2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
53 #define CREATE_TRACE_POINTS
56 #include <asm/debugreg.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
80 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
82 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
89 static void process_nmi(struct kvm_vcpu
*vcpu
);
91 struct kvm_x86_ops
*kvm_x86_ops
;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
94 static bool ignore_msrs
= 0;
95 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
97 bool kvm_has_tsc_control
;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
99 u32 kvm_max_guest_tsc_khz
;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm
= 250;
104 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
106 #define KVM_NR_SHARED_MSRS 16
108 struct kvm_shared_msrs_global
{
110 u32 msrs
[KVM_NR_SHARED_MSRS
];
113 struct kvm_shared_msrs
{
114 struct user_return_notifier urn
;
116 struct kvm_shared_msr_values
{
119 } values
[KVM_NR_SHARED_MSRS
];
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
123 static struct kvm_shared_msrs __percpu
*shared_msrs
;
125 struct kvm_stats_debugfs_item debugfs_entries
[] = {
126 { "pf_fixed", VCPU_STAT(pf_fixed
) },
127 { "pf_guest", VCPU_STAT(pf_guest
) },
128 { "tlb_flush", VCPU_STAT(tlb_flush
) },
129 { "invlpg", VCPU_STAT(invlpg
) },
130 { "exits", VCPU_STAT(exits
) },
131 { "io_exits", VCPU_STAT(io_exits
) },
132 { "mmio_exits", VCPU_STAT(mmio_exits
) },
133 { "signal_exits", VCPU_STAT(signal_exits
) },
134 { "irq_window", VCPU_STAT(irq_window_exits
) },
135 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
136 { "halt_exits", VCPU_STAT(halt_exits
) },
137 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
138 { "hypercalls", VCPU_STAT(hypercalls
) },
139 { "request_irq", VCPU_STAT(request_irq_exits
) },
140 { "irq_exits", VCPU_STAT(irq_exits
) },
141 { "host_state_reload", VCPU_STAT(host_state_reload
) },
142 { "efer_reload", VCPU_STAT(efer_reload
) },
143 { "fpu_reload", VCPU_STAT(fpu_reload
) },
144 { "insn_emulation", VCPU_STAT(insn_emulation
) },
145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
146 { "irq_injections", VCPU_STAT(irq_injections
) },
147 { "nmi_injections", VCPU_STAT(nmi_injections
) },
148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
149 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
152 { "mmu_flooded", VM_STAT(mmu_flooded
) },
153 { "mmu_recycled", VM_STAT(mmu_recycled
) },
154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
155 { "mmu_unsync", VM_STAT(mmu_unsync
) },
156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
157 { "largepages", VM_STAT(lpages
) },
161 u64 __read_mostly host_xcr0
;
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
165 static int kvm_vcpu_reset(struct kvm_vcpu
*vcpu
);
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
170 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
171 vcpu
->arch
.apf
.gfns
[i
] = ~0;
174 static void kvm_on_user_return(struct user_return_notifier
*urn
)
177 struct kvm_shared_msrs
*locals
178 = container_of(urn
, struct kvm_shared_msrs
, urn
);
179 struct kvm_shared_msr_values
*values
;
181 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
182 values
= &locals
->values
[slot
];
183 if (values
->host
!= values
->curr
) {
184 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
185 values
->curr
= values
->host
;
188 locals
->registered
= false;
189 user_return_notifier_unregister(urn
);
192 static void shared_msr_update(unsigned slot
, u32 msr
)
195 unsigned int cpu
= smp_processor_id();
196 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
198 /* only read, and nobody should modify it at this time,
199 * so don't need lock */
200 if (slot
>= shared_msrs_global
.nr
) {
201 printk(KERN_ERR
"kvm: invalid MSR slot!");
204 rdmsrl_safe(msr
, &value
);
205 smsr
->values
[slot
].host
= value
;
206 smsr
->values
[slot
].curr
= value
;
209 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
211 if (slot
>= shared_msrs_global
.nr
)
212 shared_msrs_global
.nr
= slot
+ 1;
213 shared_msrs_global
.msrs
[slot
] = msr
;
214 /* we need ensured the shared_msr_global have been updated */
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
219 static void kvm_shared_msr_cpu_online(void)
223 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
224 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
227 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
229 unsigned int cpu
= smp_processor_id();
230 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
232 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
234 smsr
->values
[slot
].curr
= value
;
235 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
236 if (!smsr
->registered
) {
237 smsr
->urn
.on_user_return
= kvm_on_user_return
;
238 user_return_notifier_register(&smsr
->urn
);
239 smsr
->registered
= true;
242 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
244 static void drop_user_return_notifiers(void *ignore
)
246 unsigned int cpu
= smp_processor_id();
247 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
249 if (smsr
->registered
)
250 kvm_on_user_return(&smsr
->urn
);
253 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
255 return vcpu
->arch
.apic_base
;
257 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
259 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
261 /* TODO: reserve bits check */
262 kvm_lapic_set_base(vcpu
, data
);
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
266 #define EXCPT_BENIGN 0
267 #define EXCPT_CONTRIBUTORY 1
270 static int exception_class(int vector
)
280 return EXCPT_CONTRIBUTORY
;
287 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
288 unsigned nr
, bool has_error
, u32 error_code
,
294 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
296 if (!vcpu
->arch
.exception
.pending
) {
298 vcpu
->arch
.exception
.pending
= true;
299 vcpu
->arch
.exception
.has_error_code
= has_error
;
300 vcpu
->arch
.exception
.nr
= nr
;
301 vcpu
->arch
.exception
.error_code
= error_code
;
302 vcpu
->arch
.exception
.reinject
= reinject
;
306 /* to check exception */
307 prev_nr
= vcpu
->arch
.exception
.nr
;
308 if (prev_nr
== DF_VECTOR
) {
309 /* triple fault -> shutdown */
310 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
313 class1
= exception_class(prev_nr
);
314 class2
= exception_class(nr
);
315 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
316 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
317 /* generate double fault per SDM Table 5-5 */
318 vcpu
->arch
.exception
.pending
= true;
319 vcpu
->arch
.exception
.has_error_code
= true;
320 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
321 vcpu
->arch
.exception
.error_code
= 0;
323 /* replace previous exception with a new one in a hope
324 that instruction re-execution will regenerate lost
329 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
331 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
333 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
335 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
337 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
341 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
344 kvm_inject_gp(vcpu
, 0);
346 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
350 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
352 ++vcpu
->stat
.pf_guest
;
353 vcpu
->arch
.cr2
= fault
->address
;
354 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
358 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
360 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
361 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
363 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
366 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
368 atomic_inc(&vcpu
->arch
.nmi_queued
);
369 kvm_make_request(KVM_REQ_NMI
, vcpu
);
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
373 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
375 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
379 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
381 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
387 * a #GP and return false.
389 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
391 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
393 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
396 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
399 * This function will be used to read from the physical memory of the currently
400 * running guest. The difference to kvm_read_guest_page is that this function
401 * can read from guest physical or from the guest's guest physical memory.
403 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
404 gfn_t ngfn
, void *data
, int offset
, int len
,
410 ngpa
= gfn_to_gpa(ngfn
);
411 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
412 if (real_gfn
== UNMAPPED_GVA
)
415 real_gfn
= gpa_to_gfn(real_gfn
);
417 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
421 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
422 void *data
, int offset
, int len
, u32 access
)
424 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
425 data
, offset
, len
, access
);
429 * Load the pae pdptrs. Return true is they are all valid.
431 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
433 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
434 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
437 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
439 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
440 offset
* sizeof(u64
), sizeof(pdpte
),
441 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
446 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
447 if (is_present_gpte(pdpte
[i
]) &&
448 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
455 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
456 __set_bit(VCPU_EXREG_PDPTR
,
457 (unsigned long *)&vcpu
->arch
.regs_avail
);
458 __set_bit(VCPU_EXREG_PDPTR
,
459 (unsigned long *)&vcpu
->arch
.regs_dirty
);
464 EXPORT_SYMBOL_GPL(load_pdptrs
);
466 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
468 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
474 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
477 if (!test_bit(VCPU_EXREG_PDPTR
,
478 (unsigned long *)&vcpu
->arch
.regs_avail
))
481 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
482 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
483 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
484 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
487 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
493 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
495 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
496 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
497 X86_CR0_CD
| X86_CR0_NW
;
502 if (cr0
& 0xffffffff00000000UL
)
506 cr0
&= ~CR0_RESERVED_BITS
;
508 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
511 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
514 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
516 if ((vcpu
->arch
.efer
& EFER_LME
)) {
521 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
526 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
531 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
534 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
536 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
537 kvm_clear_async_pf_completion_queue(vcpu
);
538 kvm_async_pf_hash_reset(vcpu
);
541 if ((cr0
^ old_cr0
) & update_bits
)
542 kvm_mmu_reset_context(vcpu
);
545 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
547 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
549 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
551 EXPORT_SYMBOL_GPL(kvm_lmsw
);
553 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
557 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
558 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
561 if (kvm_x86_ops
->get_cpl(vcpu
) != 0)
563 if (!(xcr0
& XSTATE_FP
))
565 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
567 if (xcr0
& ~host_xcr0
)
569 vcpu
->arch
.xcr0
= xcr0
;
570 vcpu
->guest_xcr0_loaded
= 0;
574 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
576 if (__kvm_set_xcr(vcpu
, index
, xcr
)) {
577 kvm_inject_gp(vcpu
, 0);
582 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
584 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
586 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
587 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
588 X86_CR4_PAE
| X86_CR4_SMEP
;
589 if (cr4
& CR4_RESERVED_BITS
)
592 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
595 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
598 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_RDWRGSFS
))
601 if (is_long_mode(vcpu
)) {
602 if (!(cr4
& X86_CR4_PAE
))
604 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
605 && ((cr4
^ old_cr4
) & pdptr_bits
)
606 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
610 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
611 if (!guest_cpuid_has_pcid(vcpu
))
614 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
619 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
622 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
623 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
624 kvm_mmu_reset_context(vcpu
);
626 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
627 kvm_update_cpuid(vcpu
);
631 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
633 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
635 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
636 kvm_mmu_sync_roots(vcpu
);
637 kvm_mmu_flush_tlb(vcpu
);
641 if (is_long_mode(vcpu
)) {
642 if (kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
)) {
643 if (cr3
& CR3_PCID_ENABLED_RESERVED_BITS
)
646 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
650 if (cr3
& CR3_PAE_RESERVED_BITS
)
652 if (is_paging(vcpu
) &&
653 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
657 * We don't check reserved bits in nonpae mode, because
658 * this isn't enforced, and VMware depends on this.
663 * Does the new cr3 value map to physical memory? (Note, we
664 * catch an invalid cr3 even in real-mode, because it would
665 * cause trouble later on when we turn on paging anyway.)
667 * A real CPU would silently accept an invalid cr3 and would
668 * attempt to use it - with largely undefined (and often hard
669 * to debug) behavior on the guest side.
671 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
673 vcpu
->arch
.cr3
= cr3
;
674 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
675 vcpu
->arch
.mmu
.new_cr3(vcpu
);
678 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
680 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
682 if (cr8
& CR8_RESERVED_BITS
)
684 if (irqchip_in_kernel(vcpu
->kvm
))
685 kvm_lapic_set_tpr(vcpu
, cr8
);
687 vcpu
->arch
.cr8
= cr8
;
690 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
692 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
694 if (irqchip_in_kernel(vcpu
->kvm
))
695 return kvm_lapic_get_cr8(vcpu
);
697 return vcpu
->arch
.cr8
;
699 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
701 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
705 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
706 dr7
= vcpu
->arch
.guest_debug_dr7
;
708 dr7
= vcpu
->arch
.dr7
;
709 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
710 vcpu
->arch
.switch_db_regs
= (dr7
& DR7_BP_EN_MASK
);
713 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
717 vcpu
->arch
.db
[dr
] = val
;
718 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
719 vcpu
->arch
.eff_db
[dr
] = val
;
722 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
726 if (val
& 0xffffffff00000000ULL
)
728 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
731 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
735 if (val
& 0xffffffff00000000ULL
)
737 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
738 kvm_update_dr7(vcpu
);
745 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
749 res
= __kvm_set_dr(vcpu
, dr
, val
);
751 kvm_queue_exception(vcpu
, UD_VECTOR
);
753 kvm_inject_gp(vcpu
, 0);
757 EXPORT_SYMBOL_GPL(kvm_set_dr
);
759 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
763 *val
= vcpu
->arch
.db
[dr
];
766 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
770 *val
= vcpu
->arch
.dr6
;
773 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
777 *val
= vcpu
->arch
.dr7
;
784 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
786 if (_kvm_get_dr(vcpu
, dr
, val
)) {
787 kvm_queue_exception(vcpu
, UD_VECTOR
);
792 EXPORT_SYMBOL_GPL(kvm_get_dr
);
794 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
796 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
800 err
= kvm_pmu_read_pmc(vcpu
, ecx
, &data
);
803 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
804 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
807 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
810 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
811 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
813 * This list is modified at module load time to reflect the
814 * capabilities of the host cpu. This capabilities test skips MSRs that are
815 * kvm-specific. Those are put in the beginning of the list.
818 #define KVM_SAVE_MSRS_BEGIN 10
819 static u32 msrs_to_save
[] = {
820 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
821 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
822 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
823 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
825 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
828 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
830 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
833 static unsigned num_msrs_to_save
;
835 static const u32 emulated_msrs
[] = {
837 MSR_IA32_TSCDEADLINE
,
838 MSR_IA32_MISC_ENABLE
,
843 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
845 u64 old_efer
= vcpu
->arch
.efer
;
847 if (efer
& efer_reserved_bits
)
851 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
854 if (efer
& EFER_FFXSR
) {
855 struct kvm_cpuid_entry2
*feat
;
857 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
858 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
862 if (efer
& EFER_SVME
) {
863 struct kvm_cpuid_entry2
*feat
;
865 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
866 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
871 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
873 kvm_x86_ops
->set_efer(vcpu
, efer
);
875 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
877 /* Update reserved bits */
878 if ((efer
^ old_efer
) & EFER_NX
)
879 kvm_mmu_reset_context(vcpu
);
884 void kvm_enable_efer_bits(u64 mask
)
886 efer_reserved_bits
&= ~mask
;
888 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
892 * Writes msr value into into the appropriate "register".
893 * Returns 0 on success, non-0 otherwise.
894 * Assumes vcpu_load() was already called.
896 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
898 return kvm_x86_ops
->set_msr(vcpu
, msr
);
902 * Adapt set_msr() to msr_io()'s calling convention
904 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
910 msr
.host_initiated
= true;
911 return kvm_set_msr(vcpu
, &msr
);
915 struct pvclock_gtod_data
{
918 struct { /* extract of a clocksource struct */
926 /* open coded 'struct timespec' */
927 u64 monotonic_time_snsec
;
928 time_t monotonic_time_sec
;
931 static struct pvclock_gtod_data pvclock_gtod_data
;
933 static void update_pvclock_gtod(struct timekeeper
*tk
)
935 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
937 write_seqcount_begin(&vdata
->seq
);
939 /* copy pvclock gtod data */
940 vdata
->clock
.vclock_mode
= tk
->clock
->archdata
.vclock_mode
;
941 vdata
->clock
.cycle_last
= tk
->clock
->cycle_last
;
942 vdata
->clock
.mask
= tk
->clock
->mask
;
943 vdata
->clock
.mult
= tk
->mult
;
944 vdata
->clock
.shift
= tk
->shift
;
946 vdata
->monotonic_time_sec
= tk
->xtime_sec
947 + tk
->wall_to_monotonic
.tv_sec
;
948 vdata
->monotonic_time_snsec
= tk
->xtime_nsec
949 + (tk
->wall_to_monotonic
.tv_nsec
951 while (vdata
->monotonic_time_snsec
>=
952 (((u64
)NSEC_PER_SEC
) << tk
->shift
)) {
953 vdata
->monotonic_time_snsec
-=
954 ((u64
)NSEC_PER_SEC
) << tk
->shift
;
955 vdata
->monotonic_time_sec
++;
958 write_seqcount_end(&vdata
->seq
);
963 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
967 struct pvclock_wall_clock wc
;
968 struct timespec boot
;
973 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
978 ++version
; /* first time write, random junk */
982 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
985 * The guest calculates current wall clock time by adding
986 * system time (updated by kvm_guest_time_update below) to the
987 * wall clock specified here. guest system time equals host
988 * system time for us, thus we must fill in host boot time here.
992 if (kvm
->arch
.kvmclock_offset
) {
993 struct timespec ts
= ns_to_timespec(kvm
->arch
.kvmclock_offset
);
994 boot
= timespec_sub(boot
, ts
);
996 wc
.sec
= boot
.tv_sec
;
997 wc
.nsec
= boot
.tv_nsec
;
998 wc
.version
= version
;
1000 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1003 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1006 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1008 uint32_t quotient
, remainder
;
1010 /* Don't try to replace with do_div(), this one calculates
1011 * "(dividend << 32) / divisor" */
1013 : "=a" (quotient
), "=d" (remainder
)
1014 : "0" (0), "1" (dividend
), "r" (divisor
) );
1018 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
1019 s8
*pshift
, u32
*pmultiplier
)
1026 tps64
= base_khz
* 1000LL;
1027 scaled64
= scaled_khz
* 1000LL;
1028 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1033 tps32
= (uint32_t)tps64
;
1034 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1035 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1043 *pmultiplier
= div_frac(scaled64
, tps32
);
1045 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1046 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
1049 static inline u64
get_kernel_ns(void)
1053 WARN_ON(preemptible());
1055 monotonic_to_bootbased(&ts
);
1056 return timespec_to_ns(&ts
);
1059 #ifdef CONFIG_X86_64
1060 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1063 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1064 unsigned long max_tsc_khz
;
1066 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1068 return pvclock_scale_delta(nsec
, vcpu
->arch
.virtual_tsc_mult
,
1069 vcpu
->arch
.virtual_tsc_shift
);
1072 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1074 u64 v
= (u64
)khz
* (1000000 + ppm
);
1079 static void kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1081 u32 thresh_lo
, thresh_hi
;
1082 int use_scaling
= 0;
1084 /* Compute a scale to convert nanoseconds in TSC cycles */
1085 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1086 &vcpu
->arch
.virtual_tsc_shift
,
1087 &vcpu
->arch
.virtual_tsc_mult
);
1088 vcpu
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1091 * Compute the variation in TSC rate which is acceptable
1092 * within the range of tolerance and decide if the
1093 * rate being applied is within that bounds of the hardware
1094 * rate. If so, no scaling or compensation need be done.
1096 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1097 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1098 if (this_tsc_khz
< thresh_lo
|| this_tsc_khz
> thresh_hi
) {
1099 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz
, thresh_lo
, thresh_hi
);
1102 kvm_x86_ops
->set_tsc_khz(vcpu
, this_tsc_khz
, use_scaling
);
1105 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1107 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1108 vcpu
->arch
.virtual_tsc_mult
,
1109 vcpu
->arch
.virtual_tsc_shift
);
1110 tsc
+= vcpu
->arch
.this_tsc_write
;
1114 void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1116 #ifdef CONFIG_X86_64
1118 bool do_request
= false;
1119 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1120 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1122 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1123 atomic_read(&vcpu
->kvm
->online_vcpus
));
1125 if (vcpus_matched
&& gtod
->clock
.vclock_mode
== VCLOCK_TSC
)
1126 if (!ka
->use_master_clock
)
1129 if (!vcpus_matched
&& ka
->use_master_clock
)
1133 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1135 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1136 atomic_read(&vcpu
->kvm
->online_vcpus
),
1137 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1141 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1143 u64 curr_offset
= kvm_x86_ops
->read_tsc_offset(vcpu
);
1144 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1147 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1149 struct kvm
*kvm
= vcpu
->kvm
;
1150 u64 offset
, ns
, elapsed
;
1151 unsigned long flags
;
1154 u64 data
= msr
->data
;
1156 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1157 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1158 ns
= get_kernel_ns();
1159 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1161 /* n.b - signed multiplication and division required */
1162 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1163 #ifdef CONFIG_X86_64
1164 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1166 /* do_div() only does unsigned */
1167 asm("idivl %2; xor %%edx, %%edx"
1169 : "A"(usdiff
* 1000), "rm"(vcpu
->arch
.virtual_tsc_khz
));
1171 do_div(elapsed
, 1000);
1177 * Special case: TSC write with a small delta (1 second) of virtual
1178 * cycle time against real time is interpreted as an attempt to
1179 * synchronize the CPU.
1181 * For a reliable TSC, we can match TSC offsets, and for an unstable
1182 * TSC, we add elapsed time in this computation. We could let the
1183 * compensation code attempt to catch up if we fall behind, but
1184 * it's better to try to match offsets from the beginning.
1186 if (usdiff
< USEC_PER_SEC
&&
1187 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1188 if (!check_tsc_unstable()) {
1189 offset
= kvm
->arch
.cur_tsc_offset
;
1190 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1192 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1194 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1195 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1200 * We split periods of matched TSC writes into generations.
1201 * For each generation, we track the original measured
1202 * nanosecond time, offset, and write, so if TSCs are in
1203 * sync, we can match exact offset, and if not, we can match
1204 * exact software computation in compute_guest_tsc()
1206 * These values are tracked in kvm->arch.cur_xxx variables.
1208 kvm
->arch
.cur_tsc_generation
++;
1209 kvm
->arch
.cur_tsc_nsec
= ns
;
1210 kvm
->arch
.cur_tsc_write
= data
;
1211 kvm
->arch
.cur_tsc_offset
= offset
;
1213 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1214 kvm
->arch
.cur_tsc_generation
, data
);
1218 * We also track th most recent recorded KHZ, write and time to
1219 * allow the matching interval to be extended at each write.
1221 kvm
->arch
.last_tsc_nsec
= ns
;
1222 kvm
->arch
.last_tsc_write
= data
;
1223 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1225 /* Reset of TSC must disable overshoot protection below */
1226 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1227 vcpu
->arch
.last_guest_tsc
= data
;
1229 /* Keep track of which generation this VCPU has synchronized to */
1230 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1231 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1232 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1234 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1235 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1236 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1237 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1239 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1241 kvm
->arch
.nr_vcpus_matched_tsc
++;
1243 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1245 kvm_track_tsc_matching(vcpu
);
1246 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1249 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1251 #ifdef CONFIG_X86_64
1253 static cycle_t
read_tsc(void)
1259 * Empirically, a fence (of type that depends on the CPU)
1260 * before rdtsc is enough to ensure that rdtsc is ordered
1261 * with respect to loads. The various CPU manuals are unclear
1262 * as to whether rdtsc can be reordered with later loads,
1263 * but no one has ever seen it happen.
1266 ret
= (cycle_t
)vget_cycles();
1268 last
= pvclock_gtod_data
.clock
.cycle_last
;
1270 if (likely(ret
>= last
))
1274 * GCC likes to generate cmov here, but this branch is extremely
1275 * predictable (it's just a funciton of time and the likely is
1276 * very likely) and there's a data dependence, so force GCC
1277 * to generate a branch instead. I don't barrier() because
1278 * we don't actually need a barrier, and if this function
1279 * ever gets inlined it will generate worse code.
1285 static inline u64
vgettsc(cycle_t
*cycle_now
)
1288 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1290 *cycle_now
= read_tsc();
1292 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1293 return v
* gtod
->clock
.mult
;
1296 static int do_monotonic(struct timespec
*ts
, cycle_t
*cycle_now
)
1301 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1305 seq
= read_seqcount_begin(>od
->seq
);
1306 mode
= gtod
->clock
.vclock_mode
;
1307 ts
->tv_sec
= gtod
->monotonic_time_sec
;
1308 ns
= gtod
->monotonic_time_snsec
;
1309 ns
+= vgettsc(cycle_now
);
1310 ns
>>= gtod
->clock
.shift
;
1311 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1312 timespec_add_ns(ts
, ns
);
1317 /* returns true if host is using tsc clocksource */
1318 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1322 /* checked again under seqlock below */
1323 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1326 if (do_monotonic(&ts
, cycle_now
) != VCLOCK_TSC
)
1329 monotonic_to_bootbased(&ts
);
1330 *kernel_ns
= timespec_to_ns(&ts
);
1338 * Assuming a stable TSC across physical CPUS, and a stable TSC
1339 * across virtual CPUs, the following condition is possible.
1340 * Each numbered line represents an event visible to both
1341 * CPUs at the next numbered event.
1343 * "timespecX" represents host monotonic time. "tscX" represents
1346 * VCPU0 on CPU0 | VCPU1 on CPU1
1348 * 1. read timespec0,tsc0
1349 * 2. | timespec1 = timespec0 + N
1351 * 3. transition to guest | transition to guest
1352 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1353 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1354 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1356 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1359 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1361 * - 0 < N - M => M < N
1363 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1364 * always the case (the difference between two distinct xtime instances
1365 * might be smaller then the difference between corresponding TSC reads,
1366 * when updating guest vcpus pvclock areas).
1368 * To avoid that problem, do not allow visibility of distinct
1369 * system_timestamp/tsc_timestamp values simultaneously: use a master
1370 * copy of host monotonic time values. Update that master copy
1373 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1377 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1379 #ifdef CONFIG_X86_64
1380 struct kvm_arch
*ka
= &kvm
->arch
;
1382 bool host_tsc_clocksource
, vcpus_matched
;
1384 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1385 atomic_read(&kvm
->online_vcpus
));
1388 * If the host uses TSC clock, then passthrough TSC as stable
1391 host_tsc_clocksource
= kvm_get_time_and_clockread(
1392 &ka
->master_kernel_ns
,
1393 &ka
->master_cycle_now
);
1395 ka
->use_master_clock
= host_tsc_clocksource
& vcpus_matched
;
1397 if (ka
->use_master_clock
)
1398 atomic_set(&kvm_guest_has_master_clock
, 1);
1400 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1401 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1406 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1408 unsigned long flags
, this_tsc_khz
;
1409 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1410 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1412 s64 kernel_ns
, max_kernel_ns
;
1413 u64 tsc_timestamp
, host_tsc
;
1414 struct pvclock_vcpu_time_info
*guest_hv_clock
;
1416 bool use_master_clock
;
1421 /* Keep irq disabled to prevent changes to the clock */
1422 local_irq_save(flags
);
1423 this_tsc_khz
= __get_cpu_var(cpu_tsc_khz
);
1424 if (unlikely(this_tsc_khz
== 0)) {
1425 local_irq_restore(flags
);
1426 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1431 * If the host uses TSC clock, then passthrough TSC as stable
1434 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1435 use_master_clock
= ka
->use_master_clock
;
1436 if (use_master_clock
) {
1437 host_tsc
= ka
->master_cycle_now
;
1438 kernel_ns
= ka
->master_kernel_ns
;
1440 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1441 if (!use_master_clock
) {
1442 host_tsc
= native_read_tsc();
1443 kernel_ns
= get_kernel_ns();
1446 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
, host_tsc
);
1449 * We may have to catch up the TSC to match elapsed wall clock
1450 * time for two reasons, even if kvmclock is used.
1451 * 1) CPU could have been running below the maximum TSC rate
1452 * 2) Broken TSC compensation resets the base at each VCPU
1453 * entry to avoid unknown leaps of TSC even when running
1454 * again on the same CPU. This may cause apparent elapsed
1455 * time to disappear, and the guest to stand still or run
1458 if (vcpu
->tsc_catchup
) {
1459 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1460 if (tsc
> tsc_timestamp
) {
1461 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1462 tsc_timestamp
= tsc
;
1466 local_irq_restore(flags
);
1468 if (!vcpu
->time_page
)
1472 * Time as measured by the TSC may go backwards when resetting the base
1473 * tsc_timestamp. The reason for this is that the TSC resolution is
1474 * higher than the resolution of the other clock scales. Thus, many
1475 * possible measurments of the TSC correspond to one measurement of any
1476 * other clock, and so a spread of values is possible. This is not a
1477 * problem for the computation of the nanosecond clock; with TSC rates
1478 * around 1GHZ, there can only be a few cycles which correspond to one
1479 * nanosecond value, and any path through this code will inevitably
1480 * take longer than that. However, with the kernel_ns value itself,
1481 * the precision may be much lower, down to HZ granularity. If the
1482 * first sampling of TSC against kernel_ns ends in the low part of the
1483 * range, and the second in the high end of the range, we can get:
1485 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1487 * As the sampling errors potentially range in the thousands of cycles,
1488 * it is possible such a time value has already been observed by the
1489 * guest. To protect against this, we must compute the system time as
1490 * observed by the guest and ensure the new system time is greater.
1493 if (vcpu
->hv_clock
.tsc_timestamp
) {
1494 max_kernel_ns
= vcpu
->last_guest_tsc
-
1495 vcpu
->hv_clock
.tsc_timestamp
;
1496 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1497 vcpu
->hv_clock
.tsc_to_system_mul
,
1498 vcpu
->hv_clock
.tsc_shift
);
1499 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1502 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1503 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1504 &vcpu
->hv_clock
.tsc_shift
,
1505 &vcpu
->hv_clock
.tsc_to_system_mul
);
1506 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1509 /* with a master <monotonic time, tsc value> tuple,
1510 * pvclock clock reads always increase at the (scaled) rate
1511 * of guest TSC - no need to deal with sampling errors.
1513 if (!use_master_clock
) {
1514 if (max_kernel_ns
> kernel_ns
)
1515 kernel_ns
= max_kernel_ns
;
1517 /* With all the info we got, fill in the values */
1518 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1519 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1520 vcpu
->last_kernel_ns
= kernel_ns
;
1521 vcpu
->last_guest_tsc
= tsc_timestamp
;
1524 * The interface expects us to write an even number signaling that the
1525 * update is finished. Since the guest won't see the intermediate
1526 * state, we just increase by 2 at the end.
1528 vcpu
->hv_clock
.version
+= 2;
1530 shared_kaddr
= kmap_atomic(vcpu
->time_page
);
1532 guest_hv_clock
= shared_kaddr
+ vcpu
->time_offset
;
1534 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1535 pvclock_flags
= (guest_hv_clock
->flags
& PVCLOCK_GUEST_STOPPED
);
1537 if (vcpu
->pvclock_set_guest_stopped_request
) {
1538 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1539 vcpu
->pvclock_set_guest_stopped_request
= false;
1542 /* If the host uses TSC clocksource, then it is stable */
1543 if (use_master_clock
)
1544 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1546 vcpu
->hv_clock
.flags
= pvclock_flags
;
1548 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
1549 sizeof(vcpu
->hv_clock
));
1551 kunmap_atomic(shared_kaddr
);
1553 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
1557 static bool msr_mtrr_valid(unsigned msr
)
1560 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1561 case MSR_MTRRfix64K_00000
:
1562 case MSR_MTRRfix16K_80000
:
1563 case MSR_MTRRfix16K_A0000
:
1564 case MSR_MTRRfix4K_C0000
:
1565 case MSR_MTRRfix4K_C8000
:
1566 case MSR_MTRRfix4K_D0000
:
1567 case MSR_MTRRfix4K_D8000
:
1568 case MSR_MTRRfix4K_E0000
:
1569 case MSR_MTRRfix4K_E8000
:
1570 case MSR_MTRRfix4K_F0000
:
1571 case MSR_MTRRfix4K_F8000
:
1572 case MSR_MTRRdefType
:
1573 case MSR_IA32_CR_PAT
:
1581 static bool valid_pat_type(unsigned t
)
1583 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1586 static bool valid_mtrr_type(unsigned t
)
1588 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1591 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1595 if (!msr_mtrr_valid(msr
))
1598 if (msr
== MSR_IA32_CR_PAT
) {
1599 for (i
= 0; i
< 8; i
++)
1600 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1603 } else if (msr
== MSR_MTRRdefType
) {
1606 return valid_mtrr_type(data
& 0xff);
1607 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1608 for (i
= 0; i
< 8 ; i
++)
1609 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1614 /* variable MTRRs */
1615 return valid_mtrr_type(data
& 0xff);
1618 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1620 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1622 if (!mtrr_valid(vcpu
, msr
, data
))
1625 if (msr
== MSR_MTRRdefType
) {
1626 vcpu
->arch
.mtrr_state
.def_type
= data
;
1627 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1628 } else if (msr
== MSR_MTRRfix64K_00000
)
1630 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1631 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1632 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1633 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1634 else if (msr
== MSR_IA32_CR_PAT
)
1635 vcpu
->arch
.pat
= data
;
1636 else { /* Variable MTRRs */
1637 int idx
, is_mtrr_mask
;
1640 idx
= (msr
- 0x200) / 2;
1641 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1644 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1647 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1651 kvm_mmu_reset_context(vcpu
);
1655 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1657 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1658 unsigned bank_num
= mcg_cap
& 0xff;
1661 case MSR_IA32_MCG_STATUS
:
1662 vcpu
->arch
.mcg_status
= data
;
1664 case MSR_IA32_MCG_CTL
:
1665 if (!(mcg_cap
& MCG_CTL_P
))
1667 if (data
!= 0 && data
!= ~(u64
)0)
1669 vcpu
->arch
.mcg_ctl
= data
;
1672 if (msr
>= MSR_IA32_MC0_CTL
&&
1673 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1674 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1675 /* only 0 or all 1s can be written to IA32_MCi_CTL
1676 * some Linux kernels though clear bit 10 in bank 4 to
1677 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1678 * this to avoid an uncatched #GP in the guest
1680 if ((offset
& 0x3) == 0 &&
1681 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1683 vcpu
->arch
.mce_banks
[offset
] = data
;
1691 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1693 struct kvm
*kvm
= vcpu
->kvm
;
1694 int lm
= is_long_mode(vcpu
);
1695 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1696 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1697 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1698 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1699 u32 page_num
= data
& ~PAGE_MASK
;
1700 u64 page_addr
= data
& PAGE_MASK
;
1705 if (page_num
>= blob_size
)
1708 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1713 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1722 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1724 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1727 static bool kvm_hv_msr_partition_wide(u32 msr
)
1731 case HV_X64_MSR_GUEST_OS_ID
:
1732 case HV_X64_MSR_HYPERCALL
:
1740 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1742 struct kvm
*kvm
= vcpu
->kvm
;
1745 case HV_X64_MSR_GUEST_OS_ID
:
1746 kvm
->arch
.hv_guest_os_id
= data
;
1747 /* setting guest os id to zero disables hypercall page */
1748 if (!kvm
->arch
.hv_guest_os_id
)
1749 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1751 case HV_X64_MSR_HYPERCALL
: {
1756 /* if guest os id is not set hypercall should remain disabled */
1757 if (!kvm
->arch
.hv_guest_os_id
)
1759 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1760 kvm
->arch
.hv_hypercall
= data
;
1763 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1764 addr
= gfn_to_hva(kvm
, gfn
);
1765 if (kvm_is_error_hva(addr
))
1767 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1768 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1769 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1771 kvm
->arch
.hv_hypercall
= data
;
1775 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1776 "data 0x%llx\n", msr
, data
);
1782 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1785 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1788 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1789 vcpu
->arch
.hv_vapic
= data
;
1792 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1793 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1794 if (kvm_is_error_hva(addr
))
1796 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1798 vcpu
->arch
.hv_vapic
= data
;
1801 case HV_X64_MSR_EOI
:
1802 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1803 case HV_X64_MSR_ICR
:
1804 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1805 case HV_X64_MSR_TPR
:
1806 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1808 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1809 "data 0x%llx\n", msr
, data
);
1816 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1818 gpa_t gpa
= data
& ~0x3f;
1820 /* Bits 2:5 are reserved, Should be zero */
1824 vcpu
->arch
.apf
.msr_val
= data
;
1826 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1827 kvm_clear_async_pf_completion_queue(vcpu
);
1828 kvm_async_pf_hash_reset(vcpu
);
1832 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
))
1835 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1836 kvm_async_pf_wakeup_all(vcpu
);
1840 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1842 if (vcpu
->arch
.time_page
) {
1843 kvm_release_page_dirty(vcpu
->arch
.time_page
);
1844 vcpu
->arch
.time_page
= NULL
;
1848 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
1852 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1855 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
1856 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1857 vcpu
->arch
.st
.accum_steal
= delta
;
1860 static void record_steal_time(struct kvm_vcpu
*vcpu
)
1862 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1865 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1866 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
1869 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
1870 vcpu
->arch
.st
.steal
.version
+= 2;
1871 vcpu
->arch
.st
.accum_steal
= 0;
1873 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1874 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
1877 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
1880 u32 msr
= msr_info
->index
;
1881 u64 data
= msr_info
->data
;
1885 return set_efer(vcpu
, data
);
1887 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1888 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1889 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
1891 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1896 case MSR_FAM10H_MMIO_CONF_BASE
:
1898 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1903 case MSR_AMD64_NB_CFG
:
1905 case MSR_IA32_DEBUGCTLMSR
:
1907 /* We support the non-activated case already */
1909 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
1910 /* Values other than LBR and BTF are vendor-specific,
1911 thus reserved and should throw a #GP */
1914 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1917 case MSR_IA32_UCODE_REV
:
1918 case MSR_IA32_UCODE_WRITE
:
1919 case MSR_VM_HSAVE_PA
:
1920 case MSR_AMD64_PATCH_LOADER
:
1922 case 0x200 ... 0x2ff:
1923 return set_msr_mtrr(vcpu
, msr
, data
);
1924 case MSR_IA32_APICBASE
:
1925 kvm_set_apic_base(vcpu
, data
);
1927 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1928 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
1929 case MSR_IA32_TSCDEADLINE
:
1930 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
1932 case MSR_IA32_TSC_ADJUST
:
1933 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
1934 if (!msr_info
->host_initiated
) {
1935 u64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
1936 kvm_x86_ops
->adjust_tsc_offset(vcpu
, adj
, true);
1938 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
1941 case MSR_IA32_MISC_ENABLE
:
1942 vcpu
->arch
.ia32_misc_enable_msr
= data
;
1944 case MSR_KVM_WALL_CLOCK_NEW
:
1945 case MSR_KVM_WALL_CLOCK
:
1946 vcpu
->kvm
->arch
.wall_clock
= data
;
1947 kvm_write_wall_clock(vcpu
->kvm
, data
);
1949 case MSR_KVM_SYSTEM_TIME_NEW
:
1950 case MSR_KVM_SYSTEM_TIME
: {
1951 kvmclock_reset(vcpu
);
1953 vcpu
->arch
.time
= data
;
1954 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1956 /* we verify if the enable bit is set... */
1960 /* ...but clean it before doing the actual write */
1961 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
1963 vcpu
->arch
.time_page
=
1964 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
1966 if (is_error_page(vcpu
->arch
.time_page
))
1967 vcpu
->arch
.time_page
= NULL
;
1971 case MSR_KVM_ASYNC_PF_EN
:
1972 if (kvm_pv_enable_async_pf(vcpu
, data
))
1975 case MSR_KVM_STEAL_TIME
:
1977 if (unlikely(!sched_info_on()))
1980 if (data
& KVM_STEAL_RESERVED_MASK
)
1983 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1984 data
& KVM_STEAL_VALID_BITS
))
1987 vcpu
->arch
.st
.msr_val
= data
;
1989 if (!(data
& KVM_MSR_ENABLED
))
1992 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1995 accumulate_steal_time(vcpu
);
1998 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2001 case MSR_KVM_PV_EOI_EN
:
2002 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2006 case MSR_IA32_MCG_CTL
:
2007 case MSR_IA32_MCG_STATUS
:
2008 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
2009 return set_msr_mce(vcpu
, msr
, data
);
2011 /* Performance counters are not protected by a CPUID bit,
2012 * so we should check all of them in the generic path for the sake of
2013 * cross vendor migration.
2014 * Writing a zero into the event select MSRs disables them,
2015 * which we perfectly emulate ;-). Any other value should be at least
2016 * reported, some guests depend on them.
2018 case MSR_K7_EVNTSEL0
:
2019 case MSR_K7_EVNTSEL1
:
2020 case MSR_K7_EVNTSEL2
:
2021 case MSR_K7_EVNTSEL3
:
2023 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2024 "0x%x data 0x%llx\n", msr
, data
);
2026 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2027 * so we ignore writes to make it happy.
2029 case MSR_K7_PERFCTR0
:
2030 case MSR_K7_PERFCTR1
:
2031 case MSR_K7_PERFCTR2
:
2032 case MSR_K7_PERFCTR3
:
2033 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2034 "0x%x data 0x%llx\n", msr
, data
);
2036 case MSR_P6_PERFCTR0
:
2037 case MSR_P6_PERFCTR1
:
2039 case MSR_P6_EVNTSEL0
:
2040 case MSR_P6_EVNTSEL1
:
2041 if (kvm_pmu_msr(vcpu
, msr
))
2042 return kvm_pmu_set_msr(vcpu
, msr
, data
);
2044 if (pr
|| data
!= 0)
2045 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2046 "0x%x data 0x%llx\n", msr
, data
);
2048 case MSR_K7_CLK_CTL
:
2050 * Ignore all writes to this no longer documented MSR.
2051 * Writes are only relevant for old K7 processors,
2052 * all pre-dating SVM, but a recommended workaround from
2053 * AMD for these chips. It is possible to specify the
2054 * affected processor models on the command line, hence
2055 * the need to ignore the workaround.
2058 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2059 if (kvm_hv_msr_partition_wide(msr
)) {
2061 mutex_lock(&vcpu
->kvm
->lock
);
2062 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
2063 mutex_unlock(&vcpu
->kvm
->lock
);
2066 return set_msr_hyperv(vcpu
, msr
, data
);
2068 case MSR_IA32_BBL_CR_CTL3
:
2069 /* Drop writes to this legacy MSR -- see rdmsr
2070 * counterpart for further detail.
2072 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
2074 case MSR_AMD64_OSVW_ID_LENGTH
:
2075 if (!guest_cpuid_has_osvw(vcpu
))
2077 vcpu
->arch
.osvw
.length
= data
;
2079 case MSR_AMD64_OSVW_STATUS
:
2080 if (!guest_cpuid_has_osvw(vcpu
))
2082 vcpu
->arch
.osvw
.status
= data
;
2085 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2086 return xen_hvm_config(vcpu
, data
);
2087 if (kvm_pmu_msr(vcpu
, msr
))
2088 return kvm_pmu_set_msr(vcpu
, msr
, data
);
2090 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
2094 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
2101 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2105 * Reads an msr value (of 'msr_index') into 'pdata'.
2106 * Returns 0 on success, non-0 otherwise.
2107 * Assumes vcpu_load() was already called.
2109 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2111 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
2114 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2116 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
2118 if (!msr_mtrr_valid(msr
))
2121 if (msr
== MSR_MTRRdefType
)
2122 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
2123 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
2124 else if (msr
== MSR_MTRRfix64K_00000
)
2126 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
2127 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
2128 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
2129 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
2130 else if (msr
== MSR_IA32_CR_PAT
)
2131 *pdata
= vcpu
->arch
.pat
;
2132 else { /* Variable MTRRs */
2133 int idx
, is_mtrr_mask
;
2136 idx
= (msr
- 0x200) / 2;
2137 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
2140 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
2143 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
2150 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2153 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2154 unsigned bank_num
= mcg_cap
& 0xff;
2157 case MSR_IA32_P5_MC_ADDR
:
2158 case MSR_IA32_P5_MC_TYPE
:
2161 case MSR_IA32_MCG_CAP
:
2162 data
= vcpu
->arch
.mcg_cap
;
2164 case MSR_IA32_MCG_CTL
:
2165 if (!(mcg_cap
& MCG_CTL_P
))
2167 data
= vcpu
->arch
.mcg_ctl
;
2169 case MSR_IA32_MCG_STATUS
:
2170 data
= vcpu
->arch
.mcg_status
;
2173 if (msr
>= MSR_IA32_MC0_CTL
&&
2174 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
2175 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2176 data
= vcpu
->arch
.mce_banks
[offset
];
2185 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2188 struct kvm
*kvm
= vcpu
->kvm
;
2191 case HV_X64_MSR_GUEST_OS_ID
:
2192 data
= kvm
->arch
.hv_guest_os_id
;
2194 case HV_X64_MSR_HYPERCALL
:
2195 data
= kvm
->arch
.hv_hypercall
;
2198 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2206 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2211 case HV_X64_MSR_VP_INDEX
: {
2214 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
2219 case HV_X64_MSR_EOI
:
2220 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
2221 case HV_X64_MSR_ICR
:
2222 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
2223 case HV_X64_MSR_TPR
:
2224 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
2225 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2226 data
= vcpu
->arch
.hv_vapic
;
2229 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2236 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2241 case MSR_IA32_PLATFORM_ID
:
2242 case MSR_IA32_EBL_CR_POWERON
:
2243 case MSR_IA32_DEBUGCTLMSR
:
2244 case MSR_IA32_LASTBRANCHFROMIP
:
2245 case MSR_IA32_LASTBRANCHTOIP
:
2246 case MSR_IA32_LASTINTFROMIP
:
2247 case MSR_IA32_LASTINTTOIP
:
2250 case MSR_VM_HSAVE_PA
:
2251 case MSR_K7_EVNTSEL0
:
2252 case MSR_K7_PERFCTR0
:
2253 case MSR_K8_INT_PENDING_MSG
:
2254 case MSR_AMD64_NB_CFG
:
2255 case MSR_FAM10H_MMIO_CONF_BASE
:
2258 case MSR_P6_PERFCTR0
:
2259 case MSR_P6_PERFCTR1
:
2260 case MSR_P6_EVNTSEL0
:
2261 case MSR_P6_EVNTSEL1
:
2262 if (kvm_pmu_msr(vcpu
, msr
))
2263 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2266 case MSR_IA32_UCODE_REV
:
2267 data
= 0x100000000ULL
;
2270 data
= 0x500 | KVM_NR_VAR_MTRR
;
2272 case 0x200 ... 0x2ff:
2273 return get_msr_mtrr(vcpu
, msr
, pdata
);
2274 case 0xcd: /* fsb frequency */
2278 * MSR_EBC_FREQUENCY_ID
2279 * Conservative value valid for even the basic CPU models.
2280 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2281 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2282 * and 266MHz for model 3, or 4. Set Core Clock
2283 * Frequency to System Bus Frequency Ratio to 1 (bits
2284 * 31:24) even though these are only valid for CPU
2285 * models > 2, however guests may end up dividing or
2286 * multiplying by zero otherwise.
2288 case MSR_EBC_FREQUENCY_ID
:
2291 case MSR_IA32_APICBASE
:
2292 data
= kvm_get_apic_base(vcpu
);
2294 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2295 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
2297 case MSR_IA32_TSCDEADLINE
:
2298 data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2300 case MSR_IA32_TSC_ADJUST
:
2301 data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2303 case MSR_IA32_MISC_ENABLE
:
2304 data
= vcpu
->arch
.ia32_misc_enable_msr
;
2306 case MSR_IA32_PERF_STATUS
:
2307 /* TSC increment by tick */
2309 /* CPU multiplier */
2310 data
|= (((uint64_t)4ULL) << 40);
2313 data
= vcpu
->arch
.efer
;
2315 case MSR_KVM_WALL_CLOCK
:
2316 case MSR_KVM_WALL_CLOCK_NEW
:
2317 data
= vcpu
->kvm
->arch
.wall_clock
;
2319 case MSR_KVM_SYSTEM_TIME
:
2320 case MSR_KVM_SYSTEM_TIME_NEW
:
2321 data
= vcpu
->arch
.time
;
2323 case MSR_KVM_ASYNC_PF_EN
:
2324 data
= vcpu
->arch
.apf
.msr_val
;
2326 case MSR_KVM_STEAL_TIME
:
2327 data
= vcpu
->arch
.st
.msr_val
;
2329 case MSR_KVM_PV_EOI_EN
:
2330 data
= vcpu
->arch
.pv_eoi
.msr_val
;
2332 case MSR_IA32_P5_MC_ADDR
:
2333 case MSR_IA32_P5_MC_TYPE
:
2334 case MSR_IA32_MCG_CAP
:
2335 case MSR_IA32_MCG_CTL
:
2336 case MSR_IA32_MCG_STATUS
:
2337 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
2338 return get_msr_mce(vcpu
, msr
, pdata
);
2339 case MSR_K7_CLK_CTL
:
2341 * Provide expected ramp-up count for K7. All other
2342 * are set to zero, indicating minimum divisors for
2345 * This prevents guest kernels on AMD host with CPU
2346 * type 6, model 8 and higher from exploding due to
2347 * the rdmsr failing.
2351 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2352 if (kvm_hv_msr_partition_wide(msr
)) {
2354 mutex_lock(&vcpu
->kvm
->lock
);
2355 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
2356 mutex_unlock(&vcpu
->kvm
->lock
);
2359 return get_msr_hyperv(vcpu
, msr
, pdata
);
2361 case MSR_IA32_BBL_CR_CTL3
:
2362 /* This legacy MSR exists but isn't fully documented in current
2363 * silicon. It is however accessed by winxp in very narrow
2364 * scenarios where it sets bit #19, itself documented as
2365 * a "reserved" bit. Best effort attempt to source coherent
2366 * read data here should the balance of the register be
2367 * interpreted by the guest:
2369 * L2 cache control register 3: 64GB range, 256KB size,
2370 * enabled, latency 0x1, configured
2374 case MSR_AMD64_OSVW_ID_LENGTH
:
2375 if (!guest_cpuid_has_osvw(vcpu
))
2377 data
= vcpu
->arch
.osvw
.length
;
2379 case MSR_AMD64_OSVW_STATUS
:
2380 if (!guest_cpuid_has_osvw(vcpu
))
2382 data
= vcpu
->arch
.osvw
.status
;
2385 if (kvm_pmu_msr(vcpu
, msr
))
2386 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2388 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
2391 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
2399 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2402 * Read or write a bunch of msrs. All parameters are kernel addresses.
2404 * @return number of msrs set successfully.
2406 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2407 struct kvm_msr_entry
*entries
,
2408 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2409 unsigned index
, u64
*data
))
2413 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2414 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2415 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2417 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2423 * Read or write a bunch of msrs. Parameters are user addresses.
2425 * @return number of msrs set successfully.
2427 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2428 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2429 unsigned index
, u64
*data
),
2432 struct kvm_msrs msrs
;
2433 struct kvm_msr_entry
*entries
;
2438 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2442 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2445 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2446 entries
= memdup_user(user_msrs
->entries
, size
);
2447 if (IS_ERR(entries
)) {
2448 r
= PTR_ERR(entries
);
2452 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2457 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2468 int kvm_dev_ioctl_check_extension(long ext
)
2473 case KVM_CAP_IRQCHIP
:
2475 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2476 case KVM_CAP_SET_TSS_ADDR
:
2477 case KVM_CAP_EXT_CPUID
:
2478 case KVM_CAP_CLOCKSOURCE
:
2480 case KVM_CAP_NOP_IO_DELAY
:
2481 case KVM_CAP_MP_STATE
:
2482 case KVM_CAP_SYNC_MMU
:
2483 case KVM_CAP_USER_NMI
:
2484 case KVM_CAP_REINJECT_CONTROL
:
2485 case KVM_CAP_IRQ_INJECT_STATUS
:
2486 case KVM_CAP_ASSIGN_DEV_IRQ
:
2488 case KVM_CAP_IOEVENTFD
:
2490 case KVM_CAP_PIT_STATE2
:
2491 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2492 case KVM_CAP_XEN_HVM
:
2493 case KVM_CAP_ADJUST_CLOCK
:
2494 case KVM_CAP_VCPU_EVENTS
:
2495 case KVM_CAP_HYPERV
:
2496 case KVM_CAP_HYPERV_VAPIC
:
2497 case KVM_CAP_HYPERV_SPIN
:
2498 case KVM_CAP_PCI_SEGMENT
:
2499 case KVM_CAP_DEBUGREGS
:
2500 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2502 case KVM_CAP_ASYNC_PF
:
2503 case KVM_CAP_GET_TSC_KHZ
:
2504 case KVM_CAP_PCI_2_3
:
2505 case KVM_CAP_KVMCLOCK_CTRL
:
2506 case KVM_CAP_READONLY_MEM
:
2507 case KVM_CAP_IRQFD_RESAMPLE
:
2510 case KVM_CAP_COALESCED_MMIO
:
2511 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2514 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2516 case KVM_CAP_NR_VCPUS
:
2517 r
= KVM_SOFT_MAX_VCPUS
;
2519 case KVM_CAP_MAX_VCPUS
:
2522 case KVM_CAP_NR_MEMSLOTS
:
2523 r
= KVM_MEMORY_SLOTS
;
2525 case KVM_CAP_PV_MMU
: /* obsolete */
2529 r
= iommu_present(&pci_bus_type
);
2532 r
= KVM_MAX_MCE_BANKS
;
2537 case KVM_CAP_TSC_CONTROL
:
2538 r
= kvm_has_tsc_control
;
2540 case KVM_CAP_TSC_DEADLINE_TIMER
:
2541 r
= boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER
);
2551 long kvm_arch_dev_ioctl(struct file
*filp
,
2552 unsigned int ioctl
, unsigned long arg
)
2554 void __user
*argp
= (void __user
*)arg
;
2558 case KVM_GET_MSR_INDEX_LIST
: {
2559 struct kvm_msr_list __user
*user_msr_list
= argp
;
2560 struct kvm_msr_list msr_list
;
2564 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2567 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2568 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2571 if (n
< msr_list
.nmsrs
)
2574 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2575 num_msrs_to_save
* sizeof(u32
)))
2577 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2579 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2584 case KVM_GET_SUPPORTED_CPUID
: {
2585 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2586 struct kvm_cpuid2 cpuid
;
2589 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2591 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2592 cpuid_arg
->entries
);
2597 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2602 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2605 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2607 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2619 static void wbinvd_ipi(void *garbage
)
2624 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2626 return vcpu
->kvm
->arch
.iommu_domain
&&
2627 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2630 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2632 /* Address WBINVD may be executed by guest */
2633 if (need_emulate_wbinvd(vcpu
)) {
2634 if (kvm_x86_ops
->has_wbinvd_exit())
2635 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2636 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2637 smp_call_function_single(vcpu
->cpu
,
2638 wbinvd_ipi
, NULL
, 1);
2641 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2643 /* Apply any externally detected TSC adjustments (due to suspend) */
2644 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2645 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2646 vcpu
->arch
.tsc_offset_adjustment
= 0;
2647 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
2650 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2651 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2652 native_read_tsc() - vcpu
->arch
.last_host_tsc
;
2654 mark_tsc_unstable("KVM discovered backwards TSC");
2655 if (check_tsc_unstable()) {
2656 u64 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
,
2657 vcpu
->arch
.last_guest_tsc
);
2658 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2659 vcpu
->arch
.tsc_catchup
= 1;
2662 * On a host with synchronized TSC, there is no need to update
2663 * kvmclock on vcpu->cpu migration
2665 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2666 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2667 if (vcpu
->cpu
!= cpu
)
2668 kvm_migrate_timers(vcpu
);
2672 accumulate_steal_time(vcpu
);
2673 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2676 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2678 kvm_x86_ops
->vcpu_put(vcpu
);
2679 kvm_put_guest_fpu(vcpu
);
2680 vcpu
->arch
.last_host_tsc
= native_read_tsc();
2683 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2684 struct kvm_lapic_state
*s
)
2686 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2691 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2692 struct kvm_lapic_state
*s
)
2694 kvm_apic_post_state_restore(vcpu
, s
);
2695 update_cr8_intercept(vcpu
);
2700 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2701 struct kvm_interrupt
*irq
)
2703 if (irq
->irq
< 0 || irq
->irq
>= KVM_NR_INTERRUPTS
)
2705 if (irqchip_in_kernel(vcpu
->kvm
))
2708 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2709 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2714 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2716 kvm_inject_nmi(vcpu
);
2721 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2722 struct kvm_tpr_access_ctl
*tac
)
2726 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2730 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2734 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2737 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2739 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2742 vcpu
->arch
.mcg_cap
= mcg_cap
;
2743 /* Init IA32_MCG_CTL to all 1s */
2744 if (mcg_cap
& MCG_CTL_P
)
2745 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2746 /* Init IA32_MCi_CTL to all 1s */
2747 for (bank
= 0; bank
< bank_num
; bank
++)
2748 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2753 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2754 struct kvm_x86_mce
*mce
)
2756 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2757 unsigned bank_num
= mcg_cap
& 0xff;
2758 u64
*banks
= vcpu
->arch
.mce_banks
;
2760 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2763 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2764 * reporting is disabled
2766 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2767 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2769 banks
+= 4 * mce
->bank
;
2771 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2772 * reporting is disabled for the bank
2774 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2776 if (mce
->status
& MCI_STATUS_UC
) {
2777 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2778 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2779 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2782 if (banks
[1] & MCI_STATUS_VAL
)
2783 mce
->status
|= MCI_STATUS_OVER
;
2784 banks
[2] = mce
->addr
;
2785 banks
[3] = mce
->misc
;
2786 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2787 banks
[1] = mce
->status
;
2788 kvm_queue_exception(vcpu
, MC_VECTOR
);
2789 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2790 || !(banks
[1] & MCI_STATUS_UC
)) {
2791 if (banks
[1] & MCI_STATUS_VAL
)
2792 mce
->status
|= MCI_STATUS_OVER
;
2793 banks
[2] = mce
->addr
;
2794 banks
[3] = mce
->misc
;
2795 banks
[1] = mce
->status
;
2797 banks
[1] |= MCI_STATUS_OVER
;
2801 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2802 struct kvm_vcpu_events
*events
)
2805 events
->exception
.injected
=
2806 vcpu
->arch
.exception
.pending
&&
2807 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2808 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2809 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2810 events
->exception
.pad
= 0;
2811 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2813 events
->interrupt
.injected
=
2814 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2815 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2816 events
->interrupt
.soft
= 0;
2817 events
->interrupt
.shadow
=
2818 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2819 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2821 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2822 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2823 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2824 events
->nmi
.pad
= 0;
2826 events
->sipi_vector
= vcpu
->arch
.sipi_vector
;
2828 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2829 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2830 | KVM_VCPUEVENT_VALID_SHADOW
);
2831 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2834 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2835 struct kvm_vcpu_events
*events
)
2837 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2838 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2839 | KVM_VCPUEVENT_VALID_SHADOW
))
2843 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2844 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2845 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2846 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2848 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2849 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2850 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2851 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2852 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2853 events
->interrupt
.shadow
);
2855 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2856 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2857 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2858 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2860 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
)
2861 vcpu
->arch
.sipi_vector
= events
->sipi_vector
;
2863 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2868 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2869 struct kvm_debugregs
*dbgregs
)
2871 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2872 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2873 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2875 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
2878 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2879 struct kvm_debugregs
*dbgregs
)
2884 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2885 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2886 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2891 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2892 struct kvm_xsave
*guest_xsave
)
2895 memcpy(guest_xsave
->region
,
2896 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2899 memcpy(guest_xsave
->region
,
2900 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2901 sizeof(struct i387_fxsave_struct
));
2902 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
2907 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
2908 struct kvm_xsave
*guest_xsave
)
2911 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
2914 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
2915 guest_xsave
->region
, xstate_size
);
2917 if (xstate_bv
& ~XSTATE_FPSSE
)
2919 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
2920 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
2925 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
2926 struct kvm_xcrs
*guest_xcrs
)
2928 if (!cpu_has_xsave
) {
2929 guest_xcrs
->nr_xcrs
= 0;
2933 guest_xcrs
->nr_xcrs
= 1;
2934 guest_xcrs
->flags
= 0;
2935 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
2936 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
2939 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
2940 struct kvm_xcrs
*guest_xcrs
)
2947 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
2950 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
2951 /* Only support XCR0 currently */
2952 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
2953 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
2954 guest_xcrs
->xcrs
[0].value
);
2963 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2964 * stopped by the hypervisor. This function will be called from the host only.
2965 * EINVAL is returned when the host attempts to set the flag for a guest that
2966 * does not support pv clocks.
2968 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
2970 if (!vcpu
->arch
.time_page
)
2972 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
2973 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2977 long kvm_arch_vcpu_ioctl(struct file
*filp
,
2978 unsigned int ioctl
, unsigned long arg
)
2980 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2981 void __user
*argp
= (void __user
*)arg
;
2984 struct kvm_lapic_state
*lapic
;
2985 struct kvm_xsave
*xsave
;
2986 struct kvm_xcrs
*xcrs
;
2992 case KVM_GET_LAPIC
: {
2994 if (!vcpu
->arch
.apic
)
2996 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3001 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3005 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3010 case KVM_SET_LAPIC
: {
3012 if (!vcpu
->arch
.apic
)
3014 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3015 if (IS_ERR(u
.lapic
))
3016 return PTR_ERR(u
.lapic
);
3018 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3021 case KVM_INTERRUPT
: {
3022 struct kvm_interrupt irq
;
3025 if (copy_from_user(&irq
, argp
, sizeof irq
))
3027 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3031 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3034 case KVM_SET_CPUID
: {
3035 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3036 struct kvm_cpuid cpuid
;
3039 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3041 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3044 case KVM_SET_CPUID2
: {
3045 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3046 struct kvm_cpuid2 cpuid
;
3049 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3051 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3052 cpuid_arg
->entries
);
3055 case KVM_GET_CPUID2
: {
3056 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3057 struct kvm_cpuid2 cpuid
;
3060 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3062 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3063 cpuid_arg
->entries
);
3067 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3073 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
3076 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3078 case KVM_TPR_ACCESS_REPORTING
: {
3079 struct kvm_tpr_access_ctl tac
;
3082 if (copy_from_user(&tac
, argp
, sizeof tac
))
3084 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3088 if (copy_to_user(argp
, &tac
, sizeof tac
))
3093 case KVM_SET_VAPIC_ADDR
: {
3094 struct kvm_vapic_addr va
;
3097 if (!irqchip_in_kernel(vcpu
->kvm
))
3100 if (copy_from_user(&va
, argp
, sizeof va
))
3103 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3106 case KVM_X86_SETUP_MCE
: {
3110 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3112 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3115 case KVM_X86_SET_MCE
: {
3116 struct kvm_x86_mce mce
;
3119 if (copy_from_user(&mce
, argp
, sizeof mce
))
3121 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3124 case KVM_GET_VCPU_EVENTS
: {
3125 struct kvm_vcpu_events events
;
3127 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3130 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3135 case KVM_SET_VCPU_EVENTS
: {
3136 struct kvm_vcpu_events events
;
3139 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3142 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3145 case KVM_GET_DEBUGREGS
: {
3146 struct kvm_debugregs dbgregs
;
3148 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3151 if (copy_to_user(argp
, &dbgregs
,
3152 sizeof(struct kvm_debugregs
)))
3157 case KVM_SET_DEBUGREGS
: {
3158 struct kvm_debugregs dbgregs
;
3161 if (copy_from_user(&dbgregs
, argp
,
3162 sizeof(struct kvm_debugregs
)))
3165 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3168 case KVM_GET_XSAVE
: {
3169 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3174 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3177 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3182 case KVM_SET_XSAVE
: {
3183 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3184 if (IS_ERR(u
.xsave
))
3185 return PTR_ERR(u
.xsave
);
3187 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3190 case KVM_GET_XCRS
: {
3191 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3196 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3199 if (copy_to_user(argp
, u
.xcrs
,
3200 sizeof(struct kvm_xcrs
)))
3205 case KVM_SET_XCRS
: {
3206 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3208 return PTR_ERR(u
.xcrs
);
3210 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3213 case KVM_SET_TSC_KHZ
: {
3217 user_tsc_khz
= (u32
)arg
;
3219 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3222 if (user_tsc_khz
== 0)
3223 user_tsc_khz
= tsc_khz
;
3225 kvm_set_tsc_khz(vcpu
, user_tsc_khz
);
3230 case KVM_GET_TSC_KHZ
: {
3231 r
= vcpu
->arch
.virtual_tsc_khz
;
3234 case KVM_KVMCLOCK_CTRL
: {
3235 r
= kvm_set_guest_paused(vcpu
);
3246 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3248 return VM_FAULT_SIGBUS
;
3251 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3255 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3257 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3261 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3264 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3268 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3269 u32 kvm_nr_mmu_pages
)
3271 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3274 mutex_lock(&kvm
->slots_lock
);
3275 spin_lock(&kvm
->mmu_lock
);
3277 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3278 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3280 spin_unlock(&kvm
->mmu_lock
);
3281 mutex_unlock(&kvm
->slots_lock
);
3285 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3287 return kvm
->arch
.n_max_mmu_pages
;
3290 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3295 switch (chip
->chip_id
) {
3296 case KVM_IRQCHIP_PIC_MASTER
:
3297 memcpy(&chip
->chip
.pic
,
3298 &pic_irqchip(kvm
)->pics
[0],
3299 sizeof(struct kvm_pic_state
));
3301 case KVM_IRQCHIP_PIC_SLAVE
:
3302 memcpy(&chip
->chip
.pic
,
3303 &pic_irqchip(kvm
)->pics
[1],
3304 sizeof(struct kvm_pic_state
));
3306 case KVM_IRQCHIP_IOAPIC
:
3307 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3316 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3321 switch (chip
->chip_id
) {
3322 case KVM_IRQCHIP_PIC_MASTER
:
3323 spin_lock(&pic_irqchip(kvm
)->lock
);
3324 memcpy(&pic_irqchip(kvm
)->pics
[0],
3326 sizeof(struct kvm_pic_state
));
3327 spin_unlock(&pic_irqchip(kvm
)->lock
);
3329 case KVM_IRQCHIP_PIC_SLAVE
:
3330 spin_lock(&pic_irqchip(kvm
)->lock
);
3331 memcpy(&pic_irqchip(kvm
)->pics
[1],
3333 sizeof(struct kvm_pic_state
));
3334 spin_unlock(&pic_irqchip(kvm
)->lock
);
3336 case KVM_IRQCHIP_IOAPIC
:
3337 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3343 kvm_pic_update_irq(pic_irqchip(kvm
));
3347 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3351 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3352 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3353 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3357 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3361 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3362 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3363 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3364 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3368 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3372 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3373 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3374 sizeof(ps
->channels
));
3375 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3376 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3377 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3381 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3383 int r
= 0, start
= 0;
3384 u32 prev_legacy
, cur_legacy
;
3385 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3386 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3387 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3388 if (!prev_legacy
&& cur_legacy
)
3390 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3391 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3392 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3393 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3394 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3398 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3399 struct kvm_reinject_control
*control
)
3401 if (!kvm
->arch
.vpit
)
3403 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3404 kvm
->arch
.vpit
->pit_state
.reinject
= control
->pit_reinject
;
3405 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3410 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3411 * @kvm: kvm instance
3412 * @log: slot id and address to which we copy the log
3414 * We need to keep it in mind that VCPU threads can write to the bitmap
3415 * concurrently. So, to avoid losing data, we keep the following order for
3418 * 1. Take a snapshot of the bit and clear it if needed.
3419 * 2. Write protect the corresponding page.
3420 * 3. Flush TLB's if needed.
3421 * 4. Copy the snapshot to the userspace.
3423 * Between 2 and 3, the guest may write to the page using the remaining TLB
3424 * entry. This is not a problem because the page will be reported dirty at
3425 * step 4 using the snapshot taken before and step 3 ensures that successive
3426 * writes will be logged for the next call.
3428 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3431 struct kvm_memory_slot
*memslot
;
3433 unsigned long *dirty_bitmap
;
3434 unsigned long *dirty_bitmap_buffer
;
3435 bool is_dirty
= false;
3437 mutex_lock(&kvm
->slots_lock
);
3440 if (log
->slot
>= KVM_MEMORY_SLOTS
)
3443 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
3445 dirty_bitmap
= memslot
->dirty_bitmap
;
3450 n
= kvm_dirty_bitmap_bytes(memslot
);
3452 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
3453 memset(dirty_bitmap_buffer
, 0, n
);
3455 spin_lock(&kvm
->mmu_lock
);
3457 for (i
= 0; i
< n
/ sizeof(long); i
++) {
3461 if (!dirty_bitmap
[i
])
3466 mask
= xchg(&dirty_bitmap
[i
], 0);
3467 dirty_bitmap_buffer
[i
] = mask
;
3469 offset
= i
* BITS_PER_LONG
;
3470 kvm_mmu_write_protect_pt_masked(kvm
, memslot
, offset
, mask
);
3473 kvm_flush_remote_tlbs(kvm
);
3475 spin_unlock(&kvm
->mmu_lock
);
3478 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
3483 mutex_unlock(&kvm
->slots_lock
);
3487 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
)
3489 if (!irqchip_in_kernel(kvm
))
3492 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3493 irq_event
->irq
, irq_event
->level
);
3497 long kvm_arch_vm_ioctl(struct file
*filp
,
3498 unsigned int ioctl
, unsigned long arg
)
3500 struct kvm
*kvm
= filp
->private_data
;
3501 void __user
*argp
= (void __user
*)arg
;
3504 * This union makes it completely explicit to gcc-3.x
3505 * that these two variables' stack usage should be
3506 * combined, not added together.
3509 struct kvm_pit_state ps
;
3510 struct kvm_pit_state2 ps2
;
3511 struct kvm_pit_config pit_config
;
3515 case KVM_SET_TSS_ADDR
:
3516 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3518 case KVM_SET_IDENTITY_MAP_ADDR
: {
3522 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3524 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3527 case KVM_SET_NR_MMU_PAGES
:
3528 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3530 case KVM_GET_NR_MMU_PAGES
:
3531 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3533 case KVM_CREATE_IRQCHIP
: {
3534 struct kvm_pic
*vpic
;
3536 mutex_lock(&kvm
->lock
);
3539 goto create_irqchip_unlock
;
3541 if (atomic_read(&kvm
->online_vcpus
))
3542 goto create_irqchip_unlock
;
3544 vpic
= kvm_create_pic(kvm
);
3546 r
= kvm_ioapic_init(kvm
);
3548 mutex_lock(&kvm
->slots_lock
);
3549 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3551 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3553 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3555 mutex_unlock(&kvm
->slots_lock
);
3557 goto create_irqchip_unlock
;
3560 goto create_irqchip_unlock
;
3562 kvm
->arch
.vpic
= vpic
;
3564 r
= kvm_setup_default_irq_routing(kvm
);
3566 mutex_lock(&kvm
->slots_lock
);
3567 mutex_lock(&kvm
->irq_lock
);
3568 kvm_ioapic_destroy(kvm
);
3569 kvm_destroy_pic(kvm
);
3570 mutex_unlock(&kvm
->irq_lock
);
3571 mutex_unlock(&kvm
->slots_lock
);
3573 create_irqchip_unlock
:
3574 mutex_unlock(&kvm
->lock
);
3577 case KVM_CREATE_PIT
:
3578 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3580 case KVM_CREATE_PIT2
:
3582 if (copy_from_user(&u
.pit_config
, argp
,
3583 sizeof(struct kvm_pit_config
)))
3586 mutex_lock(&kvm
->slots_lock
);
3589 goto create_pit_unlock
;
3591 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3595 mutex_unlock(&kvm
->slots_lock
);
3597 case KVM_GET_IRQCHIP
: {
3598 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3599 struct kvm_irqchip
*chip
;
3601 chip
= memdup_user(argp
, sizeof(*chip
));
3608 if (!irqchip_in_kernel(kvm
))
3609 goto get_irqchip_out
;
3610 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3612 goto get_irqchip_out
;
3614 if (copy_to_user(argp
, chip
, sizeof *chip
))
3615 goto get_irqchip_out
;
3621 case KVM_SET_IRQCHIP
: {
3622 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3623 struct kvm_irqchip
*chip
;
3625 chip
= memdup_user(argp
, sizeof(*chip
));
3632 if (!irqchip_in_kernel(kvm
))
3633 goto set_irqchip_out
;
3634 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3636 goto set_irqchip_out
;
3644 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3647 if (!kvm
->arch
.vpit
)
3649 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3653 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3660 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3663 if (!kvm
->arch
.vpit
)
3665 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3668 case KVM_GET_PIT2
: {
3670 if (!kvm
->arch
.vpit
)
3672 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3676 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3681 case KVM_SET_PIT2
: {
3683 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3686 if (!kvm
->arch
.vpit
)
3688 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3691 case KVM_REINJECT_CONTROL
: {
3692 struct kvm_reinject_control control
;
3694 if (copy_from_user(&control
, argp
, sizeof(control
)))
3696 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3699 case KVM_XEN_HVM_CONFIG
: {
3701 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3702 sizeof(struct kvm_xen_hvm_config
)))
3705 if (kvm
->arch
.xen_hvm_config
.flags
)
3710 case KVM_SET_CLOCK
: {
3711 struct kvm_clock_data user_ns
;
3716 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3724 local_irq_disable();
3725 now_ns
= get_kernel_ns();
3726 delta
= user_ns
.clock
- now_ns
;
3728 kvm
->arch
.kvmclock_offset
= delta
;
3731 case KVM_GET_CLOCK
: {
3732 struct kvm_clock_data user_ns
;
3735 local_irq_disable();
3736 now_ns
= get_kernel_ns();
3737 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3740 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3743 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3756 static void kvm_init_msr_list(void)
3761 /* skip the first msrs in the list. KVM-specific */
3762 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3763 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3766 msrs_to_save
[j
] = msrs_to_save
[i
];
3769 num_msrs_to_save
= j
;
3772 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3780 if (!(vcpu
->arch
.apic
&&
3781 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3782 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3793 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3800 if (!(vcpu
->arch
.apic
&&
3801 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3802 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3804 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
3814 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3815 struct kvm_segment
*var
, int seg
)
3817 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3820 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3821 struct kvm_segment
*var
, int seg
)
3823 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3826 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3829 struct x86_exception exception
;
3831 BUG_ON(!mmu_is_nested(vcpu
));
3833 /* NPT walks are always user-walks */
3834 access
|= PFERR_USER_MASK
;
3835 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
3840 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
3841 struct x86_exception
*exception
)
3843 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3844 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3847 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
3848 struct x86_exception
*exception
)
3850 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3851 access
|= PFERR_FETCH_MASK
;
3852 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3855 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
3856 struct x86_exception
*exception
)
3858 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3859 access
|= PFERR_WRITE_MASK
;
3860 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3863 /* uses this to access any guest's mapped memory without checking CPL */
3864 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
3865 struct x86_exception
*exception
)
3867 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
3870 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3871 struct kvm_vcpu
*vcpu
, u32 access
,
3872 struct x86_exception
*exception
)
3875 int r
= X86EMUL_CONTINUE
;
3878 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
3880 unsigned offset
= addr
& (PAGE_SIZE
-1);
3881 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3884 if (gpa
== UNMAPPED_GVA
)
3885 return X86EMUL_PROPAGATE_FAULT
;
3886 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3888 r
= X86EMUL_IO_NEEDED
;
3900 /* used for instruction fetching */
3901 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3902 gva_t addr
, void *val
, unsigned int bytes
,
3903 struct x86_exception
*exception
)
3905 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3906 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3908 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
3909 access
| PFERR_FETCH_MASK
,
3913 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3914 gva_t addr
, void *val
, unsigned int bytes
,
3915 struct x86_exception
*exception
)
3917 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3918 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3920 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
3923 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
3925 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3926 gva_t addr
, void *val
, unsigned int bytes
,
3927 struct x86_exception
*exception
)
3929 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3930 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
3933 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3934 gva_t addr
, void *val
,
3936 struct x86_exception
*exception
)
3938 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3940 int r
= X86EMUL_CONTINUE
;
3943 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
3946 unsigned offset
= addr
& (PAGE_SIZE
-1);
3947 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3950 if (gpa
== UNMAPPED_GVA
)
3951 return X86EMUL_PROPAGATE_FAULT
;
3952 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
3954 r
= X86EMUL_IO_NEEDED
;
3965 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
3967 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
3968 gpa_t
*gpa
, struct x86_exception
*exception
,
3971 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
3972 | (write
? PFERR_WRITE_MASK
: 0);
3974 if (vcpu_match_mmio_gva(vcpu
, gva
)
3975 && !permission_fault(vcpu
->arch
.walk_mmu
, vcpu
->arch
.access
, access
)) {
3976 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
3977 (gva
& (PAGE_SIZE
- 1));
3978 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
3982 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3984 if (*gpa
== UNMAPPED_GVA
)
3987 /* For APIC access vmexit */
3988 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3991 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
3992 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
3999 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4000 const void *val
, int bytes
)
4004 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4007 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
4011 struct read_write_emulator_ops
{
4012 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4014 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4015 void *val
, int bytes
);
4016 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4017 int bytes
, void *val
);
4018 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4019 void *val
, int bytes
);
4023 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4025 if (vcpu
->mmio_read_completed
) {
4026 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4027 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4028 vcpu
->mmio_read_completed
= 0;
4035 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4036 void *val
, int bytes
)
4038 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4041 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4042 void *val
, int bytes
)
4044 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4047 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4049 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4050 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4053 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4054 void *val
, int bytes
)
4056 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4057 return X86EMUL_IO_NEEDED
;
4060 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4061 void *val
, int bytes
)
4063 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4065 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4066 return X86EMUL_CONTINUE
;
4069 static const struct read_write_emulator_ops read_emultor
= {
4070 .read_write_prepare
= read_prepare
,
4071 .read_write_emulate
= read_emulate
,
4072 .read_write_mmio
= vcpu_mmio_read
,
4073 .read_write_exit_mmio
= read_exit_mmio
,
4076 static const struct read_write_emulator_ops write_emultor
= {
4077 .read_write_emulate
= write_emulate
,
4078 .read_write_mmio
= write_mmio
,
4079 .read_write_exit_mmio
= write_exit_mmio
,
4083 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4085 struct x86_exception
*exception
,
4086 struct kvm_vcpu
*vcpu
,
4087 const struct read_write_emulator_ops
*ops
)
4091 bool write
= ops
->write
;
4092 struct kvm_mmio_fragment
*frag
;
4094 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4097 return X86EMUL_PROPAGATE_FAULT
;
4099 /* For APIC access vmexit */
4103 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4104 return X86EMUL_CONTINUE
;
4108 * Is this MMIO handled locally?
4110 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4111 if (handled
== bytes
)
4112 return X86EMUL_CONTINUE
;
4118 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4119 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4123 return X86EMUL_CONTINUE
;
4126 int emulator_read_write(struct x86_emulate_ctxt
*ctxt
, unsigned long addr
,
4127 void *val
, unsigned int bytes
,
4128 struct x86_exception
*exception
,
4129 const struct read_write_emulator_ops
*ops
)
4131 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4135 if (ops
->read_write_prepare
&&
4136 ops
->read_write_prepare(vcpu
, val
, bytes
))
4137 return X86EMUL_CONTINUE
;
4139 vcpu
->mmio_nr_fragments
= 0;
4141 /* Crossing a page boundary? */
4142 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4145 now
= -addr
& ~PAGE_MASK
;
4146 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4149 if (rc
!= X86EMUL_CONTINUE
)
4156 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4158 if (rc
!= X86EMUL_CONTINUE
)
4161 if (!vcpu
->mmio_nr_fragments
)
4164 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4166 vcpu
->mmio_needed
= 1;
4167 vcpu
->mmio_cur_fragment
= 0;
4169 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4170 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4171 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4172 vcpu
->run
->mmio
.phys_addr
= gpa
;
4174 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4177 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4181 struct x86_exception
*exception
)
4183 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4184 exception
, &read_emultor
);
4187 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4191 struct x86_exception
*exception
)
4193 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4194 exception
, &write_emultor
);
4197 #define CMPXCHG_TYPE(t, ptr, old, new) \
4198 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4200 #ifdef CONFIG_X86_64
4201 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4203 # define CMPXCHG64(ptr, old, new) \
4204 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4207 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4212 struct x86_exception
*exception
)
4214 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4220 /* guests cmpxchg8b have to be emulated atomically */
4221 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4224 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4226 if (gpa
== UNMAPPED_GVA
||
4227 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4230 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4233 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4234 if (is_error_page(page
))
4237 kaddr
= kmap_atomic(page
);
4238 kaddr
+= offset_in_page(gpa
);
4241 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4244 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4247 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4250 exchanged
= CMPXCHG64(kaddr
, old
, new);
4255 kunmap_atomic(kaddr
);
4256 kvm_release_page_dirty(page
);
4259 return X86EMUL_CMPXCHG_FAILED
;
4261 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
4263 return X86EMUL_CONTINUE
;
4266 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4268 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4271 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4273 /* TODO: String I/O for in kernel device */
4276 if (vcpu
->arch
.pio
.in
)
4277 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4278 vcpu
->arch
.pio
.size
, pd
);
4280 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
4281 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4286 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4287 unsigned short port
, void *val
,
4288 unsigned int count
, bool in
)
4290 trace_kvm_pio(!in
, port
, size
, count
);
4292 vcpu
->arch
.pio
.port
= port
;
4293 vcpu
->arch
.pio
.in
= in
;
4294 vcpu
->arch
.pio
.count
= count
;
4295 vcpu
->arch
.pio
.size
= size
;
4297 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4298 vcpu
->arch
.pio
.count
= 0;
4302 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4303 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4304 vcpu
->run
->io
.size
= size
;
4305 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4306 vcpu
->run
->io
.count
= count
;
4307 vcpu
->run
->io
.port
= port
;
4312 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4313 int size
, unsigned short port
, void *val
,
4316 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4319 if (vcpu
->arch
.pio
.count
)
4322 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4325 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4326 vcpu
->arch
.pio
.count
= 0;
4333 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4334 int size
, unsigned short port
,
4335 const void *val
, unsigned int count
)
4337 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4339 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4340 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4343 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4345 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4348 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4350 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4353 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4355 if (!need_emulate_wbinvd(vcpu
))
4356 return X86EMUL_CONTINUE
;
4358 if (kvm_x86_ops
->has_wbinvd_exit()) {
4359 int cpu
= get_cpu();
4361 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4362 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4363 wbinvd_ipi
, NULL
, 1);
4365 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4368 return X86EMUL_CONTINUE
;
4370 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4372 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4374 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
4377 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
4379 return _kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4382 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
4385 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4388 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4390 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4393 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4395 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4396 unsigned long value
;
4400 value
= kvm_read_cr0(vcpu
);
4403 value
= vcpu
->arch
.cr2
;
4406 value
= kvm_read_cr3(vcpu
);
4409 value
= kvm_read_cr4(vcpu
);
4412 value
= kvm_get_cr8(vcpu
);
4415 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4422 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4424 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4429 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4432 vcpu
->arch
.cr2
= val
;
4435 res
= kvm_set_cr3(vcpu
, val
);
4438 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4441 res
= kvm_set_cr8(vcpu
, val
);
4444 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4451 static void emulator_set_rflags(struct x86_emulate_ctxt
*ctxt
, ulong val
)
4453 kvm_set_rflags(emul_to_vcpu(ctxt
), val
);
4456 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4458 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4461 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4463 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4466 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4468 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4471 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4473 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4476 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4478 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4481 static unsigned long emulator_get_cached_segment_base(
4482 struct x86_emulate_ctxt
*ctxt
, int seg
)
4484 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4487 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4488 struct desc_struct
*desc
, u32
*base3
,
4491 struct kvm_segment var
;
4493 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4494 *selector
= var
.selector
;
4501 set_desc_limit(desc
, var
.limit
);
4502 set_desc_base(desc
, (unsigned long)var
.base
);
4503 #ifdef CONFIG_X86_64
4505 *base3
= var
.base
>> 32;
4507 desc
->type
= var
.type
;
4509 desc
->dpl
= var
.dpl
;
4510 desc
->p
= var
.present
;
4511 desc
->avl
= var
.avl
;
4519 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4520 struct desc_struct
*desc
, u32 base3
,
4523 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4524 struct kvm_segment var
;
4526 var
.selector
= selector
;
4527 var
.base
= get_desc_base(desc
);
4528 #ifdef CONFIG_X86_64
4529 var
.base
|= ((u64
)base3
) << 32;
4531 var
.limit
= get_desc_limit(desc
);
4533 var
.limit
= (var
.limit
<< 12) | 0xfff;
4534 var
.type
= desc
->type
;
4535 var
.present
= desc
->p
;
4536 var
.dpl
= desc
->dpl
;
4541 var
.avl
= desc
->avl
;
4542 var
.present
= desc
->p
;
4543 var
.unusable
= !var
.present
;
4546 kvm_set_segment(vcpu
, &var
, seg
);
4550 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4551 u32 msr_index
, u64
*pdata
)
4553 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4556 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4557 u32 msr_index
, u64 data
)
4559 struct msr_data msr
;
4562 msr
.index
= msr_index
;
4563 msr
.host_initiated
= false;
4564 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
4567 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4568 u32 pmc
, u64
*pdata
)
4570 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4573 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4575 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4578 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4581 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4583 * CR0.TS may reference the host fpu state, not the guest fpu state,
4584 * so it may be clear at this point.
4589 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4594 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4595 struct x86_instruction_info
*info
,
4596 enum x86_intercept_stage stage
)
4598 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4601 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
4602 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
4604 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
4607 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
4609 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
4612 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
4614 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
4617 static const struct x86_emulate_ops emulate_ops
= {
4618 .read_gpr
= emulator_read_gpr
,
4619 .write_gpr
= emulator_write_gpr
,
4620 .read_std
= kvm_read_guest_virt_system
,
4621 .write_std
= kvm_write_guest_virt_system
,
4622 .fetch
= kvm_fetch_guest_virt
,
4623 .read_emulated
= emulator_read_emulated
,
4624 .write_emulated
= emulator_write_emulated
,
4625 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4626 .invlpg
= emulator_invlpg
,
4627 .pio_in_emulated
= emulator_pio_in_emulated
,
4628 .pio_out_emulated
= emulator_pio_out_emulated
,
4629 .get_segment
= emulator_get_segment
,
4630 .set_segment
= emulator_set_segment
,
4631 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4632 .get_gdt
= emulator_get_gdt
,
4633 .get_idt
= emulator_get_idt
,
4634 .set_gdt
= emulator_set_gdt
,
4635 .set_idt
= emulator_set_idt
,
4636 .get_cr
= emulator_get_cr
,
4637 .set_cr
= emulator_set_cr
,
4638 .set_rflags
= emulator_set_rflags
,
4639 .cpl
= emulator_get_cpl
,
4640 .get_dr
= emulator_get_dr
,
4641 .set_dr
= emulator_set_dr
,
4642 .set_msr
= emulator_set_msr
,
4643 .get_msr
= emulator_get_msr
,
4644 .read_pmc
= emulator_read_pmc
,
4645 .halt
= emulator_halt
,
4646 .wbinvd
= emulator_wbinvd
,
4647 .fix_hypercall
= emulator_fix_hypercall
,
4648 .get_fpu
= emulator_get_fpu
,
4649 .put_fpu
= emulator_put_fpu
,
4650 .intercept
= emulator_intercept
,
4651 .get_cpuid
= emulator_get_cpuid
,
4654 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4656 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4658 * an sti; sti; sequence only disable interrupts for the first
4659 * instruction. So, if the last instruction, be it emulated or
4660 * not, left the system with the INT_STI flag enabled, it
4661 * means that the last instruction is an sti. We should not
4662 * leave the flag on in this case. The same goes for mov ss
4664 if (!(int_shadow
& mask
))
4665 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4668 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4670 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4671 if (ctxt
->exception
.vector
== PF_VECTOR
)
4672 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4673 else if (ctxt
->exception
.error_code_valid
)
4674 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4675 ctxt
->exception
.error_code
);
4677 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4680 static void init_decode_cache(struct x86_emulate_ctxt
*ctxt
)
4682 memset(&ctxt
->twobyte
, 0,
4683 (void *)&ctxt
->_regs
- (void *)&ctxt
->twobyte
);
4685 ctxt
->fetch
.start
= 0;
4686 ctxt
->fetch
.end
= 0;
4687 ctxt
->io_read
.pos
= 0;
4688 ctxt
->io_read
.end
= 0;
4689 ctxt
->mem_read
.pos
= 0;
4690 ctxt
->mem_read
.end
= 0;
4693 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4695 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4698 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4700 ctxt
->eflags
= kvm_get_rflags(vcpu
);
4701 ctxt
->eip
= kvm_rip_read(vcpu
);
4702 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4703 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
4704 cs_l
? X86EMUL_MODE_PROT64
:
4705 cs_db
? X86EMUL_MODE_PROT32
:
4706 X86EMUL_MODE_PROT16
;
4707 ctxt
->guest_mode
= is_guest_mode(vcpu
);
4709 init_decode_cache(ctxt
);
4710 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4713 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
4715 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4718 init_emulate_ctxt(vcpu
);
4722 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
4723 ret
= emulate_int_real(ctxt
, irq
);
4725 if (ret
!= X86EMUL_CONTINUE
)
4726 return EMULATE_FAIL
;
4728 ctxt
->eip
= ctxt
->_eip
;
4729 kvm_rip_write(vcpu
, ctxt
->eip
);
4730 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4732 if (irq
== NMI_VECTOR
)
4733 vcpu
->arch
.nmi_pending
= 0;
4735 vcpu
->arch
.interrupt
.pending
= false;
4737 return EMULATE_DONE
;
4739 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4741 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4743 int r
= EMULATE_DONE
;
4745 ++vcpu
->stat
.insn_emulation_fail
;
4746 trace_kvm_emulate_insn_failed(vcpu
);
4747 if (!is_guest_mode(vcpu
)) {
4748 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4749 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4750 vcpu
->run
->internal
.ndata
= 0;
4753 kvm_queue_exception(vcpu
, UD_VECTOR
);
4758 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t gva
)
4767 * if emulation was due to access to shadowed page table
4768 * and it failed try to unshadow page and re-enter the
4769 * guest to let CPU execute the instruction.
4771 if (kvm_mmu_unprotect_page_virt(vcpu
, gva
))
4774 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, gva
, NULL
);
4776 if (gpa
== UNMAPPED_GVA
)
4777 return true; /* let cpu generate fault */
4780 * Do not retry the unhandleable instruction if it faults on the
4781 * readonly host memory, otherwise it will goto a infinite loop:
4782 * retry instruction -> write #PF -> emulation fail -> retry
4783 * instruction -> ...
4785 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
4786 if (!is_error_noslot_pfn(pfn
)) {
4787 kvm_release_pfn_clean(pfn
);
4794 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
4795 unsigned long cr2
, int emulation_type
)
4797 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4798 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
4800 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
4801 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
4804 * If the emulation is caused by #PF and it is non-page_table
4805 * writing instruction, it means the VM-EXIT is caused by shadow
4806 * page protected, we can zap the shadow page and retry this
4807 * instruction directly.
4809 * Note: if the guest uses a non-page-table modifying instruction
4810 * on the PDE that points to the instruction, then we will unmap
4811 * the instruction and go to an infinite loop. So, we cache the
4812 * last retried eip and the last fault address, if we meet the eip
4813 * and the address again, we can break out of the potential infinite
4816 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
4818 if (!(emulation_type
& EMULTYPE_RETRY
))
4821 if (x86_page_table_writing_insn(ctxt
))
4824 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
4827 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
4828 vcpu
->arch
.last_retry_addr
= cr2
;
4830 if (!vcpu
->arch
.mmu
.direct_map
)
4831 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
4833 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4838 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
4839 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
4841 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
4848 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4849 bool writeback
= true;
4851 kvm_clear_exception_queue(vcpu
);
4853 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
4854 init_emulate_ctxt(vcpu
);
4855 ctxt
->interruptibility
= 0;
4856 ctxt
->have_exception
= false;
4857 ctxt
->perm_ok
= false;
4859 ctxt
->only_vendor_specific_insn
4860 = emulation_type
& EMULTYPE_TRAP_UD
;
4862 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
4864 trace_kvm_emulate_insn_start(vcpu
);
4865 ++vcpu
->stat
.insn_emulation
;
4866 if (r
!= EMULATION_OK
) {
4867 if (emulation_type
& EMULTYPE_TRAP_UD
)
4868 return EMULATE_FAIL
;
4869 if (reexecute_instruction(vcpu
, cr2
))
4870 return EMULATE_DONE
;
4871 if (emulation_type
& EMULTYPE_SKIP
)
4872 return EMULATE_FAIL
;
4873 return handle_emulation_failure(vcpu
);
4877 if (emulation_type
& EMULTYPE_SKIP
) {
4878 kvm_rip_write(vcpu
, ctxt
->_eip
);
4879 return EMULATE_DONE
;
4882 if (retry_instruction(ctxt
, cr2
, emulation_type
))
4883 return EMULATE_DONE
;
4885 /* this is needed for vmware backdoor interface to work since it
4886 changes registers values during IO operation */
4887 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
4888 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4889 emulator_invalidate_register_cache(ctxt
);
4893 r
= x86_emulate_insn(ctxt
);
4895 if (r
== EMULATION_INTERCEPTED
)
4896 return EMULATE_DONE
;
4898 if (r
== EMULATION_FAILED
) {
4899 if (reexecute_instruction(vcpu
, cr2
))
4900 return EMULATE_DONE
;
4902 return handle_emulation_failure(vcpu
);
4905 if (ctxt
->have_exception
) {
4906 inject_emulated_exception(vcpu
);
4908 } else if (vcpu
->arch
.pio
.count
) {
4909 if (!vcpu
->arch
.pio
.in
)
4910 vcpu
->arch
.pio
.count
= 0;
4913 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
4915 r
= EMULATE_DO_MMIO
;
4916 } else if (vcpu
->mmio_needed
) {
4917 if (!vcpu
->mmio_is_write
)
4919 r
= EMULATE_DO_MMIO
;
4920 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
4921 } else if (r
== EMULATION_RESTART
)
4927 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
4928 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4929 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4930 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
4931 kvm_rip_write(vcpu
, ctxt
->eip
);
4933 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
4937 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
4939 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
4941 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4942 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
4943 size
, port
, &val
, 1);
4944 /* do not return to emulator after return from userspace */
4945 vcpu
->arch
.pio
.count
= 0;
4948 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
4950 static void tsc_bad(void *info
)
4952 __this_cpu_write(cpu_tsc_khz
, 0);
4955 static void tsc_khz_changed(void *data
)
4957 struct cpufreq_freqs
*freq
= data
;
4958 unsigned long khz
= 0;
4962 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4963 khz
= cpufreq_quick_get(raw_smp_processor_id());
4966 __this_cpu_write(cpu_tsc_khz
, khz
);
4969 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
4972 struct cpufreq_freqs
*freq
= data
;
4974 struct kvm_vcpu
*vcpu
;
4975 int i
, send_ipi
= 0;
4978 * We allow guests to temporarily run on slowing clocks,
4979 * provided we notify them after, or to run on accelerating
4980 * clocks, provided we notify them before. Thus time never
4983 * However, we have a problem. We can't atomically update
4984 * the frequency of a given CPU from this function; it is
4985 * merely a notifier, which can be called from any CPU.
4986 * Changing the TSC frequency at arbitrary points in time
4987 * requires a recomputation of local variables related to
4988 * the TSC for each VCPU. We must flag these local variables
4989 * to be updated and be sure the update takes place with the
4990 * new frequency before any guests proceed.
4992 * Unfortunately, the combination of hotplug CPU and frequency
4993 * change creates an intractable locking scenario; the order
4994 * of when these callouts happen is undefined with respect to
4995 * CPU hotplug, and they can race with each other. As such,
4996 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4997 * undefined; you can actually have a CPU frequency change take
4998 * place in between the computation of X and the setting of the
4999 * variable. To protect against this problem, all updates of
5000 * the per_cpu tsc_khz variable are done in an interrupt
5001 * protected IPI, and all callers wishing to update the value
5002 * must wait for a synchronous IPI to complete (which is trivial
5003 * if the caller is on the CPU already). This establishes the
5004 * necessary total order on variable updates.
5006 * Note that because a guest time update may take place
5007 * anytime after the setting of the VCPU's request bit, the
5008 * correct TSC value must be set before the request. However,
5009 * to ensure the update actually makes it to any guest which
5010 * starts running in hardware virtualization between the set
5011 * and the acquisition of the spinlock, we must also ping the
5012 * CPU after setting the request bit.
5016 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5018 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5021 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5023 raw_spin_lock(&kvm_lock
);
5024 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5025 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5026 if (vcpu
->cpu
!= freq
->cpu
)
5028 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5029 if (vcpu
->cpu
!= smp_processor_id())
5033 raw_spin_unlock(&kvm_lock
);
5035 if (freq
->old
< freq
->new && send_ipi
) {
5037 * We upscale the frequency. Must make the guest
5038 * doesn't see old kvmclock values while running with
5039 * the new frequency, otherwise we risk the guest sees
5040 * time go backwards.
5042 * In case we update the frequency for another cpu
5043 * (which might be in guest context) send an interrupt
5044 * to kick the cpu out of guest context. Next time
5045 * guest context is entered kvmclock will be updated,
5046 * so the guest will not see stale values.
5048 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5053 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5054 .notifier_call
= kvmclock_cpufreq_notifier
5057 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5058 unsigned long action
, void *hcpu
)
5060 unsigned int cpu
= (unsigned long)hcpu
;
5064 case CPU_DOWN_FAILED
:
5065 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5067 case CPU_DOWN_PREPARE
:
5068 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5074 static struct notifier_block kvmclock_cpu_notifier_block
= {
5075 .notifier_call
= kvmclock_cpu_notifier
,
5076 .priority
= -INT_MAX
5079 static void kvm_timer_init(void)
5083 max_tsc_khz
= tsc_khz
;
5084 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5085 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5086 #ifdef CONFIG_CPU_FREQ
5087 struct cpufreq_policy policy
;
5088 memset(&policy
, 0, sizeof(policy
));
5090 cpufreq_get_policy(&policy
, cpu
);
5091 if (policy
.cpuinfo
.max_freq
)
5092 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5095 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5096 CPUFREQ_TRANSITION_NOTIFIER
);
5098 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5099 for_each_online_cpu(cpu
)
5100 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5103 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5105 int kvm_is_in_guest(void)
5107 return __this_cpu_read(current_vcpu
) != NULL
;
5110 static int kvm_is_user_mode(void)
5114 if (__this_cpu_read(current_vcpu
))
5115 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5117 return user_mode
!= 0;
5120 static unsigned long kvm_get_guest_ip(void)
5122 unsigned long ip
= 0;
5124 if (__this_cpu_read(current_vcpu
))
5125 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5130 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5131 .is_in_guest
= kvm_is_in_guest
,
5132 .is_user_mode
= kvm_is_user_mode
,
5133 .get_guest_ip
= kvm_get_guest_ip
,
5136 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5138 __this_cpu_write(current_vcpu
, vcpu
);
5140 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5142 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5144 __this_cpu_write(current_vcpu
, NULL
);
5146 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5148 static void kvm_set_mmio_spte_mask(void)
5151 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5154 * Set the reserved bits and the present bit of an paging-structure
5155 * entry to generate page fault with PFER.RSV = 1.
5157 mask
= ((1ull << (62 - maxphyaddr
+ 1)) - 1) << maxphyaddr
;
5160 #ifdef CONFIG_X86_64
5162 * If reserved bit is not supported, clear the present bit to disable
5165 if (maxphyaddr
== 52)
5169 kvm_mmu_set_mmio_spte_mask(mask
);
5172 #ifdef CONFIG_X86_64
5173 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5177 struct kvm_vcpu
*vcpu
;
5180 raw_spin_lock(&kvm_lock
);
5181 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5182 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5183 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
, &vcpu
->requests
);
5184 atomic_set(&kvm_guest_has_master_clock
, 0);
5185 raw_spin_unlock(&kvm_lock
);
5188 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5191 * Notification about pvclock gtod data update.
5193 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5196 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5197 struct timekeeper
*tk
= priv
;
5199 update_pvclock_gtod(tk
);
5201 /* disable master clock if host does not trust, or does not
5202 * use, TSC clocksource
5204 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5205 atomic_read(&kvm_guest_has_master_clock
) != 0)
5206 queue_work(system_long_wq
, &pvclock_gtod_work
);
5211 static struct notifier_block pvclock_gtod_notifier
= {
5212 .notifier_call
= pvclock_gtod_notify
,
5216 int kvm_arch_init(void *opaque
)
5219 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
5222 printk(KERN_ERR
"kvm: already loaded the other module\n");
5227 if (!ops
->cpu_has_kvm_support()) {
5228 printk(KERN_ERR
"kvm: no hardware support\n");
5232 if (ops
->disabled_by_bios()) {
5233 printk(KERN_ERR
"kvm: disabled by bios\n");
5239 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5241 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5245 r
= kvm_mmu_module_init();
5247 goto out_free_percpu
;
5249 kvm_set_mmio_spte_mask();
5250 kvm_init_msr_list();
5253 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5254 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5258 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5261 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5264 #ifdef CONFIG_X86_64
5265 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5271 free_percpu(shared_msrs
);
5276 void kvm_arch_exit(void)
5278 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5280 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5281 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5282 CPUFREQ_TRANSITION_NOTIFIER
);
5283 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5284 #ifdef CONFIG_X86_64
5285 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
5288 kvm_mmu_module_exit();
5289 free_percpu(shared_msrs
);
5292 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5294 ++vcpu
->stat
.halt_exits
;
5295 if (irqchip_in_kernel(vcpu
->kvm
)) {
5296 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5299 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5303 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5305 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
5307 u64 param
, ingpa
, outgpa
, ret
;
5308 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
5309 bool fast
, longmode
;
5313 * hypercall generates UD from non zero cpl and real mode
5316 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
5317 kvm_queue_exception(vcpu
, UD_VECTOR
);
5321 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5322 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
5325 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
5326 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
5327 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
5328 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
5329 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
5330 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
5332 #ifdef CONFIG_X86_64
5334 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5335 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5336 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5340 code
= param
& 0xffff;
5341 fast
= (param
>> 16) & 0x1;
5342 rep_cnt
= (param
>> 32) & 0xfff;
5343 rep_idx
= (param
>> 48) & 0xfff;
5345 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
5348 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
5349 kvm_vcpu_on_spin(vcpu
);
5352 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5356 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5358 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5360 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5361 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5367 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5369 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5372 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5373 return kvm_hv_hypercall(vcpu
);
5375 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5376 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5377 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5378 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5379 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5381 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5383 if (!is_long_mode(vcpu
)) {
5391 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5397 case KVM_HC_VAPIC_POLL_IRQ
:
5405 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5406 ++vcpu
->stat
.hypercalls
;
5409 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5411 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5413 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5414 char instruction
[3];
5415 unsigned long rip
= kvm_rip_read(vcpu
);
5418 * Blow out the MMU to ensure that no other VCPU has an active mapping
5419 * to ensure that the updated hypercall appears atomically across all
5422 kvm_mmu_zap_all(vcpu
->kvm
);
5424 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
5426 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
5430 * Check if userspace requested an interrupt window, and that the
5431 * interrupt window is open.
5433 * No need to exit to userspace if we already have an interrupt queued.
5435 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5437 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
5438 vcpu
->run
->request_interrupt_window
&&
5439 kvm_arch_interrupt_allowed(vcpu
));
5442 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5444 struct kvm_run
*kvm_run
= vcpu
->run
;
5446 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5447 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5448 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5449 if (irqchip_in_kernel(vcpu
->kvm
))
5450 kvm_run
->ready_for_interrupt_injection
= 1;
5452 kvm_run
->ready_for_interrupt_injection
=
5453 kvm_arch_interrupt_allowed(vcpu
) &&
5454 !kvm_cpu_has_interrupt(vcpu
) &&
5455 !kvm_event_needs_reinjection(vcpu
);
5458 static int vapic_enter(struct kvm_vcpu
*vcpu
)
5460 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5463 if (!apic
|| !apic
->vapic_addr
)
5466 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5467 if (is_error_page(page
))
5470 vcpu
->arch
.apic
->vapic_page
= page
;
5474 static void vapic_exit(struct kvm_vcpu
*vcpu
)
5476 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5479 if (!apic
|| !apic
->vapic_addr
)
5482 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5483 kvm_release_page_dirty(apic
->vapic_page
);
5484 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5485 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5488 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5492 if (!kvm_x86_ops
->update_cr8_intercept
)
5495 if (!vcpu
->arch
.apic
)
5498 if (!vcpu
->arch
.apic
->vapic_addr
)
5499 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5506 tpr
= kvm_lapic_get_cr8(vcpu
);
5508 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5511 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5513 /* try to reinject previous events if any */
5514 if (vcpu
->arch
.exception
.pending
) {
5515 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5516 vcpu
->arch
.exception
.has_error_code
,
5517 vcpu
->arch
.exception
.error_code
);
5518 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5519 vcpu
->arch
.exception
.has_error_code
,
5520 vcpu
->arch
.exception
.error_code
,
5521 vcpu
->arch
.exception
.reinject
);
5525 if (vcpu
->arch
.nmi_injected
) {
5526 kvm_x86_ops
->set_nmi(vcpu
);
5530 if (vcpu
->arch
.interrupt
.pending
) {
5531 kvm_x86_ops
->set_irq(vcpu
);
5535 /* try to inject new event if pending */
5536 if (vcpu
->arch
.nmi_pending
) {
5537 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5538 --vcpu
->arch
.nmi_pending
;
5539 vcpu
->arch
.nmi_injected
= true;
5540 kvm_x86_ops
->set_nmi(vcpu
);
5542 } else if (kvm_cpu_has_interrupt(vcpu
)) {
5543 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5544 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5546 kvm_x86_ops
->set_irq(vcpu
);
5551 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
5553 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
5554 !vcpu
->guest_xcr0_loaded
) {
5555 /* kvm_set_xcr() also depends on this */
5556 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
5557 vcpu
->guest_xcr0_loaded
= 1;
5561 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
5563 if (vcpu
->guest_xcr0_loaded
) {
5564 if (vcpu
->arch
.xcr0
!= host_xcr0
)
5565 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
5566 vcpu
->guest_xcr0_loaded
= 0;
5570 static void process_nmi(struct kvm_vcpu
*vcpu
)
5575 * x86 is limited to one NMI running, and one NMI pending after it.
5576 * If an NMI is already in progress, limit further NMIs to just one.
5577 * Otherwise, allow two (and we'll inject the first one immediately).
5579 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
5582 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
5583 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
5584 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5587 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
5589 #ifdef CONFIG_X86_64
5591 struct kvm_vcpu
*vcpu
;
5592 struct kvm_arch
*ka
= &kvm
->arch
;
5594 spin_lock(&ka
->pvclock_gtod_sync_lock
);
5595 kvm_make_mclock_inprogress_request(kvm
);
5596 /* no guest entries from this point */
5597 pvclock_update_vm_gtod_copy(kvm
);
5599 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5600 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
5602 /* guest entries allowed */
5603 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5604 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
5606 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
5610 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5613 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5614 vcpu
->run
->request_interrupt_window
;
5615 bool req_immediate_exit
= 0;
5617 if (vcpu
->requests
) {
5618 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5619 kvm_mmu_unload(vcpu
);
5620 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5621 __kvm_migrate_timers(vcpu
);
5622 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
5623 kvm_gen_update_masterclock(vcpu
->kvm
);
5624 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5625 r
= kvm_guest_time_update(vcpu
);
5629 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5630 kvm_mmu_sync_roots(vcpu
);
5631 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5632 kvm_x86_ops
->tlb_flush(vcpu
);
5633 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5634 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5638 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5639 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5643 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5644 vcpu
->fpu_active
= 0;
5645 kvm_x86_ops
->fpu_deactivate(vcpu
);
5647 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5648 /* Page is swapped out. Do synthetic halt */
5649 vcpu
->arch
.apf
.halted
= true;
5653 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
5654 record_steal_time(vcpu
);
5655 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
5657 req_immediate_exit
=
5658 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT
, vcpu
);
5659 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
5660 kvm_handle_pmu_event(vcpu
);
5661 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
5662 kvm_deliver_pmi(vcpu
);
5665 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5666 inject_pending_event(vcpu
);
5668 /* enable NMI/IRQ window open exits if needed */
5669 if (vcpu
->arch
.nmi_pending
)
5670 kvm_x86_ops
->enable_nmi_window(vcpu
);
5671 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
5672 kvm_x86_ops
->enable_irq_window(vcpu
);
5674 if (kvm_lapic_enabled(vcpu
)) {
5675 update_cr8_intercept(vcpu
);
5676 kvm_lapic_sync_to_vapic(vcpu
);
5680 r
= kvm_mmu_reload(vcpu
);
5682 goto cancel_injection
;
5687 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5688 if (vcpu
->fpu_active
)
5689 kvm_load_guest_fpu(vcpu
);
5690 kvm_load_guest_xcr0(vcpu
);
5692 vcpu
->mode
= IN_GUEST_MODE
;
5694 /* We should set ->mode before check ->requests,
5695 * see the comment in make_all_cpus_request.
5699 local_irq_disable();
5701 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
5702 || need_resched() || signal_pending(current
)) {
5703 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5708 goto cancel_injection
;
5711 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5713 if (req_immediate_exit
)
5714 smp_send_reschedule(vcpu
->cpu
);
5718 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5720 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5721 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5722 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5723 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5726 trace_kvm_entry(vcpu
->vcpu_id
);
5727 kvm_x86_ops
->run(vcpu
);
5730 * If the guest has used debug registers, at least dr7
5731 * will be disabled while returning to the host.
5732 * If we don't have active breakpoints in the host, we don't
5733 * care about the messed up debug address registers. But if
5734 * we have some of them active, restore the old state.
5736 if (hw_breakpoint_active())
5737 hw_breakpoint_restore();
5739 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
,
5742 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5749 * We must have an instruction between local_irq_enable() and
5750 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5751 * the interrupt shadow. The stat.exits increment will do nicely.
5752 * But we need to prevent reordering, hence this barrier():
5760 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5763 * Profile KVM exit RIPs:
5765 if (unlikely(prof_on
== KVM_PROFILING
)) {
5766 unsigned long rip
= kvm_rip_read(vcpu
);
5767 profile_hit(KVM_PROFILING
, (void *)rip
);
5770 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
5771 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5773 if (vcpu
->arch
.apic_attention
)
5774 kvm_lapic_sync_from_vapic(vcpu
);
5776 r
= kvm_x86_ops
->handle_exit(vcpu
);
5780 kvm_x86_ops
->cancel_injection(vcpu
);
5781 if (unlikely(vcpu
->arch
.apic_attention
))
5782 kvm_lapic_sync_from_vapic(vcpu
);
5788 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
5791 struct kvm
*kvm
= vcpu
->kvm
;
5793 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
5794 pr_debug("vcpu %d received sipi with vector # %x\n",
5795 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
5796 kvm_lapic_reset(vcpu
);
5797 r
= kvm_vcpu_reset(vcpu
);
5800 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5803 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5804 r
= vapic_enter(vcpu
);
5806 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5812 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
5813 !vcpu
->arch
.apf
.halted
)
5814 r
= vcpu_enter_guest(vcpu
);
5816 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5817 kvm_vcpu_block(vcpu
);
5818 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5819 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
5821 switch(vcpu
->arch
.mp_state
) {
5822 case KVM_MP_STATE_HALTED
:
5823 vcpu
->arch
.mp_state
=
5824 KVM_MP_STATE_RUNNABLE
;
5825 case KVM_MP_STATE_RUNNABLE
:
5826 vcpu
->arch
.apf
.halted
= false;
5828 case KVM_MP_STATE_SIPI_RECEIVED
:
5839 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
5840 if (kvm_cpu_has_pending_timer(vcpu
))
5841 kvm_inject_pending_timer_irqs(vcpu
);
5843 if (dm_request_for_irq_injection(vcpu
)) {
5845 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5846 ++vcpu
->stat
.request_irq_exits
;
5849 kvm_check_async_pf_completion(vcpu
);
5851 if (signal_pending(current
)) {
5853 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5854 ++vcpu
->stat
.signal_exits
;
5856 if (need_resched()) {
5857 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5859 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5863 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5870 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
5873 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5874 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
5875 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5876 if (r
!= EMULATE_DONE
)
5881 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
5883 BUG_ON(!vcpu
->arch
.pio
.count
);
5885 return complete_emulated_io(vcpu
);
5889 * Implements the following, as a state machine:
5893 * for each mmio piece in the fragment
5901 * for each mmio piece in the fragment
5906 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
5908 struct kvm_run
*run
= vcpu
->run
;
5909 struct kvm_mmio_fragment
*frag
;
5912 BUG_ON(!vcpu
->mmio_needed
);
5914 /* Complete previous fragment */
5915 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
5916 len
= min(8u, frag
->len
);
5917 if (!vcpu
->mmio_is_write
)
5918 memcpy(frag
->data
, run
->mmio
.data
, len
);
5920 if (frag
->len
<= 8) {
5921 /* Switch to the next fragment. */
5923 vcpu
->mmio_cur_fragment
++;
5925 /* Go forward to the next mmio piece. */
5931 if (vcpu
->mmio_cur_fragment
== vcpu
->mmio_nr_fragments
) {
5932 vcpu
->mmio_needed
= 0;
5933 if (vcpu
->mmio_is_write
)
5935 vcpu
->mmio_read_completed
= 1;
5936 return complete_emulated_io(vcpu
);
5939 run
->exit_reason
= KVM_EXIT_MMIO
;
5940 run
->mmio
.phys_addr
= frag
->gpa
;
5941 if (vcpu
->mmio_is_write
)
5942 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
5943 run
->mmio
.len
= min(8u, frag
->len
);
5944 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
5945 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5950 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
5955 if (!tsk_used_math(current
) && init_fpu(current
))
5958 if (vcpu
->sigset_active
)
5959 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
5961 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
5962 kvm_vcpu_block(vcpu
);
5963 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
5968 /* re-sync apic's tpr */
5969 if (!irqchip_in_kernel(vcpu
->kvm
)) {
5970 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
5976 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
5977 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
5978 vcpu
->arch
.complete_userspace_io
= NULL
;
5983 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
5985 r
= __vcpu_run(vcpu
);
5988 post_kvm_run_save(vcpu
);
5989 if (vcpu
->sigset_active
)
5990 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
5995 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5997 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
5999 * We are here if userspace calls get_regs() in the middle of
6000 * instruction emulation. Registers state needs to be copied
6001 * back from emulation context to vcpu. Userspace shouldn't do
6002 * that usually, but some bad designed PV devices (vmware
6003 * backdoor interface) need this to work
6005 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
6006 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6008 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6009 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6010 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6011 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6012 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6013 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
6014 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6015 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
6016 #ifdef CONFIG_X86_64
6017 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
6018 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
6019 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
6020 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
6021 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
6022 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
6023 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
6024 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
6027 regs
->rip
= kvm_rip_read(vcpu
);
6028 regs
->rflags
= kvm_get_rflags(vcpu
);
6033 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6035 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6036 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6038 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
6039 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
6040 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
6041 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
6042 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
6043 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
6044 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
6045 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
6046 #ifdef CONFIG_X86_64
6047 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
6048 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
6049 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
6050 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
6051 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
6052 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
6053 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
6054 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
6057 kvm_rip_write(vcpu
, regs
->rip
);
6058 kvm_set_rflags(vcpu
, regs
->rflags
);
6060 vcpu
->arch
.exception
.pending
= false;
6062 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6067 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
6069 struct kvm_segment cs
;
6071 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6075 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
6077 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
6078 struct kvm_sregs
*sregs
)
6082 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6083 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6084 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6085 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6086 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6087 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6089 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6090 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6092 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6093 sregs
->idt
.limit
= dt
.size
;
6094 sregs
->idt
.base
= dt
.address
;
6095 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6096 sregs
->gdt
.limit
= dt
.size
;
6097 sregs
->gdt
.base
= dt
.address
;
6099 sregs
->cr0
= kvm_read_cr0(vcpu
);
6100 sregs
->cr2
= vcpu
->arch
.cr2
;
6101 sregs
->cr3
= kvm_read_cr3(vcpu
);
6102 sregs
->cr4
= kvm_read_cr4(vcpu
);
6103 sregs
->cr8
= kvm_get_cr8(vcpu
);
6104 sregs
->efer
= vcpu
->arch
.efer
;
6105 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
6107 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
6109 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
6110 set_bit(vcpu
->arch
.interrupt
.nr
,
6111 (unsigned long *)sregs
->interrupt_bitmap
);
6116 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
6117 struct kvm_mp_state
*mp_state
)
6119 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
6123 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
6124 struct kvm_mp_state
*mp_state
)
6126 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
6127 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6131 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
6132 int reason
, bool has_error_code
, u32 error_code
)
6134 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6137 init_emulate_ctxt(vcpu
);
6139 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
6140 has_error_code
, error_code
);
6143 return EMULATE_FAIL
;
6145 kvm_rip_write(vcpu
, ctxt
->eip
);
6146 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6147 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6148 return EMULATE_DONE
;
6150 EXPORT_SYMBOL_GPL(kvm_task_switch
);
6152 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
6153 struct kvm_sregs
*sregs
)
6155 int mmu_reset_needed
= 0;
6156 int pending_vec
, max_bits
, idx
;
6159 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
6162 dt
.size
= sregs
->idt
.limit
;
6163 dt
.address
= sregs
->idt
.base
;
6164 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6165 dt
.size
= sregs
->gdt
.limit
;
6166 dt
.address
= sregs
->gdt
.base
;
6167 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
6169 vcpu
->arch
.cr2
= sregs
->cr2
;
6170 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
6171 vcpu
->arch
.cr3
= sregs
->cr3
;
6172 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
6174 kvm_set_cr8(vcpu
, sregs
->cr8
);
6176 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
6177 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
6178 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
6180 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
6181 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
6182 vcpu
->arch
.cr0
= sregs
->cr0
;
6184 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
6185 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
6186 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
6187 kvm_update_cpuid(vcpu
);
6189 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6190 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
6191 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
6192 mmu_reset_needed
= 1;
6194 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6196 if (mmu_reset_needed
)
6197 kvm_mmu_reset_context(vcpu
);
6199 max_bits
= KVM_NR_INTERRUPTS
;
6200 pending_vec
= find_first_bit(
6201 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
6202 if (pending_vec
< max_bits
) {
6203 kvm_queue_interrupt(vcpu
, pending_vec
, false);
6204 pr_debug("Set back pending irq %d\n", pending_vec
);
6207 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6208 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6209 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6210 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6211 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6212 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6214 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6215 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6217 update_cr8_intercept(vcpu
);
6219 /* Older userspace won't unhalt the vcpu on reset. */
6220 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
6221 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
6223 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6225 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6230 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
6231 struct kvm_guest_debug
*dbg
)
6233 unsigned long rflags
;
6236 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
6238 if (vcpu
->arch
.exception
.pending
)
6240 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
6241 kvm_queue_exception(vcpu
, DB_VECTOR
);
6243 kvm_queue_exception(vcpu
, BP_VECTOR
);
6247 * Read rflags as long as potentially injected trace flags are still
6250 rflags
= kvm_get_rflags(vcpu
);
6252 vcpu
->guest_debug
= dbg
->control
;
6253 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
6254 vcpu
->guest_debug
= 0;
6256 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6257 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
6258 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
6259 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
6261 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6262 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6264 kvm_update_dr7(vcpu
);
6266 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6267 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
6268 get_segment_base(vcpu
, VCPU_SREG_CS
);
6271 * Trigger an rflags update that will inject or remove the trace
6274 kvm_set_rflags(vcpu
, rflags
);
6276 kvm_x86_ops
->update_db_bp_intercept(vcpu
);
6286 * Translate a guest virtual address to a guest physical address.
6288 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
6289 struct kvm_translation
*tr
)
6291 unsigned long vaddr
= tr
->linear_address
;
6295 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6296 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
6297 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6298 tr
->physical_address
= gpa
;
6299 tr
->valid
= gpa
!= UNMAPPED_GVA
;
6306 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6308 struct i387_fxsave_struct
*fxsave
=
6309 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6311 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
6312 fpu
->fcw
= fxsave
->cwd
;
6313 fpu
->fsw
= fxsave
->swd
;
6314 fpu
->ftwx
= fxsave
->twd
;
6315 fpu
->last_opcode
= fxsave
->fop
;
6316 fpu
->last_ip
= fxsave
->rip
;
6317 fpu
->last_dp
= fxsave
->rdp
;
6318 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
6323 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6325 struct i387_fxsave_struct
*fxsave
=
6326 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6328 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
6329 fxsave
->cwd
= fpu
->fcw
;
6330 fxsave
->swd
= fpu
->fsw
;
6331 fxsave
->twd
= fpu
->ftwx
;
6332 fxsave
->fop
= fpu
->last_opcode
;
6333 fxsave
->rip
= fpu
->last_ip
;
6334 fxsave
->rdp
= fpu
->last_dp
;
6335 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
6340 int fx_init(struct kvm_vcpu
*vcpu
)
6344 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
6348 fpu_finit(&vcpu
->arch
.guest_fpu
);
6351 * Ensure guest xcr0 is valid for loading
6353 vcpu
->arch
.xcr0
= XSTATE_FP
;
6355 vcpu
->arch
.cr0
|= X86_CR0_ET
;
6359 EXPORT_SYMBOL_GPL(fx_init
);
6361 static void fx_free(struct kvm_vcpu
*vcpu
)
6363 fpu_free(&vcpu
->arch
.guest_fpu
);
6366 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
6368 if (vcpu
->guest_fpu_loaded
)
6372 * Restore all possible states in the guest,
6373 * and assume host would use all available bits.
6374 * Guest xcr0 would be loaded later.
6376 kvm_put_guest_xcr0(vcpu
);
6377 vcpu
->guest_fpu_loaded
= 1;
6378 __kernel_fpu_begin();
6379 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
6383 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
6385 kvm_put_guest_xcr0(vcpu
);
6387 if (!vcpu
->guest_fpu_loaded
)
6390 vcpu
->guest_fpu_loaded
= 0;
6391 fpu_save_init(&vcpu
->arch
.guest_fpu
);
6393 ++vcpu
->stat
.fpu_reload
;
6394 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
6398 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
6400 kvmclock_reset(vcpu
);
6402 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
6404 kvm_x86_ops
->vcpu_free(vcpu
);
6407 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
6410 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
6411 printk_once(KERN_WARNING
6412 "kvm: SMP vm created on host with unstable TSC; "
6413 "guest TSC will not be reliable\n");
6414 return kvm_x86_ops
->vcpu_create(kvm
, id
);
6417 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
6421 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
6422 r
= vcpu_load(vcpu
);
6425 r
= kvm_vcpu_reset(vcpu
);
6427 r
= kvm_mmu_setup(vcpu
);
6433 int kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
6436 struct msr_data msr
;
6438 r
= vcpu_load(vcpu
);
6442 msr
.index
= MSR_IA32_TSC
;
6443 msr
.host_initiated
= true;
6444 kvm_write_tsc(vcpu
, &msr
);
6450 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
6453 vcpu
->arch
.apf
.msr_val
= 0;
6455 r
= vcpu_load(vcpu
);
6457 kvm_mmu_unload(vcpu
);
6461 kvm_x86_ops
->vcpu_free(vcpu
);
6464 static int kvm_vcpu_reset(struct kvm_vcpu
*vcpu
)
6466 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
6467 vcpu
->arch
.nmi_pending
= 0;
6468 vcpu
->arch
.nmi_injected
= false;
6470 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
6471 vcpu
->arch
.dr6
= DR6_FIXED_1
;
6472 vcpu
->arch
.dr7
= DR7_FIXED_1
;
6473 kvm_update_dr7(vcpu
);
6475 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6476 vcpu
->arch
.apf
.msr_val
= 0;
6477 vcpu
->arch
.st
.msr_val
= 0;
6479 kvmclock_reset(vcpu
);
6481 kvm_clear_async_pf_completion_queue(vcpu
);
6482 kvm_async_pf_hash_reset(vcpu
);
6483 vcpu
->arch
.apf
.halted
= false;
6485 kvm_pmu_reset(vcpu
);
6487 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
6488 vcpu
->arch
.regs_avail
= ~0;
6489 vcpu
->arch
.regs_dirty
= ~0;
6491 return kvm_x86_ops
->vcpu_reset(vcpu
);
6494 int kvm_arch_hardware_enable(void *garbage
)
6497 struct kvm_vcpu
*vcpu
;
6502 bool stable
, backwards_tsc
= false;
6504 kvm_shared_msr_cpu_online();
6505 ret
= kvm_x86_ops
->hardware_enable(garbage
);
6509 local_tsc
= native_read_tsc();
6510 stable
= !check_tsc_unstable();
6511 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6512 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6513 if (!stable
&& vcpu
->cpu
== smp_processor_id())
6514 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
6515 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
6516 backwards_tsc
= true;
6517 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
6518 max_tsc
= vcpu
->arch
.last_host_tsc
;
6524 * Sometimes, even reliable TSCs go backwards. This happens on
6525 * platforms that reset TSC during suspend or hibernate actions, but
6526 * maintain synchronization. We must compensate. Fortunately, we can
6527 * detect that condition here, which happens early in CPU bringup,
6528 * before any KVM threads can be running. Unfortunately, we can't
6529 * bring the TSCs fully up to date with real time, as we aren't yet far
6530 * enough into CPU bringup that we know how much real time has actually
6531 * elapsed; our helper function, get_kernel_ns() will be using boot
6532 * variables that haven't been updated yet.
6534 * So we simply find the maximum observed TSC above, then record the
6535 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6536 * the adjustment will be applied. Note that we accumulate
6537 * adjustments, in case multiple suspend cycles happen before some VCPU
6538 * gets a chance to run again. In the event that no KVM threads get a
6539 * chance to run, we will miss the entire elapsed period, as we'll have
6540 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6541 * loose cycle time. This isn't too big a deal, since the loss will be
6542 * uniform across all VCPUs (not to mention the scenario is extremely
6543 * unlikely). It is possible that a second hibernate recovery happens
6544 * much faster than a first, causing the observed TSC here to be
6545 * smaller; this would require additional padding adjustment, which is
6546 * why we set last_host_tsc to the local tsc observed here.
6548 * N.B. - this code below runs only on platforms with reliable TSC,
6549 * as that is the only way backwards_tsc is set above. Also note
6550 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6551 * have the same delta_cyc adjustment applied if backwards_tsc
6552 * is detected. Note further, this adjustment is only done once,
6553 * as we reset last_host_tsc on all VCPUs to stop this from being
6554 * called multiple times (one for each physical CPU bringup).
6556 * Platforms with unreliable TSCs don't have to deal with this, they
6557 * will be compensated by the logic in vcpu_load, which sets the TSC to
6558 * catchup mode. This will catchup all VCPUs to real time, but cannot
6559 * guarantee that they stay in perfect synchronization.
6561 if (backwards_tsc
) {
6562 u64 delta_cyc
= max_tsc
- local_tsc
;
6563 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6564 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6565 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
6566 vcpu
->arch
.last_host_tsc
= local_tsc
;
6567 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
6572 * We have to disable TSC offset matching.. if you were
6573 * booting a VM while issuing an S4 host suspend....
6574 * you may have some problem. Solving this issue is
6575 * left as an exercise to the reader.
6577 kvm
->arch
.last_tsc_nsec
= 0;
6578 kvm
->arch
.last_tsc_write
= 0;
6585 void kvm_arch_hardware_disable(void *garbage
)
6587 kvm_x86_ops
->hardware_disable(garbage
);
6588 drop_user_return_notifiers(garbage
);
6591 int kvm_arch_hardware_setup(void)
6593 return kvm_x86_ops
->hardware_setup();
6596 void kvm_arch_hardware_unsetup(void)
6598 kvm_x86_ops
->hardware_unsetup();
6601 void kvm_arch_check_processor_compat(void *rtn
)
6603 kvm_x86_ops
->check_processor_compatibility(rtn
);
6606 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
6608 return irqchip_in_kernel(vcpu
->kvm
) == (vcpu
->arch
.apic
!= NULL
);
6611 struct static_key kvm_no_apic_vcpu __read_mostly
;
6613 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
6619 BUG_ON(vcpu
->kvm
== NULL
);
6622 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
6623 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
6624 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6626 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
6628 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
6633 vcpu
->arch
.pio_data
= page_address(page
);
6635 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
6637 r
= kvm_mmu_create(vcpu
);
6639 goto fail_free_pio_data
;
6641 if (irqchip_in_kernel(kvm
)) {
6642 r
= kvm_create_lapic(vcpu
);
6644 goto fail_mmu_destroy
;
6646 static_key_slow_inc(&kvm_no_apic_vcpu
);
6648 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
6650 if (!vcpu
->arch
.mce_banks
) {
6652 goto fail_free_lapic
;
6654 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
6656 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
))
6657 goto fail_free_mce_banks
;
6661 goto fail_free_wbinvd_dirty_mask
;
6663 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
6664 kvm_async_pf_hash_reset(vcpu
);
6668 fail_free_wbinvd_dirty_mask
:
6669 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
6670 fail_free_mce_banks
:
6671 kfree(vcpu
->arch
.mce_banks
);
6673 kvm_free_lapic(vcpu
);
6675 kvm_mmu_destroy(vcpu
);
6677 free_page((unsigned long)vcpu
->arch
.pio_data
);
6682 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
6686 kvm_pmu_destroy(vcpu
);
6687 kfree(vcpu
->arch
.mce_banks
);
6688 kvm_free_lapic(vcpu
);
6689 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6690 kvm_mmu_destroy(vcpu
);
6691 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6692 free_page((unsigned long)vcpu
->arch
.pio_data
);
6693 if (!irqchip_in_kernel(vcpu
->kvm
))
6694 static_key_slow_dec(&kvm_no_apic_vcpu
);
6697 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
6702 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
6703 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
6705 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6706 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
6707 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6708 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
6709 &kvm
->arch
.irq_sources_bitmap
);
6711 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
6712 mutex_init(&kvm
->arch
.apic_map_lock
);
6713 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
6715 pvclock_update_vm_gtod_copy(kvm
);
6720 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
6723 r
= vcpu_load(vcpu
);
6725 kvm_mmu_unload(vcpu
);
6729 static void kvm_free_vcpus(struct kvm
*kvm
)
6732 struct kvm_vcpu
*vcpu
;
6735 * Unpin any mmu pages first.
6737 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6738 kvm_clear_async_pf_completion_queue(vcpu
);
6739 kvm_unload_vcpu_mmu(vcpu
);
6741 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6742 kvm_arch_vcpu_free(vcpu
);
6744 mutex_lock(&kvm
->lock
);
6745 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
6746 kvm
->vcpus
[i
] = NULL
;
6748 atomic_set(&kvm
->online_vcpus
, 0);
6749 mutex_unlock(&kvm
->lock
);
6752 void kvm_arch_sync_events(struct kvm
*kvm
)
6754 kvm_free_all_assigned_devices(kvm
);
6758 void kvm_arch_destroy_vm(struct kvm
*kvm
)
6760 kvm_iommu_unmap_guest(kvm
);
6761 kfree(kvm
->arch
.vpic
);
6762 kfree(kvm
->arch
.vioapic
);
6763 kvm_free_vcpus(kvm
);
6764 if (kvm
->arch
.apic_access_page
)
6765 put_page(kvm
->arch
.apic_access_page
);
6766 if (kvm
->arch
.ept_identity_pagetable
)
6767 put_page(kvm
->arch
.ept_identity_pagetable
);
6768 kfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
6771 void kvm_arch_free_memslot(struct kvm_memory_slot
*free
,
6772 struct kvm_memory_slot
*dont
)
6776 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
6777 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
6778 kvm_kvfree(free
->arch
.rmap
[i
]);
6779 free
->arch
.rmap
[i
] = NULL
;
6784 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
6785 dont
->arch
.lpage_info
[i
- 1]) {
6786 kvm_kvfree(free
->arch
.lpage_info
[i
- 1]);
6787 free
->arch
.lpage_info
[i
- 1] = NULL
;
6792 int kvm_arch_create_memslot(struct kvm_memory_slot
*slot
, unsigned long npages
)
6796 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
6801 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
6802 slot
->base_gfn
, level
) + 1;
6804 slot
->arch
.rmap
[i
] =
6805 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
6806 if (!slot
->arch
.rmap
[i
])
6811 slot
->arch
.lpage_info
[i
- 1] = kvm_kvzalloc(lpages
*
6812 sizeof(*slot
->arch
.lpage_info
[i
- 1]));
6813 if (!slot
->arch
.lpage_info
[i
- 1])
6816 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
6817 slot
->arch
.lpage_info
[i
- 1][0].write_count
= 1;
6818 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
6819 slot
->arch
.lpage_info
[i
- 1][lpages
- 1].write_count
= 1;
6820 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
6822 * If the gfn and userspace address are not aligned wrt each
6823 * other, or if explicitly asked to, disable large page
6824 * support for this slot
6826 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
6827 !kvm_largepages_enabled()) {
6830 for (j
= 0; j
< lpages
; ++j
)
6831 slot
->arch
.lpage_info
[i
- 1][j
].write_count
= 1;
6838 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
6839 kvm_kvfree(slot
->arch
.rmap
[i
]);
6840 slot
->arch
.rmap
[i
] = NULL
;
6844 kvm_kvfree(slot
->arch
.lpage_info
[i
- 1]);
6845 slot
->arch
.lpage_info
[i
- 1] = NULL
;
6850 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
6851 struct kvm_memory_slot
*memslot
,
6852 struct kvm_memory_slot old
,
6853 struct kvm_userspace_memory_region
*mem
,
6856 int npages
= memslot
->npages
;
6857 int map_flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
6859 /* Prevent internal slot pages from being moved by fork()/COW. */
6860 if (memslot
->id
>= KVM_MEMORY_SLOTS
)
6861 map_flags
= MAP_SHARED
| MAP_ANONYMOUS
;
6863 /*To keep backward compatibility with older userspace,
6864 *x86 needs to handle !user_alloc case.
6867 if (npages
&& !old
.npages
) {
6868 unsigned long userspace_addr
;
6870 userspace_addr
= vm_mmap(NULL
, 0,
6872 PROT_READ
| PROT_WRITE
,
6876 if (IS_ERR((void *)userspace_addr
))
6877 return PTR_ERR((void *)userspace_addr
);
6879 memslot
->userspace_addr
= userspace_addr
;
6887 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
6888 struct kvm_userspace_memory_region
*mem
,
6889 struct kvm_memory_slot old
,
6893 int nr_mmu_pages
= 0, npages
= mem
->memory_size
>> PAGE_SHIFT
;
6895 if (!user_alloc
&& !old
.user_alloc
&& old
.npages
&& !npages
) {
6898 ret
= vm_munmap(old
.userspace_addr
,
6899 old
.npages
* PAGE_SIZE
);
6902 "kvm_vm_ioctl_set_memory_region: "
6903 "failed to munmap memory\n");
6906 if (!kvm
->arch
.n_requested_mmu_pages
)
6907 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
6909 spin_lock(&kvm
->mmu_lock
);
6911 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
6912 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
6913 spin_unlock(&kvm
->mmu_lock
);
6915 * If memory slot is created, or moved, we need to clear all
6918 if (npages
&& old
.base_gfn
!= mem
->guest_phys_addr
>> PAGE_SHIFT
) {
6919 kvm_mmu_zap_all(kvm
);
6920 kvm_reload_remote_mmus(kvm
);
6924 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
6926 kvm_mmu_zap_all(kvm
);
6927 kvm_reload_remote_mmus(kvm
);
6930 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
6931 struct kvm_memory_slot
*slot
)
6933 kvm_arch_flush_shadow_all(kvm
);
6936 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
6938 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6939 !vcpu
->arch
.apf
.halted
)
6940 || !list_empty_careful(&vcpu
->async_pf
.done
)
6941 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
6942 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
6943 (kvm_arch_interrupt_allowed(vcpu
) &&
6944 kvm_cpu_has_interrupt(vcpu
));
6947 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
6949 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
6952 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6954 return kvm_x86_ops
->interrupt_allowed(vcpu
);
6957 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
6959 unsigned long current_rip
= kvm_rip_read(vcpu
) +
6960 get_segment_base(vcpu
, VCPU_SREG_CS
);
6962 return current_rip
== linear_rip
;
6964 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
6966 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
6968 unsigned long rflags
;
6970 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6971 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6972 rflags
&= ~X86_EFLAGS_TF
;
6975 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
6977 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
6979 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
6980 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
6981 rflags
|= X86_EFLAGS_TF
;
6982 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
6983 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6985 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
6987 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
6991 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
6992 is_error_page(work
->page
))
6995 r
= kvm_mmu_reload(vcpu
);
6999 if (!vcpu
->arch
.mmu
.direct_map
&&
7000 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
7003 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
7006 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
7008 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
7011 static inline u32
kvm_async_pf_next_probe(u32 key
)
7013 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
7016 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7018 u32 key
= kvm_async_pf_hash_fn(gfn
);
7020 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
7021 key
= kvm_async_pf_next_probe(key
);
7023 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
7026 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7029 u32 key
= kvm_async_pf_hash_fn(gfn
);
7031 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
7032 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
7033 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
7034 key
= kvm_async_pf_next_probe(key
);
7039 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7041 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
7044 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7048 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
7050 vcpu
->arch
.apf
.gfns
[i
] = ~0;
7052 j
= kvm_async_pf_next_probe(j
);
7053 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
7055 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
7057 * k lies cyclically in ]i,j]
7059 * |....j i.k.| or |.k..j i...|
7061 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
7062 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
7067 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
7070 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
7074 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
7075 struct kvm_async_pf
*work
)
7077 struct x86_exception fault
;
7079 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
7080 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7082 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
7083 (vcpu
->arch
.apf
.send_user_only
&&
7084 kvm_x86_ops
->get_cpl(vcpu
) == 0))
7085 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
7086 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
7087 fault
.vector
= PF_VECTOR
;
7088 fault
.error_code_valid
= true;
7089 fault
.error_code
= 0;
7090 fault
.nested_page_fault
= false;
7091 fault
.address
= work
->arch
.token
;
7092 kvm_inject_page_fault(vcpu
, &fault
);
7096 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
7097 struct kvm_async_pf
*work
)
7099 struct x86_exception fault
;
7101 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
7102 if (is_error_page(work
->page
))
7103 work
->arch
.token
= ~0; /* broadcast wakeup */
7105 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7107 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
7108 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
7109 fault
.vector
= PF_VECTOR
;
7110 fault
.error_code_valid
= true;
7111 fault
.error_code
= 0;
7112 fault
.nested_page_fault
= false;
7113 fault
.address
= work
->arch
.token
;
7114 kvm_inject_page_fault(vcpu
, &fault
);
7116 vcpu
->arch
.apf
.halted
= false;
7117 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7120 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
7122 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
7125 return !kvm_event_needs_reinjection(vcpu
) &&
7126 kvm_x86_ops
->interrupt_allowed(vcpu
);
7129 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
7130 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
7131 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
7132 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
7133 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
7134 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
7135 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
7136 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
7137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
7138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
7139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
7140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);