through */
769 case 6:
770 *val = vcpu->arch.dr6;
771 break;
772 case 5:
773 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
774 return 1;
775 /* fall through */
776 default: /* 7 */
777 *val = vcpu->arch.dr7;
778 break;
781 return 0;
784 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
786 if (_kvm_get_dr(vcpu, dr, val)) {
787 kvm_queue_exception(vcpu, UD_VECTOR);
788 return 1;
790 return 0;
792 EXPORT_SYMBOL_GPL(kvm_get_dr);
794 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
796 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
797 u64 data;
798 int err;
800 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
801 if (err)
802 return err;
803 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
804 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
805 return err;
807 EXPORT_SYMBOL_GPL(kvm_rdpmc);
810 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
811 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
813 * This list is modified at module load time to reflect the
814 * capabilities of the host cpu. This capabilities test skips MSRs that are
815 * kvm-specific. Those are put in the beginning of the list.
818 #define KVM_SAVE_MSRS_BEGIN 10
819 static u32 msrs_to_save[] = {
820 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
821 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
822 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
823 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
824 MSR_KVM_PV_EOI_EN,
825 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
826 MSR_STAR,
827 #ifdef CONFIG_X86_64
828 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
829 #endif
830 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
833 static unsigned num_msrs_to_save;
835 static const u32 emulated_msrs[] = {
836 MSR_IA32_TSC_ADJUST,
837 MSR_IA32_TSCDEADLINE,
838 MSR_IA32_MISC_ENABLE,
839 MSR_IA32_MCG_STATUS,
840 MSR_IA32_MCG_CTL,
843 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
845 u64 old_efer = vcpu->arch.efer;
847 if (efer & efer_reserved_bits)
848 return 1;
850 if (is_paging(vcpu)
851 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
852 return 1;
854 if (efer & EFER_FFXSR) {
855 struct kvm_cpuid_entry2 *feat;
857 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
858 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
859 return 1;
862 if (efer & EFER_SVME) {
863 struct kvm_cpuid_entry2 *feat;
865 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
866 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
867 return 1;
870 efer &= ~EFER_LMA;
871 efer |= vcpu->arch.efer & EFER_LMA;
873 kvm_x86_ops->set_efer(vcpu, efer);
875 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
877 /* Update reserved bits */
878 if ((efer ^ old_efer) & EFER_NX)
879 kvm_mmu_reset_context(vcpu);
881 return 0;
884 void kvm_enable_efer_bits(u64 mask)
886 efer_reserved_bits &= ~mask;
888 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
892 * Writes msr value into into the appropriate "register".
893 * Returns 0 on success, non-0 otherwise.
894 * Assumes vcpu_load() was already called.
896 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
898 return kvm_x86_ops->set_msr(vcpu, msr);
902 * Adapt set_msr() to msr_io()'s calling convention
904 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
906 struct msr_data msr;
908 msr.data = *data;
909 msr.index = index;
910 msr.host_initiated = true;
911 return kvm_set_msr(vcpu, &msr);
914 #ifdef CONFIG_X86_64
915 struct pvclock_gtod_data {
916 seqcount_t seq;
918 struct { /* extract of a clocksource struct */
919 int vclock_mode;
920 cycle_t cycle_last;
921 cycle_t mask;
922 u32 mult;
923 u32 shift;
924 } clock;
926 /* open coded 'struct timespec' */
927 u64 monotonic_time_snsec;
928 time_t monotonic_time_sec;
931 static struct pvclock_gtod_data pvclock_gtod_data;
933 static void update_pvclock_gtod(struct timekeeper *tk)
935 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
937 write_seqcount_begin(&vdata->seq);
939 /* copy pvclock gtod data */
940 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
941 vdata->clock.cycle_last = tk->clock->cycle_last;
942 vdata->clock.mask = tk->clock->mask;
943 vdata->clock.mult = tk->mult;
944 vdata->clock.shift = tk->shift;
946 vdata->monotonic_time_sec = tk->xtime_sec
947 + tk->wall_to_monotonic.tv_sec;
948 vdata->monotonic_time_snsec = tk->xtime_nsec
949 + (tk->wall_to_monotonic.tv_nsec
950 << tk->shift);
951 while (vdata->monotonic_time_snsec >=
952 (((u64)NSEC_PER_SEC) << tk->shift)) {
953 vdata->monotonic_time_snsec -=
954 ((u64)NSEC_PER_SEC) << tk->shift;
955 vdata->monotonic_time_sec++;
958 write_seqcount_end(&vdata->seq);
960 #endif
963 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
965 int version;
966 int r;
967 struct pvclock_wall_clock wc;
968 struct timespec boot;
970 if (!wall_clock)
971 return;
973 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
974 if (r)
975 return;
977 if (version & 1)
978 ++version; /* first time write, random junk */
980 ++version;
982 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
985 * The guest calculates current wall clock time by adding
986 * system time (updated by kvm_guest_time_update below) to the
987 * wall clock specified here. guest system time equals host
988 * system time for us, thus we must fill in host boot time here.
990 getboottime(&boot);
992 if (kvm->arch.kvmclock_offset) {
993 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
994 boot = timespec_sub(boot, ts);
996 wc.sec = boot.tv_sec;
997 wc.nsec = boot.tv_nsec;
998 wc.version = version;
1000 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1002 version++;
1003 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1006 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1008 uint32_t quotient, remainder;
1010 /* Don't try to replace with do_div(), this one calculates
1011 * "(dividend << 32) / divisor" */
1012 __asm__ ( "divl %4"
1013 : "=a" (quotient), "=d" (remainder)
1014 : "0" (0), "1" (dividend), "r" (divisor) );
1015 return quotient;
1018 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1019 s8 *pshift, u32 *pmultiplier)
1021 uint64_t scaled64;
1022 int32_t shift = 0;
1023 uint64_t tps64;
1024 uint32_t tps32;
1026 tps64 = base_khz * 1000LL;
1027 scaled64 = scaled_khz * 1000LL;
1028 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1029 tps64 >>= 1;
1030 shift--;
1033 tps32 = (uint32_t)tps64;
1034 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1035 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1036 scaled64 >>= 1;
1037 else
1038 tps32 <<= 1;
1039 shift++;
1042 *pshift = shift;
1043 *pmultiplier = div_frac(scaled64, tps32);
1045 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1046 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1049 static inline u64 get_kernel_ns(void)
1051 struct timespec ts;
1053 WARN_ON(preemptible());
1054 ktime_get_ts(&ts);
1055 monotonic_to_bootbased(&ts);
1056 return timespec_to_ns(&ts);
1059 #ifdef CONFIG_X86_64
1060 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1061 #endif
1063 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1064 unsigned long max_tsc_khz;
1066 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1068 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1069 vcpu->arch.virtual_tsc_shift);
1072 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1074 u64 v = (u64)khz * (1000000 + ppm);
1075 do_div(v, 1000000);
1076 return v;
1079 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1081 u32 thresh_lo, thresh_hi;
1082 int use_scaling = 0;
1084 /* Compute a scale to convert nanoseconds in TSC cycles */
1085 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1086 &vcpu->arch.virtual_tsc_shift,
1087 &vcpu->arch.virtual_tsc_mult);
1088 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1091 * Compute the variation in TSC rate which is acceptable
1092 * within the range of tolerance and decide if the
1093 * rate being applied is within that bounds of the hardware
1094 * rate. If so, no scaling or compensation need be done.
1096 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1097 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1098 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1099 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1100 use_scaling = 1;
1102 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1105 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1107 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1108 vcpu->arch.virtual_tsc_mult,
1109 vcpu->arch.virtual_tsc_shift);
1110 tsc += vcpu->arch.this_tsc_write;
1111 return tsc;
1114 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1116 #ifdef CONFIG_X86_64
1117 bool vcpus_matched;
1118 bool do_request = false;
1119 struct kvm_arch *ka = &vcpu->kvm->arch;
1120 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1122 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1123 atomic_read(&vcpu->kvm->online_vcpus));
1125 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1126 if (!ka->use_master_clock)
1127 do_request = 1;
1129 if (!vcpus_matched && ka->use_master_clock)
1130 do_request = 1;
1132 if (do_request)
1133 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1135 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1136 atomic_read(&vcpu->kvm->online_vcpus),
1137 ka->use_master_clock, gtod->clock.vclock_mode);
1138 #endif
1141 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1143 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1144 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1147 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1149 struct kvm *kvm = vcpu->kvm;
1150 u64 offset, ns, elapsed;
1151 unsigned long flags;
1152 s64 usdiff;
1153 bool matched;
1154 u64 data = msr->data;
1156 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1157 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1158 ns = get_kernel_ns();
1159 elapsed = ns - kvm->arch.last_tsc_nsec;
1161 /* n.b - signed multiplication and division required */
1162 usdiff = data - kvm->arch.last_tsc_write;
1163 #ifdef CONFIG_X86_64
1164 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1165 #else
1166 /* do_div() only does unsigned */
1167 asm("idivl %2; xor %%edx, %%edx"
1168 : "=A"(usdiff)
1169 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1170 #endif
1171 do_div(elapsed, 1000);
1172 usdiff -= elapsed;
1173 if (usdiff < 0)
1174 usdiff = -usdiff;
1177 * Special case: TSC write with a small delta (1 second) of virtual
1178 * cycle time against real time is interpreted as an attempt to
1179 * synchronize the CPU.
1181 * For a reliable TSC, we can match TSC offsets, and for an unstable
1182 * TSC, we add elapsed time in this computation. We could let the
1183 * compensation code attempt to catch up if we fall behind, but
1184 * it's better to try to match offsets from the beginning.
1186 if (usdiff < USEC_PER_SEC &&
1187 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1188 if (!check_tsc_unstable()) {
1189 offset = kvm->arch.cur_tsc_offset;
1190 pr_debug("kvm: matched tsc offset for %llu\n", data);
1191 } else {
1192 u64 delta = nsec_to_cycles(vcpu, elapsed);
1193 data += delta;
1194 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1195 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1197 matched = true;
1198 } else {
1200 * We split periods of matched TSC writes into generations.
1201 * For each generation, we track the original measured
1202 * nanosecond time, offset, and write, so if TSCs are in
1203 * sync, we can match exact offset, and if not, we can match
1204 * exact software computation in compute_guest_tsc()
1206 * These values are tracked in kvm->arch.cur_xxx variables.
1208 kvm->arch.cur_tsc_generation++;
1209 kvm->arch.cur_tsc_nsec = ns;
1210 kvm->arch.cur_tsc_write = data;
1211 kvm->arch.cur_tsc_offset = offset;
1212 matched = false;
1213 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1214 kvm->arch.cur_tsc_generation, data);
1218 * We also track th most recent recorded KHZ, write and time to
1219 * allow the matching interval to be extended at each write.
1221 kvm->arch.last_tsc_nsec = ns;
1222 kvm->arch.last_tsc_write = data;
1223 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1225 /* Reset of TSC must disable overshoot protection below */
1226 vcpu->arch.hv_clock.tsc_timestamp = 0;
1227 vcpu->arch.last_guest_tsc = data;
1229 /* Keep track of which generation this VCPU has synchronized to */
1230 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1231 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1232 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1234 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1235 update_ia32_tsc_adjust_msr(vcpu, offset);
1236 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1237 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1239 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1240 if (matched)
1241 kvm->arch.nr_vcpus_matched_tsc++;
1242 else
1243 kvm->arch.nr_vcpus_matched_tsc = 0;
1245 kvm_track_tsc_matching(vcpu);
1246 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1249 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1251 #ifdef CONFIG_X86_64
1253 static cycle_t read_tsc(void)
1255 cycle_t ret;
1256 u64 last;
1259 * Empirically, a fence (of type that depends on the CPU)
1260 * before rdtsc is enough to ensure that rdtsc is ordered
1261 * with respect to loads. The various CPU manuals are unclear
1262 * as to whether rdtsc can be reordered with later loads,
1263 * but no one has ever seen it happen.
1265 rdtsc_barrier();
1266 ret = (cycle_t)vget_cycles();
1268 last = pvclock_gtod_data.clock.cycle_last;
1270 if (likely(ret >= last))
1271 return ret;
1274 * GCC likes to generate cmov here, but this branch is extremely
1275 * predictable (it's just a funciton of time and the likely is
1276 * very likely) and there's a data dependence, so force GCC
1277 * to generate a branch instead. I don't barrier() because
1278 * we don't actually need a barrier, and if this function
1279 * ever gets inlined it will generate worse code.
1281 asm volatile ("");
1282 return last;
1285 static inline u64 vgettsc(cycle_t *cycle_now)
1287 long v;
1288 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1290 *cycle_now = read_tsc();
1292 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1293 return v * gtod->clock.mult;
1296 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1298 unsigned long seq;
1299 u64 ns;
1300 int mode;
1301 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1303 ts->tv_nsec = 0;
1304 do {
1305 seq = read_seqcount_begin(&gtod->seq);
1306 mode = gtod->clock.vclock_mode;
1307 ts->tv_sec = gtod->monotonic_time_sec;
1308 ns = gtod->monotonic_time_snsec;
1309 ns += vgettsc(cycle_now);
1310 ns >>= gtod->clock.shift;
1311 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1312 timespec_add_ns(ts, ns);
1314 return mode;
1317 /* returns true if host is using tsc clocksource */
1318 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1320 struct timespec ts;
1322 /* checked again under seqlock below */
1323 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1324 return false;
1326 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1327 return false;
1329 monotonic_to_bootbased(&ts);
1330 *kernel_ns = timespec_to_ns(&ts);
1332 return true;
1334 #endif
1338 * Assuming a stable TSC across physical CPUS, and a stable TSC
1339 * across virtual CPUs, the following condition is possible.
1340 * Each numbered line represents an event visible to both
1341 * CPUs at the next numbered event.
1343 * "timespecX" represents host monotonic time. "tscX" represents
1344 * RDTSC value.
1346 * VCPU0 on CPU0 | VCPU1 on CPU1
1348 * 1. read timespec0,tsc0
1349 * 2. | timespec1 = timespec0 + N
1350 * | tsc1 = tsc0 + M
1351 * 3. transition to guest | transition to guest
1352 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1353 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1354 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1356 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1358 * - ret0 < ret1
1359 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1360 * ...
1361 * - 0 < N - M => M < N
1363 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1364 * always the case (the difference between two distinct xtime instances
1365 * might be smaller then the difference between corresponding TSC reads,
1366 * when updating guest vcpus pvclock areas).
1368 * To avoid that problem, do not allow visibility of distinct
1369 * system_timestamp/tsc_timestamp values simultaneously: use a master
1370 * copy of host monotonic time values. Update that master copy
1371 * in lockstep.
1373 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1377 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1379 #ifdef CONFIG_X86_64
1380 struct kvm_arch *ka = &kvm->arch;
1381 int vclock_mode;
1382 bool host_tsc_clocksource, vcpus_matched;
1384 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1385 atomic_read(&kvm->online_vcpus));
1388 * If the host uses TSC clock, then passthrough TSC as stable
1389 * to the guest.
1391 host_tsc_clocksource = kvm_get_time_and_clockread(
1392 &ka->master_kernel_ns,
1393 &ka->master_cycle_now);
1395 ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1397 if (ka->use_master_clock)
1398 atomic_set(&kvm_guest_has_master_clock, 1);
1400 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1401 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1402 vcpus_matched);
1403 #endif
1406 static int kvm_guest_time_update(struct kvm_vcpu *v)
1408 unsigned long flags, this_tsc_khz;
1409 struct kvm_vcpu_arch *vcpu = &v->arch;
1410 struct kvm_arch *ka = &v->kvm->arch;
1411 void *shared_kaddr;
1412 s64 kernel_ns, max_kernel_ns;
1413 u64 tsc_timestamp, host_tsc;
1414 struct pvclock_vcpu_time_info *guest_hv_clock;
1415 u8 pvclock_flags;
1416 bool use_master_clock;
1418 kernel_ns = 0;
1419 host_tsc = 0;
1421 /* Keep irq disabled to prevent changes to the clock */
1422 local_irq_save(flags);
1423 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1424 if (unlikely(this_tsc_khz == 0)) {
1425 local_irq_restore(flags);
1426 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1427 return 1;
1431 * If the host uses TSC clock, then passthrough TSC as stable
1432 * to the guest.
1434 spin_lock(&ka->pvclock_gtod_sync_lock);
1435 use_master_clock = ka->use_master_clock;
1436 if (use_master_clock) {
1437 host_tsc = ka->master_cycle_now;
1438 kernel_ns = ka->master_kernel_ns;
1440 spin_unlock(&ka->pvclock_gtod_sync_lock);
1441 if (!use_master_clock) {
1442 host_tsc = native_read_tsc();
1443 kernel_ns = get_kernel_ns();
1446 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1449 * We may have to catch up the TSC to match elapsed wall clock
1450 * time for two reasons, even if kvmclock is used.
1451 * 1) CPU could have been running below the maximum TSC rate
1452 * 2) Broken TSC compensation resets the base at each VCPU
1453 * entry to avoid unknown leaps of TSC even when running
1454 * again on the same CPU. This may cause apparent elapsed
1455 * time to disappear, and the guest to stand still or run
1456 * very slowly.
1458 if (vcpu->tsc_catchup) {
1459 u64 tsc = compute_guest_tsc(v, kernel_ns);
1460 if (tsc > tsc_timestamp) {
1461 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1462 tsc_timestamp = tsc;
1466 local_irq_restore(flags);
1468 if (!vcpu->time_page)
1469 return 0;
1472 * Time as measured by the TSC may go backwards when resetting the base
1473 * tsc_timestamp. The reason for this is that the TSC resolution is
1474 * higher than the resolution of the other clock scales. Thus, many
1475 * possible measurments of the TSC correspond to one measurement of any
1476 * other clock, and so a spread of values is possible. This is not a
1477 * problem for the computation of the nanosecond clock; with TSC rates
1478 * around 1GHZ, there can only be a few cycles which correspond to one
1479 * nanosecond value, and any path through this code will inevitably
1480 * take longer than that. However, with the kernel_ns value itself,
1481 * the precision may be much lower, down to HZ granularity. If the
1482 * first sampling of TSC against kernel_ns ends in the low part of the
1483 * range, and the second in the high end of the range, we can get:
1485 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1487 * As the sampling errors potentially range in the thousands of cycles,
1488 * it is possible such a time value has already been observed by the
1489 * guest. To protect against this, we must compute the system time as
1490 * observed by the guest and ensure the new system time is greater.
1492 max_kernel_ns = 0;
1493 if (vcpu->hv_clock.tsc_timestamp) {
1494 max_kernel_ns = vcpu->last_guest_tsc -
1495 vcpu->hv_clock.tsc_timestamp;
1496 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1497 vcpu->hv_clock.tsc_to_system_mul,
1498 vcpu->hv_clock.tsc_shift);
1499 max_kernel_ns += vcpu->last_kernel_ns;
1502 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1503 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1504 &vcpu->hv_clock.tsc_shift,
1505 &vcpu->hv_clock.tsc_to_system_mul);
1506 vcpu->hw_tsc_khz = this_tsc_khz;
1509 /* with a master <monotonic time, tsc value> tuple,
1510 * pvclock clock reads always increase at the (scaled) rate
1511 * of guest TSC - no need to deal with sampling errors.
1513 if (!use_master_clock) {
1514 if (max_kernel_ns > kernel_ns)
1515 kernel_ns = max_kernel_ns;
1517 /* With all the info we got, fill in the values */
1518 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1519 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1520 vcpu->last_kernel_ns = kernel_ns;
1521 vcpu->last_guest_tsc = tsc_timestamp;
1524 * The interface expects us to write an even number signaling that the
1525 * update is finished. Since the guest won't see the intermediate
1526 * state, we just increase by 2 at the end.
1528 vcpu->hv_clock.version += 2;
1530 shared_kaddr = kmap_atomic(vcpu->time_page);
1532 guest_hv_clock = shared_kaddr + vcpu->time_offset;
1534 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1535 pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
1537 if (vcpu->pvclock_set_guest_stopped_request) {
1538 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1539 vcpu->pvclock_set_guest_stopped_request = false;
1542 /* If the host uses TSC clocksource, then it is stable */
1543 if (use_master_clock)
1544 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1546 vcpu->hv_clock.flags = pvclock_flags;
1548 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1549 sizeof(vcpu->hv_clock));
1551 kunmap_atomic(shared_kaddr);
1553 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1554 return 0;
1557 static bool msr_mtrr_valid(unsigned msr)
1559 switch (msr) {
1560 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1561 case MSR_MTRRfix64K_00000:
1562 case MSR_MTRRfix16K_80000:
1563 case MSR_MTRRfix16K_A0000:
1564 case MSR_MTRRfix4K_C0000:
1565 case MSR_MTRRfix4K_C8000:
1566 case MSR_MTRRfix4K_D0000:
1567 case MSR_MTRRfix4K_D8000:
1568 case MSR_MTRRfix4K_E0000:
1569 case MSR_MTRRfix4K_E8000:
1570 case MSR_MTRRfix4K_F0000:
1571 case MSR_MTRRfix4K_F8000:
1572 case MSR_MTRRdefType:
1573 case MSR_IA32_CR_PAT:
1574 return true;
1575 case 0x2f8:
1576 return true;
1578 return false;
1581 static bool valid_pat_type(unsigned t)
1583 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1586 static bool valid_mtrr_type(unsigned t)
1588 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1591 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1593 int i;
1595 if (!msr_mtrr_valid(msr))
1596 return false;
1598 if (msr == MSR_IA32_CR_PAT) {
1599 for (i = 0; i < 8; i++)
1600 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1601 return false;
1602 return true;
1603 } else if (msr == MSR_MTRRdefType) {
1604 if (data & ~0xcff)
1605 return false;
1606 return valid_mtrr_type(data & 0xff);
1607 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1608 for (i = 0; i < 8 ; i++)
1609 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1610 return false;
1611 return true;
1614 /* variable MTRRs */
1615 return valid_mtrr_type(data & 0xff);
1618 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1620 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1622 if (!mtrr_valid(vcpu, msr, data))
1623 return 1;
1625 if (msr == MSR_MTRRdefType) {
1626 vcpu->arch.mtrr_state.def_type = data;
1627 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1628 } else if (msr == MSR_MTRRfix64K_00000)
1629 p[0] = data;
1630 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1631 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1632 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1633 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1634 else if (msr == MSR_IA32_CR_PAT)
1635 vcpu->arch.pat = data;
1636 else { /* Variable MTRRs */
1637 int idx, is_mtrr_mask;
1638 u64 *pt;
1640 idx = (msr - 0x200) / 2;
1641 is_mtrr_mask = msr - 0x200 - 2 * idx;
1642 if (!is_mtrr_mask)
1643 pt =
1644 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1645 else
1646 pt =
1647 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1648 *pt = data;
1651 kvm_mmu_reset_context(vcpu);
1652 return 0;
1655 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1657 u64 mcg_cap = vcpu->arch.mcg_cap;
1658 unsigned bank_num = mcg_cap & 0xff;
1660 switch (msr) {
1661 case MSR_IA32_MCG_STATUS:
1662 vcpu->arch.mcg_status = data;
1663 break;
1664 case MSR_IA32_MCG_CTL:
1665 if (!(mcg_cap & MCG_CTL_P))
1666 return 1;
1667 if (data != 0 && data != ~(u64)0)
1668 return -1;
1669 vcpu->arch.mcg_ctl = data;
1670 break;
1671 default:
1672 if (msr >= MSR_IA32_MC0_CTL &&
1673 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1674 u32 offset = msr - MSR_IA32_MC0_CTL;
1675 /* only 0 or all 1s can be written to IA32_MCi_CTL
1676 * some Linux kernels though clear bit 10 in bank 4 to
1677 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1678 * this to avoid an uncatched #GP in the guest
1680 if ((offset & 0x3) == 0 &&
1681 data != 0 && (data | (1 << 10)) != ~(u64)0)
1682 return -1;
1683 vcpu->arch.mce_banks[offset] = data;
1684 break;
1686 return 1;
1688 return 0;
1691 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1693 struct kvm *kvm = vcpu->kvm;
1694 int lm = is_long_mode(vcpu);
1695 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1696 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1697 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1698 : kvm->arch.xen_hvm_config.blob_size_32;
1699 u32 page_num = data & ~PAGE_MASK;
1700 u64 page_addr = data & PAGE_MASK;
1701 u8 *page;
1702 int r;
1704 r = -E2BIG;
1705 if (page_num >= blob_size)
1706 goto out;
1707 r = -ENOMEM;
1708 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1709 if (IS_ERR(page)) {
1710 r = PTR_ERR(page);
1711 goto out;
1713 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1714 goto out_free;
1715 r = 0;
1716 out_free:
1717 kfree(page);
1718 out:
1719 return r;
1722 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1724 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1727 static bool kvm_hv_msr_partition_wide(u32 msr)
1729 bool r = false;
1730 switch (msr) {
1731 case HV_X64_MSR_GUEST_OS_ID:
1732 case HV_X64_MSR_HYPERCALL:
1733 r = true;
1734 break;
1737 return r;
1740 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1742 struct kvm *kvm = vcpu->kvm;
1744 switch (msr) {
1745 case HV_X64_MSR_GUEST_OS_ID:
1746 kvm->arch.hv_guest_os_id = data;
1747 /* setting guest os id to zero disables hypercall page */
1748 if (!kvm->arch.hv_guest_os_id)
1749 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1750 break;
1751 case HV_X64_MSR_HYPERCALL: {
1752 u64 gfn;
1753 unsigned long addr;
1754 u8 instructions[4];
1756 /* if guest os id is not set hypercall should remain disabled */
1757 if (!kvm->arch.hv_guest_os_id)
1758 break;
1759 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1760 kvm->arch.hv_hypercall = data;
1761 break;
1763 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1764 addr = gfn_to_hva(kvm, gfn);
1765 if (kvm_is_error_hva(addr))
1766 return 1;
1767 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1768 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1769 if (__copy_to_user((void __user *)addr, instructions, 4))
1770 return 1;
1771 kvm->arch.hv_hypercall = data;
1772 break;
1774 default:
1775 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1776 "data 0x%llx\n", msr, data);
1777 return 1;
1779 return 0;
1782 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1784 switch (msr) {
1785 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1786 unsigned long addr;
1788 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1789 vcpu->arch.hv_vapic = data;
1790 break;
1792 addr = gfn_to_hva(vcpu->kvm, data >>
1793 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1794 if (kvm_is_error_hva(addr))
1795 return 1;
1796 if (__clear_user((void __user *)addr, PAGE_SIZE))
1797 return 1;
1798 vcpu->arch.hv_vapic = data;
1799 break;
1801 case HV_X64_MSR_EOI:
1802 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1803 case HV_X64_MSR_ICR:
1804 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1805 case HV_X64_MSR_TPR:
1806 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1807 default:
1808 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1809 "data 0x%llx\n", msr, data);
1810 return 1;
1813 return 0;
1816 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1818 gpa_t gpa = data & ~0x3f;
1820 /* Bits 2:5 are reserved, Should be zero */
1821 if (data & 0x3c)
1822 return 1;
1824 vcpu->arch.apf.msr_val = data;
1826 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1827 kvm_clear_async_pf_completion_queue(vcpu);
1828 kvm_async_pf_hash_reset(vcpu);
1829 return 0;
1832 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1833 return 1;
1835 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1836 kvm_async_pf_wakeup_all(vcpu);
1837 return 0;
1840 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1842 if (vcpu->arch.time_page) {
1843 kvm_release_page_dirty(vcpu->arch.time_page);
1844 vcpu->arch.time_page = NULL;
1848 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1850 u64 delta;
1852 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1853 return;
1855 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1856 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1857 vcpu->arch.st.accum_steal = delta;
1860 static void record_steal_time(struct kvm_vcpu *vcpu)
1862 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1863 return;
1865 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1866 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1867 return;
1869 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1870 vcpu->arch.st.steal.version += 2;
1871 vcpu->arch.st.accum_steal = 0;
1873 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1874 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1877 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1879 bool pr = false;
1880 u32 msr = msr_info->index;
1881 u64 data = msr_info->data;
1883 switch (msr) {
1884 case MSR_EFER:
1885 return set_efer(vcpu, data);
1886 case MSR_K7_HWCR:
1887 data &= ~(u64)0x40; /* ignore flush filter disable */
1888 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1889 data &= ~(u64)0x8; /* ignore TLB cache disable */
1890 if (data != 0) {
1891 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1892 data);
1893 return 1;
1895 break;
1896 case MSR_FAM10H_MMIO_CONF_BASE:
1897 if (data != 0) {
1898 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1899 "0x%llx\n", data);
1900 return 1;
1902 break;
1903 case MSR_AMD64_NB_CFG:
1904 break;
1905 case MSR_IA32_DEBUGCTLMSR:
1906 if (!data) {
1907 /* We support the non-activated case already */
1908 break;
1909 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1910 /* Values other than LBR and BTF are vendor-specific,
1911 thus reserved and should throw a #GP */
1912 return 1;
1914 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1915 __func__, data);
1916 break;
1917 case MSR_IA32_UCODE_REV:
1918 case MSR_IA32_UCODE_WRITE:
1919 case MSR_VM_HSAVE_PA:
1920 case MSR_AMD64_PATCH_LOADER:
1921 break;
1922 case 0x200 ... 0x2ff:
1923 return set_msr_mtrr(vcpu, msr, data);
1924 case MSR_IA32_APICBASE:
1925 kvm_set_apic_base(vcpu, data);
1926 break;
1927 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1928 return kvm_x2apic_msr_write(vcpu, msr, data);
1929 case MSR_IA32_TSCDEADLINE:
1930 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1931 break;
1932 case MSR_IA32_TSC_ADJUST:
1933 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1934 if (!msr_info->host_initiated) {
1935 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1936 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1938 vcpu->arch.ia32_tsc_adjust_msr = data;
1940 break;
1941 case MSR_IA32_MISC_ENABLE:
1942 vcpu->arch.ia32_misc_enable_msr = data;
1943 break;
1944 case MSR_KVM_WALL_CLOCK_NEW:
1945 case MSR_KVM_WALL_CLOCK:
1946 vcpu->kvm->arch.wall_clock = data;
1947 kvm_write_wall_clock(vcpu->kvm, data);
1948 break;
1949 case MSR_KVM_SYSTEM_TIME_NEW:
1950 case MSR_KVM_SYSTEM_TIME: {
1951 kvmclock_reset(vcpu);
1953 vcpu->arch.time = data;
1954 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1956 /* we verify if the enable bit is set... */
1957 if (!(data & 1))
1958 break;
1960 /* ...but clean it before doing the actual write */
1961 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1963 vcpu->arch.time_page =
1964 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1966 if (is_error_page(vcpu->arch.time_page))
1967 vcpu->arch.time_page = NULL;
1969 break;
1971 case MSR_KVM_ASYNC_PF_EN:
1972 if (kvm_pv_enable_async_pf(vcpu, data))
1973 return 1;
1974 break;
1975 case MSR_KVM_STEAL_TIME:
1977 if (unlikely(!sched_info_on()))
1978 return 1;
1980 if (data & KVM_STEAL_RESERVED_MASK)
1981 return 1;
1983 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1984 data & KVM_STEAL_VALID_BITS))
1985 return 1;
1987 vcpu->arch.st.msr_val = data;
1989 if (!(data & KVM_MSR_ENABLED))
1990 break;
1992 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1994 preempt_disable();
1995 accumulate_steal_time(vcpu);
1996 preempt_enable();
1998 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2000 break;
2001 case MSR_KVM_PV_EOI_EN:
2002 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2003 return 1;
2004 break;
2006 case MSR_IA32_MCG_CTL:
2007 case MSR_IA32_MCG_STATUS:
2008 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2009 return set_msr_mce(vcpu, msr, data);
2011 /* Performance counters are not protected by a CPUID bit,
2012 * so we should check all of them in the generic path for the sake of
2013 * cross vendor migration.
2014 * Writing a zero into the event select MSRs disables them,
2015 * which we perfectly emulate ;-). Any other value should be at least
2016 * reported, some guests depend on them.
2018 case MSR_K7_EVNTSEL0:
2019 case MSR_K7_EVNTSEL1:
2020 case MSR_K7_EVNTSEL2:
2021 case MSR_K7_EVNTSEL3:
2022 if (data != 0)
2023 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2024 "0x%x data 0x%llx\n", msr, data);
2025 break;
2026 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2027 * so we ignore writes to make it happy.
2029 case MSR_K7_PERFCTR0:
2030 case MSR_K7_PERFCTR1:
2031 case MSR_K7_PERFCTR2:
2032 case MSR_K7_PERFCTR3:
2033 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2034 "0x%x data 0x%llx\n", msr, data);
2035 break;
2036 case MSR_P6_PERFCTR0:
2037 case MSR_P6_PERFCTR1:
2038 pr = true;
2039 case MSR_P6_EVNTSEL0:
2040 case MSR_P6_EVNTSEL1:
2041 if (kvm_pmu_msr(vcpu, msr))
2042 return kvm_pmu_set_msr(vcpu, msr, data);
2044 if (pr || data != 0)
2045 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2046 "0x%x data 0x%llx\n", msr, data);
2047 break;
2048 case MSR_K7_CLK_CTL:
2050 * Ignore all writes to this no longer documented MSR.
2051 * Writes are only relevant for old K7 processors,
2052 * all pre-dating SVM, but a recommended workaround from
2053 * AMD for these chips. It is possible to specify the
2054 * affected processor models on the command line, hence
2055 * the need to ignore the workaround.
2057 break;
2058 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2059 if (kvm_hv_msr_partition_wide(msr)) {
2060 int r;
2061 mutex_lock(&vcpu->kvm->lock);
2062 r = set_msr_hyperv_pw(vcpu, msr, data);
2063 mutex_unlock(&vcpu->kvm->lock);
2064 return r;
2065 } else
2066 return set_msr_hyperv(vcpu, msr, data);
2067 break;
2068 case MSR_IA32_BBL_CR_CTL3:
2069 /* Drop writes to this legacy MSR -- see rdmsr
2070 * counterpart for further detail.
2072 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2073 break;
2074 case MSR_AMD64_OSVW_ID_LENGTH:
2075 if (!guest_cpuid_has_osvw(vcpu))
2076 return 1;
2077 vcpu->arch.osvw.length = data;
2078 break;
2079 case MSR_AMD64_OSVW_STATUS:
2080 if (!guest_cpuid_has_osvw(vcpu))
2081 return 1;
2082 vcpu->arch.osvw.status = data;
2083 break;
2084 default:
2085 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2086 return xen_hvm_config(vcpu, data);
2087 if (kvm_pmu_msr(vcpu, msr))
2088 return kvm_pmu_set_msr(vcpu, msr, data);
2089 if (!ignore_msrs) {
2090 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2091 msr, data);
2092 return 1;
2093 } else {
2094 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2095 msr, data);
2096 break;
2099 return 0;
2101 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2105 * Reads an msr value (of 'msr_index') into 'pdata'.
2106 * Returns 0 on success, non-0 otherwise.
2107 * Assumes vcpu_load() was already called.
2109 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2111 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2114 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2116 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2118 if (!msr_mtrr_valid(msr))
2119 return 1;
2121 if (msr == MSR_MTRRdefType)
2122 *pdata = vcpu->arch.mtrr_state.def_type +
2123 (vcpu->arch.mtrr_state.enabled << 10);
2124 else if (msr == MSR_MTRRfix64K_00000)
2125 *pdata = p[0];
2126 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2127 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2128 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2129 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2130 else if (msr == MSR_IA32_CR_PAT)
2131 *pdata = vcpu->arch.pat;
2132 else { /* Variable MTRRs */
2133 int idx, is_mtrr_mask;
2134 u64 *pt;
2136 idx = (msr - 0x200) / 2;
2137 is_mtrr_mask = msr - 0x200 - 2 * idx;
2138 if (!is_mtrr_mask)
2139 pt =
2140 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2141 else
2142 pt =
2143 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2144 *pdata = *pt;
2147 return 0;
2150 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2152 u64 data;
2153 u64 mcg_cap = vcpu->arch.mcg_cap;
2154 unsigned bank_num = mcg_cap & 0xff;
2156 switch (msr) {
2157 case MSR_IA32_P5_MC_ADDR:
2158 case MSR_IA32_P5_MC_TYPE:
2159 data = 0;
2160 break;
2161 case MSR_IA32_MCG_CAP:
2162 data = vcpu->arch.mcg_cap;
2163 break;
2164 case MSR_IA32_MCG_CTL:
2165 if (!(mcg_cap & MCG_CTL_P))
2166 return 1;
2167 data = vcpu->arch.mcg_ctl;
2168 break;
2169 case MSR_IA32_MCG_STATUS:
2170 data = vcpu->arch.mcg_status;
2171 break;
2172 default:
2173 if (msr >= MSR_IA32_MC0_CTL &&
2174 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2175 u32 offset = msr - MSR_IA32_MC0_CTL;
2176 data = vcpu->arch.mce_banks[offset];
2177 break;
2179 return 1;
2181 *pdata = data;
2182 return 0;
2185 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2187 u64 data = 0;
2188 struct kvm *kvm = vcpu->kvm;
2190 switch (msr) {
2191 case HV_X64_MSR_GUEST_OS_ID:
2192 data = kvm->arch.hv_guest_os_id;
2193 break;
2194 case HV_X64_MSR_HYPERCALL:
2195 data = kvm->arch.hv_hypercall;
2196 break;
2197 default:
2198 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2199 return 1;
2202 *pdata = data;
2203 return 0;
2206 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2208 u64 data = 0;
2210 switch (msr) {
2211 case HV_X64_MSR_VP_INDEX: {
2212 int r;
2213 struct kvm_vcpu *v;
2214 kvm_for_each_vcpu(r, v, vcpu->kvm)
2215 if (v == vcpu)
2216 data = r;
2217 break;
2219 case HV_X64_MSR_EOI:
2220 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2221 case HV_X64_MSR_ICR:
2222 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2223 case HV_X64_MSR_TPR:
2224 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2225 case HV_X64_MSR_APIC_ASSIST_PAGE:
2226 data = vcpu->arch.hv_vapic;
2227 break;
2228 default:
2229 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2230 return 1;
2232 *pdata = data;
2233 return 0;
2236 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2238 u64 data;
2240 switch (msr) {
2241 case MSR_IA32_PLATFORM_ID:
2242 case MSR_IA32_EBL_CR_POWERON:
2243 case MSR_IA32_DEBUGCTLMSR:
2244 case MSR_IA32_LASTBRANCHFROMIP:
2245 case MSR_IA32_LASTBRANCHTOIP:
2246 case MSR_IA32_LASTINTFROMIP:
2247 case MSR_IA32_LASTINTTOIP:
2248 case MSR_K8_SYSCFG:
2249 case MSR_K7_HWCR:
2250 case MSR_VM_HSAVE_PA:
2251 case MSR_K7_EVNTSEL0:
2252 case MSR_K7_PERFCTR0:
2253 case MSR_K8_INT_PENDING_MSG:
2254 case MSR_AMD64_NB_CFG:
2255 case MSR_FAM10H_MMIO_CONF_BASE:
2256 data = 0;
2257 break;
2258 case MSR_P6_PERFCTR0:
2259 case MSR_P6_PERFCTR1:
2260 case MSR_P6_EVNTSEL0:
2261 case MSR_P6_EVNTSEL1:
2262 if (kvm_pmu_msr(vcpu, msr))
2263 return kvm_pmu_get_msr(vcpu, msr, pdata);
2264 data = 0;
2265 break;
2266 case MSR_IA32_UCODE_REV:
2267 data = 0x100000000ULL;
2268 break;
2269 case MSR_MTRRcap:
2270 data = 0x500 | KVM_NR_VAR_MTRR;
2271 break;
2272 case 0x200 ... 0x2ff:
2273 return get_msr_mtrr(vcpu, msr, pdata);
2274 case 0xcd: /* fsb frequency */
2275 data = 3;
2276 break;
2278 * MSR_EBC_FREQUENCY_ID
2279 * Conservative value valid for even the basic CPU models.
2280 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2281 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2282 * and 266MHz for model 3, or 4. Set Core Clock
2283 * Frequency to System Bus Frequency Ratio to 1 (bits
2284 * 31:24) even though these are only valid for CPU
2285 * models > 2, however guests may end up dividing or
2286 * multiplying by zero otherwise.
2288 case MSR_EBC_FREQUENCY_ID:
2289 data = 1 << 24;
2290 break;
2291 case MSR_IA32_APICBASE:
2292 data = kvm_get_apic_base(vcpu);
2293 break;
2294 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2295 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2296 break;
2297 case MSR_IA32_TSCDEADLINE:
2298 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2299 break;
2300 case MSR_IA32_TSC_ADJUST:
2301 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2302 break;
2303 case MSR_IA32_MISC_ENABLE:
2304 data = vcpu->arch.ia32_misc_enable_msr;
2305 break;
2306 case MSR_IA32_PERF_STATUS:
2307 /* TSC increment by tick */
2308 data = 1000ULL;
2309 /* CPU multiplier */
2310 data |= (((uint64_t)4ULL) << 40);
2311 break;
2312 case MSR_EFER:
2313 data = vcpu->arch.efer;
2314 break;
2315 case MSR_KVM_WALL_CLOCK:
2316 case MSR_KVM_WALL_CLOCK_NEW:
2317 data = vcpu->kvm->arch.wall_clock;
2318 break;
2319 case MSR_KVM_SYSTEM_TIME:
2320 case MSR_KVM_SYSTEM_TIME_NEW:
2321 data = vcpu->arch.time;
2322 break;
2323 case MSR_KVM_ASYNC_PF_EN:
2324 data = vcpu->arch.apf.msr_val;
2325 break;
2326 case MSR_KVM_STEAL_TIME:
2327 data = vcpu->arch.st.msr_val;
2328 break;
2329 case MSR_KVM_PV_EOI_EN:
2330 data = vcpu->arch.pv_eoi.msr_val;
2331 break;
2332 case MSR_IA32_P5_MC_ADDR:
2333 case MSR_IA32_P5_MC_TYPE:
2334 case MSR_IA32_MCG_CAP:
2335 case MSR_IA32_MCG_CTL:
2336 case MSR_IA32_MCG_STATUS:
2337 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2338 return get_msr_mce(vcpu, msr, pdata);
2339 case MSR_K7_CLK_CTL:
2341 * Provide expected ramp-up count for K7. All other
2342 * are set to zero, indicating minimum divisors for
2343 * every field.
2345 * This prevents guest kernels on AMD host with CPU
2346 * type 6, model 8 and higher from exploding due to
2347 * the rdmsr failing.
2349 data = 0x20000000;
2350 break;
2351 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2352 if (kvm_hv_msr_partition_wide(msr)) {
2353 int r;
2354 mutex_lock(&vcpu->kvm->lock);
2355 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2356 mutex_unlock(&vcpu->kvm->lock);
2357 return r;
2358 } else
2359 return get_msr_hyperv(vcpu, msr, pdata);
2360 break;
2361 case MSR_IA32_BBL_CR_CTL3:
2362 /* This legacy MSR exists but isn't fully documented in current
2363 * silicon. It is however accessed by winxp in very narrow
2364 * scenarios where it sets bit #19, itself documented as
2365 * a "reserved" bit. Best effort attempt to source coherent
2366 * read data here should the balance of the register be
2367 * interpreted by the guest:
2369 * L2 cache control register 3: 64GB range, 256KB size,
2370 * enabled, latency 0x1, configured
2372 data = 0xbe702111;
2373 break;
2374 case MSR_AMD64_OSVW_ID_LENGTH:
2375 if (!guest_cpuid_has_osvw(vcpu))
2376 return 1;
2377 data = vcpu->arch.osvw.length;
2378 break;
2379 case MSR_AMD64_OSVW_STATUS:
2380 if (!guest_cpuid_has_osvw(vcpu))
2381 return 1;
2382 data = vcpu->arch.osvw.status;
2383 break;
2384 default:
2385 if (kvm_pmu_msr(vcpu, msr))
2386 return kvm_pmu_get_msr(vcpu, msr, pdata);
2387 if (!ignore_msrs) {
2388 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2389 return 1;
2390 } else {
2391 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2392 data = 0;
2394 break;
2396 *pdata = data;
2397 return 0;
2399 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2402 * Read or write a bunch of msrs. All parameters are kernel addresses.
2404 * @return number of msrs set successfully.
2406 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2407 struct kvm_msr_entry *entries,
2408 int (*do_msr)(struct kvm_vcpu *vcpu,
2409 unsigned index, u64 *data))
2411 int i, idx;
2413 idx = srcu_read_lock(&vcpu->kvm->srcu);
2414 for (i = 0; i < msrs->nmsrs; ++i)
2415 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2416 break;
2417 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2419 return i;
2423 * Read or write a bunch of msrs. Parameters are user addresses.
2425 * @return number of msrs set successfully.
2427 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2428 int (*do_msr)(struct kvm_vcpu *vcpu,
2429 unsigned index, u64 *data),
2430 int writeback)
2432 struct kvm_msrs msrs;
2433 struct kvm_msr_entry *entries;
2434 int r, n;
2435 unsigned size;
2437 r = -EFAULT;
2438 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2439 goto out;
2441 r = -E2BIG;
2442 if (msrs.nmsrs >= MAX_IO_MSRS)
2443 goto out;
2445 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2446 entries = memdup_user(user_msrs->entries, size);
2447 if (IS_ERR(entries)) {
2448 r = PTR_ERR(entries);
2449 goto out;
2452 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2453 if (r < 0)
2454 goto out_free;
2456 r = -EFAULT;
2457 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2458 goto out_free;
2460 r = n;
2462 out_free:
2463 kfree(entries);
2464 out:
2465 return r;
2468 int kvm_dev_ioctl_check_extension(long ext)
2470 int r;
2472 switch (ext) {
2473 case KVM_CAP_IRQCHIP:
2474 case KVM_CAP_HLT:
2475 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2476 case KVM_CAP_SET_TSS_ADDR:
2477 case KVM_CAP_EXT_CPUID:
2478 case KVM_CAP_CLOCKSOURCE:
2479 case KVM_CAP_PIT:
2480 case KVM_CAP_NOP_IO_DELAY:
2481 case KVM_CAP_MP_STATE:
2482 case KVM_CAP_SYNC_MMU:
2483 case KVM_CAP_USER_NMI:
2484 case KVM_CAP_REINJECT_CONTROL:
2485 case KVM_CAP_IRQ_INJECT_STATUS:
2486 case KVM_CAP_ASSIGN_DEV_IRQ:
2487 case KVM_CAP_IRQFD:
2488 case KVM_CAP_IOEVENTFD:
2489 case KVM_CAP_PIT2:
2490 case KVM_CAP_PIT_STATE2:
2491 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2492 case KVM_CAP_XEN_HVM:
2493 case KVM_CAP_ADJUST_CLOCK:
2494 case KVM_CAP_VCPU_EVENTS:
2495 case KVM_CAP_HYPERV:
2496 case KVM_CAP_HYPERV_VAPIC:
2497 case KVM_CAP_HYPERV_SPIN:
2498 case KVM_CAP_PCI_SEGMENT:
2499 case KVM_CAP_DEBUGREGS:
2500 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2501 case KVM_CAP_XSAVE:
2502 case KVM_CAP_ASYNC_PF:
2503 case KVM_CAP_GET_TSC_KHZ:
2504 case KVM_CAP_PCI_2_3:
2505 case KVM_CAP_KVMCLOCK_CTRL:
2506 case KVM_CAP_READONLY_MEM:
2507 case KVM_CAP_IRQFD_RESAMPLE:
2508 r = 1;
2509 break;
2510 case KVM_CAP_COALESCED_MMIO:
2511 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2512 break;
2513 case KVM_CAP_VAPIC:
2514 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2515 break;
2516 case KVM_CAP_NR_VCPUS:
2517 r = KVM_SOFT_MAX_VCPUS;
2518 break;
2519 case KVM_CAP_MAX_VCPUS:
2520 r = KVM_MAX_VCPUS;
2521 break;
2522 case KVM_CAP_NR_MEMSLOTS:
2523 r = KVM_MEMORY_SLOTS;
2524 break;
2525 case KVM_CAP_PV_MMU: /* obsolete */
2526 r = 0;
2527 break;
2528 case KVM_CAP_IOMMU:
2529 r = iommu_present(&pci_bus_type);
2530 break;
2531 case KVM_CAP_MCE:
2532 r = KVM_MAX_MCE_BANKS;
2533 break;
2534 case KVM_CAP_XCRS:
2535 r = cpu_has_xsave;
2536 break;
2537 case KVM_CAP_TSC_CONTROL:
2538 r = kvm_has_tsc_control;
2539 break;
2540 case KVM_CAP_TSC_DEADLINE_TIMER:
2541 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2542 break;
2543 default:
2544 r = 0;
2545 break;
2547 return r;
2551 long kvm_arch_dev_ioctl(struct file *filp,
2552 unsigned int ioctl, unsigned long arg)
2554 void __user *argp = (void __user *)arg;
2555 long r;
2557 switch (ioctl) {
2558 case KVM_GET_MSR_INDEX_LIST: {
2559 struct kvm_msr_list __user *user_msr_list = argp;
2560 struct kvm_msr_list msr_list;
2561 unsigned n;
2563 r = -EFAULT;
2564 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2565 goto out;
2566 n = msr_list.nmsrs;
2567 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2568 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2569 goto out;
2570 r = -E2BIG;
2571 if (n < msr_list.nmsrs)
2572 goto out;
2573 r = -EFAULT;
2574 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2575 num_msrs_to_save * sizeof(u32)))
2576 goto out;
2577 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2578 &emulated_msrs,
2579 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2580 goto out;
2581 r = 0;
2582 break;
2584 case KVM_GET_SUPPORTED_CPUID: {
2585 struct kvm_cpuid2 __user *cpuid_arg = argp;
2586 struct kvm_cpuid2 cpuid;
2588 r = -EFAULT;
2589 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2590 goto out;
2591 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2592 cpuid_arg->entries);
2593 if (r)
2594 goto out;
2596 r = -EFAULT;
2597 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2598 goto out;
2599 r = 0;
2600 break;
2602 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2603 u64 mce_cap;
2605 mce_cap = KVM_MCE_CAP_SUPPORTED;
2606 r = -EFAULT;
2607 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2608 goto out;
2609 r = 0;
2610 break;
2612 default:
2613 r = -EINVAL;
2615 out:
2616 return r;
2619 static void wbinvd_ipi(void *garbage)
2621 wbinvd();
2624 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2626 return vcpu->kvm->arch.iommu_domain &&
2627 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2630 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2632 /* Address WBINVD may be executed by guest */
2633 if (need_emulate_wbinvd(vcpu)) {
2634 if (kvm_x86_ops->has_wbinvd_exit())
2635 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2636 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2637 smp_call_function_single(vcpu->cpu,
2638 wbinvd_ipi, NULL, 1);
2641 kvm_x86_ops->vcpu_load(vcpu, cpu);
2643 /* Apply any externally detected TSC adjustments (due to suspend) */
2644 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2645 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2646 vcpu->arch.tsc_offset_adjustment = 0;
2647 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2650 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2651 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2652 native_read_tsc() - vcpu->arch.last_host_tsc;
2653 if (tsc_delta < 0)
2654 mark_tsc_unstable("KVM discovered backwards TSC");
2655 if (check_tsc_unstable()) {
2656 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2657 vcpu->arch.last_guest_tsc);
2658 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2659 vcpu->arch.tsc_catchup = 1;
2662 * On a host with synchronized TSC, there is no need to update
2663 * kvmclock on vcpu->cpu migration
2665 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2666 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2667 if (vcpu->cpu != cpu)
2668 kvm_migrate_timers(vcpu);
2669 vcpu->cpu = cpu;
2672 accumulate_steal_time(vcpu);
2673 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2676 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2678 kvm_x86_ops->vcpu_put(vcpu);
2679 kvm_put_guest_fpu(vcpu);
2680 vcpu->arch.last_host_tsc = native_read_tsc();
2683 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2684 struct kvm_lapic_state *s)
2686 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2688 return 0;
2691 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2692 struct kvm_lapic_state *s)
2694 kvm_apic_post_state_restore(vcpu, s);
2695 update_cr8_intercept(vcpu);
2697 return 0;
2700 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2701 struct kvm_interrupt *irq)
2703 if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2704 return -EINVAL;
2705 if (irqchip_in_kernel(vcpu->kvm))
2706 return -ENXIO;
2708 kvm_queue_interrupt(vcpu, irq->irq, false);
2709 kvm_make_request(KVM_REQ_EVENT, vcpu);
2711 return 0;
2714 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2716 kvm_inject_nmi(vcpu);
2718 return 0;
2721 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2722 struct kvm_tpr_access_ctl *tac)
2724 if (tac->flags)
2725 return -EINVAL;
2726 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2727 return 0;
2730 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2731 u64 mcg_cap)
2733 int r;
2734 unsigned bank_num = mcg_cap & 0xff, bank;
2736 r = -EINVAL;
2737 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2738 goto out;
2739 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2740 goto out;
2741 r = 0;
2742 vcpu->arch.mcg_cap = mcg_cap;
2743 /* Init IA32_MCG_CTL to all 1s */
2744 if (mcg_cap & MCG_CTL_P)
2745 vcpu->arch.mcg_ctl = ~(u64)0;
2746 /* Init IA32_MCi_CTL to all 1s */
2747 for (bank = 0; bank < bank_num; bank++)
2748 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2749 out:
2750 return r;
2753 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2754 struct kvm_x86_mce *mce)
2756 u64 mcg_cap = vcpu->arch.mcg_cap;
2757 unsigned bank_num = mcg_cap & 0xff;
2758 u64 *banks = vcpu->arch.mce_banks;
2760 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2761 return -EINVAL;
2763 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2764 * reporting is disabled
2766 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2767 vcpu->arch.mcg_ctl != ~(u64)0)
2768 return 0;
2769 banks += 4 * mce->bank;
2771 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2772 * reporting is disabled for the bank
2774 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2775 return 0;
2776 if (mce->status & MCI_STATUS_UC) {
2777 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2778 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2779 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2780 return 0;
2782 if (banks[1] & MCI_STATUS_VAL)
2783 mce->status |= MCI_STATUS_OVER;
2784 banks[2] = mce->addr;
2785 banks[3] = mce->misc;
2786 vcpu->arch.mcg_status = mce->mcg_status;
2787 banks[1] = mce->status;
2788 kvm_queue_exception(vcpu, MC_VECTOR);
2789 } else if (!(banks[1] & MCI_STATUS_VAL)
2790 || !(banks[1] & MCI_STATUS_UC)) {
2791 if (banks[1] & MCI_STATUS_VAL)
2792 mce->status |= MCI_STATUS_OVER;
2793 banks[2] = mce->addr;
2794 banks[3] = mce->misc;
2795 banks[1] = mce->status;
2796 } else
2797 banks[1] |= MCI_STATUS_OVER;
2798 return 0;
2801 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2802 struct kvm_vcpu_events *events)
2804 process_nmi(vcpu);
2805 events->exception.injected =
2806 vcpu->arch.exception.pending &&
2807 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2808 events->exception.nr = vcpu->arch.exception.nr;
2809 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2810 events->exception.pad = 0;
2811 events->exception.error_code = vcpu->arch.exception.error_code;
2813 events->interrupt.injected =
2814 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2815 events->interrupt.nr = vcpu->arch.interrupt.nr;
2816 events->interrupt.soft = 0;
2817 events->interrupt.shadow =
2818 kvm_x86_ops->get_interrupt_shadow(vcpu,
2819 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2821 events->nmi.injected = vcpu->arch.nmi_injected;
2822 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2823 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2824 events->nmi.pad = 0;
2826 events->sipi_vector = vcpu->arch.sipi_vector;
2828 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2829 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2830 | KVM_VCPUEVENT_VALID_SHADOW);
2831 memset(&events->reserved, 0, sizeof(events->reserved));
2834 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2835 struct kvm_vcpu_events *events)
2837 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2838 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2839 | KVM_VCPUEVENT_VALID_SHADOW))
2840 return -EINVAL;
2842 process_nmi(vcpu);
2843 vcpu->arch.exception.pending = events->exception.injected;
2844 vcpu->arch.exception.nr = events->exception.nr;
2845 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2846 vcpu->arch.exception.error_code = events->exception.error_code;
2848 vcpu->arch.interrupt.pending = events->interrupt.injected;
2849 vcpu->arch.interrupt.nr = events->interrupt.nr;
2850 vcpu->arch.interrupt.soft = events->interrupt.soft;
2851 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2852 kvm_x86_ops->set_interrupt_shadow(vcpu,
2853 events->interrupt.shadow);
2855 vcpu->arch.nmi_injected = events->nmi.injected;
2856 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2857 vcpu->arch.nmi_pending = events->nmi.pending;
2858 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2860 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2861 vcpu->arch.sipi_vector = events->sipi_vector;
2863 kvm_make_request(KVM_REQ_EVENT, vcpu);
2865 return 0;
2868 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2869 struct kvm_debugregs *dbgregs)
2871 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2872 dbgregs->dr6 = vcpu->arch.dr6;
2873 dbgregs->dr7 = vcpu->arch.dr7;
2874 dbgregs->flags = 0;
2875 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2878 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2879 struct kvm_debugregs *dbgregs)
2881 if (dbgregs->flags)
2882 return -EINVAL;
2884 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2885 vcpu->arch.dr6 = dbgregs->dr6;
2886 vcpu->arch.dr7 = dbgregs->dr7;
2888 return 0;
2891 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2892 struct kvm_xsave *guest_xsave)
2894 if (cpu_has_xsave)
2895 memcpy(guest_xsave->region,
2896 &vcpu->arch.guest_fpu.state->xsave,
2897 xstate_size);
2898 else {
2899 memcpy(guest_xsave->region,
2900 &vcpu->arch.guest_fpu.state->fxsave,
2901 sizeof(struct i387_fxsave_struct));
2902 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2903 XSTATE_FPSSE;
2907 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2908 struct kvm_xsave *guest_xsave)
2910 u64 xstate_bv =
2911 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2913 if (cpu_has_xsave)
2914 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2915 guest_xsave->region, xstate_size);
2916 else {
2917 if (xstate_bv & ~XSTATE_FPSSE)
2918 return -EINVAL;
2919 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2920 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2922 return 0;
2925 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2926 struct kvm_xcrs *guest_xcrs)
2928 if (!cpu_has_xsave) {
2929 guest_xcrs->nr_xcrs = 0;
2930 return;
2933 guest_xcrs->nr_xcrs = 1;
2934 guest_xcrs->flags = 0;
2935 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2936 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2939 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2940 struct kvm_xcrs *guest_xcrs)
2942 int i, r = 0;
2944 if (!cpu_has_xsave)
2945 return -EINVAL;
2947 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2948 return -EINVAL;
2950 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2951 /* Only support XCR0 currently */
2952 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2953 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2954 guest_xcrs->xcrs[0].value);
2955 break;
2957 if (r)
2958 r = -EINVAL;
2959 return r;
2963 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2964 * stopped by the hypervisor. This function will be called from the host only.
2965 * EINVAL is returned when the host attempts to set the flag for a guest that
2966 * does not support pv clocks.
2968 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2970 if (!vcpu->arch.time_page)
2971 return -EINVAL;
2972 vcpu->arch.pvclock_set_guest_stopped_request = true;
2973 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2974 return 0;
2977 long kvm_arch_vcpu_ioctl(struct file *filp,
2978 unsigned int ioctl, unsigned long arg)
2980 struct kvm_vcpu *vcpu = filp->private_data;
2981 void __user *argp = (void __user *)arg;
2982 int r;
2983 union {
2984 struct kvm_lapic_state *lapic;
2985 struct kvm_xsave *xsave;
2986 struct kvm_xcrs *xcrs;
2987 void *buffer;
2988 } u;
2990 u.buffer = NULL;
2991 switch (ioctl) {
2992 case KVM_GET_LAPIC: {
2993 r = -EINVAL;
2994 if (!vcpu->arch.apic)
2995 goto out;
2996 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2998 r = -ENOMEM;
2999 if (!u.lapic)
3000 goto out;
3001 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3002 if (r)
3003 goto out;
3004 r = -EFAULT;
3005 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3006 goto out;
3007 r = 0;
3008 break;
3010 case KVM_SET_LAPIC: {
3011 r = -EINVAL;
3012 if (!vcpu->arch.apic)
3013 goto out;
3014 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3015 if (IS_ERR(u.lapic))
3016 return PTR_ERR(u.lapic);
3018 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3019 break;
3021 case KVM_INTERRUPT: {
3022 struct kvm_interrupt irq;
3024 r = -EFAULT;
3025 if (copy_from_user(&irq, argp, sizeof irq))
3026 goto out;
3027 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3028 break;
3030 case KVM_NMI: {
3031 r = kvm_vcpu_ioctl_nmi(vcpu);
3032 break;
3034 case KVM_SET_CPUID: {
3035 struct kvm_cpuid __user *cpuid_arg = argp;
3036 struct kvm_cpuid cpuid;
3038 r = -EFAULT;
3039 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3040 goto out;
3041 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3042 break;
3044 case KVM_SET_CPUID2: {
3045 struct kvm_cpuid2 __user *cpuid_arg = argp;
3046 struct kvm_cpuid2 cpuid;
3048 r = -EFAULT;
3049 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3050 goto out;
3051 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3052 cpuid_arg->entries);
3053 break;
3055 case KVM_GET_CPUID2: {
3056 struct kvm_cpuid2 __user *cpuid_arg = argp;
3057 struct kvm_cpuid2 cpuid;
3059 r = -EFAULT;
3060 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3061 goto out;
3062 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3063 cpuid_arg->entries);
3064 if (r)
3065 goto out;
3066 r = -EFAULT;
3067 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3068 goto out;
3069 r = 0;
3070 break;
3072 case KVM_GET_MSRS:
3073 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3074 break;
3075 case KVM_SET_MSRS:
3076 r = msr_io(vcpu, argp, do_set_msr, 0);
3077 break;
3078 case KVM_TPR_ACCESS_REPORTING: {
3079 struct kvm_tpr_access_ctl tac;
3081 r = -EFAULT;
3082 if (copy_from_user(&tac, argp, sizeof tac))
3083 goto out;
3084 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3085 if (r)
3086 goto out;
3087 r = -EFAULT;
3088 if (copy_to_user(argp, &tac, sizeof tac))
3089 goto out;
3090 r = 0;
3091 break;
3093 case KVM_SET_VAPIC_ADDR: {
3094 struct kvm_vapic_addr va;
3096 r = -EINVAL;
3097 if (!irqchip_in_kernel(vcpu->kvm))
3098 goto out;
3099 r = -EFAULT;
3100 if (copy_from_user(&va, argp, sizeof va))
3101 goto out;
3102 r = 0;
3103 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3104 break;
3106 case KVM_X86_SETUP_MCE: {
3107 u64 mcg_cap;
3109 r = -EFAULT;
3110 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3111 goto out;
3112 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3113 break;
3115 case KVM_X86_SET_MCE: {
3116 struct kvm_x86_mce mce;
3118 r = -EFAULT;
3119 if (copy_from_user(&mce, argp, sizeof mce))
3120 goto out;
3121 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3122 break;
3124 case KVM_GET_VCPU_EVENTS: {
3125 struct kvm_vcpu_events events;
3127 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3129 r = -EFAULT;
3130 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3131 break;
3132 r = 0;
3133 break;
3135 case KVM_SET_VCPU_EVENTS: {
3136 struct kvm_vcpu_events events;
3138 r = -EFAULT;
3139 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3140 break;
3142 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3143 break;
3145 case KVM_GET_DEBUGREGS: {
3146 struct kvm_debugregs dbgregs;
3148 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3150 r = -EFAULT;
3151 if (copy_to_user(argp, &dbgregs,
3152 sizeof(struct kvm_debugregs)))
3153 break;
3154 r = 0;
3155 break;
3157 case KVM_SET_DEBUGREGS: {
3158 struct kvm_debugregs dbgregs;
3160 r = -EFAULT;
3161 if (copy_from_user(&dbgregs, argp,
3162 sizeof(struct kvm_debugregs)))
3163 break;
3165 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3166 break;
3168 case KVM_GET_XSAVE: {
3169 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3170 r = -ENOMEM;
3171 if (!u.xsave)
3172 break;
3174 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3176 r = -EFAULT;
3177 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3178 break;
3179 r = 0;
3180 break;
3182 case KVM_SET_XSAVE: {
3183 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3184 if (IS_ERR(u.xsave))
3185 return PTR_ERR(u.xsave);
3187 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3188 break;
3190 case KVM_GET_XCRS: {
3191 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3192 r = -ENOMEM;
3193 if (!u.xcrs)
3194 break;
3196 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3198 r = -EFAULT;
3199 if (copy_to_user(argp, u.xcrs,
3200 sizeof(struct kvm_xcrs)))
3201 break;
3202 r = 0;
3203 break;
3205 case KVM_SET_XCRS: {
3206 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3207 if (IS_ERR(u.xcrs))
3208 return PTR_ERR(u.xcrs);
3210 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3211 break;
3213 case KVM_SET_TSC_KHZ: {
3214 u32 user_tsc_khz;
3216 r = -EINVAL;
3217 user_tsc_khz = (u32)arg;
3219 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3220 goto out;
3222 if (user_tsc_khz == 0)
3223 user_tsc_khz = tsc_khz;
3225 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3227 r = 0;
3228 goto out;
3230 case KVM_GET_TSC_KHZ: {
3231 r = vcpu->arch.virtual_tsc_khz;
3232 goto out;
3234 case KVM_KVMCLOCK_CTRL: {
3235 r = kvm_set_guest_paused(vcpu);
3236 goto out;
3238 default:
3239 r = -EINVAL;
3241 out:
3242 kfree(u.buffer);
3243 return r;
3246 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3248 return VM_FAULT_SIGBUS;
3251 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3253 int ret;
3255 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3256 return -EINVAL;
3257 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3258 return ret;
3261 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3262 u64 ident_addr)
3264 kvm->arch.ept_identity_map_addr = ident_addr;
3265 return 0;
3268 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3269 u32 kvm_nr_mmu_pages)
3271 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3272 return -EINVAL;
3274 mutex_lock(&kvm->slots_lock);
3275 spin_lock(&kvm->mmu_lock);
3277 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3278 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3280 spin_unlock(&kvm->mmu_lock);
3281 mutex_unlock(&kvm->slots_lock);
3282 return 0;
3285 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3287 return kvm->arch.n_max_mmu_pages;
3290 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3292 int r;
3294 r = 0;
3295 switch (chip->chip_id) {
3296 case KVM_IRQCHIP_PIC_MASTER:
3297 memcpy(&chip->chip.pic,
3298 &pic_irqchip(kvm)->pics[0],
3299 sizeof(struct kvm_pic_state));
3300 break;
3301 case KVM_IRQCHIP_PIC_SLAVE:
3302 memcpy(&chip->chip.pic,
3303 &pic_irqchip(kvm)->pics[1],
3304 sizeof(struct kvm_pic_state));
3305 break;
3306 case KVM_IRQCHIP_IOAPIC:
3307 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3308 break;
3309 default:
3310 r = -EINVAL;
3311 break;
3313 return r;
3316 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3318 int r;
3320 r = 0;
3321 switch (chip->chip_id) {
3322 case KVM_IRQCHIP_PIC_MASTER:
3323 spin_lock(&pic_irqchip(kvm)->lock);
3324 memcpy(&pic_irqchip(kvm)->pics[0],
3325 &chip->chip.pic,
3326 sizeof(struct kvm_pic_state));
3327 spin_unlock(&pic_irqchip(kvm)->lock);
3328 break;
3329 case KVM_IRQCHIP_PIC_SLAVE:
3330 spin_lock(&pic_irqchip(kvm)->lock);
3331 memcpy(&pic_irqchip(kvm)->pics[1],
3332 &chip->chip.pic,
3333 sizeof(struct kvm_pic_state));
3334 spin_unlock(&pic_irqchip(kvm)->lock);
3335 break;
3336 case KVM_IRQCHIP_IOAPIC:
3337 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3338 break;
3339 default:
3340 r = -EINVAL;
3341 break;
3343 kvm_pic_update_irq(pic_irqchip(kvm));
3344 return r;
3347 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3349 int r = 0;
3351 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3352 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3353 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3354 return r;
3357 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3359 int r = 0;
3361 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3362 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3363 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3364 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3365 return r;
3368 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3370 int r = 0;
3372 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3373 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3374 sizeof(ps->channels));
3375 ps->flags = kvm->arch.vpit->pit_state.flags;
3376 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3377 memset(&ps->reserved, 0, sizeof(ps->reserved));
3378 return r;
3381 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3383 int r = 0, start = 0;
3384 u32 prev_legacy, cur_legacy;
3385 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3386 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3387 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3388 if (!prev_legacy && cur_legacy)
3389 start = 1;
3390 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3391 sizeof(kvm->arch.vpit->pit_state.channels));
3392 kvm->arch.vpit->pit_state.flags = ps->flags;
3393 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3394 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3395 return r;
3398 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3399 struct kvm_reinject_control *control)
3401 if (!kvm->arch.vpit)
3402 return -ENXIO;
3403 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3404 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3405 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3406 return 0;
3410 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3411 * @kvm: kvm instance
3412 * @log: slot id and address to which we copy the log
3414 * We need to keep it in mind that VCPU threads can write to the bitmap
3415 * concurrently. So, to avoid losing data, we keep the following order for
3416 * each bit:
3418 * 1. Take a snapshot of the bit and clear it if needed.
3419 * 2. Write protect the corresponding page.
3420 * 3. Flush TLB's if needed.
3421 * 4. Copy the snapshot to the userspace.
3423 * Between 2 and 3, the guest may write to the page using the remaining TLB
3424 * entry. This is not a problem because the page will be reported dirty at
3425 * step 4 using the snapshot taken before and step 3 ensures that successive
3426 * writes will be logged for the next call.
3428 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3430 int r;
3431 struct kvm_memory_slot *memslot;
3432 unsigned long n, i;
3433 unsigned long *dirty_bitmap;
3434 unsigned long *dirty_bitmap_buffer;
3435 bool is_dirty = false;
3437 mutex_lock(&kvm->slots_lock);
3439 r = -EINVAL;
3440 if (log->slot >= KVM_MEMORY_SLOTS)
3441 goto out;
3443 memslot = id_to_memslot(kvm->memslots, log->slot);
3445 dirty_bitmap = memslot->dirty_bitmap;
3446 r = -ENOENT;
3447 if (!dirty_bitmap)
3448 goto out;
3450 n = kvm_dirty_bitmap_bytes(memslot);
3452 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3453 memset(dirty_bitmap_buffer, 0, n);
3455 spin_lock(&kvm->mmu_lock);
3457 for (i = 0; i < n / sizeof(long); i++) {
3458 unsigned long mask;
3459 gfn_t offset;
3461 if (!dirty_bitmap[i])
3462 continue;
3464 is_dirty = true;
3466 mask = xchg(&dirty_bitmap[i], 0);
3467 dirty_bitmap_buffer[i] = mask;
3469 offset = i * BITS_PER_LONG;
3470 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3472 if (is_dirty)
3473 kvm_flush_remote_tlbs(kvm);
3475 spin_unlock(&kvm->mmu_lock);
3477 r = -EFAULT;
3478 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3479 goto out;
3481 r = 0;
3482 out:
3483 mutex_unlock(&kvm->slots_lock);
3484 return r;
3487 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3489 if (!irqchip_in_kernel(kvm))
3490 return -ENXIO;
3492 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3493 irq_event->irq, irq_event->level);
3494 return 0;
3497 long kvm_arch_vm_ioctl(struct file *filp,
3498 unsigned int ioctl, unsigned long arg)
3500 struct kvm *kvm = filp->private_data;
3501 void __user *argp = (void __user *)arg;
3502 int r = -ENOTTY;
3504 * This union makes it completely explicit to gcc-3.x
3505 * that these two variables' stack usage should be
3506 * combined, not added together.
3508 union {
3509 struct kvm_pit_state ps;
3510 struct kvm_pit_state2 ps2;
3511 struct kvm_pit_config pit_config;
3512 } u;
3514 switch (ioctl) {
3515 case KVM_SET_TSS_ADDR:
3516 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3517 break;
3518 case KVM_SET_IDENTITY_MAP_ADDR: {
3519 u64 ident_addr;
3521 r = -EFAULT;
3522 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3523 goto out;
3524 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3525 break;
3527 case KVM_SET_NR_MMU_PAGES:
3528 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3529 break;
3530 case KVM_GET_NR_MMU_PAGES:
3531 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3532 break;
3533 case KVM_CREATE_IRQCHIP: {
3534 struct kvm_pic *vpic;
3536 mutex_lock(&kvm->lock);
3537 r = -EEXIST;
3538 if (kvm->arch.vpic)
3539 goto create_irqchip_unlock;
3540 r = -EINVAL;
3541 if (atomic_read(&kvm->online_vcpus))
3542 goto create_irqchip_unlock;
3543 r = -ENOMEM;
3544 vpic = kvm_create_pic(kvm);
3545 if (vpic) {
3546 r = kvm_ioapic_init(kvm);
3547 if (r) {
3548 mutex_lock(&kvm->slots_lock);
3549 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3550 &vpic->dev_master);
3551 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3552 &vpic->dev_slave);
3553 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3554 &vpic->dev_eclr);
3555 mutex_unlock(&kvm->slots_lock);
3556 kfree(vpic);
3557 goto create_irqchip_unlock;
3559 } else
3560 goto create_irqchip_unlock;
3561 smp_wmb();
3562 kvm->arch.vpic = vpic;
3563 smp_wmb();
3564 r = kvm_setup_default_irq_routing(kvm);
3565 if (r) {
3566 mutex_lock(&kvm->slots_lock);
3567 mutex_lock(&kvm->irq_lock);
3568 kvm_ioapic_destroy(kvm);
3569 kvm_destroy_pic(kvm);
3570 mutex_unlock(&kvm->irq_lock);
3571 mutex_unlock(&kvm->slots_lock);
3573 create_irqchip_unlock:
3574 mutex_unlock(&kvm->lock);
3575 break;
3577 case KVM_CREATE_PIT:
3578 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3579 goto create_pit;
3580 case KVM_CREATE_PIT2:
3581 r = -EFAULT;
3582 if (copy_from_user(&u.pit_config, argp,
3583 sizeof(struct kvm_pit_config)))
3584 goto out;
3585 create_pit:
3586 mutex_lock(&kvm->slots_lock);
3587 r = -EEXIST;
3588 if (kvm->arch.vpit)
3589 goto create_pit_unlock;
3590 r = -ENOMEM;
3591 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3592 if (kvm->arch.vpit)
3593 r = 0;
3594 create_pit_unlock:
3595 mutex_unlock(&kvm->slots_lock);
3596 break;
3597 case KVM_GET_IRQCHIP: {
3598 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3599 struct kvm_irqchip *chip;
3601 chip = memdup_user(argp, sizeof(*chip));
3602 if (IS_ERR(chip)) {
3603 r = PTR_ERR(chip);
3604 goto out;
3607 r = -ENXIO;
3608 if (!irqchip_in_kernel(kvm))
3609 goto get_irqchip_out;
3610 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3611 if (r)
3612 goto get_irqchip_out;
3613 r = -EFAULT;
3614 if (copy_to_user(argp, chip, sizeof *chip))
3615 goto get_irqchip_out;
3616 r = 0;
3617 get_irqchip_out:
3618 kfree(chip);
3619 break;
3621 case KVM_SET_IRQCHIP: {
3622 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3623 struct kvm_irqchip *chip;
3625 chip = memdup_user(argp, sizeof(*chip));
3626 if (IS_ERR(chip)) {
3627 r = PTR_ERR(chip);
3628 goto out;
3631 r = -ENXIO;
3632 if (!irqchip_in_kernel(kvm))
3633 goto set_irqchip_out;
3634 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3635 if (r)
3636 goto set_irqchip_out;
3637 r = 0;
3638 set_irqchip_out:
3639 kfree(chip);
3640 break;
3642 case KVM_GET_PIT: {
3643 r = -EFAULT;
3644 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3645 goto out;
3646 r = -ENXIO;
3647 if (!kvm->arch.vpit)
3648 goto out;
3649 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3650 if (r)
3651 goto out;
3652 r = -EFAULT;
3653 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3654 goto out;
3655 r = 0;
3656 break;
3658 case KVM_SET_PIT: {
3659 r = -EFAULT;
3660 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3661 goto out;
3662 r = -ENXIO;
3663 if (!kvm->arch.vpit)
3664 goto out;
3665 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3666 break;
3668 case KVM_GET_PIT2: {
3669 r = -ENXIO;
3670 if (!kvm->arch.vpit)
3671 goto out;
3672 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3673 if (r)
3674 goto out;
3675 r = -EFAULT;
3676 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3677 goto out;
3678 r = 0;
3679 break;
3681 case KVM_SET_PIT2: {
3682 r = -EFAULT;
3683 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3684 goto out;
3685 r = -ENXIO;
3686 if (!kvm->arch.vpit)
3687 goto out;
3688 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3689 break;
3691 case KVM_REINJECT_CONTROL: {
3692 struct kvm_reinject_control control;
3693 r = -EFAULT;
3694 if (copy_from_user(&control, argp, sizeof(control)))
3695 goto out;
3696 r = kvm_vm_ioctl_reinject(kvm, &control);
3697 break;
3699 case KVM_XEN_HVM_CONFIG: {
3700 r = -EFAULT;
3701 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3702 sizeof(struct kvm_xen_hvm_config)))
3703 goto out;
3704 r = -EINVAL;
3705 if (kvm->arch.xen_hvm_config.flags)
3706 goto out;
3707 r = 0;
3708 break;
3710 case KVM_SET_CLOCK: {
3711 struct kvm_clock_data user_ns;
3712 u64 now_ns;
3713 s64 delta;
3715 r = -EFAULT;
3716 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3717 goto out;
3719 r = -EINVAL;
3720 if (user_ns.flags)
3721 goto out;
3723 r = 0;
3724 local_irq_disable();
3725 now_ns = get_kernel_ns();
3726 delta = user_ns.clock - now_ns;
3727 local_irq_enable();
3728 kvm->arch.kvmclock_offset = delta;
3729 break;
3731 case KVM_GET_CLOCK: {
3732 struct kvm_clock_data user_ns;
3733 u64 now_ns;
3735 local_irq_disable();
3736 now_ns = get_kernel_ns();
3737 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3738 local_irq_enable();
3739 user_ns.flags = 0;
3740 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3742 r = -EFAULT;
3743 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3744 goto out;
3745 r = 0;
3746 break;
3749 default:
3752 out:
3753 return r;
3756 static void kvm_init_msr_list(void)
3758 u32 dummy[2];
3759 unsigned i, j;
3761 /* skip the first msrs in the list. KVM-specific */
3762 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3763 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3764 continue;
3765 if (j < i)
3766 msrs_to_save[j] = msrs_to_save[i];
3767 j++;
3769 num_msrs_to_save = j;
3772 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3773 const void *v)
3775 int handled = 0;
3776 int n;
3778 do {
3779 n = min(len, 8);
3780 if (!(vcpu->arch.apic &&
3781 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3782 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3783 break;
3784 handled += n;
3785 addr += n;
3786 len -= n;
3787 v += n;
3788 } while (len);
3790 return handled;
3793 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3795 int handled = 0;
3796 int n;
3798 do {
3799 n = min(len, 8);
3800 if (!(vcpu->arch.apic &&
3801 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3802 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3803 break;
3804 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3805 handled += n;
3806 addr += n;
3807 len -= n;
3808 v += n;
3809 } while (len);
3811 return handled;
3814 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3815 struct kvm_segment *var, int seg)
3817 kvm_x86_ops->set_segment(vcpu, var, seg);
3820 void kvm_get_segment(struct kvm_vcpu *vcpu,
3821 struct kvm_segment *var, int seg)
3823 kvm_x86_ops->get_segment(vcpu, var, seg);
3826 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3828 gpa_t t_gpa;
3829 struct x86_exception exception;
3831 BUG_ON(!mmu_is_nested(vcpu));
3833 /* NPT walks are always user-walks */
3834 access |= PFERR_USER_MASK;
3835 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3837 return t_gpa;
3840 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3841 struct x86_exception *exception)
3843 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3844 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3847 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3848 struct x86_exception *exception)
3850 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3851 access |= PFERR_FETCH_MASK;
3852 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3855 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3856 struct x86_exception *exception)
3858 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3859 access |= PFERR_WRITE_MASK;
3860 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3863 /* uses this to access any guest's mapped memory without checking CPL */
3864 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3865 struct x86_exception *exception)
3867 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3870 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3871 struct kvm_vcpu *vcpu, u32 access,
3872 struct x86_exception *exception)
3874 void *data = val;
3875 int r = X86EMUL_CONTINUE;
3877 while (bytes) {
3878 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3879 exception);
3880 unsigned offset = addr & (PAGE_SIZE-1);
3881 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3882 int ret;
3884 if (gpa == UNMAPPED_GVA)
3885 return X86EMUL_PROPAGATE_FAULT;
3886 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3887 if (ret < 0) {
3888 r = X86EMUL_IO_NEEDED;
3889 goto out;
3892 bytes -= toread;
3893 data += toread;
3894 addr += toread;
3896 out:
3897 return r;
3900 /* used for instruction fetching */
3901 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3902 gva_t addr, void *val, unsigned int bytes,
3903 struct x86_exception *exception)
3905 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3906 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3908 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3909 access | PFERR_FETCH_MASK,
3910 exception);
3913 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3914 gva_t addr, void *val, unsigned int bytes,
3915 struct x86_exception *exception)
3917 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3918 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3920 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3921 exception);
3923 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3925 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3926 gva_t addr, void *val, unsigned int bytes,
3927 struct x86_exception *exception)
3929 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3930 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3933 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3934 gva_t addr, void *val,
3935 unsigned int bytes,
3936 struct x86_exception *exception)
3938 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3939 void *data = val;
3940 int r = X86EMUL_CONTINUE;
3942 while (bytes) {
3943 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3944 PFERR_WRITE_MASK,
3945 exception);
3946 unsigned offset = addr & (PAGE_SIZE-1);
3947 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3948 int ret;
3950 if (gpa == UNMAPPED_GVA)
3951 return X86EMUL_PROPAGATE_FAULT;
3952 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3953 if (ret < 0) {
3954 r = X86EMUL_IO_NEEDED;
3955 goto out;
3958 bytes -= towrite;
3959 data += towrite;
3960 addr += towrite;
3962 out:
3963 return r;
3965 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3967 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3968 gpa_t *gpa, struct x86_exception *exception,
3969 bool write)
3971 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3972 | (write ? PFERR_WRITE_MASK : 0);
3974 if (vcpu_match_mmio_gva(vcpu, gva)
3975 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3976 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3977 (gva & (PAGE_SIZE - 1));
3978 trace_vcpu_match_mmio(gva, *gpa, write, false);
3979 return 1;
3982 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3984 if (*gpa == UNMAPPED_GVA)
3985 return -1;
3987 /* For APIC access vmexit */
3988 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3989 return 1;
3991 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3992 trace_vcpu_match_mmio(gva, *gpa, write, true);
3993 return 1;
3996 return 0;
3999 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4000 const void *val, int bytes)
4002 int ret;
4004 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4005 if (ret < 0)
4006 return 0;
4007 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4008 return 1;
4011 struct read_write_emulator_ops {
4012 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4013 int bytes);
4014 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4015 void *val, int bytes);
4016 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4017 int bytes, void *val);
4018 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4019 void *val, int bytes);
4020 bool write;
4023 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4025 if (vcpu->mmio_read_completed) {
4026 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4027 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4028 vcpu->mmio_read_completed = 0;
4029 return 1;
4032 return 0;
4035 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4036 void *val, int bytes)
4038 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4041 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4042 void *val, int bytes)
4044 return emulator_write_phys(vcpu, gpa, val, bytes);
4047 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4049 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4050 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4053 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4054 void *val, int bytes)
4056 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4057 return X86EMUL_IO_NEEDED;
4060 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4061 void *val, int bytes)
4063 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4065 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4066 return X86EMUL_CONTINUE;
4069 static const struct read_write_emulator_ops read_emultor = {
4070 .read_write_prepare = read_prepare,
4071 .read_write_emulate = read_emulate,
4072 .read_write_mmio = vcpu_mmio_read,
4073 .read_write_exit_mmio = read_exit_mmio,
4076 static const struct read_write_emulator_ops write_emultor = {
4077 .read_write_emulate = write_emulate,
4078 .read_write_mmio = write_mmio,
4079 .read_write_exit_mmio = write_exit_mmio,
4080 .write = true,
4083 static int emulator_read_write_onepage(unsigned long addr, void *val,
4084 unsigned int bytes,
4085 struct x86_exception *exception,
4086 struct kvm_vcpu *vcpu,
4087 const struct read_write_emulator_ops *ops)
4089 gpa_t gpa;
4090 int handled, ret;
4091 bool write = ops->write;
4092 struct kvm_mmio_fragment *frag;
4094 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4096 if (ret < 0)
4097 return X86EMUL_PROPAGATE_FAULT;
4099 /* For APIC access vmexit */
4100 if (ret)
4101 goto mmio;
4103 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4104 return X86EMUL_CONTINUE;
4106 mmio:
4108 * Is this MMIO handled locally?
4110 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4111 if (handled == bytes)
4112 return X86EMUL_CONTINUE;
4114 gpa += handled;
4115 bytes -= handled;
4116 val += handled;
4118 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4119 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4120 frag->gpa = gpa;
4121 frag->data = val;
4122 frag->len = bytes;
4123 return X86EMUL_CONTINUE;
4126 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4127 void *val, unsigned int bytes,
4128 struct x86_exception *exception,
4129 const struct read_write_emulator_ops *ops)
4131 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4132 gpa_t gpa;
4133 int rc;
4135 if (ops->read_write_prepare &&
4136 ops->read_write_prepare(vcpu, val, bytes))
4137 return X86EMUL_CONTINUE;
4139 vcpu->mmio_nr_fragments = 0;
4141 /* Crossing a page boundary? */
4142 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4143 int now;
4145 now = -addr & ~PAGE_MASK;
4146 rc = emulator_read_write_onepage(addr, val, now, exception,
4147 vcpu, ops);
4149 if (rc != X86EMUL_CONTINUE)
4150 return rc;
4151 addr += now;
4152 val += now;
4153 bytes -= now;
4156 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4157 vcpu, ops);
4158 if (rc != X86EMUL_CONTINUE)
4159 return rc;
4161 if (!vcpu->mmio_nr_fragments)
4162 return rc;
4164 gpa = vcpu->mmio_fragments[0].gpa;
4166 vcpu->mmio_needed = 1;
4167 vcpu->mmio_cur_fragment = 0;
4169 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4170 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4171 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4172 vcpu->run->mmio.phys_addr = gpa;
4174 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4177 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4178 unsigned long addr,
4179 void *val,
4180 unsigned int bytes,
4181 struct x86_exception *exception)
4183 return emulator_read_write(ctxt, addr, val, bytes,
4184 exception, &read_emultor);
4187 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4188 unsigned long addr,
4189 const void *val,
4190 unsigned int bytes,
4191 struct x86_exception *exception)
4193 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4194 exception, &write_emultor);
4197 #define CMPXCHG_TYPE(t, ptr, old, new) \
4198 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4200 #ifdef CONFIG_X86_64
4201 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4202 #else
4203 # define CMPXCHG64(ptr, old, new) \
4204 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4205 #endif
4207 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4208 unsigned long addr,
4209 const void *old,
4210 const void *new,
4211 unsigned int bytes,
4212 struct x86_exception *exception)
4214 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4215 gpa_t gpa;
4216 struct page *page;
4217 char *kaddr;
4218 bool exchanged;
4220 /* guests cmpxchg8b have to be emulated atomically */
4221 if (bytes > 8 || (bytes & (bytes - 1)))
4222 goto emul_write;
4224 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4226 if (gpa == UNMAPPED_GVA ||
4227 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4228 goto emul_write;
4230 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4231 goto emul_write;
4233 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4234 if (is_error_page(page))
4235 goto emul_write;
4237 kaddr = kmap_atomic(page);
4238 kaddr += offset_in_page(gpa);
4239 switch (bytes) {
4240 case 1:
4241 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4242 break;
4243 case 2:
4244 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4245 break;
4246 case 4:
4247 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4248 break;
4249 case 8:
4250 exchanged = CMPXCHG64(kaddr, old, new);
4251 break;
4252 default:
4253 BUG();
4255 kunmap_atomic(kaddr);
4256 kvm_release_page_dirty(page);
4258 if (!exchanged)
4259 return X86EMUL_CMPXCHG_FAILED;
4261 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4263 return X86EMUL_CONTINUE;
4265 emul_write:
4266 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4268 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4271 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4273 /* TODO: String I/O for in kernel device */
4274 int r;
4276 if (vcpu->arch.pio.in)
4277 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4278 vcpu->arch.pio.size, pd);
4279 else
4280 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4281 vcpu->arch.pio.port, vcpu->arch.pio.size,
4282 pd);
4283 return r;
4286 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4287 unsigned short port, void *val,
4288 unsigned int count, bool in)
4290 trace_kvm_pio(!in, port, size, count);
4292 vcpu->arch.pio.port = port;
4293 vcpu->arch.pio.in = in;
4294 vcpu->arch.pio.count = count;
4295 vcpu->arch.pio.size = size;
4297 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4298 vcpu->arch.pio.count = 0;
4299 return 1;
4302 vcpu->run->exit_reason = KVM_EXIT_IO;
4303 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4304 vcpu->run->io.size = size;
4305 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4306 vcpu->run->io.count = count;
4307 vcpu->run->io.port = port;
4309 return 0;
4312 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4313 int size, unsigned short port, void *val,
4314 unsigned int count)
4316 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4317 int ret;
4319 if (vcpu->arch.pio.count)
4320 goto data_avail;
4322 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4323 if (ret) {
4324 data_avail:
4325 memcpy(val, vcpu->arch.pio_data, size * count);
4326 vcpu->arch.pio.count = 0;
4327 return 1;
4330 return 0;
4333 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4334 int size, unsigned short port,
4335 const void *val, unsigned int count)
4337 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4339 memcpy(vcpu->arch.pio_data, val, size * count);
4340 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4343 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4345 return kvm_x86_ops->get_segment_base(vcpu, seg);
4348 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4350 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4353 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4355 if (!need_emulate_wbinvd(vcpu))
4356 return X86EMUL_CONTINUE;
4358 if (kvm_x86_ops->has_wbinvd_exit()) {
4359 int cpu = get_cpu();
4361 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4362 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4363 wbinvd_ipi, NULL, 1);
4364 put_cpu();
4365 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4366 } else
4367 wbinvd();
4368 return X86EMUL_CONTINUE;
4370 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4372 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4374 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4377 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4379 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4382 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4385 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4388 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4390 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4393 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4395 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4396 unsigned long value;
4398 switch (cr) {
4399 case 0:
4400 value = kvm_read_cr0(vcpu);
4401 break;
4402 case 2:
4403 value = vcpu->arch.cr2;
4404 break;
4405 case 3:
4406 value = kvm_read_cr3(vcpu);
4407 break;
4408 case 4:
4409 value = kvm_read_cr4(vcpu);
4410 break;
4411 case 8:
4412 value = kvm_get_cr8(vcpu);
4413 break;
4414 default:
4415 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4416 return 0;
4419 return value;
4422 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4424 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4425 int res = 0;
4427 switch (cr) {
4428 case 0:
4429 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4430 break;
4431 case 2:
4432 vcpu->arch.cr2 = val;
4433 break;
4434 case 3:
4435 res = kvm_set_cr3(vcpu, val);
4436 break;
4437 case 4:
4438 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4439 break;
4440 case 8:
4441 res = kvm_set_cr8(vcpu, val);
4442 break;
4443 default:
4444 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4445 res = -1;
4448 return res;
4451 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4453 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4456 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4458 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4461 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4463 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4466 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4468 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4471 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4473 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4476 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4478 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4481 static unsigned long emulator_get_cached_segment_base(
4482 struct x86_emulate_ctxt *ctxt, int seg)
4484 return get_segment_base(emul_to_vcpu(ctxt), seg);
4487 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4488 struct desc_struct *desc, u32 *base3,
4489 int seg)
4491 struct kvm_segment var;
4493 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4494 *selector = var.selector;
4496 if (var.unusable)
4497 return false;
4499 if (var.g)
4500 var.limit >>= 12;
4501 set_desc_limit(desc, var.limit);
4502 set_desc_base(desc, (unsigned long)var.base);
4503 #ifdef CONFIG_X86_64
4504 if (base3)
4505 *base3 = var.base >> 32;
4506 #endif
4507 desc->type = var.type;
4508 desc->s = var.s;
4509 desc->dpl = var.dpl;
4510 desc->p = var.present;
4511 desc->avl = var.avl;
4512 desc->l = var.l;
4513 desc->d = var.db;
4514 desc->g = var.g;
4516 return true;
4519 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4520 struct desc_struct *desc, u32 base3,
4521 int seg)
4523 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4524 struct kvm_segment var;
4526 var.selector = selector;
4527 var.base = get_desc_base(desc);
4528 #ifdef CONFIG_X86_64
4529 var.base |= ((u64)base3) << 32;
4530 #endif
4531 var.limit = get_desc_limit(desc);
4532 if (desc->g)
4533 var.limit = (var.limit << 12) | 0xfff;
4534 var.type = desc->type;
4535 var.present = desc->p;
4536 var.dpl = desc->dpl;
4537 var.db = desc->d;
4538 var.s = desc->s;
4539 var.l = desc->l;
4540 var.g = desc->g;
4541 var.avl = desc->avl;
4542 var.present = desc->p;
4543 var.unusable = !var.present;
4544 var.padding = 0;
4546 kvm_set_segment(vcpu, &var, seg);
4547 return;
4550 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4551 u32 msr_index, u64 *pdata)
4553 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4556 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4557 u32 msr_index, u64 data)
4559 struct msr_data msr;
4561 msr.data = data;
4562 msr.index = msr_index;
4563 msr.host_initiated = false;
4564 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4567 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4568 u32 pmc, u64 *pdata)
4570 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4573 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4575 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4578 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4580 preempt_disable();
4581 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4583 * CR0.TS may reference the host fpu state, not the guest fpu state,
4584 * so it may be clear at this point.
4586 clts();
4589 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4591 preempt_enable();
4594 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4595 struct x86_instruction_info *info,
4596 enum x86_intercept_stage stage)
4598 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4601 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4602 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4604 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4607 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4609 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4612 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4614 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4617 static const struct x86_emulate_ops emulate_ops = {
4618 .read_gpr = emulator_read_gpr,
4619 .write_gpr = emulator_write_gpr,
4620 .read_std = kvm_read_guest_virt_system,
4621 .write_std = kvm_write_guest_virt_system,
4622 .fetch = kvm_fetch_guest_virt,
4623 .read_emulated = emulator_read_emulated,
4624 .write_emulated = emulator_write_emulated,
4625 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4626 .invlpg = emulator_invlpg,
4627 .pio_in_emulated = emulator_pio_in_emulated,
4628 .pio_out_emulated = emulator_pio_out_emulated,
4629 .get_segment = emulator_get_segment,
4630 .set_segment = emulator_set_segment,
4631 .get_cached_segment_base = emulator_get_cached_segment_base,
4632 .get_gdt = emulator_get_gdt,
4633 .get_idt = emulator_get_idt,
4634 .set_gdt = emulator_set_gdt,
4635 .set_idt = emulator_set_idt,
4636 .get_cr = emulator_get_cr,
4637 .set_cr = emulator_set_cr,
4638 .set_rflags = emulator_set_rflags,
4639 .cpl = emulator_get_cpl,
4640 .get_dr = emulator_get_dr,
4641 .set_dr = emulator_set_dr,
4642 .set_msr = emulator_set_msr,
4643 .get_msr = emulator_get_msr,
4644 .read_pmc = emulator_read_pmc,
4645 .halt = emulator_halt,
4646 .wbinvd = emulator_wbinvd,
4647 .fix_hypercall = emulator_fix_hypercall,
4648 .get_fpu = emulator_get_fpu,
4649 .put_fpu = emulator_put_fpu,
4650 .intercept = emulator_intercept,
4651 .get_cpuid = emulator_get_cpuid,
4654 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4656 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4658 * an sti; sti; sequence only disable interrupts for the first
4659 * instruction. So, if the last instruction, be it emulated or
4660 * not, left the system with the INT_STI flag enabled, it
4661 * means that the last instruction is an sti. We should not
4662 * leave the flag on in this case. The same goes for mov ss
4664 if (!(int_shadow & mask))
4665 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4668 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4670 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4671 if (ctxt->exception.vector == PF_VECTOR)
4672 kvm_propagate_fault(vcpu, &ctxt->exception);
4673 else if (ctxt->exception.error_code_valid)
4674 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4675 ctxt->exception.error_code);
4676 else
4677 kvm_queue_exception(vcpu, ctxt->exception.vector);
4680 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4682 memset(&ctxt->twobyte, 0,
4683 (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4685 ctxt->fetch.start = 0;
4686 ctxt->fetch.end = 0;
4687 ctxt->io_read.pos = 0;
4688 ctxt->io_read.end = 0;
4689 ctxt->mem_read.pos = 0;
4690 ctxt->mem_read.end = 0;
4693 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4695 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4696 int cs_db, cs_l;
4698 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4700 ctxt->eflags = kvm_get_rflags(vcpu);
4701 ctxt->eip = kvm_rip_read(vcpu);
4702 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4703 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4704 cs_l ? X86EMUL_MODE_PROT64 :
4705 cs_db ? X86EMUL_MODE_PROT32 :
4706 X86EMUL_MODE_PROT16;
4707 ctxt->guest_mode = is_guest_mode(vcpu);
4709 init_decode_cache(ctxt);
4710 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4713 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4715 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4716 int ret;
4718 init_emulate_ctxt(vcpu);
4720 ctxt->op_bytes = 2;
4721 ctxt->ad_bytes = 2;
4722 ctxt->_eip = ctxt->eip + inc_eip;
4723 ret = emulate_int_real(ctxt, irq);
4725 if (ret != X86EMUL_CONTINUE)
4726 return EMULATE_FAIL;
4728 ctxt->eip = ctxt->_eip;
4729 kvm_rip_write(vcpu, ctxt->eip);
4730 kvm_set_rflags(vcpu, ctxt->eflags);
4732 if (irq == NMI_VECTOR)
4733 vcpu->arch.nmi_pending = 0;
4734 else
4735 vcpu->arch.interrupt.pending = false;
4737 return EMULATE_DONE;
4739 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4741 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4743 int r = EMULATE_DONE;
4745 ++vcpu->stat.insn_emulation_fail;
4746 trace_kvm_emulate_insn_failed(vcpu);
4747 if (!is_guest_mode(vcpu)) {
4748 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4749 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4750 vcpu->run->internal.ndata = 0;
4751 r = EMULATE_FAIL;
4753 kvm_queue_exception(vcpu, UD_VECTOR);
4755 return r;
4758 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4760 gpa_t gpa;
4761 pfn_t pfn;
4763 if (tdp_enabled)
4764 return false;
4767 * if emulation was due to access to shadowed page table
4768 * and it failed try to unshadow page and re-enter the
4769 * guest to let CPU execute the instruction.
4771 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4772 return true;
4774 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4776 if (gpa == UNMAPPED_GVA)
4777 return true; /* let cpu generate fault */
4780 * Do not retry the unhandleable instruction if it faults on the
4781 * readonly host memory, otherwise it will goto a infinite loop:
4782 * retry instruction -> write #PF -> emulation fail -> retry
4783 * instruction -> ...
4785 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4786 if (!is_error_noslot_pfn(pfn)) {
4787 kvm_release_pfn_clean(pfn);
4788 return true;
4791 return false;
4794 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4795 unsigned long cr2, int emulation_type)
4797 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4800 last_retry_eip = vcpu->arch.last_retry_eip;
4801 last_retry_addr = vcpu->arch.last_retry_addr;
4804 * If the emulation is caused by #PF and it is non-page_table
4805 * writing instruction, it means the VM-EXIT is caused by shadow
4806 * page protected, we can zap the shadow page and retry this
4807 * instruction directly.
4809 * Note: if the guest uses a non-page-table modifying instruction
4810 * on the PDE that points to the instruction, then we will unmap
4811 * the instruction and go to an infinite loop. So, we cache the
4812 * last retried eip and the last fault address, if we meet the eip
4813 * and the address again, we can break out of the potential infinite
4814 * loop.
4816 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4818 if (!(emulation_type & EMULTYPE_RETRY))
4819 return false;
4821 if (x86_page_table_writing_insn(ctxt))
4822 return false;
4824 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4825 return false;
4827 vcpu->arch.last_retry_eip = ctxt->eip;
4828 vcpu->arch.last_retry_addr = cr2;
4830 if (!vcpu->arch.mmu.direct_map)
4831 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4833 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4835 return true;
4838 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4839 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4841 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4842 unsigned long cr2,
4843 int emulation_type,
4844 void *insn,
4845 int insn_len)
4847 int r;
4848 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4849 bool writeback = true;
4851 kvm_clear_exception_queue(vcpu);
4853 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4854 init_emulate_ctxt(vcpu);
4855 ctxt->interruptibility = 0;
4856 ctxt->have_exception = false;
4857 ctxt->perm_ok = false;
4859 ctxt->only_vendor_specific_insn
4860 = emulation_type & EMULTYPE_TRAP_UD;
4862 r = x86_decode_insn(ctxt, insn, insn_len);
4864 trace_kvm_emulate_insn_start(vcpu);
4865 ++vcpu->stat.insn_emulation;
4866 if (r != EMULATION_OK) {
4867 if (emulation_type & EMULTYPE_TRAP_UD)
4868 return EMULATE_FAIL;
4869 if (reexecute_instruction(vcpu, cr2))
4870 return EMULATE_DONE;
4871 if (emulation_type & EMULTYPE_SKIP)
4872 return EMULATE_FAIL;
4873 return handle_emulation_failure(vcpu);
4877 if (emulation_type & EMULTYPE_SKIP) {
4878 kvm_rip_write(vcpu, ctxt->_eip);
4879 return EMULATE_DONE;
4882 if (retry_instruction(ctxt, cr2, emulation_type))
4883 return EMULATE_DONE;
4885 /* this is needed for vmware backdoor interface to work since it
4886 changes registers values during IO operation */
4887 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4888 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4889 emulator_invalidate_register_cache(ctxt);
4892 restart:
4893 r = x86_emulate_insn(ctxt);
4895 if (r == EMULATION_INTERCEPTED)
4896 return EMULATE_DONE;
4898 if (r == EMULATION_FAILED) {
4899 if (reexecute_instruction(vcpu, cr2))
4900 return EMULATE_DONE;
4902 return handle_emulation_failure(vcpu);
4905 if (ctxt->have_exception) {
4906 inject_emulated_exception(vcpu);
4907 r = EMULATE_DONE;
4908 } else if (vcpu->arch.pio.count) {
4909 if (!vcpu->arch.pio.in)
4910 vcpu->arch.pio.count = 0;
4911 else {
4912 writeback = false;
4913 vcpu->arch.complete_userspace_io = complete_emulated_pio;
4915 r = EMULATE_DO_MMIO;
4916 } else if (vcpu->mmio_needed) {
4917 if (!vcpu->mmio_is_write)
4918 writeback = false;
4919 r = EMULATE_DO_MMIO;
4920 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4921 } else if (r == EMULATION_RESTART)
4922 goto restart;
4923 else
4924 r = EMULATE_DONE;
4926 if (writeback) {
4927 toggle_interruptibility(vcpu, ctxt->interruptibility);
4928 kvm_set_rflags(vcpu, ctxt->eflags);
4929 kvm_make_request(KVM_REQ_EVENT, vcpu);
4930 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4931 kvm_rip_write(vcpu, ctxt->eip);
4932 } else
4933 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4935 return r;
4937 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4939 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4941 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4942 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4943 size, port, &val, 1);
4944 /* do not return to emulator after return from userspace */
4945 vcpu->arch.pio.count = 0;
4946 return ret;
4948 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4950 static void tsc_bad(void *info)
4952 __this_cpu_write(cpu_tsc_khz, 0);
4955 static void tsc_khz_changed(void *data)
4957 struct cpufreq_freqs *freq = data;
4958 unsigned long khz = 0;
4960 if (data)
4961 khz = freq->new;
4962 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4963 khz = cpufreq_quick_get(raw_smp_processor_id());
4964 if (!khz)
4965 khz = tsc_khz;
4966 __this_cpu_write(cpu_tsc_khz, khz);
4969 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4970 void *data)
4972 struct cpufreq_freqs *freq = data;
4973 struct kvm *kvm;
4974 struct kvm_vcpu *vcpu;
4975 int i, send_ipi = 0;
4978 * We allow guests to temporarily run on slowing clocks,
4979 * provided we notify them after, or to run on accelerating
4980 * clocks, provided we notify them before. Thus time never
4981 * goes backwards.
4983 * However, we have a problem. We can't atomically update
4984 * the frequency of a given CPU from this function; it is
4985 * merely a notifier, which can be called from any CPU.
4986 * Changing the TSC frequency at arbitrary points in time
4987 * requires a recomputation of local variables related to
4988 * the TSC for each VCPU. We must flag these local variables
4989 * to be updated and be sure the update takes place with the
4990 * new frequency before any guests proceed.
4992 * Unfortunately, the combination of hotplug CPU and frequency
4993 * change creates an intractable locking scenario; the order
4994 * of when these callouts happen is undefined with respect to
4995 * CPU hotplug, and they can race with each other. As such,
4996 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4997 * undefined; you can actually have a CPU frequency change take
4998 * place in between the computation of X and the setting of the
4999 * variable. To protect against this problem, all updates of
5000 * the per_cpu tsc_khz variable are done in an interrupt
5001 * protected IPI, and all callers wishing to update the value
5002 * must wait for a synchronous IPI to complete (which is trivial
5003 * if the caller is on the CPU already). This establishes the
5004 * necessary total order on variable updates.
5006 * Note that because a guest time update may take place
5007 * anytime after the setting of the VCPU's request bit, the
5008 * correct TSC value must be set before the request. However,
5009 * to ensure the update actually makes it to any guest which
5010 * starts running in hardware virtualization between the set
5011 * and the acquisition of the spinlock, we must also ping the
5012 * CPU after setting the request bit.
5016 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5017 return 0;
5018 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5019 return 0;
5021 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5023 raw_spin_lock(&kvm_lock);
5024 list_for_each_entry(kvm, &vm_list, vm_list) {
5025 kvm_for_each_vcpu(i, vcpu, kvm) {
5026 if (vcpu->cpu != freq->cpu)
5027 continue;
5028 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5029 if (vcpu->cpu != smp_processor_id())
5030 send_ipi = 1;
5033 raw_spin_unlock(&kvm_lock);
5035 if (freq->old < freq->new && send_ipi) {
5037 * We upscale the frequency. Must make the guest
5038 * doesn't see old kvmclock values while running with
5039 * the new frequency, otherwise we risk the guest sees
5040 * time go backwards.
5042 * In case we update the frequency for another cpu
5043 * (which might be in guest context) send an interrupt
5044 * to kick the cpu out of guest context. Next time
5045 * guest context is entered kvmclock will be updated,
5046 * so the guest will not see stale values.
5048 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5050 return 0;
5053 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5054 .notifier_call = kvmclock_cpufreq_notifier
5057 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5058 unsigned long action, void *hcpu)
5060 unsigned int cpu = (unsigned long)hcpu;
5062 switch (action) {
5063 case CPU_ONLINE:
5064 case CPU_DOWN_FAILED:
5065 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5066 break;
5067 case CPU_DOWN_PREPARE:
5068 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5069 break;
5071 return NOTIFY_OK;
5074 static struct notifier_block kvmclock_cpu_notifier_block = {
5075 .notifier_call = kvmclock_cpu_notifier,
5076 .priority = -INT_MAX
5079 static void kvm_timer_init(void)
5081 int cpu;
5083 max_tsc_khz = tsc_khz;
5084 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5085 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5086 #ifdef CONFIG_CPU_FREQ
5087 struct cpufreq_policy policy;
5088 memset(&policy, 0, sizeof(policy));
5089 cpu = get_cpu();
5090 cpufreq_get_policy(&policy, cpu);
5091 if (policy.cpuinfo.max_freq)
5092 max_tsc_khz = policy.cpuinfo.max_freq;
5093 put_cpu();
5094 #endif
5095 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5096 CPUFREQ_TRANSITION_NOTIFIER);
5098 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5099 for_each_online_cpu(cpu)
5100 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5103 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5105 int kvm_is_in_guest(void)
5107 return __this_cpu_read(current_vcpu) != NULL;
5110 static int kvm_is_user_mode(void)
5112 int user_mode = 3;
5114 if (__this_cpu_read(current_vcpu))
5115 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5117 return user_mode != 0;
5120 static unsigned long kvm_get_guest_ip(void)
5122 unsigned long ip = 0;
5124 if (__this_cpu_read(current_vcpu))
5125 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5127 return ip;
5130 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5131 .is_in_guest = kvm_is_in_guest,
5132 .is_user_mode = kvm_is_user_mode,
5133 .get_guest_ip = kvm_get_guest_ip,
5136 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5138 __this_cpu_write(current_vcpu, vcpu);
5140 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5142 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5144 __this_cpu_write(current_vcpu, NULL);
5146 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5148 static void kvm_set_mmio_spte_mask(void)
5150 u64 mask;
5151 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5154 * Set the reserved bits and the present bit of an paging-structure
5155 * entry to generate page fault with PFER.RSV = 1.
5157 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5158 mask |= 1ull;
5160 #ifdef CONFIG_X86_64
5162 * If reserved bit is not supported, clear the present bit to disable
5163 * mmio page fault.
5165 if (maxphyaddr == 52)
5166 mask &= ~1ull;
5167 #endif
5169 kvm_mmu_set_mmio_spte_mask(mask);
5172 #ifdef CONFIG_X86_64
5173 static void pvclock_gtod_update_fn(struct work_struct *work)
5175 struct kvm *kvm;
5177 struct kvm_vcpu *vcpu;
5178 int i;
5180 raw_spin_lock(&kvm_lock);
5181 list_for_each_entry(kvm, &vm_list, vm_list)
5182 kvm_for_each_vcpu(i, vcpu, kvm)
5183 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5184 atomic_set(&kvm_guest_has_master_clock, 0);
5185 raw_spin_unlock(&kvm_lock);
5188 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5191 * Notification about pvclock gtod data update.
5193 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5194 void *priv)
5196 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5197 struct timekeeper *tk = priv;
5199 update_pvclock_gtod(tk);
5201 /* disable master clock if host does not trust, or does not
5202 * use, TSC clocksource
5204 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5205 atomic_read(&kvm_guest_has_master_clock) != 0)
5206 queue_work(system_long_wq, &pvclock_gtod_work);
5208 return 0;
5211 static struct notifier_block pvclock_gtod_notifier = {
5212 .notifier_call = pvclock_gtod_notify,
5214 #endif
5216 int kvm_arch_init(void *opaque)
5218 int r;
5219 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5221 if (kvm_x86_ops) {
5222 printk(KERN_ERR "kvm: already loaded the other module\n");
5223 r = -EEXIST;
5224 goto out;
5227 if (!ops->cpu_has_kvm_support()) {
5228 printk(KERN_ERR "kvm: no hardware support\n");
5229 r = -EOPNOTSUPP;
5230 goto out;
5232 if (ops->disabled_by_bios()) {
5233 printk(KERN_ERR "kvm: disabled by bios\n");
5234 r = -EOPNOTSUPP;
5235 goto out;
5238 r = -ENOMEM;
5239 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5240 if (!shared_msrs) {
5241 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5242 goto out;
5245 r = kvm_mmu_module_init();
5246 if (r)
5247 goto out_free_percpu;
5249 kvm_set_mmio_spte_mask();
5250 kvm_init_msr_list();
5252 kvm_x86_ops = ops;
5253 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5254 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5256 kvm_timer_init();
5258 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5260 if (cpu_has_xsave)
5261 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5263 kvm_lapic_init();
5264 #ifdef CONFIG_X86_64
5265 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5266 #endif
5268 return 0;
5270 out_free_percpu:
5271 free_percpu(shared_msrs);
5272 out:
5273 return r;
5276 void kvm_arch_exit(void)
5278 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5280 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5281 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5282 CPUFREQ_TRANSITION_NOTIFIER);
5283 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5284 #ifdef CONFIG_X86_64
5285 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5286 #endif
5287 kvm_x86_ops = NULL;
5288 kvm_mmu_module_exit();
5289 free_percpu(shared_msrs);
5292 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5294 ++vcpu->stat.halt_exits;
5295 if (irqchip_in_kernel(vcpu->kvm)) {
5296 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5297 return 1;
5298 } else {
5299 vcpu->run->exit_reason = KVM_EXIT_HLT;
5300 return 0;
5303 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5305 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5307 u64 param, ingpa, outgpa, ret;
5308 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5309 bool fast, longmode;
5310 int cs_db, cs_l;
5313 * hypercall generates UD from non zero cpl and real mode
5314 * per HYPER-V spec
5316 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5317 kvm_queue_exception(vcpu, UD_VECTOR);
5318 return 0;
5321 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5322 longmode = is_long_mode(vcpu) && cs_l == 1;
5324 if (!longmode) {
5325 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5326 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5327 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5328 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5329 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5330 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5332 #ifdef CONFIG_X86_64
5333 else {
5334 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5335 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5336 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5338 #endif
5340 code = param & 0xffff;
5341 fast = (param >> 16) & 0x1;
5342 rep_cnt = (param >> 32) & 0xfff;
5343 rep_idx = (param >> 48) & 0xfff;
5345 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5347 switch (code) {
5348 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5349 kvm_vcpu_on_spin(vcpu);
5350 break;
5351 default:
5352 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5353 break;
5356 ret = res | (((u64)rep_done & 0xfff) << 32);
5357 if (longmode) {
5358 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5359 } else {
5360 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5361 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5364 return 1;
5367 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5369 unsigned long nr, a0, a1, a2, a3, ret;
5370 int r = 1;
5372 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5373 return kvm_hv_hypercall(vcpu);
5375 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5376 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5377 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5378 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5379 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5381 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5383 if (!is_long_mode(vcpu)) {
5384 nr &= 0xFFFFFFFF;
5385 a0 &= 0xFFFFFFFF;
5386 a1 &= 0xFFFFFFFF;
5387 a2 &= 0xFFFFFFFF;
5388 a3 &= 0xFFFFFFFF;
5391 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5392 ret = -KVM_EPERM;
5393 goto out;
5396 switch (nr) {
5397 case KVM_HC_VAPIC_POLL_IRQ:
5398 ret = 0;
5399 break;
5400 default:
5401 ret = -KVM_ENOSYS;
5402 break;
5404 out:
5405 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5406 ++vcpu->stat.hypercalls;
5407 return r;
5409 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5411 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5413 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5414 char instruction[3];
5415 unsigned long rip = kvm_rip_read(vcpu);
5418 * Blow out the MMU to ensure that no other VCPU has an active mapping
5419 * to ensure that the updated hypercall appears atomically across all
5420 * VCPUs.
5422 kvm_mmu_zap_all(vcpu->kvm);
5424 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5426 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5430 * Check if userspace requested an interrupt window, and that the
5431 * interrupt window is open.
5433 * No need to exit to userspace if we already have an interrupt queued.
5435 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5437 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5438 vcpu->run->request_interrupt_window &&
5439 kvm_arch_interrupt_allowed(vcpu));
5442 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5444 struct kvm_run *kvm_run = vcpu->run;
5446 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5447 kvm_run->cr8 = kvm_get_cr8(vcpu);
5448 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5449 if (irqchip_in_kernel(vcpu->kvm))
5450 kvm_run->ready_for_interrupt_injection = 1;
5451 else
5452 kvm_run->ready_for_interrupt_injection =
5453 kvm_arch_interrupt_allowed(vcpu) &&
5454 !kvm_cpu_has_interrupt(vcpu) &&
5455 !kvm_event_needs_reinjection(vcpu);
5458 static int vapic_enter(struct kvm_vcpu *vcpu)
5460 struct kvm_lapic *apic = vcpu->arch.apic;
5461 struct page *page;
5463 if (!apic || !apic->vapic_addr)
5464 return 0;
5466 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5467 if (is_error_page(page))
5468 return -EFAULT;
5470 vcpu->arch.apic->vapic_page = page;
5471 return 0;
5474 static void vapic_exit(struct kvm_vcpu *vcpu)
5476 struct kvm_lapic *apic = vcpu->arch.apic;
5477 int idx;
5479 if (!apic || !apic->vapic_addr)
5480 return;
5482 idx = srcu_read_lock(&vcpu->kvm->srcu);
5483 kvm_release_page_dirty(apic->vapic_page);
5484 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5485 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5488 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5490 int max_irr, tpr;
5492 if (!kvm_x86_ops->update_cr8_intercept)
5493 return;
5495 if (!vcpu->arch.apic)
5496 return;
5498 if (!vcpu->arch.apic->vapic_addr)
5499 max_irr = kvm_lapic_find_highest_irr(vcpu);
5500 else
5501 max_irr = -1;
5503 if (max_irr != -1)
5504 max_irr >>= 4;
5506 tpr = kvm_lapic_get_cr8(vcpu);
5508 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5511 static void inject_pending_event(struct kvm_vcpu *vcpu)
5513 /* try to reinject previous events if any */
5514 if (vcpu->arch.exception.pending) {
5515 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5516 vcpu->arch.exception.has_error_code,
5517 vcpu->arch.exception.error_code);
5518 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5519 vcpu->arch.exception.has_error_code,
5520 vcpu->arch.exception.error_code,
5521 vcpu->arch.exception.reinject);
5522 return;
5525 if (vcpu->arch.nmi_injected) {
5526 kvm_x86_ops->set_nmi(vcpu);
5527 return;
5530 if (vcpu->arch.interrupt.pending) {
5531 kvm_x86_ops->set_irq(vcpu);
5532 return;
5535 /* try to inject new event if pending */
5536 if (vcpu->arch.nmi_pending) {
5537 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5538 --vcpu->arch.nmi_pending;
5539 vcpu->arch.nmi_injected = true;
5540 kvm_x86_ops->set_nmi(vcpu);
5542 } else if (kvm_cpu_has_interrupt(vcpu)) {
5543 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5544 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5545 false);
5546 kvm_x86_ops->set_irq(vcpu);
5551 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5553 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5554 !vcpu->guest_xcr0_loaded) {
5555 /* kvm_set_xcr() also depends on this */
5556 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5557 vcpu->guest_xcr0_loaded = 1;
5561 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5563 if (vcpu->guest_xcr0_loaded) {
5564 if (vcpu->arch.xcr0 != host_xcr0)
5565 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5566 vcpu->guest_xcr0_loaded = 0;
5570 static void process_nmi(struct kvm_vcpu *vcpu)
5572 unsigned limit = 2;
5575 * x86 is limited to one NMI running, and one NMI pending after it.
5576 * If an NMI is already in progress, limit further NMIs to just one.
5577 * Otherwise, allow two (and we'll inject the first one immediately).
5579 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5580 limit = 1;
5582 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5583 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5584 kvm_make_request(KVM_REQ_EVENT, vcpu);
5587 static void kvm_gen_update_masterclock(struct kvm *kvm)
5589 #ifdef CONFIG_X86_64
5590 int i;
5591 struct kvm_vcpu *vcpu;
5592 struct kvm_arch *ka = &kvm->arch;
5594 spin_lock(&ka->pvclock_gtod_sync_lock);
5595 kvm_make_mclock_inprogress_request(kvm);
5596 /* no guest entries from this point */
5597 pvclock_update_vm_gtod_copy(kvm);
5599 kvm_for_each_vcpu(i, vcpu, kvm)
5600 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5602 /* guest entries allowed */
5603 kvm_for_each_vcpu(i, vcpu, kvm)
5604 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5606 spin_unlock(&ka->pvclock_gtod_sync_lock);
5607 #endif
5610 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5612 int r;
5613 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5614 vcpu->run->request_interrupt_window;
5615 bool req_immediate_exit = 0;
5617 if (vcpu->requests) {
5618 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5619 kvm_mmu_unload(vcpu);
5620 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5621 __kvm_migrate_timers(vcpu);
5622 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5623 kvm_gen_update_masterclock(vcpu->kvm);
5624 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5625 r = kvm_guest_time_update(vcpu);
5626 if (unlikely(r))
5627 goto out;
5629 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5630 kvm_mmu_sync_roots(vcpu);
5631 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5632 kvm_x86_ops->tlb_flush(vcpu);
5633 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5634 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5635 r = 0;
5636 goto out;
5638 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5639 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5640 r = 0;
5641 goto out;
5643 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5644 vcpu->fpu_active = 0;
5645 kvm_x86_ops->fpu_deactivate(vcpu);
5647 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5648 /* Page is swapped out. Do synthetic halt */
5649 vcpu->arch.apf.halted = true;
5650 r = 1;
5651 goto out;
5653 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5654 record_steal_time(vcpu);
5655 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5656 process_nmi(vcpu);
5657 req_immediate_exit =
5658 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5659 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5660 kvm_handle_pmu_event(vcpu);
5661 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5662 kvm_deliver_pmi(vcpu);
5665 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5666 inject_pending_event(vcpu);
5668 /* enable NMI/IRQ window open exits if needed */
5669 if (vcpu->arch.nmi_pending)
5670 kvm_x86_ops->enable_nmi_window(vcpu);
5671 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5672 kvm_x86_ops->enable_irq_window(vcpu);
5674 if (kvm_lapic_enabled(vcpu)) {
5675 update_cr8_intercept(vcpu);
5676 kvm_lapic_sync_to_vapic(vcpu);
5680 r = kvm_mmu_reload(vcpu);
5681 if (unlikely(r)) {
5682 goto cancel_injection;
5685 preempt_disable();
5687 kvm_x86_ops->prepare_guest_switch(vcpu);
5688 if (vcpu->fpu_active)
5689 kvm_load_guest_fpu(vcpu);
5690 kvm_load_guest_xcr0(vcpu);
5692 vcpu->mode = IN_GUEST_MODE;
5694 /* We should set ->mode before check ->requests,
5695 * see the comment in make_all_cpus_request.
5697 smp_mb();
5699 local_irq_disable();
5701 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5702 || need_resched() || signal_pending(current)) {
5703 vcpu->mode = OUTSIDE_GUEST_MODE;
5704 smp_wmb();
5705 local_irq_enable();
5706 preempt_enable();
5707 r = 1;
5708 goto cancel_injection;
5711 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5713 if (req_immediate_exit)
5714 smp_send_reschedule(vcpu->cpu);
5716 kvm_guest_enter();
5718 if (unlikely(vcpu->arch.switch_db_regs)) {
5719 set_debugreg(0, 7);
5720 set_debugreg(vcpu->arch.eff_db[0], 0);
5721 set_debugreg(vcpu->arch.eff_db[1], 1);
5722 set_debugreg(vcpu->arch.eff_db[2], 2);
5723 set_debugreg(vcpu->arch.eff_db[3], 3);
5726 trace_kvm_entry(vcpu->vcpu_id);
5727 kvm_x86_ops->run(vcpu);
5730 * If the guest has used debug registers, at least dr7
5731 * will be disabled while returning to the host.
5732 * If we don't have active breakpoints in the host, we don't
5733 * care about the messed up debug address registers. But if
5734 * we have some of them active, restore the old state.
5736 if (hw_breakpoint_active())
5737 hw_breakpoint_restore();
5739 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5740 native_read_tsc());
5742 vcpu->mode = OUTSIDE_GUEST_MODE;
5743 smp_wmb();
5744 local_irq_enable();
5746 ++vcpu->stat.exits;
5749 * We must have an instruction between local_irq_enable() and
5750 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5751 * the interrupt shadow. The stat.exits increment will do nicely.
5752 * But we need to prevent reordering, hence this barrier():
5754 barrier();
5756 kvm_guest_exit();
5758 preempt_enable();
5760 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5763 * Profile KVM exit RIPs:
5765 if (unlikely(prof_on == KVM_PROFILING)) {
5766 unsigned long rip = kvm_rip_read(vcpu);
5767 profile_hit(KVM_PROFILING, (void *)rip);
5770 if (unlikely(vcpu->arch.tsc_always_catchup))
5771 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5773 if (vcpu->arch.apic_attention)
5774 kvm_lapic_sync_from_vapic(vcpu);
5776 r = kvm_x86_ops->handle_exit(vcpu);
5777 return r;
5779 cancel_injection:
5780 kvm_x86_ops->cancel_injection(vcpu);
5781 if (unlikely(vcpu->arch.apic_attention))
5782 kvm_lapic_sync_from_vapic(vcpu);
5783 out:
5784 return r;
5788 static int __vcpu_run(struct kvm_vcpu *vcpu)
5790 int r;
5791 struct kvm *kvm = vcpu->kvm;
5793 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5794 pr_debug("vcpu %d received sipi with vector # %x\n",
5795 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5796 kvm_lapic_reset(vcpu);
5797 r = kvm_vcpu_reset(vcpu);
5798 if (r)
5799 return r;
5800 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5803 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5804 r = vapic_enter(vcpu);
5805 if (r) {
5806 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5807 return r;
5810 r = 1;
5811 while (r > 0) {
5812 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5813 !vcpu->arch.apf.halted)
5814 r = vcpu_enter_guest(vcpu);
5815 else {
5816 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5817 kvm_vcpu_block(vcpu);
5818 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5819 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5821 switch(vcpu->arch.mp_state) {
5822 case KVM_MP_STATE_HALTED:
5823 vcpu->arch.mp_state =
5824 KVM_MP_STATE_RUNNABLE;
5825 case KVM_MP_STATE_RUNNABLE:
5826 vcpu->arch.apf.halted = false;
5827 break;
5828 case KVM_MP_STATE_SIPI_RECEIVED:
5829 default:
5830 r = -EINTR;
5831 break;
5836 if (r <= 0)
5837 break;
5839 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5840 if (kvm_cpu_has_pending_timer(vcpu))
5841 kvm_inject_pending_timer_irqs(vcpu);
5843 if (dm_request_for_irq_injection(vcpu)) {
5844 r = -EINTR;
5845 vcpu->run->exit_reason = KVM_EXIT_INTR;
5846 ++vcpu->stat.request_irq_exits;
5849 kvm_check_async_pf_completion(vcpu);
5851 if (signal_pending(current)) {
5852 r = -EINTR;
5853 vcpu->run->exit_reason = KVM_EXIT_INTR;
5854 ++vcpu->stat.signal_exits;
5856 if (need_resched()) {
5857 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5858 kvm_resched(vcpu);
5859 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5863 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5865 vapic_exit(vcpu);
5867 return r;
5870 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5872 int r;
5873 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5874 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5875 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5876 if (r != EMULATE_DONE)
5877 return 0;
5878 return 1;
5881 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5883 BUG_ON(!vcpu->arch.pio.count);
5885 return complete_emulated_io(vcpu);
5889 * Implements the following, as a state machine:
5891 * read:
5892 * for each fragment
5893 * for each mmio piece in the fragment
5894 * write gpa, len
5895 * exit
5896 * copy data
5897 * execute insn
5899 * write:
5900 * for each fragment
5901 * for each mmio piece in the fragment
5902 * write gpa, len
5903 * copy data
5904 * exit
5906 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5908 struct kvm_run *run = vcpu->run;
5909 struct kvm_mmio_fragment *frag;
5910 unsigned len;
5912 BUG_ON(!vcpu->mmio_needed);
5914 /* Complete previous fragment */
5915 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5916 len = min(8u, frag->len);
5917 if (!vcpu->mmio_is_write)
5918 memcpy(frag->data, run->mmio.data, len);
5920 if (frag->len <= 8) {
5921 /* Switch to the next fragment. */
5922 frag++;
5923 vcpu->mmio_cur_fragment++;
5924 } else {
5925 /* Go forward to the next mmio piece. */
5926 frag->data += len;
5927 frag->gpa += len;
5928 frag->len -= len;
5931 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5932 vcpu->mmio_needed = 0;
5933 if (vcpu->mmio_is_write)
5934 return 1;
5935 vcpu->mmio_read_completed = 1;
5936 return complete_emulated_io(vcpu);
5939 run->exit_reason = KVM_EXIT_MMIO;
5940 run->mmio.phys_addr = frag->gpa;
5941 if (vcpu->mmio_is_write)
5942 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5943 run->mmio.len = min(8u, frag->len);
5944 run->mmio.is_write = vcpu->mmio_is_write;
5945 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5946 return 0;
5950 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5952 int r;
5953 sigset_t sigsaved;
5955 if (!tsk_used_math(current) && init_fpu(current))
5956 return -ENOMEM;
5958 if (vcpu->sigset_active)
5959 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5961 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5962 kvm_vcpu_block(vcpu);
5963 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5964 r = -EAGAIN;
5965 goto out;
5968 /* re-sync apic's tpr */
5969 if (!irqchip_in_kernel(vcpu->kvm)) {
5970 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5971 r = -EINVAL;
5972 goto out;
5976 if (unlikely(vcpu->arch.complete_userspace_io)) {
5977 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5978 vcpu->arch.complete_userspace_io = NULL;
5979 r = cui(vcpu);
5980 if (r <= 0)
5981 goto out;
5982 } else
5983 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5985 r = __vcpu_run(vcpu);
5987 out:
5988 post_kvm_run_save(vcpu);
5989 if (vcpu->sigset_active)
5990 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5992 return r;
5995 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5997 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5999 * We are here if userspace calls get_regs() in the middle of
6000 * instruction emulation. Registers state needs to be copied
6001 * back from emulation context to vcpu. Userspace shouldn't do
6002 * that usually, but some bad designed PV devices (vmware
6003 * backdoor interface) need this to work
6005 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6006 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6008 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6009 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6010 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6011 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6012 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6013 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6014 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6015 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6016 #ifdef CONFIG_X86_64
6017 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6018 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6019 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6020 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6021 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6022 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6023 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6024 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6025 #endif
6027 regs->rip = kvm_rip_read(vcpu);
6028 regs->rflags = kvm_get_rflags(vcpu);
6030 return 0;
6033 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6035 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6036 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6038 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6039 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6040 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6041 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6042 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6043 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6044 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6045 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6046 #ifdef CONFIG_X86_64
6047 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6048 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6049 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6050 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6051 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6052 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6053 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6054 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6055 #endif
6057 kvm_rip_write(vcpu, regs->rip);
6058 kvm_set_rflags(vcpu, regs->rflags);
6060 vcpu->arch.exception.pending = false;
6062 kvm_make_request(KVM_REQ_EVENT, vcpu);
6064 return 0;
6067 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6069 struct kvm_segment cs;
6071 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6072 *db = cs.db;
6073 *l = cs.l;
6075 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6077 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6078 struct kvm_sregs *sregs)
6080 struct desc_ptr dt;
6082 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6083 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6084 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6085 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6086 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6087 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6089 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6090 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6092 kvm_x86_ops->get_idt(vcpu, &dt);
6093 sregs->idt.limit = dt.size;
6094 sregs->idt.base = dt.address;
6095 kvm_x86_ops->get_gdt(vcpu, &dt);
6096 sregs->gdt.limit = dt.size;
6097 sregs->gdt.base = dt.address;
6099 sregs->cr0 = kvm_read_cr0(vcpu);
6100 sregs->cr2 = vcpu->arch.cr2;
6101 sregs->cr3 = kvm_read_cr3(vcpu);
6102 sregs->cr4 = kvm_read_cr4(vcpu);
6103 sregs->cr8 = kvm_get_cr8(vcpu);
6104 sregs->efer = vcpu->arch.efer;
6105 sregs->apic_base = kvm_get_apic_base(vcpu);
6107 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6109 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6110 set_bit(vcpu->arch.interrupt.nr,
6111 (unsigned long *)sregs->interrupt_bitmap);
6113 return 0;
6116 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6117 struct kvm_mp_state *mp_state)
6119 mp_state->mp_state = vcpu->arch.mp_state;
6120 return 0;
6123 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6124 struct kvm_mp_state *mp_state)
6126 vcpu->arch.mp_state = mp_state->mp_state;
6127 kvm_make_request(KVM_REQ_EVENT, vcpu);
6128 return 0;
6131 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6132 int reason, bool has_error_code, u32 error_code)
6134 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6135 int ret;
6137 init_emulate_ctxt(vcpu);
6139 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6140 has_error_code, error_code);
6142 if (ret)
6143 return EMULATE_FAIL;
6145 kvm_rip_write(vcpu, ctxt->eip);
6146 kvm_set_rflags(vcpu, ctxt->eflags);
6147 kvm_make_request(KVM_REQ_EVENT, vcpu);
6148 return EMULATE_DONE;
6150 EXPORT_SYMBOL_GPL(kvm_task_switch);
6152 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6153 struct kvm_sregs *sregs)
6155 int mmu_reset_needed = 0;
6156 int pending_vec, max_bits, idx;
6157 struct desc_ptr dt;
6159 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6160 return -EINVAL;
6162 dt.size = sregs->idt.limit;
6163 dt.address = sregs->idt.base;
6164 kvm_x86_ops->set_idt(vcpu, &dt);
6165 dt.size = sregs->gdt.limit;
6166 dt.address = sregs->gdt.base;
6167 kvm_x86_ops->set_gdt(vcpu, &dt);
6169 vcpu->arch.cr2 = sregs->cr2;
6170 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6171 vcpu->arch.cr3 = sregs->cr3;
6172 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6174 kvm_set_cr8(vcpu, sregs->cr8);
6176 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6177 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6178 kvm_set_apic_base(vcpu, sregs->apic_base);
6180 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6181 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6182 vcpu->arch.cr0 = sregs->cr0;
6184 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6185 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6186 if (sregs->cr4 & X86_CR4_OSXSAVE)
6187 kvm_update_cpuid(vcpu);
6189 idx = srcu_read_lock(&vcpu->kvm->srcu);
6190 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6191 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6192 mmu_reset_needed = 1;
6194 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6196 if (mmu_reset_needed)
6197 kvm_mmu_reset_context(vcpu);
6199 max_bits = KVM_NR_INTERRUPTS;
6200 pending_vec = find_first_bit(
6201 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6202 if (pending_vec < max_bits) {
6203 kvm_queue_interrupt(vcpu, pending_vec, false);
6204 pr_debug("Set back pending irq %d\n", pending_vec);
6207 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6208 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6209 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6210 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6211 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6212 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6214 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6215 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6217 update_cr8_intercept(vcpu);
6219 /* Older userspace won't unhalt the vcpu on reset. */
6220 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6221 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6222 !is_protmode(vcpu))
6223 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6225 kvm_make_request(KVM_REQ_EVENT, vcpu);
6227 return 0;
6230 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6231 struct kvm_guest_debug *dbg)
6233 unsigned long rflags;
6234 int i, r;
6236 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6237 r = -EBUSY;
6238 if (vcpu->arch.exception.pending)
6239 goto out;
6240 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6241 kvm_queue_exception(vcpu, DB_VECTOR);
6242 else
6243 kvm_queue_exception(vcpu, BP_VECTOR);
6247 * Read rflags as long as potentially injected trace flags are still
6248 * filtered out.
6250 rflags = kvm_get_rflags(vcpu);
6252 vcpu->guest_debug = dbg->control;
6253 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6254 vcpu->guest_debug = 0;
6256 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6257 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6258 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6259 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6260 } else {
6261 for (i = 0; i < KVM_NR_DB_REGS; i++)
6262 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6264 kvm_update_dr7(vcpu);
6266 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6267 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6268 get_segment_base(vcpu, VCPU_SREG_CS);
6271 * Trigger an rflags update that will inject or remove the trace
6272 * flags.
6274 kvm_set_rflags(vcpu, rflags);
6276 kvm_x86_ops->update_db_bp_intercept(vcpu);
6278 r = 0;
6280 out:
6282 return r;
6286 * Translate a guest virtual address to a guest physical address.
6288 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6289 struct kvm_translation *tr)
6291 unsigned long vaddr = tr->linear_address;
6292 gpa_t gpa;
6293 int idx;
6295 idx = srcu_read_lock(&vcpu->kvm->srcu);
6296 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6297 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6298 tr->physical_address = gpa;
6299 tr->valid = gpa != UNMAPPED_GVA;
6300 tr->writeable = 1;
6301 tr->usermode = 0;
6303 return 0;
6306 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6308 struct i387_fxsave_struct *fxsave =
6309 &vcpu->arch.guest_fpu.state->fxsave;
6311 memcpy(fpu->fpr, fxsave->st_space, 128);
6312 fpu->fcw = fxsave->cwd;
6313 fpu->fsw = fxsave->swd;
6314 fpu->ftwx = fxsave->twd;
6315 fpu->last_opcode = fxsave->fop;
6316 fpu->last_ip = fxsave->rip;
6317 fpu->last_dp = fxsave->rdp;
6318 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6320 return 0;
6323 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6325 struct i387_fxsave_struct *fxsave =
6326 &vcpu->arch.guest_fpu.state->fxsave;
6328 memcpy(fxsave->st_space, fpu->fpr, 128);
6329 fxsave->cwd = fpu->fcw;
6330 fxsave->swd = fpu->fsw;
6331 fxsave->twd = fpu->ftwx;
6332 fxsave->fop = fpu->last_opcode;
6333 fxsave->rip = fpu->last_ip;
6334 fxsave->rdp = fpu->last_dp;
6335 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6337 return 0;
6340 int fx_init(struct kvm_vcpu *vcpu)
6342 int err;
6344 err = fpu_alloc(&vcpu->arch.guest_fpu);
6345 if (err)
6346 return err;
6348 fpu_finit(&vcpu->arch.guest_fpu);
6351 * Ensure guest xcr0 is valid for loading
6353 vcpu->arch.xcr0 = XSTATE_FP;
6355 vcpu->arch.cr0 |= X86_CR0_ET;
6357 return 0;
6359 EXPORT_SYMBOL_GPL(fx_init);
6361 static void fx_free(struct kvm_vcpu *vcpu)
6363 fpu_free(&vcpu->arch.guest_fpu);
6366 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6368 if (vcpu->guest_fpu_loaded)
6369 return;
6372 * Restore all possible states in the guest,
6373 * and assume host would use all available bits.
6374 * Guest xcr0 would be loaded later.
6376 kvm_put_guest_xcr0(vcpu);
6377 vcpu->guest_fpu_loaded = 1;
6378 __kernel_fpu_begin();
6379 fpu_restore_checking(&vcpu->arch.guest_fpu);
6380 trace_kvm_fpu(1);
6383 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6385 kvm_put_guest_xcr0(vcpu);
6387 if (!vcpu->guest_fpu_loaded)
6388 return;
6390 vcpu->guest_fpu_loaded = 0;
6391 fpu_save_init(&vcpu->arch.guest_fpu);
6392 __kernel_fpu_end();
6393 ++vcpu->stat.fpu_reload;
6394 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6395 trace_kvm_fpu(0);
6398 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6400 kvmclock_reset(vcpu);
6402 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6403 fx_free(vcpu);
6404 kvm_x86_ops->vcpu_free(vcpu);
6407 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6408 unsigned int id)
6410 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6411 printk_once(KERN_WARNING
6412 "kvm: SMP vm created on host with unstable TSC; "
6413 "guest TSC will not be reliable\n");
6414 return kvm_x86_ops->vcpu_create(kvm, id);
6417 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6419 int r;
6421 vcpu->arch.mtrr_state.have_fixed = 1;
6422 r = vcpu_load(vcpu);
6423 if (r)
6424 return r;
6425 r = kvm_vcpu_reset(vcpu);
6426 if (r == 0)
6427 r = kvm_mmu_setup(vcpu);
6428 vcpu_put(vcpu);
6430 return r;
6433 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6435 int r;
6436 struct msr_data msr;
6438 r = vcpu_load(vcpu);
6439 if (r)
6440 return r;
6441 msr.data = 0x0;
6442 msr.index = MSR_IA32_TSC;
6443 msr.host_initiated = true;
6444 kvm_write_tsc(vcpu, &msr);
6445 vcpu_put(vcpu);
6447 return r;
6450 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6452 int r;
6453 vcpu->arch.apf.msr_val = 0;
6455 r = vcpu_load(vcpu);
6456 BUG_ON(r);
6457 kvm_mmu_unload(vcpu);
6458 vcpu_put(vcpu);
6460 fx_free(vcpu);
6461 kvm_x86_ops->vcpu_free(vcpu);
6464 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6466 atomic_set(&vcpu->arch.nmi_queued, 0);
6467 vcpu->arch.nmi_pending = 0;
6468 vcpu->arch.nmi_injected = false;
6470 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6471 vcpu->arch.dr6 = DR6_FIXED_1;
6472 vcpu->arch.dr7 = DR7_FIXED_1;
6473 kvm_update_dr7(vcpu);
6475 kvm_make_request(KVM_REQ_EVENT, vcpu);
6476 vcpu->arch.apf.msr_val = 0;
6477 vcpu->arch.st.msr_val = 0;
6479 kvmclock_reset(vcpu);
6481 kvm_clear_async_pf_completion_queue(vcpu);
6482 kvm_async_pf_hash_reset(vcpu);
6483 vcpu->arch.apf.halted = false;
6485 kvm_pmu_reset(vcpu);
6487 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6488 vcpu->arch.regs_avail = ~0;
6489 vcpu->arch.regs_dirty = ~0;
6491 return kvm_x86_ops->vcpu_reset(vcpu);
6494 int kvm_arch_hardware_enable(void *garbage)
6496 struct kvm *kvm;
6497 struct kvm_vcpu *vcpu;
6498 int i;
6499 int ret;
6500 u64 local_tsc;
6501 u64 max_tsc = 0;
6502 bool stable, backwards_tsc = false;
6504 kvm_shared_msr_cpu_online();
6505 ret = kvm_x86_ops->hardware_enable(garbage);
6506 if (ret != 0)
6507 return ret;
6509 local_tsc = native_read_tsc();
6510 stable = !check_tsc_unstable();
6511 list_for_each_entry(kvm, &vm_list, vm_list) {
6512 kvm_for_each_vcpu(i, vcpu, kvm) {
6513 if (!stable && vcpu->cpu == smp_processor_id())
6514 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6515 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6516 backwards_tsc = true;
6517 if (vcpu->arch.last_host_tsc > max_tsc)
6518 max_tsc = vcpu->arch.last_host_tsc;
6524 * Sometimes, even reliable TSCs go backwards. This happens on
6525 * platforms that reset TSC during suspend or hibernate actions, but
6526 * maintain synchronization. We must compensate. Fortunately, we can
6527 * detect that condition here, which happens early in CPU bringup,
6528 * before any KVM threads can be running. Unfortunately, we can't
6529 * bring the TSCs fully up to date with real time, as we aren't yet far
6530 * enough into CPU bringup that we know how much real time has actually
6531 * elapsed; our helper function, get_kernel_ns() will be using boot
6532 * variables that haven't been updated yet.
6534 * So we simply find the maximum observed TSC above, then record the
6535 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6536 * the adjustment will be applied. Note that we accumulate
6537 * adjustments, in case multiple suspend cycles happen before some VCPU
6538 * gets a chance to run again. In the event that no KVM threads get a
6539 * chance to run, we will miss the entire elapsed period, as we'll have
6540 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6541 * loose cycle time. This isn't too big a deal, since the loss will be
6542 * uniform across all VCPUs (not to mention the scenario is extremely
6543 * unlikely). It is possible that a second hibernate recovery happens
6544 * much faster than a first, causing the observed TSC here to be
6545 * smaller; this would require additional padding adjustment, which is
6546 * why we set last_host_tsc to the local tsc observed here.
6548 * N.B. - this code below runs only on platforms with reliable TSC,
6549 * as that is the only way backwards_tsc is set above. Also note
6550 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6551 * have the same delta_cyc adjustment applied if backwards_tsc
6552 * is detected. Note further, this adjustment is only done once,
6553 * as we reset last_host_tsc on all VCPUs to stop this from being
6554 * called multiple times (one for each physical CPU bringup).
6556 * Platforms with unreliable TSCs don't have to deal with this, they
6557 * will be compensated by the logic in vcpu_load, which sets the TSC to
6558 * catchup mode. This will catchup all VCPUs to real time, but cannot
6559 * guarantee that they stay in perfect synchronization.
6561 if (backwards_tsc) {
6562 u64 delta_cyc = max_tsc - local_tsc;
6563 list_for_each_entry(kvm, &vm_list, vm_list) {
6564 kvm_for_each_vcpu(i, vcpu, kvm) {
6565 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6566 vcpu->arch.last_host_tsc = local_tsc;
6567 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6568 &vcpu->requests);
6572 * We have to disable TSC offset matching.. if you were
6573 * booting a VM while issuing an S4 host suspend....
6574 * you may have some problem. Solving this issue is
6575 * left as an exercise to the reader.
6577 kvm->arch.last_tsc_nsec = 0;
6578 kvm->arch.last_tsc_write = 0;
6582 return 0;
6585 void kvm_arch_hardware_disable(void *garbage)
6587 kvm_x86_ops->hardware_disable(garbage);
6588 drop_user_return_notifiers(garbage);
6591 int kvm_arch_hardware_setup(void)
6593 return kvm_x86_ops->hardware_setup();
6596 void kvm_arch_hardware_unsetup(void)
6598 kvm_x86_ops->hardware_unsetup();
6601 void kvm_arch_check_processor_compat(void *rtn)
6603 kvm_x86_ops->check_processor_compatibility(rtn);
6606 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6608 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6611 struct static_key kvm_no_apic_vcpu __read_mostly;
6613 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6615 struct page *page;
6616 struct kvm *kvm;
6617 int r;
6619 BUG_ON(vcpu->kvm == NULL);
6620 kvm = vcpu->kvm;
6622 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6623 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6624 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6625 else
6626 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6628 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6629 if (!page) {
6630 r = -ENOMEM;
6631 goto fail;
6633 vcpu->arch.pio_data = page_address(page);
6635 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6637 r = kvm_mmu_create(vcpu);
6638 if (r < 0)
6639 goto fail_free_pio_data;
6641 if (irqchip_in_kernel(kvm)) {
6642 r = kvm_create_lapic(vcpu);
6643 if (r < 0)
6644 goto fail_mmu_destroy;
6645 } else
6646 static_key_slow_inc(&kvm_no_apic_vcpu);
6648 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6649 GFP_KERNEL);
6650 if (!vcpu->arch.mce_banks) {
6651 r = -ENOMEM;
6652 goto fail_free_lapic;
6654 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6656 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6657 goto fail_free_mce_banks;
6659 r = fx_init(vcpu);
6660 if (r)
6661 goto fail_free_wbinvd_dirty_mask;
6663 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6664 kvm_async_pf_hash_reset(vcpu);
6665 kvm_pmu_init(vcpu);
6667 return 0;
6668 fail_free_wbinvd_dirty_mask:
6669 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6670 fail_free_mce_banks:
6671 kfree(vcpu->arch.mce_banks);
6672 fail_free_lapic:
6673 kvm_free_lapic(vcpu);
6674 fail_mmu_destroy:
6675 kvm_mmu_destroy(vcpu);
6676 fail_free_pio_data:
6677 free_page((unsigned long)vcpu->arch.pio_data);
6678 fail:
6679 return r;
6682 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6684 int idx;
6686 kvm_pmu_destroy(vcpu);
6687 kfree(vcpu->arch.mce_banks);
6688 kvm_free_lapic(vcpu);
6689 idx = srcu_read_lock(&vcpu->kvm->srcu);
6690 kvm_mmu_destroy(vcpu);
6691 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6692 free_page((unsigned long)vcpu->arch.pio_data);
6693 if (!irqchip_in_kernel(vcpu->kvm))
6694 static_key_slow_dec(&kvm_no_apic_vcpu);
6697 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6699 if (type)
6700 return -EINVAL;
6702 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6703 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6705 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6706 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6707 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6708 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6709 &kvm->arch.irq_sources_bitmap);
6711 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6712 mutex_init(&kvm->arch.apic_map_lock);
6713 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6715 pvclock_update_vm_gtod_copy(kvm);
6717 return 0;
6720 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6722 int r;
6723 r = vcpu_load(vcpu);
6724 BUG_ON(r);
6725 kvm_mmu_unload(vcpu);
6726 vcpu_put(vcpu);
6729 static void kvm_free_vcpus(struct kvm *kvm)
6731 unsigned int i;
6732 struct kvm_vcpu *vcpu;
6735 * Unpin any mmu pages first.
6737 kvm_for_each_vcpu(i, vcpu, kvm) {
6738 kvm_clear_async_pf_completion_queue(vcpu);
6739 kvm_unload_vcpu_mmu(vcpu);
6741 kvm_for_each_vcpu(i, vcpu, kvm)
6742 kvm_arch_vcpu_free(vcpu);
6744 mutex_lock(&kvm->lock);
6745 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6746 kvm->vcpus[i] = NULL;
6748 atomic_set(&kvm->online_vcpus, 0);
6749 mutex_unlock(&kvm->lock);
6752 void kvm_arch_sync_events(struct kvm *kvm)
6754 kvm_free_all_assigned_devices(kvm);
6755 kvm_free_pit(kvm);
6758 void kvm_arch_destroy_vm(struct kvm *kvm)
6760 kvm_iommu_unmap_guest(kvm);
6761 kfree(kvm->arch.vpic);
6762 kfree(kvm->arch.vioapic);
6763 kvm_free_vcpus(kvm);
6764 if (kvm->arch.apic_access_page)
6765 put_page(kvm->arch.apic_access_page);
6766 if (kvm->arch.ept_identity_pagetable)
6767 put_page(kvm->arch.ept_identity_pagetable);
6768 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6771 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6772 struct kvm_memory_slot *dont)
6774 int i;
6776 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6777 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6778 kvm_kvfree(free->arch.rmap[i]);
6779 free->arch.rmap[i] = NULL;
6781 if (i == 0)
6782 continue;
6784 if (!dont || free->arch.lpage_info[i - 1] !=
6785 dont->arch.lpage_info[i - 1]) {
6786 kvm_kvfree(free->arch.lpage_info[i - 1]);
6787 free->arch.lpage_info[i - 1] = NULL;
6792 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6794 int i;
6796 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6797 unsigned long ugfn;
6798 int lpages;
6799 int level = i + 1;
6801 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6802 slot->base_gfn, level) + 1;
6804 slot->arch.rmap[i] =
6805 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6806 if (!slot->arch.rmap[i])
6807 goto out_free;
6808 if (i == 0)
6809 continue;
6811 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6812 sizeof(*slot->arch.lpage_info[i - 1]));
6813 if (!slot->arch.lpage_info[i - 1])
6814 goto out_free;
6816 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6817 slot->arch.lpage_info[i - 1][0].write_count = 1;
6818 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6819 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6820 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6822 * If the gfn and userspace address are not aligned wrt each
6823 * other, or if explicitly asked to, disable large page
6824 * support for this slot
6826 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6827 !kvm_largepages_enabled()) {
6828 unsigned long j;
6830 for (j = 0; j < lpages; ++j)
6831 slot->arch.lpage_info[i - 1][j].write_count = 1;
6835 return 0;
6837 out_free:
6838 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6839 kvm_kvfree(slot->arch.rmap[i]);
6840 slot->arch.rmap[i] = NULL;
6841 if (i == 0)
6842 continue;
6844 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6845 slot->arch.lpage_info[i - 1] = NULL;
6847 return -ENOMEM;
6850 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6851 struct kvm_memory_slot *memslot,
6852 struct kvm_memory_slot old,
6853 struct kvm_userspace_memory_region *mem,
6854 int user_alloc)
6856 int npages = memslot->npages;
6857 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6859 /* Prevent internal slot pages from being moved by fork()/COW. */
6860 if (memslot->id >= KVM_MEMORY_SLOTS)
6861 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6863 /*To keep backward compatibility with older userspace,
6864 *x86 needs to handle !user_alloc case.
6866 if (!user_alloc) {
6867 if (npages && !old.npages) {
6868 unsigned long userspace_addr;
6870 userspace_addr = vm_mmap(NULL, 0,
6871 npages * PAGE_SIZE,
6872 PROT_READ | PROT_WRITE,
6873 map_flags,
6876 if (IS_ERR((void *)userspace_addr))
6877 return PTR_ERR((void *)userspace_addr);
6879 memslot->userspace_addr = userspace_addr;
6884 return 0;
6887 void kvm_arch_commit_memory_region(struct kvm *kvm,
6888 struct kvm_userspace_memory_region *mem,
6889 struct kvm_memory_slot old,
6890 int user_alloc)
6893 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6895 if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6896 int ret;
6898 ret = vm_munmap(old.userspace_addr,
6899 old.npages * PAGE_SIZE);
6900 if (ret < 0)
6901 printk(KERN_WARNING
6902 "kvm_vm_ioctl_set_memory_region: "
6903 "failed to munmap memory\n");
6906 if (!kvm->arch.n_requested_mmu_pages)
6907 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6909 spin_lock(&kvm->mmu_lock);
6910 if (nr_mmu_pages)
6911 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6912 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6913 spin_unlock(&kvm->mmu_lock);
6915 * If memory slot is created, or moved, we need to clear all
6916 * mmio sptes.
6918 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6919 kvm_mmu_zap_all(kvm);
6920 kvm_reload_remote_mmus(kvm);
6924 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6926 kvm_mmu_zap_all(kvm);
6927 kvm_reload_remote_mmus(kvm);
6930 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6931 struct kvm_memory_slot *slot)
6933 kvm_arch_flush_shadow_all(kvm);
6936 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6938 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6939 !vcpu->arch.apf.halted)
6940 || !list_empty_careful(&vcpu->async_pf.done)
6941 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6942 || atomic_read(&vcpu->arch.nmi_queued) ||
6943 (kvm_arch_interrupt_allowed(vcpu) &&
6944 kvm_cpu_has_interrupt(vcpu));
6947 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6949 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6952 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6954 return kvm_x86_ops->interrupt_allowed(vcpu);
6957 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6959 unsigned long current_rip = kvm_rip_read(vcpu) +
6960 get_segment_base(vcpu, VCPU_SREG_CS);
6962 return current_rip == linear_rip;
6964 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6966 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6968 unsigned long rflags;
6970 rflags = kvm_x86_ops->get_rflags(vcpu);
6971 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6972 rflags &= ~X86_EFLAGS_TF;
6973 return rflags;
6975 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6977 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6979 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6980 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6981 rflags |= X86_EFLAGS_TF;
6982 kvm_x86_ops->set_rflags(vcpu, rflags);
6983 kvm_make_request(KVM_REQ_EVENT, vcpu);
6985 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6987 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6989 int r;
6991 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6992 is_error_page(work->page))
6993 return;
6995 r = kvm_mmu_reload(vcpu);
6996 if (unlikely(r))
6997 return;
6999 if (!vcpu->arch.mmu.direct_map &&
7000 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7001 return;
7003 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7006 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7008 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7011 static inline u32 kvm_async_pf_next_probe(u32 key)
7013 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7016 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7018 u32 key = kvm_async_pf_hash_fn(gfn);
7020 while (vcpu->arch.apf.gfns[key] != ~0)
7021 key = kvm_async_pf_next_probe(key);
7023 vcpu->arch.apf.gfns[key] = gfn;
7026 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7028 int i;
7029 u32 key = kvm_async_pf_hash_fn(gfn);
7031 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7032 (vcpu->arch.apf.gfns[key] != gfn &&
7033 vcpu->arch.apf.gfns[key] != ~0); i++)
7034 key = kvm_async_pf_next_probe(key);
7036 return key;
7039 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7041 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7044 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7046 u32 i, j, k;
7048 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7049 while (true) {
7050 vcpu->arch.apf.gfns[i] = ~0;
7051 do {
7052 j = kvm_async_pf_next_probe(j);
7053 if (vcpu->arch.apf.gfns[j] == ~0)
7054 return;
7055 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7057 * k lies cyclically in ]i,j]
7058 * | i.k.j |
7059 * |....j i.k.| or |.k..j i...|
7061 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7062 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7063 i = j;
7067 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7070 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7071 sizeof(val));
7074 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7075 struct kvm_async_pf *work)
7077 struct x86_exception fault;
7079 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7080 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7082 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7083 (vcpu->arch.apf.send_user_only &&
7084 kvm_x86_ops->get_cpl(vcpu) == 0))
7085 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7086 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7087 fault.vector = PF_VECTOR;
7088 fault.error_code_valid = true;
7089 fault.error_code = 0;
7090 fault.nested_page_fault = false;
7091 fault.address = work->arch.token;
7092 kvm_inject_page_fault(vcpu, &fault);
7096 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7097 struct kvm_async_pf *work)
7099 struct x86_exception fault;
7101 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7102 if (is_error_page(work->page))
7103 work->arch.token = ~0; /* broadcast wakeup */
7104 else
7105 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7107 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7108 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7109 fault.vector = PF_VECTOR;
7110 fault.error_code_valid = true;
7111 fault.error_code = 0;
7112 fault.nested_page_fault = false;
7113 fault.address = work->arch.token;
7114 kvm_inject_page_fault(vcpu, &fault);
7116 vcpu->arch.apf.halted = false;
7117 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7120 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7122 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7123 return true;
7124 else
7125 return !kvm_event_needs_reinjection(vcpu) &&
7126 kvm_x86_ops->interrupt_allowed(vcpu);
7129 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7130 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7131 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7132 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7133 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7134 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7135 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7136 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);