3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
6 #include <asm/fixmap.h>
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
13 #define PGALLOC_USER_GFP 0
16 gfp_t __userpte_alloc_gfp
= PGALLOC_GFP
| PGALLOC_USER_GFP
;
18 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
20 return (pte_t
*)__get_free_page(PGALLOC_GFP
);
23 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
27 pte
= alloc_pages(__userpte_alloc_gfp
, 0);
29 pgtable_page_ctor(pte
);
33 static int __init
setup_userpte(char *arg
)
39 * "userpte=nohigh" disables allocation of user pagetables in
42 if (strcmp(arg
, "nohigh") == 0)
43 __userpte_alloc_gfp
&= ~__GFP_HIGHMEM
;
48 early_param("userpte", setup_userpte
);
50 void ___pte_free_tlb(struct mmu_gather
*tlb
, struct page
*pte
)
52 pgtable_page_dtor(pte
);
53 paravirt_release_pte(page_to_pfn(pte
));
54 tlb_remove_page(tlb
, pte
);
57 #if PAGETABLE_LEVELS > 2
58 void ___pmd_free_tlb(struct mmu_gather
*tlb
, pmd_t
*pmd
)
60 paravirt_release_pmd(__pa(pmd
) >> PAGE_SHIFT
);
61 tlb_remove_page(tlb
, virt_to_page(pmd
));
64 #if PAGETABLE_LEVELS > 3
65 void ___pud_free_tlb(struct mmu_gather
*tlb
, pud_t
*pud
)
67 paravirt_release_pud(__pa(pud
) >> PAGE_SHIFT
);
68 tlb_remove_page(tlb
, virt_to_page(pud
));
70 #endif /* PAGETABLE_LEVELS > 3 */
71 #endif /* PAGETABLE_LEVELS > 2 */
73 static inline void pgd_list_add(pgd_t
*pgd
)
75 struct page
*page
= virt_to_page(pgd
);
77 list_add(&page
->lru
, &pgd_list
);
80 static inline void pgd_list_del(pgd_t
*pgd
)
82 struct page
*page
= virt_to_page(pgd
);
87 #define UNSHARED_PTRS_PER_PGD \
88 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
91 static void pgd_set_mm(pgd_t
*pgd
, struct mm_struct
*mm
)
93 BUILD_BUG_ON(sizeof(virt_to_page(pgd
)->index
) < sizeof(mm
));
94 virt_to_page(pgd
)->index
= (pgoff_t
)mm
;
97 struct mm_struct
*pgd_page_get_mm(struct page
*page
)
99 return (struct mm_struct
*)page
->index
;
102 static void pgd_ctor(struct mm_struct
*mm
, pgd_t
*pgd
)
104 /* If the pgd points to a shared pagetable level (either the
105 ptes in non-PAE, or shared PMD in PAE), then just copy the
106 references from swapper_pg_dir. */
107 if (PAGETABLE_LEVELS
== 2 ||
108 (PAGETABLE_LEVELS
== 3 && SHARED_KERNEL_PMD
) ||
109 PAGETABLE_LEVELS
== 4) {
110 clone_pgd_range(pgd
+ KERNEL_PGD_BOUNDARY
,
111 swapper_pg_dir
+ KERNEL_PGD_BOUNDARY
,
115 /* list required to sync kernel mapping updates */
116 if (!SHARED_KERNEL_PMD
) {
122 static void pgd_dtor(pgd_t
*pgd
)
124 if (SHARED_KERNEL_PMD
)
127 spin_lock(&pgd_lock
);
129 spin_unlock(&pgd_lock
);
133 * List of all pgd's needed for non-PAE so it can invalidate entries
134 * in both cached and uncached pgd's; not needed for PAE since the
135 * kernel pmd is shared. If PAE were not to share the pmd a similar
136 * tactic would be needed. This is essentially codepath-based locking
137 * against pageattr.c; it is the unique case in which a valid change
138 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
139 * vmalloc faults work because attached pagetables are never freed.
143 #ifdef CONFIG_X86_PAE
145 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
146 * updating the top-level pagetable entries to guarantee the
147 * processor notices the update. Since this is expensive, and
148 * all 4 top-level entries are used almost immediately in a
149 * new process's life, we just pre-populate them here.
151 * Also, if we're in a paravirt environment where the kernel pmd is
152 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
153 * and initialize the kernel pmds here.
155 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
157 void pud_populate(struct mm_struct
*mm
, pud_t
*pudp
, pmd_t
*pmd
)
159 paravirt_alloc_pmd(mm
, __pa(pmd
) >> PAGE_SHIFT
);
161 /* Note: almost everything apart from _PAGE_PRESENT is
162 reserved at the pmd (PDPT) level. */
163 set_pud(pudp
, __pud(__pa(pmd
) | _PAGE_PRESENT
));
166 * According to Intel App note "TLBs, Paging-Structure Caches,
167 * and Their Invalidation", April 2007, document 317080-001,
168 * section 8.1: in PAE mode we explicitly have to flush the
169 * TLB via cr3 if the top-level pgd is changed...
173 #else /* !CONFIG_X86_PAE */
175 /* No need to prepopulate any pagetable entries in non-PAE modes. */
176 #define PREALLOCATED_PMDS 0
178 #endif /* CONFIG_X86_PAE */
180 static void free_pmds(pmd_t
*pmds
[])
184 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++)
186 free_page((unsigned long)pmds
[i
]);
189 static int preallocate_pmds(pmd_t
*pmds
[])
194 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
195 pmd_t
*pmd
= (pmd_t
*)__get_free_page(PGALLOC_GFP
);
210 * Mop up any pmd pages which may still be attached to the pgd.
211 * Normally they will be freed by munmap/exit_mmap, but any pmd we
212 * preallocate which never got a corresponding vma will need to be
215 static void pgd_mop_up_pmds(struct mm_struct
*mm
, pgd_t
*pgdp
)
219 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
222 if (pgd_val(pgd
) != 0) {
223 pmd_t
*pmd
= (pmd_t
*)pgd_page_vaddr(pgd
);
225 pgdp
[i
] = native_make_pgd(0);
227 paravirt_release_pmd(pgd_val(pgd
) >> PAGE_SHIFT
);
233 static void pgd_prepopulate_pmd(struct mm_struct
*mm
, pgd_t
*pgd
, pmd_t
*pmds
[])
239 if (PREALLOCATED_PMDS
== 0) /* Work around gcc-3.4.x bug */
242 pud
= pud_offset(pgd
, 0);
244 for (addr
= i
= 0; i
< PREALLOCATED_PMDS
;
245 i
++, pud
++, addr
+= PUD_SIZE
) {
246 pmd_t
*pmd
= pmds
[i
];
248 if (i
>= KERNEL_PGD_BOUNDARY
)
249 memcpy(pmd
, (pmd_t
*)pgd_page_vaddr(swapper_pg_dir
[i
]),
250 sizeof(pmd_t
) * PTRS_PER_PMD
);
252 pud_populate(mm
, pud
, pmd
);
256 pgd_t
*pgd_alloc(struct mm_struct
*mm
)
259 pmd_t
*pmds
[PREALLOCATED_PMDS
];
261 pgd
= (pgd_t
*)__get_free_page(PGALLOC_GFP
);
268 if (preallocate_pmds(pmds
) != 0)
271 if (paravirt_pgd_alloc(mm
) != 0)
275 * Make sure that pre-populating the pmds is atomic with
276 * respect to anything walking the pgd_list, so that they
277 * never see a partially populated pgd.
279 spin_lock(&pgd_lock
);
282 pgd_prepopulate_pmd(mm
, pgd
, pmds
);
284 spin_unlock(&pgd_lock
);
291 free_page((unsigned long)pgd
);
296 void pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
298 pgd_mop_up_pmds(mm
, pgd
);
300 paravirt_pgd_free(mm
, pgd
);
301 free_page((unsigned long)pgd
);
305 * Used to set accessed or dirty bits in the page table entries
306 * on other architectures. On x86, the accessed and dirty bits
307 * are tracked by hardware. However, do_wp_page calls this function
308 * to also make the pte writeable at the same time the dirty bit is
309 * set. In that case we do actually need to write the PTE.
311 int ptep_set_access_flags(struct vm_area_struct
*vma
,
312 unsigned long address
, pte_t
*ptep
,
313 pte_t entry
, int dirty
)
315 int changed
= !pte_same(*ptep
, entry
);
317 if (changed
&& dirty
) {
319 pte_update_defer(vma
->vm_mm
, address
, ptep
);
325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
326 int pmdp_set_access_flags(struct vm_area_struct
*vma
,
327 unsigned long address
, pmd_t
*pmdp
,
328 pmd_t entry
, int dirty
)
330 int changed
= !pmd_same(*pmdp
, entry
);
332 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
334 if (changed
&& dirty
) {
336 pmd_update_defer(vma
->vm_mm
, address
, pmdp
);
337 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
344 int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
345 unsigned long addr
, pte_t
*ptep
)
349 if (pte_young(*ptep
))
350 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
351 (unsigned long *) &ptep
->pte
);
354 pte_update(vma
->vm_mm
, addr
, ptep
);
359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
360 int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
361 unsigned long addr
, pmd_t
*pmdp
)
365 if (pmd_young(*pmdp
))
366 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
367 (unsigned long *)pmdp
);
370 pmd_update(vma
->vm_mm
, addr
, pmdp
);
376 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
377 unsigned long address
, pte_t
*ptep
)
381 young
= ptep_test_and_clear_young(vma
, address
, ptep
);
383 flush_tlb_page(vma
, address
);
388 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
389 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
390 unsigned long address
, pmd_t
*pmdp
)
394 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
396 young
= pmdp_test_and_clear_young(vma
, address
, pmdp
);
398 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
403 void pmdp_splitting_flush(struct vm_area_struct
*vma
,
404 unsigned long address
, pmd_t
*pmdp
)
407 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
408 set
= !test_and_set_bit(_PAGE_BIT_SPLITTING
,
409 (unsigned long *)pmdp
);
411 pmd_update(vma
->vm_mm
, address
, pmdp
);
412 /* need tlb flush only to serialize against gup-fast */
413 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
419 * reserve_top_address - reserves a hole in the top of kernel address space
420 * @reserve - size of hole to reserve
422 * Can be used to relocate the fixmap area and poke a hole in the top
423 * of kernel address space to make room for a hypervisor.
425 void __init
reserve_top_address(unsigned long reserve
)
428 BUG_ON(fixmaps_set
> 0);
429 printk(KERN_INFO
"Reserving virtual address space above 0x%08x\n",
431 __FIXADDR_TOP
= -reserve
- PAGE_SIZE
;
437 void __native_set_fixmap(enum fixed_addresses idx
, pte_t pte
)
439 unsigned long address
= __fix_to_virt(idx
);
441 if (idx
>= __end_of_fixed_addresses
) {
445 set_pte_vaddr(address
, pte
);
449 void native_set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
,
452 __native_set_fixmap(idx
, pfn_pte(phys
>> PAGE_SHIFT
, flags
));