Linux 3.8-rc7
[cris-mirror.git] / fs / btrfs / check-integrity.c
blob11d47bfb62b418f6f4d5459d8c02a18b05c3731b
1 /*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
82 #include <linux/sched.h>
83 #include <linux/slab.h>
84 #include <linux/buffer_head.h>
85 #include <linux/mutex.h>
86 #include <linux/crc32c.h>
87 #include <linux/genhd.h>
88 #include <linux/blkdev.h>
89 #include "ctree.h"
90 #include "disk-io.h"
91 #include "transaction.h"
92 #include "extent_io.h"
93 #include "volumes.h"
94 #include "print-tree.h"
95 #include "locking.h"
96 #include "check-integrity.h"
97 #include "rcu-string.h"
99 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
100 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
101 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
102 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
103 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
104 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
105 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
106 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
107 * excluding " [...]" */
108 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
111 * The definition of the bitmask fields for the print_mask.
112 * They are specified with the mount option check_integrity_print_mask.
114 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
115 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
116 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
117 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
118 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
119 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
120 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
121 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
122 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
123 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
124 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
125 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
126 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
128 struct btrfsic_dev_state;
129 struct btrfsic_state;
131 struct btrfsic_block {
132 u32 magic_num; /* only used for debug purposes */
133 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
134 unsigned int is_superblock:1; /* if it is one of the superblocks */
135 unsigned int is_iodone:1; /* if is done by lower subsystem */
136 unsigned int iodone_w_error:1; /* error was indicated to endio */
137 unsigned int never_written:1; /* block was added because it was
138 * referenced, not because it was
139 * written */
140 unsigned int mirror_num; /* large enough to hold
141 * BTRFS_SUPER_MIRROR_MAX */
142 struct btrfsic_dev_state *dev_state;
143 u64 dev_bytenr; /* key, physical byte num on disk */
144 u64 logical_bytenr; /* logical byte num on disk */
145 u64 generation;
146 struct btrfs_disk_key disk_key; /* extra info to print in case of
147 * issues, will not always be correct */
148 struct list_head collision_resolving_node; /* list node */
149 struct list_head all_blocks_node; /* list node */
151 /* the following two lists contain block_link items */
152 struct list_head ref_to_list; /* list */
153 struct list_head ref_from_list; /* list */
154 struct btrfsic_block *next_in_same_bio;
155 void *orig_bio_bh_private;
156 union {
157 bio_end_io_t *bio;
158 bh_end_io_t *bh;
159 } orig_bio_bh_end_io;
160 int submit_bio_bh_rw;
161 u64 flush_gen; /* only valid if !never_written */
165 * Elements of this type are allocated dynamically and required because
166 * each block object can refer to and can be ref from multiple blocks.
167 * The key to lookup them in the hashtable is the dev_bytenr of
168 * the block ref to plus the one from the block refered from.
169 * The fact that they are searchable via a hashtable and that a
170 * ref_cnt is maintained is not required for the btrfs integrity
171 * check algorithm itself, it is only used to make the output more
172 * beautiful in case that an error is detected (an error is defined
173 * as a write operation to a block while that block is still referenced).
175 struct btrfsic_block_link {
176 u32 magic_num; /* only used for debug purposes */
177 u32 ref_cnt;
178 struct list_head node_ref_to; /* list node */
179 struct list_head node_ref_from; /* list node */
180 struct list_head collision_resolving_node; /* list node */
181 struct btrfsic_block *block_ref_to;
182 struct btrfsic_block *block_ref_from;
183 u64 parent_generation;
186 struct btrfsic_dev_state {
187 u32 magic_num; /* only used for debug purposes */
188 struct block_device *bdev;
189 struct btrfsic_state *state;
190 struct list_head collision_resolving_node; /* list node */
191 struct btrfsic_block dummy_block_for_bio_bh_flush;
192 u64 last_flush_gen;
193 char name[BDEVNAME_SIZE];
196 struct btrfsic_block_hashtable {
197 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
200 struct btrfsic_block_link_hashtable {
201 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
204 struct btrfsic_dev_state_hashtable {
205 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
208 struct btrfsic_block_data_ctx {
209 u64 start; /* virtual bytenr */
210 u64 dev_bytenr; /* physical bytenr on device */
211 u32 len;
212 struct btrfsic_dev_state *dev;
213 char **datav;
214 struct page **pagev;
215 void *mem_to_free;
218 /* This structure is used to implement recursion without occupying
219 * any stack space, refer to btrfsic_process_metablock() */
220 struct btrfsic_stack_frame {
221 u32 magic;
222 u32 nr;
223 int error;
224 int i;
225 int limit_nesting;
226 int num_copies;
227 int mirror_num;
228 struct btrfsic_block *block;
229 struct btrfsic_block_data_ctx *block_ctx;
230 struct btrfsic_block *next_block;
231 struct btrfsic_block_data_ctx next_block_ctx;
232 struct btrfs_header *hdr;
233 struct btrfsic_stack_frame *prev;
236 /* Some state per mounted filesystem */
237 struct btrfsic_state {
238 u32 print_mask;
239 int include_extent_data;
240 int csum_size;
241 struct list_head all_blocks_list;
242 struct btrfsic_block_hashtable block_hashtable;
243 struct btrfsic_block_link_hashtable block_link_hashtable;
244 struct btrfs_root *root;
245 u64 max_superblock_generation;
246 struct btrfsic_block *latest_superblock;
247 u32 metablock_size;
248 u32 datablock_size;
251 static void btrfsic_block_init(struct btrfsic_block *b);
252 static struct btrfsic_block *btrfsic_block_alloc(void);
253 static void btrfsic_block_free(struct btrfsic_block *b);
254 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
255 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
256 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
257 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
258 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
259 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
260 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
261 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
262 struct btrfsic_block_hashtable *h);
263 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
264 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
265 struct block_device *bdev,
266 u64 dev_bytenr,
267 struct btrfsic_block_hashtable *h);
268 static void btrfsic_block_link_hashtable_init(
269 struct btrfsic_block_link_hashtable *h);
270 static void btrfsic_block_link_hashtable_add(
271 struct btrfsic_block_link *l,
272 struct btrfsic_block_link_hashtable *h);
273 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
274 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
275 struct block_device *bdev_ref_to,
276 u64 dev_bytenr_ref_to,
277 struct block_device *bdev_ref_from,
278 u64 dev_bytenr_ref_from,
279 struct btrfsic_block_link_hashtable *h);
280 static void btrfsic_dev_state_hashtable_init(
281 struct btrfsic_dev_state_hashtable *h);
282 static void btrfsic_dev_state_hashtable_add(
283 struct btrfsic_dev_state *ds,
284 struct btrfsic_dev_state_hashtable *h);
285 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
286 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
287 struct block_device *bdev,
288 struct btrfsic_dev_state_hashtable *h);
289 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
290 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
291 static int btrfsic_process_superblock(struct btrfsic_state *state,
292 struct btrfs_fs_devices *fs_devices);
293 static int btrfsic_process_metablock(struct btrfsic_state *state,
294 struct btrfsic_block *block,
295 struct btrfsic_block_data_ctx *block_ctx,
296 int limit_nesting, int force_iodone_flag);
297 static void btrfsic_read_from_block_data(
298 struct btrfsic_block_data_ctx *block_ctx,
299 void *dst, u32 offset, size_t len);
300 static int btrfsic_create_link_to_next_block(
301 struct btrfsic_state *state,
302 struct btrfsic_block *block,
303 struct btrfsic_block_data_ctx
304 *block_ctx, u64 next_bytenr,
305 int limit_nesting,
306 struct btrfsic_block_data_ctx *next_block_ctx,
307 struct btrfsic_block **next_blockp,
308 int force_iodone_flag,
309 int *num_copiesp, int *mirror_nump,
310 struct btrfs_disk_key *disk_key,
311 u64 parent_generation);
312 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
313 struct btrfsic_block *block,
314 struct btrfsic_block_data_ctx *block_ctx,
315 u32 item_offset, int force_iodone_flag);
316 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
317 struct btrfsic_block_data_ctx *block_ctx_out,
318 int mirror_num);
319 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
320 u32 len, struct block_device *bdev,
321 struct btrfsic_block_data_ctx *block_ctx_out);
322 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
323 static int btrfsic_read_block(struct btrfsic_state *state,
324 struct btrfsic_block_data_ctx *block_ctx);
325 static void btrfsic_dump_database(struct btrfsic_state *state);
326 static void btrfsic_complete_bio_end_io(struct bio *bio, int err);
327 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
328 char **datav, unsigned int num_pages);
329 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
330 u64 dev_bytenr, char **mapped_datav,
331 unsigned int num_pages,
332 struct bio *bio, int *bio_is_patched,
333 struct buffer_head *bh,
334 int submit_bio_bh_rw);
335 static int btrfsic_process_written_superblock(
336 struct btrfsic_state *state,
337 struct btrfsic_block *const block,
338 struct btrfs_super_block *const super_hdr);
339 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
340 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
341 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
342 const struct btrfsic_block *block,
343 int recursion_level);
344 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
345 struct btrfsic_block *const block,
346 int recursion_level);
347 static void btrfsic_print_add_link(const struct btrfsic_state *state,
348 const struct btrfsic_block_link *l);
349 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
350 const struct btrfsic_block_link *l);
351 static char btrfsic_get_block_type(const struct btrfsic_state *state,
352 const struct btrfsic_block *block);
353 static void btrfsic_dump_tree(const struct btrfsic_state *state);
354 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
355 const struct btrfsic_block *block,
356 int indent_level);
357 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
358 struct btrfsic_state *state,
359 struct btrfsic_block_data_ctx *next_block_ctx,
360 struct btrfsic_block *next_block,
361 struct btrfsic_block *from_block,
362 u64 parent_generation);
363 static struct btrfsic_block *btrfsic_block_lookup_or_add(
364 struct btrfsic_state *state,
365 struct btrfsic_block_data_ctx *block_ctx,
366 const char *additional_string,
367 int is_metadata,
368 int is_iodone,
369 int never_written,
370 int mirror_num,
371 int *was_created);
372 static int btrfsic_process_superblock_dev_mirror(
373 struct btrfsic_state *state,
374 struct btrfsic_dev_state *dev_state,
375 struct btrfs_device *device,
376 int superblock_mirror_num,
377 struct btrfsic_dev_state **selected_dev_state,
378 struct btrfs_super_block *selected_super);
379 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
380 struct block_device *bdev);
381 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
382 u64 bytenr,
383 struct btrfsic_dev_state *dev_state,
384 u64 dev_bytenr);
386 static struct mutex btrfsic_mutex;
387 static int btrfsic_is_initialized;
388 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
391 static void btrfsic_block_init(struct btrfsic_block *b)
393 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
394 b->dev_state = NULL;
395 b->dev_bytenr = 0;
396 b->logical_bytenr = 0;
397 b->generation = BTRFSIC_GENERATION_UNKNOWN;
398 b->disk_key.objectid = 0;
399 b->disk_key.type = 0;
400 b->disk_key.offset = 0;
401 b->is_metadata = 0;
402 b->is_superblock = 0;
403 b->is_iodone = 0;
404 b->iodone_w_error = 0;
405 b->never_written = 0;
406 b->mirror_num = 0;
407 b->next_in_same_bio = NULL;
408 b->orig_bio_bh_private = NULL;
409 b->orig_bio_bh_end_io.bio = NULL;
410 INIT_LIST_HEAD(&b->collision_resolving_node);
411 INIT_LIST_HEAD(&b->all_blocks_node);
412 INIT_LIST_HEAD(&b->ref_to_list);
413 INIT_LIST_HEAD(&b->ref_from_list);
414 b->submit_bio_bh_rw = 0;
415 b->flush_gen = 0;
418 static struct btrfsic_block *btrfsic_block_alloc(void)
420 struct btrfsic_block *b;
422 b = kzalloc(sizeof(*b), GFP_NOFS);
423 if (NULL != b)
424 btrfsic_block_init(b);
426 return b;
429 static void btrfsic_block_free(struct btrfsic_block *b)
431 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
432 kfree(b);
435 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
437 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
438 l->ref_cnt = 1;
439 INIT_LIST_HEAD(&l->node_ref_to);
440 INIT_LIST_HEAD(&l->node_ref_from);
441 INIT_LIST_HEAD(&l->collision_resolving_node);
442 l->block_ref_to = NULL;
443 l->block_ref_from = NULL;
446 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
448 struct btrfsic_block_link *l;
450 l = kzalloc(sizeof(*l), GFP_NOFS);
451 if (NULL != l)
452 btrfsic_block_link_init(l);
454 return l;
457 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
459 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
460 kfree(l);
463 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
465 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
466 ds->bdev = NULL;
467 ds->state = NULL;
468 ds->name[0] = '\0';
469 INIT_LIST_HEAD(&ds->collision_resolving_node);
470 ds->last_flush_gen = 0;
471 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
472 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
473 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
476 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
478 struct btrfsic_dev_state *ds;
480 ds = kzalloc(sizeof(*ds), GFP_NOFS);
481 if (NULL != ds)
482 btrfsic_dev_state_init(ds);
484 return ds;
487 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
489 BUG_ON(!(NULL == ds ||
490 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
491 kfree(ds);
494 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
496 int i;
498 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
499 INIT_LIST_HEAD(h->table + i);
502 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
503 struct btrfsic_block_hashtable *h)
505 const unsigned int hashval =
506 (((unsigned int)(b->dev_bytenr >> 16)) ^
507 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
508 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
510 list_add(&b->collision_resolving_node, h->table + hashval);
513 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
515 list_del(&b->collision_resolving_node);
518 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
519 struct block_device *bdev,
520 u64 dev_bytenr,
521 struct btrfsic_block_hashtable *h)
523 const unsigned int hashval =
524 (((unsigned int)(dev_bytenr >> 16)) ^
525 ((unsigned int)((uintptr_t)bdev))) &
526 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
527 struct list_head *elem;
529 list_for_each(elem, h->table + hashval) {
530 struct btrfsic_block *const b =
531 list_entry(elem, struct btrfsic_block,
532 collision_resolving_node);
534 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
535 return b;
538 return NULL;
541 static void btrfsic_block_link_hashtable_init(
542 struct btrfsic_block_link_hashtable *h)
544 int i;
546 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
547 INIT_LIST_HEAD(h->table + i);
550 static void btrfsic_block_link_hashtable_add(
551 struct btrfsic_block_link *l,
552 struct btrfsic_block_link_hashtable *h)
554 const unsigned int hashval =
555 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
556 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
557 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
558 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
559 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
561 BUG_ON(NULL == l->block_ref_to);
562 BUG_ON(NULL == l->block_ref_from);
563 list_add(&l->collision_resolving_node, h->table + hashval);
566 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
568 list_del(&l->collision_resolving_node);
571 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
572 struct block_device *bdev_ref_to,
573 u64 dev_bytenr_ref_to,
574 struct block_device *bdev_ref_from,
575 u64 dev_bytenr_ref_from,
576 struct btrfsic_block_link_hashtable *h)
578 const unsigned int hashval =
579 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
580 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
581 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
582 ((unsigned int)((uintptr_t)bdev_ref_from))) &
583 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
584 struct list_head *elem;
586 list_for_each(elem, h->table + hashval) {
587 struct btrfsic_block_link *const l =
588 list_entry(elem, struct btrfsic_block_link,
589 collision_resolving_node);
591 BUG_ON(NULL == l->block_ref_to);
592 BUG_ON(NULL == l->block_ref_from);
593 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
594 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
595 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
596 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
597 return l;
600 return NULL;
603 static void btrfsic_dev_state_hashtable_init(
604 struct btrfsic_dev_state_hashtable *h)
606 int i;
608 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
609 INIT_LIST_HEAD(h->table + i);
612 static void btrfsic_dev_state_hashtable_add(
613 struct btrfsic_dev_state *ds,
614 struct btrfsic_dev_state_hashtable *h)
616 const unsigned int hashval =
617 (((unsigned int)((uintptr_t)ds->bdev)) &
618 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
620 list_add(&ds->collision_resolving_node, h->table + hashval);
623 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
625 list_del(&ds->collision_resolving_node);
628 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
629 struct block_device *bdev,
630 struct btrfsic_dev_state_hashtable *h)
632 const unsigned int hashval =
633 (((unsigned int)((uintptr_t)bdev)) &
634 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
635 struct list_head *elem;
637 list_for_each(elem, h->table + hashval) {
638 struct btrfsic_dev_state *const ds =
639 list_entry(elem, struct btrfsic_dev_state,
640 collision_resolving_node);
642 if (ds->bdev == bdev)
643 return ds;
646 return NULL;
649 static int btrfsic_process_superblock(struct btrfsic_state *state,
650 struct btrfs_fs_devices *fs_devices)
652 int ret = 0;
653 struct btrfs_super_block *selected_super;
654 struct list_head *dev_head = &fs_devices->devices;
655 struct btrfs_device *device;
656 struct btrfsic_dev_state *selected_dev_state = NULL;
657 int pass;
659 BUG_ON(NULL == state);
660 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
661 if (NULL == selected_super) {
662 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
663 return -1;
666 list_for_each_entry(device, dev_head, dev_list) {
667 int i;
668 struct btrfsic_dev_state *dev_state;
670 if (!device->bdev || !device->name)
671 continue;
673 dev_state = btrfsic_dev_state_lookup(device->bdev);
674 BUG_ON(NULL == dev_state);
675 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
676 ret = btrfsic_process_superblock_dev_mirror(
677 state, dev_state, device, i,
678 &selected_dev_state, selected_super);
679 if (0 != ret && 0 == i) {
680 kfree(selected_super);
681 return ret;
686 if (NULL == state->latest_superblock) {
687 printk(KERN_INFO "btrfsic: no superblock found!\n");
688 kfree(selected_super);
689 return -1;
692 state->csum_size = btrfs_super_csum_size(selected_super);
694 for (pass = 0; pass < 3; pass++) {
695 int num_copies;
696 int mirror_num;
697 u64 next_bytenr;
699 switch (pass) {
700 case 0:
701 next_bytenr = btrfs_super_root(selected_super);
702 if (state->print_mask &
703 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
704 printk(KERN_INFO "root@%llu\n",
705 (unsigned long long)next_bytenr);
706 break;
707 case 1:
708 next_bytenr = btrfs_super_chunk_root(selected_super);
709 if (state->print_mask &
710 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
711 printk(KERN_INFO "chunk@%llu\n",
712 (unsigned long long)next_bytenr);
713 break;
714 case 2:
715 next_bytenr = btrfs_super_log_root(selected_super);
716 if (0 == next_bytenr)
717 continue;
718 if (state->print_mask &
719 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
720 printk(KERN_INFO "log@%llu\n",
721 (unsigned long long)next_bytenr);
722 break;
725 num_copies =
726 btrfs_num_copies(state->root->fs_info,
727 next_bytenr, state->metablock_size);
728 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
729 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
730 (unsigned long long)next_bytenr, num_copies);
732 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
733 struct btrfsic_block *next_block;
734 struct btrfsic_block_data_ctx tmp_next_block_ctx;
735 struct btrfsic_block_link *l;
737 ret = btrfsic_map_block(state, next_bytenr,
738 state->metablock_size,
739 &tmp_next_block_ctx,
740 mirror_num);
741 if (ret) {
742 printk(KERN_INFO "btrfsic:"
743 " btrfsic_map_block(root @%llu,"
744 " mirror %d) failed!\n",
745 (unsigned long long)next_bytenr,
746 mirror_num);
747 kfree(selected_super);
748 return -1;
751 next_block = btrfsic_block_hashtable_lookup(
752 tmp_next_block_ctx.dev->bdev,
753 tmp_next_block_ctx.dev_bytenr,
754 &state->block_hashtable);
755 BUG_ON(NULL == next_block);
757 l = btrfsic_block_link_hashtable_lookup(
758 tmp_next_block_ctx.dev->bdev,
759 tmp_next_block_ctx.dev_bytenr,
760 state->latest_superblock->dev_state->
761 bdev,
762 state->latest_superblock->dev_bytenr,
763 &state->block_link_hashtable);
764 BUG_ON(NULL == l);
766 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
767 if (ret < (int)PAGE_CACHE_SIZE) {
768 printk(KERN_INFO
769 "btrfsic: read @logical %llu failed!\n",
770 (unsigned long long)
771 tmp_next_block_ctx.start);
772 btrfsic_release_block_ctx(&tmp_next_block_ctx);
773 kfree(selected_super);
774 return -1;
777 ret = btrfsic_process_metablock(state,
778 next_block,
779 &tmp_next_block_ctx,
780 BTRFS_MAX_LEVEL + 3, 1);
781 btrfsic_release_block_ctx(&tmp_next_block_ctx);
785 kfree(selected_super);
786 return ret;
789 static int btrfsic_process_superblock_dev_mirror(
790 struct btrfsic_state *state,
791 struct btrfsic_dev_state *dev_state,
792 struct btrfs_device *device,
793 int superblock_mirror_num,
794 struct btrfsic_dev_state **selected_dev_state,
795 struct btrfs_super_block *selected_super)
797 struct btrfs_super_block *super_tmp;
798 u64 dev_bytenr;
799 struct buffer_head *bh;
800 struct btrfsic_block *superblock_tmp;
801 int pass;
802 struct block_device *const superblock_bdev = device->bdev;
804 /* super block bytenr is always the unmapped device bytenr */
805 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
806 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
807 return -1;
808 bh = __bread(superblock_bdev, dev_bytenr / 4096,
809 BTRFS_SUPER_INFO_SIZE);
810 if (NULL == bh)
811 return -1;
812 super_tmp = (struct btrfs_super_block *)
813 (bh->b_data + (dev_bytenr & 4095));
815 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
816 strncmp((char *)(&(super_tmp->magic)), BTRFS_MAGIC,
817 sizeof(super_tmp->magic)) ||
818 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
819 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
820 btrfs_super_leafsize(super_tmp) != state->metablock_size ||
821 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
822 brelse(bh);
823 return 0;
826 superblock_tmp =
827 btrfsic_block_hashtable_lookup(superblock_bdev,
828 dev_bytenr,
829 &state->block_hashtable);
830 if (NULL == superblock_tmp) {
831 superblock_tmp = btrfsic_block_alloc();
832 if (NULL == superblock_tmp) {
833 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
834 brelse(bh);
835 return -1;
837 /* for superblock, only the dev_bytenr makes sense */
838 superblock_tmp->dev_bytenr = dev_bytenr;
839 superblock_tmp->dev_state = dev_state;
840 superblock_tmp->logical_bytenr = dev_bytenr;
841 superblock_tmp->generation = btrfs_super_generation(super_tmp);
842 superblock_tmp->is_metadata = 1;
843 superblock_tmp->is_superblock = 1;
844 superblock_tmp->is_iodone = 1;
845 superblock_tmp->never_written = 0;
846 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
847 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
848 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
849 " @%llu (%s/%llu/%d)\n",
850 superblock_bdev,
851 rcu_str_deref(device->name),
852 (unsigned long long)dev_bytenr,
853 dev_state->name,
854 (unsigned long long)dev_bytenr,
855 superblock_mirror_num);
856 list_add(&superblock_tmp->all_blocks_node,
857 &state->all_blocks_list);
858 btrfsic_block_hashtable_add(superblock_tmp,
859 &state->block_hashtable);
862 /* select the one with the highest generation field */
863 if (btrfs_super_generation(super_tmp) >
864 state->max_superblock_generation ||
865 0 == state->max_superblock_generation) {
866 memcpy(selected_super, super_tmp, sizeof(*selected_super));
867 *selected_dev_state = dev_state;
868 state->max_superblock_generation =
869 btrfs_super_generation(super_tmp);
870 state->latest_superblock = superblock_tmp;
873 for (pass = 0; pass < 3; pass++) {
874 u64 next_bytenr;
875 int num_copies;
876 int mirror_num;
877 const char *additional_string = NULL;
878 struct btrfs_disk_key tmp_disk_key;
880 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
881 tmp_disk_key.offset = 0;
882 switch (pass) {
883 case 0:
884 tmp_disk_key.objectid =
885 cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
886 additional_string = "initial root ";
887 next_bytenr = btrfs_super_root(super_tmp);
888 break;
889 case 1:
890 tmp_disk_key.objectid =
891 cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
892 additional_string = "initial chunk ";
893 next_bytenr = btrfs_super_chunk_root(super_tmp);
894 break;
895 case 2:
896 tmp_disk_key.objectid =
897 cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
898 additional_string = "initial log ";
899 next_bytenr = btrfs_super_log_root(super_tmp);
900 if (0 == next_bytenr)
901 continue;
902 break;
905 num_copies =
906 btrfs_num_copies(state->root->fs_info,
907 next_bytenr, state->metablock_size);
908 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
909 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
910 (unsigned long long)next_bytenr, num_copies);
911 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
912 struct btrfsic_block *next_block;
913 struct btrfsic_block_data_ctx tmp_next_block_ctx;
914 struct btrfsic_block_link *l;
916 if (btrfsic_map_block(state, next_bytenr,
917 state->metablock_size,
918 &tmp_next_block_ctx,
919 mirror_num)) {
920 printk(KERN_INFO "btrfsic: btrfsic_map_block("
921 "bytenr @%llu, mirror %d) failed!\n",
922 (unsigned long long)next_bytenr,
923 mirror_num);
924 brelse(bh);
925 return -1;
928 next_block = btrfsic_block_lookup_or_add(
929 state, &tmp_next_block_ctx,
930 additional_string, 1, 1, 0,
931 mirror_num, NULL);
932 if (NULL == next_block) {
933 btrfsic_release_block_ctx(&tmp_next_block_ctx);
934 brelse(bh);
935 return -1;
938 next_block->disk_key = tmp_disk_key;
939 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
940 l = btrfsic_block_link_lookup_or_add(
941 state, &tmp_next_block_ctx,
942 next_block, superblock_tmp,
943 BTRFSIC_GENERATION_UNKNOWN);
944 btrfsic_release_block_ctx(&tmp_next_block_ctx);
945 if (NULL == l) {
946 brelse(bh);
947 return -1;
951 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
952 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
954 brelse(bh);
955 return 0;
958 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
960 struct btrfsic_stack_frame *sf;
962 sf = kzalloc(sizeof(*sf), GFP_NOFS);
963 if (NULL == sf)
964 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
965 else
966 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
967 return sf;
970 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
972 BUG_ON(!(NULL == sf ||
973 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
974 kfree(sf);
977 static int btrfsic_process_metablock(
978 struct btrfsic_state *state,
979 struct btrfsic_block *const first_block,
980 struct btrfsic_block_data_ctx *const first_block_ctx,
981 int first_limit_nesting, int force_iodone_flag)
983 struct btrfsic_stack_frame initial_stack_frame = { 0 };
984 struct btrfsic_stack_frame *sf;
985 struct btrfsic_stack_frame *next_stack;
986 struct btrfs_header *const first_hdr =
987 (struct btrfs_header *)first_block_ctx->datav[0];
989 BUG_ON(!first_hdr);
990 sf = &initial_stack_frame;
991 sf->error = 0;
992 sf->i = -1;
993 sf->limit_nesting = first_limit_nesting;
994 sf->block = first_block;
995 sf->block_ctx = first_block_ctx;
996 sf->next_block = NULL;
997 sf->hdr = first_hdr;
998 sf->prev = NULL;
1000 continue_with_new_stack_frame:
1001 sf->block->generation = le64_to_cpu(sf->hdr->generation);
1002 if (0 == sf->hdr->level) {
1003 struct btrfs_leaf *const leafhdr =
1004 (struct btrfs_leaf *)sf->hdr;
1006 if (-1 == sf->i) {
1007 sf->nr = le32_to_cpu(leafhdr->header.nritems);
1009 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1010 printk(KERN_INFO
1011 "leaf %llu items %d generation %llu"
1012 " owner %llu\n",
1013 (unsigned long long)
1014 sf->block_ctx->start,
1015 sf->nr,
1016 (unsigned long long)
1017 le64_to_cpu(leafhdr->header.generation),
1018 (unsigned long long)
1019 le64_to_cpu(leafhdr->header.owner));
1022 continue_with_current_leaf_stack_frame:
1023 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1024 sf->i++;
1025 sf->num_copies = 0;
1028 if (sf->i < sf->nr) {
1029 struct btrfs_item disk_item;
1030 u32 disk_item_offset =
1031 (uintptr_t)(leafhdr->items + sf->i) -
1032 (uintptr_t)leafhdr;
1033 struct btrfs_disk_key *disk_key;
1034 u8 type;
1035 u32 item_offset;
1036 u32 item_size;
1038 if (disk_item_offset + sizeof(struct btrfs_item) >
1039 sf->block_ctx->len) {
1040 leaf_item_out_of_bounce_error:
1041 printk(KERN_INFO
1042 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1043 sf->block_ctx->start,
1044 sf->block_ctx->dev->name);
1045 goto one_stack_frame_backwards;
1047 btrfsic_read_from_block_data(sf->block_ctx,
1048 &disk_item,
1049 disk_item_offset,
1050 sizeof(struct btrfs_item));
1051 item_offset = le32_to_cpu(disk_item.offset);
1052 item_size = le32_to_cpu(disk_item.size);
1053 disk_key = &disk_item.key;
1054 type = disk_key->type;
1056 if (BTRFS_ROOT_ITEM_KEY == type) {
1057 struct btrfs_root_item root_item;
1058 u32 root_item_offset;
1059 u64 next_bytenr;
1061 root_item_offset = item_offset +
1062 offsetof(struct btrfs_leaf, items);
1063 if (root_item_offset + item_size >
1064 sf->block_ctx->len)
1065 goto leaf_item_out_of_bounce_error;
1066 btrfsic_read_from_block_data(
1067 sf->block_ctx, &root_item,
1068 root_item_offset,
1069 item_size);
1070 next_bytenr = le64_to_cpu(root_item.bytenr);
1072 sf->error =
1073 btrfsic_create_link_to_next_block(
1074 state,
1075 sf->block,
1076 sf->block_ctx,
1077 next_bytenr,
1078 sf->limit_nesting,
1079 &sf->next_block_ctx,
1080 &sf->next_block,
1081 force_iodone_flag,
1082 &sf->num_copies,
1083 &sf->mirror_num,
1084 disk_key,
1085 le64_to_cpu(root_item.
1086 generation));
1087 if (sf->error)
1088 goto one_stack_frame_backwards;
1090 if (NULL != sf->next_block) {
1091 struct btrfs_header *const next_hdr =
1092 (struct btrfs_header *)
1093 sf->next_block_ctx.datav[0];
1095 next_stack =
1096 btrfsic_stack_frame_alloc();
1097 if (NULL == next_stack) {
1098 btrfsic_release_block_ctx(
1099 &sf->
1100 next_block_ctx);
1101 goto one_stack_frame_backwards;
1104 next_stack->i = -1;
1105 next_stack->block = sf->next_block;
1106 next_stack->block_ctx =
1107 &sf->next_block_ctx;
1108 next_stack->next_block = NULL;
1109 next_stack->hdr = next_hdr;
1110 next_stack->limit_nesting =
1111 sf->limit_nesting - 1;
1112 next_stack->prev = sf;
1113 sf = next_stack;
1114 goto continue_with_new_stack_frame;
1116 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1117 state->include_extent_data) {
1118 sf->error = btrfsic_handle_extent_data(
1119 state,
1120 sf->block,
1121 sf->block_ctx,
1122 item_offset,
1123 force_iodone_flag);
1124 if (sf->error)
1125 goto one_stack_frame_backwards;
1128 goto continue_with_current_leaf_stack_frame;
1130 } else {
1131 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1133 if (-1 == sf->i) {
1134 sf->nr = le32_to_cpu(nodehdr->header.nritems);
1136 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1137 printk(KERN_INFO "node %llu level %d items %d"
1138 " generation %llu owner %llu\n",
1139 (unsigned long long)
1140 sf->block_ctx->start,
1141 nodehdr->header.level, sf->nr,
1142 (unsigned long long)
1143 le64_to_cpu(nodehdr->header.generation),
1144 (unsigned long long)
1145 le64_to_cpu(nodehdr->header.owner));
1148 continue_with_current_node_stack_frame:
1149 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1150 sf->i++;
1151 sf->num_copies = 0;
1154 if (sf->i < sf->nr) {
1155 struct btrfs_key_ptr key_ptr;
1156 u32 key_ptr_offset;
1157 u64 next_bytenr;
1159 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1160 (uintptr_t)nodehdr;
1161 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1162 sf->block_ctx->len) {
1163 printk(KERN_INFO
1164 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1165 sf->block_ctx->start,
1166 sf->block_ctx->dev->name);
1167 goto one_stack_frame_backwards;
1169 btrfsic_read_from_block_data(
1170 sf->block_ctx, &key_ptr, key_ptr_offset,
1171 sizeof(struct btrfs_key_ptr));
1172 next_bytenr = le64_to_cpu(key_ptr.blockptr);
1174 sf->error = btrfsic_create_link_to_next_block(
1175 state,
1176 sf->block,
1177 sf->block_ctx,
1178 next_bytenr,
1179 sf->limit_nesting,
1180 &sf->next_block_ctx,
1181 &sf->next_block,
1182 force_iodone_flag,
1183 &sf->num_copies,
1184 &sf->mirror_num,
1185 &key_ptr.key,
1186 le64_to_cpu(key_ptr.generation));
1187 if (sf->error)
1188 goto one_stack_frame_backwards;
1190 if (NULL != sf->next_block) {
1191 struct btrfs_header *const next_hdr =
1192 (struct btrfs_header *)
1193 sf->next_block_ctx.datav[0];
1195 next_stack = btrfsic_stack_frame_alloc();
1196 if (NULL == next_stack)
1197 goto one_stack_frame_backwards;
1199 next_stack->i = -1;
1200 next_stack->block = sf->next_block;
1201 next_stack->block_ctx = &sf->next_block_ctx;
1202 next_stack->next_block = NULL;
1203 next_stack->hdr = next_hdr;
1204 next_stack->limit_nesting =
1205 sf->limit_nesting - 1;
1206 next_stack->prev = sf;
1207 sf = next_stack;
1208 goto continue_with_new_stack_frame;
1211 goto continue_with_current_node_stack_frame;
1215 one_stack_frame_backwards:
1216 if (NULL != sf->prev) {
1217 struct btrfsic_stack_frame *const prev = sf->prev;
1219 /* the one for the initial block is freed in the caller */
1220 btrfsic_release_block_ctx(sf->block_ctx);
1222 if (sf->error) {
1223 prev->error = sf->error;
1224 btrfsic_stack_frame_free(sf);
1225 sf = prev;
1226 goto one_stack_frame_backwards;
1229 btrfsic_stack_frame_free(sf);
1230 sf = prev;
1231 goto continue_with_new_stack_frame;
1232 } else {
1233 BUG_ON(&initial_stack_frame != sf);
1236 return sf->error;
1239 static void btrfsic_read_from_block_data(
1240 struct btrfsic_block_data_ctx *block_ctx,
1241 void *dstv, u32 offset, size_t len)
1243 size_t cur;
1244 size_t offset_in_page;
1245 char *kaddr;
1246 char *dst = (char *)dstv;
1247 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1248 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1250 WARN_ON(offset + len > block_ctx->len);
1251 offset_in_page = (start_offset + offset) &
1252 ((unsigned long)PAGE_CACHE_SIZE - 1);
1254 while (len > 0) {
1255 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1256 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1257 PAGE_CACHE_SHIFT);
1258 kaddr = block_ctx->datav[i];
1259 memcpy(dst, kaddr + offset_in_page, cur);
1261 dst += cur;
1262 len -= cur;
1263 offset_in_page = 0;
1264 i++;
1268 static int btrfsic_create_link_to_next_block(
1269 struct btrfsic_state *state,
1270 struct btrfsic_block *block,
1271 struct btrfsic_block_data_ctx *block_ctx,
1272 u64 next_bytenr,
1273 int limit_nesting,
1274 struct btrfsic_block_data_ctx *next_block_ctx,
1275 struct btrfsic_block **next_blockp,
1276 int force_iodone_flag,
1277 int *num_copiesp, int *mirror_nump,
1278 struct btrfs_disk_key *disk_key,
1279 u64 parent_generation)
1281 struct btrfsic_block *next_block = NULL;
1282 int ret;
1283 struct btrfsic_block_link *l;
1284 int did_alloc_block_link;
1285 int block_was_created;
1287 *next_blockp = NULL;
1288 if (0 == *num_copiesp) {
1289 *num_copiesp =
1290 btrfs_num_copies(state->root->fs_info,
1291 next_bytenr, state->metablock_size);
1292 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1293 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1294 (unsigned long long)next_bytenr, *num_copiesp);
1295 *mirror_nump = 1;
1298 if (*mirror_nump > *num_copiesp)
1299 return 0;
1301 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1302 printk(KERN_INFO
1303 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1304 *mirror_nump);
1305 ret = btrfsic_map_block(state, next_bytenr,
1306 state->metablock_size,
1307 next_block_ctx, *mirror_nump);
1308 if (ret) {
1309 printk(KERN_INFO
1310 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1311 (unsigned long long)next_bytenr, *mirror_nump);
1312 btrfsic_release_block_ctx(next_block_ctx);
1313 *next_blockp = NULL;
1314 return -1;
1317 next_block = btrfsic_block_lookup_or_add(state,
1318 next_block_ctx, "referenced ",
1319 1, force_iodone_flag,
1320 !force_iodone_flag,
1321 *mirror_nump,
1322 &block_was_created);
1323 if (NULL == next_block) {
1324 btrfsic_release_block_ctx(next_block_ctx);
1325 *next_blockp = NULL;
1326 return -1;
1328 if (block_was_created) {
1329 l = NULL;
1330 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1331 } else {
1332 if (next_block->logical_bytenr != next_bytenr &&
1333 !(!next_block->is_metadata &&
1334 0 == next_block->logical_bytenr)) {
1335 printk(KERN_INFO
1336 "Referenced block @%llu (%s/%llu/%d)"
1337 " found in hash table, %c,"
1338 " bytenr mismatch (!= stored %llu).\n",
1339 (unsigned long long)next_bytenr,
1340 next_block_ctx->dev->name,
1341 (unsigned long long)next_block_ctx->dev_bytenr,
1342 *mirror_nump,
1343 btrfsic_get_block_type(state, next_block),
1344 (unsigned long long)next_block->logical_bytenr);
1345 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1346 printk(KERN_INFO
1347 "Referenced block @%llu (%s/%llu/%d)"
1348 " found in hash table, %c.\n",
1349 (unsigned long long)next_bytenr,
1350 next_block_ctx->dev->name,
1351 (unsigned long long)next_block_ctx->dev_bytenr,
1352 *mirror_nump,
1353 btrfsic_get_block_type(state, next_block));
1354 next_block->logical_bytenr = next_bytenr;
1356 next_block->mirror_num = *mirror_nump;
1357 l = btrfsic_block_link_hashtable_lookup(
1358 next_block_ctx->dev->bdev,
1359 next_block_ctx->dev_bytenr,
1360 block_ctx->dev->bdev,
1361 block_ctx->dev_bytenr,
1362 &state->block_link_hashtable);
1365 next_block->disk_key = *disk_key;
1366 if (NULL == l) {
1367 l = btrfsic_block_link_alloc();
1368 if (NULL == l) {
1369 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1370 btrfsic_release_block_ctx(next_block_ctx);
1371 *next_blockp = NULL;
1372 return -1;
1375 did_alloc_block_link = 1;
1376 l->block_ref_to = next_block;
1377 l->block_ref_from = block;
1378 l->ref_cnt = 1;
1379 l->parent_generation = parent_generation;
1381 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1382 btrfsic_print_add_link(state, l);
1384 list_add(&l->node_ref_to, &block->ref_to_list);
1385 list_add(&l->node_ref_from, &next_block->ref_from_list);
1387 btrfsic_block_link_hashtable_add(l,
1388 &state->block_link_hashtable);
1389 } else {
1390 did_alloc_block_link = 0;
1391 if (0 == limit_nesting) {
1392 l->ref_cnt++;
1393 l->parent_generation = parent_generation;
1394 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1395 btrfsic_print_add_link(state, l);
1399 if (limit_nesting > 0 && did_alloc_block_link) {
1400 ret = btrfsic_read_block(state, next_block_ctx);
1401 if (ret < (int)next_block_ctx->len) {
1402 printk(KERN_INFO
1403 "btrfsic: read block @logical %llu failed!\n",
1404 (unsigned long long)next_bytenr);
1405 btrfsic_release_block_ctx(next_block_ctx);
1406 *next_blockp = NULL;
1407 return -1;
1410 *next_blockp = next_block;
1411 } else {
1412 *next_blockp = NULL;
1414 (*mirror_nump)++;
1416 return 0;
1419 static int btrfsic_handle_extent_data(
1420 struct btrfsic_state *state,
1421 struct btrfsic_block *block,
1422 struct btrfsic_block_data_ctx *block_ctx,
1423 u32 item_offset, int force_iodone_flag)
1425 int ret;
1426 struct btrfs_file_extent_item file_extent_item;
1427 u64 file_extent_item_offset;
1428 u64 next_bytenr;
1429 u64 num_bytes;
1430 u64 generation;
1431 struct btrfsic_block_link *l;
1433 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1434 item_offset;
1435 if (file_extent_item_offset +
1436 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1437 block_ctx->len) {
1438 printk(KERN_INFO
1439 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1440 block_ctx->start, block_ctx->dev->name);
1441 return -1;
1444 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1445 file_extent_item_offset,
1446 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1447 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1448 ((u64)0) == le64_to_cpu(file_extent_item.disk_bytenr)) {
1449 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1450 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1451 file_extent_item.type,
1452 (unsigned long long)
1453 le64_to_cpu(file_extent_item.disk_bytenr));
1454 return 0;
1457 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1458 block_ctx->len) {
1459 printk(KERN_INFO
1460 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1461 block_ctx->start, block_ctx->dev->name);
1462 return -1;
1464 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1465 file_extent_item_offset,
1466 sizeof(struct btrfs_file_extent_item));
1467 next_bytenr = le64_to_cpu(file_extent_item.disk_bytenr) +
1468 le64_to_cpu(file_extent_item.offset);
1469 generation = le64_to_cpu(file_extent_item.generation);
1470 num_bytes = le64_to_cpu(file_extent_item.num_bytes);
1471 generation = le64_to_cpu(file_extent_item.generation);
1473 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1474 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1475 " offset = %llu, num_bytes = %llu\n",
1476 file_extent_item.type,
1477 (unsigned long long)
1478 le64_to_cpu(file_extent_item.disk_bytenr),
1479 (unsigned long long)le64_to_cpu(file_extent_item.offset),
1480 (unsigned long long)num_bytes);
1481 while (num_bytes > 0) {
1482 u32 chunk_len;
1483 int num_copies;
1484 int mirror_num;
1486 if (num_bytes > state->datablock_size)
1487 chunk_len = state->datablock_size;
1488 else
1489 chunk_len = num_bytes;
1491 num_copies =
1492 btrfs_num_copies(state->root->fs_info,
1493 next_bytenr, state->datablock_size);
1494 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1495 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1496 (unsigned long long)next_bytenr, num_copies);
1497 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1498 struct btrfsic_block_data_ctx next_block_ctx;
1499 struct btrfsic_block *next_block;
1500 int block_was_created;
1502 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1503 printk(KERN_INFO "btrfsic_handle_extent_data("
1504 "mirror_num=%d)\n", mirror_num);
1505 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1506 printk(KERN_INFO
1507 "\tdisk_bytenr = %llu, num_bytes %u\n",
1508 (unsigned long long)next_bytenr,
1509 chunk_len);
1510 ret = btrfsic_map_block(state, next_bytenr,
1511 chunk_len, &next_block_ctx,
1512 mirror_num);
1513 if (ret) {
1514 printk(KERN_INFO
1515 "btrfsic: btrfsic_map_block(@%llu,"
1516 " mirror=%d) failed!\n",
1517 (unsigned long long)next_bytenr,
1518 mirror_num);
1519 return -1;
1522 next_block = btrfsic_block_lookup_or_add(
1523 state,
1524 &next_block_ctx,
1525 "referenced ",
1527 force_iodone_flag,
1528 !force_iodone_flag,
1529 mirror_num,
1530 &block_was_created);
1531 if (NULL == next_block) {
1532 printk(KERN_INFO
1533 "btrfsic: error, kmalloc failed!\n");
1534 btrfsic_release_block_ctx(&next_block_ctx);
1535 return -1;
1537 if (!block_was_created) {
1538 if (next_block->logical_bytenr != next_bytenr &&
1539 !(!next_block->is_metadata &&
1540 0 == next_block->logical_bytenr)) {
1541 printk(KERN_INFO
1542 "Referenced block"
1543 " @%llu (%s/%llu/%d)"
1544 " found in hash table, D,"
1545 " bytenr mismatch"
1546 " (!= stored %llu).\n",
1547 (unsigned long long)next_bytenr,
1548 next_block_ctx.dev->name,
1549 (unsigned long long)
1550 next_block_ctx.dev_bytenr,
1551 mirror_num,
1552 (unsigned long long)
1553 next_block->logical_bytenr);
1555 next_block->logical_bytenr = next_bytenr;
1556 next_block->mirror_num = mirror_num;
1559 l = btrfsic_block_link_lookup_or_add(state,
1560 &next_block_ctx,
1561 next_block, block,
1562 generation);
1563 btrfsic_release_block_ctx(&next_block_ctx);
1564 if (NULL == l)
1565 return -1;
1568 next_bytenr += chunk_len;
1569 num_bytes -= chunk_len;
1572 return 0;
1575 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1576 struct btrfsic_block_data_ctx *block_ctx_out,
1577 int mirror_num)
1579 int ret;
1580 u64 length;
1581 struct btrfs_bio *multi = NULL;
1582 struct btrfs_device *device;
1584 length = len;
1585 ret = btrfs_map_block(state->root->fs_info, READ,
1586 bytenr, &length, &multi, mirror_num);
1588 if (ret) {
1589 block_ctx_out->start = 0;
1590 block_ctx_out->dev_bytenr = 0;
1591 block_ctx_out->len = 0;
1592 block_ctx_out->dev = NULL;
1593 block_ctx_out->datav = NULL;
1594 block_ctx_out->pagev = NULL;
1595 block_ctx_out->mem_to_free = NULL;
1597 return ret;
1600 device = multi->stripes[0].dev;
1601 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1602 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1603 block_ctx_out->start = bytenr;
1604 block_ctx_out->len = len;
1605 block_ctx_out->datav = NULL;
1606 block_ctx_out->pagev = NULL;
1607 block_ctx_out->mem_to_free = NULL;
1609 kfree(multi);
1610 if (NULL == block_ctx_out->dev) {
1611 ret = -ENXIO;
1612 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1615 return ret;
1618 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1619 u32 len, struct block_device *bdev,
1620 struct btrfsic_block_data_ctx *block_ctx_out)
1622 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1623 block_ctx_out->dev_bytenr = bytenr;
1624 block_ctx_out->start = bytenr;
1625 block_ctx_out->len = len;
1626 block_ctx_out->datav = NULL;
1627 block_ctx_out->pagev = NULL;
1628 block_ctx_out->mem_to_free = NULL;
1629 if (NULL != block_ctx_out->dev) {
1630 return 0;
1631 } else {
1632 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1633 return -ENXIO;
1637 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1639 if (block_ctx->mem_to_free) {
1640 unsigned int num_pages;
1642 BUG_ON(!block_ctx->datav);
1643 BUG_ON(!block_ctx->pagev);
1644 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1645 PAGE_CACHE_SHIFT;
1646 while (num_pages > 0) {
1647 num_pages--;
1648 if (block_ctx->datav[num_pages]) {
1649 kunmap(block_ctx->pagev[num_pages]);
1650 block_ctx->datav[num_pages] = NULL;
1652 if (block_ctx->pagev[num_pages]) {
1653 __free_page(block_ctx->pagev[num_pages]);
1654 block_ctx->pagev[num_pages] = NULL;
1658 kfree(block_ctx->mem_to_free);
1659 block_ctx->mem_to_free = NULL;
1660 block_ctx->pagev = NULL;
1661 block_ctx->datav = NULL;
1665 static int btrfsic_read_block(struct btrfsic_state *state,
1666 struct btrfsic_block_data_ctx *block_ctx)
1668 unsigned int num_pages;
1669 unsigned int i;
1670 u64 dev_bytenr;
1671 int ret;
1673 BUG_ON(block_ctx->datav);
1674 BUG_ON(block_ctx->pagev);
1675 BUG_ON(block_ctx->mem_to_free);
1676 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1677 printk(KERN_INFO
1678 "btrfsic: read_block() with unaligned bytenr %llu\n",
1679 (unsigned long long)block_ctx->dev_bytenr);
1680 return -1;
1683 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1684 PAGE_CACHE_SHIFT;
1685 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1686 sizeof(*block_ctx->pagev)) *
1687 num_pages, GFP_NOFS);
1688 if (!block_ctx->mem_to_free)
1689 return -1;
1690 block_ctx->datav = block_ctx->mem_to_free;
1691 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1692 for (i = 0; i < num_pages; i++) {
1693 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1694 if (!block_ctx->pagev[i])
1695 return -1;
1698 dev_bytenr = block_ctx->dev_bytenr;
1699 for (i = 0; i < num_pages;) {
1700 struct bio *bio;
1701 unsigned int j;
1702 DECLARE_COMPLETION_ONSTACK(complete);
1704 bio = bio_alloc(GFP_NOFS, num_pages - i);
1705 if (!bio) {
1706 printk(KERN_INFO
1707 "btrfsic: bio_alloc() for %u pages failed!\n",
1708 num_pages - i);
1709 return -1;
1711 bio->bi_bdev = block_ctx->dev->bdev;
1712 bio->bi_sector = dev_bytenr >> 9;
1713 bio->bi_end_io = btrfsic_complete_bio_end_io;
1714 bio->bi_private = &complete;
1716 for (j = i; j < num_pages; j++) {
1717 ret = bio_add_page(bio, block_ctx->pagev[j],
1718 PAGE_CACHE_SIZE, 0);
1719 if (PAGE_CACHE_SIZE != ret)
1720 break;
1722 if (j == i) {
1723 printk(KERN_INFO
1724 "btrfsic: error, failed to add a single page!\n");
1725 return -1;
1727 submit_bio(READ, bio);
1729 /* this will also unplug the queue */
1730 wait_for_completion(&complete);
1732 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1733 printk(KERN_INFO
1734 "btrfsic: read error at logical %llu dev %s!\n",
1735 block_ctx->start, block_ctx->dev->name);
1736 bio_put(bio);
1737 return -1;
1739 bio_put(bio);
1740 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1741 i = j;
1743 for (i = 0; i < num_pages; i++) {
1744 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1745 if (!block_ctx->datav[i]) {
1746 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1747 block_ctx->dev->name);
1748 return -1;
1752 return block_ctx->len;
1755 static void btrfsic_complete_bio_end_io(struct bio *bio, int err)
1757 complete((struct completion *)bio->bi_private);
1760 static void btrfsic_dump_database(struct btrfsic_state *state)
1762 struct list_head *elem_all;
1764 BUG_ON(NULL == state);
1766 printk(KERN_INFO "all_blocks_list:\n");
1767 list_for_each(elem_all, &state->all_blocks_list) {
1768 const struct btrfsic_block *const b_all =
1769 list_entry(elem_all, struct btrfsic_block,
1770 all_blocks_node);
1771 struct list_head *elem_ref_to;
1772 struct list_head *elem_ref_from;
1774 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1775 btrfsic_get_block_type(state, b_all),
1776 (unsigned long long)b_all->logical_bytenr,
1777 b_all->dev_state->name,
1778 (unsigned long long)b_all->dev_bytenr,
1779 b_all->mirror_num);
1781 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1782 const struct btrfsic_block_link *const l =
1783 list_entry(elem_ref_to,
1784 struct btrfsic_block_link,
1785 node_ref_to);
1787 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1788 " refers %u* to"
1789 " %c @%llu (%s/%llu/%d)\n",
1790 btrfsic_get_block_type(state, b_all),
1791 (unsigned long long)b_all->logical_bytenr,
1792 b_all->dev_state->name,
1793 (unsigned long long)b_all->dev_bytenr,
1794 b_all->mirror_num,
1795 l->ref_cnt,
1796 btrfsic_get_block_type(state, l->block_ref_to),
1797 (unsigned long long)
1798 l->block_ref_to->logical_bytenr,
1799 l->block_ref_to->dev_state->name,
1800 (unsigned long long)l->block_ref_to->dev_bytenr,
1801 l->block_ref_to->mirror_num);
1804 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1805 const struct btrfsic_block_link *const l =
1806 list_entry(elem_ref_from,
1807 struct btrfsic_block_link,
1808 node_ref_from);
1810 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1811 " is ref %u* from"
1812 " %c @%llu (%s/%llu/%d)\n",
1813 btrfsic_get_block_type(state, b_all),
1814 (unsigned long long)b_all->logical_bytenr,
1815 b_all->dev_state->name,
1816 (unsigned long long)b_all->dev_bytenr,
1817 b_all->mirror_num,
1818 l->ref_cnt,
1819 btrfsic_get_block_type(state, l->block_ref_from),
1820 (unsigned long long)
1821 l->block_ref_from->logical_bytenr,
1822 l->block_ref_from->dev_state->name,
1823 (unsigned long long)
1824 l->block_ref_from->dev_bytenr,
1825 l->block_ref_from->mirror_num);
1828 printk(KERN_INFO "\n");
1833 * Test whether the disk block contains a tree block (leaf or node)
1834 * (note that this test fails for the super block)
1836 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1837 char **datav, unsigned int num_pages)
1839 struct btrfs_header *h;
1840 u8 csum[BTRFS_CSUM_SIZE];
1841 u32 crc = ~(u32)0;
1842 unsigned int i;
1844 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1845 return 1; /* not metadata */
1846 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1847 h = (struct btrfs_header *)datav[0];
1849 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1850 return 1;
1852 for (i = 0; i < num_pages; i++) {
1853 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1854 size_t sublen = i ? PAGE_CACHE_SIZE :
1855 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1857 crc = crc32c(crc, data, sublen);
1859 btrfs_csum_final(crc, csum);
1860 if (memcmp(csum, h->csum, state->csum_size))
1861 return 1;
1863 return 0; /* is metadata */
1866 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1867 u64 dev_bytenr, char **mapped_datav,
1868 unsigned int num_pages,
1869 struct bio *bio, int *bio_is_patched,
1870 struct buffer_head *bh,
1871 int submit_bio_bh_rw)
1873 int is_metadata;
1874 struct btrfsic_block *block;
1875 struct btrfsic_block_data_ctx block_ctx;
1876 int ret;
1877 struct btrfsic_state *state = dev_state->state;
1878 struct block_device *bdev = dev_state->bdev;
1879 unsigned int processed_len;
1881 if (NULL != bio_is_patched)
1882 *bio_is_patched = 0;
1884 again:
1885 if (num_pages == 0)
1886 return;
1888 processed_len = 0;
1889 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1890 num_pages));
1892 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1893 &state->block_hashtable);
1894 if (NULL != block) {
1895 u64 bytenr = 0;
1896 struct list_head *elem_ref_to;
1897 struct list_head *tmp_ref_to;
1899 if (block->is_superblock) {
1900 bytenr = le64_to_cpu(((struct btrfs_super_block *)
1901 mapped_datav[0])->bytenr);
1902 if (num_pages * PAGE_CACHE_SIZE <
1903 BTRFS_SUPER_INFO_SIZE) {
1904 printk(KERN_INFO
1905 "btrfsic: cannot work with too short bios!\n");
1906 return;
1908 is_metadata = 1;
1909 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1910 processed_len = BTRFS_SUPER_INFO_SIZE;
1911 if (state->print_mask &
1912 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1913 printk(KERN_INFO
1914 "[before new superblock is written]:\n");
1915 btrfsic_dump_tree_sub(state, block, 0);
1918 if (is_metadata) {
1919 if (!block->is_superblock) {
1920 if (num_pages * PAGE_CACHE_SIZE <
1921 state->metablock_size) {
1922 printk(KERN_INFO
1923 "btrfsic: cannot work with too short bios!\n");
1924 return;
1926 processed_len = state->metablock_size;
1927 bytenr = le64_to_cpu(((struct btrfs_header *)
1928 mapped_datav[0])->bytenr);
1929 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1930 dev_state,
1931 dev_bytenr);
1933 if (block->logical_bytenr != bytenr) {
1934 printk(KERN_INFO
1935 "Written block @%llu (%s/%llu/%d)"
1936 " found in hash table, %c,"
1937 " bytenr mismatch"
1938 " (!= stored %llu).\n",
1939 (unsigned long long)bytenr,
1940 dev_state->name,
1941 (unsigned long long)dev_bytenr,
1942 block->mirror_num,
1943 btrfsic_get_block_type(state, block),
1944 (unsigned long long)
1945 block->logical_bytenr);
1946 block->logical_bytenr = bytenr;
1947 } else if (state->print_mask &
1948 BTRFSIC_PRINT_MASK_VERBOSE)
1949 printk(KERN_INFO
1950 "Written block @%llu (%s/%llu/%d)"
1951 " found in hash table, %c.\n",
1952 (unsigned long long)bytenr,
1953 dev_state->name,
1954 (unsigned long long)dev_bytenr,
1955 block->mirror_num,
1956 btrfsic_get_block_type(state, block));
1957 } else {
1958 if (num_pages * PAGE_CACHE_SIZE <
1959 state->datablock_size) {
1960 printk(KERN_INFO
1961 "btrfsic: cannot work with too short bios!\n");
1962 return;
1964 processed_len = state->datablock_size;
1965 bytenr = block->logical_bytenr;
1966 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1967 printk(KERN_INFO
1968 "Written block @%llu (%s/%llu/%d)"
1969 " found in hash table, %c.\n",
1970 (unsigned long long)bytenr,
1971 dev_state->name,
1972 (unsigned long long)dev_bytenr,
1973 block->mirror_num,
1974 btrfsic_get_block_type(state, block));
1977 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1978 printk(KERN_INFO
1979 "ref_to_list: %cE, ref_from_list: %cE\n",
1980 list_empty(&block->ref_to_list) ? ' ' : '!',
1981 list_empty(&block->ref_from_list) ? ' ' : '!');
1982 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1983 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1984 " @%llu (%s/%llu/%d), old(gen=%llu,"
1985 " objectid=%llu, type=%d, offset=%llu),"
1986 " new(gen=%llu),"
1987 " which is referenced by most recent superblock"
1988 " (superblockgen=%llu)!\n",
1989 btrfsic_get_block_type(state, block),
1990 (unsigned long long)bytenr,
1991 dev_state->name,
1992 (unsigned long long)dev_bytenr,
1993 block->mirror_num,
1994 (unsigned long long)block->generation,
1995 (unsigned long long)
1996 le64_to_cpu(block->disk_key.objectid),
1997 block->disk_key.type,
1998 (unsigned long long)
1999 le64_to_cpu(block->disk_key.offset),
2000 (unsigned long long)
2001 le64_to_cpu(((struct btrfs_header *)
2002 mapped_datav[0])->generation),
2003 (unsigned long long)
2004 state->max_superblock_generation);
2005 btrfsic_dump_tree(state);
2008 if (!block->is_iodone && !block->never_written) {
2009 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
2010 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
2011 " which is not yet iodone!\n",
2012 btrfsic_get_block_type(state, block),
2013 (unsigned long long)bytenr,
2014 dev_state->name,
2015 (unsigned long long)dev_bytenr,
2016 block->mirror_num,
2017 (unsigned long long)block->generation,
2018 (unsigned long long)
2019 le64_to_cpu(((struct btrfs_header *)
2020 mapped_datav[0])->generation));
2021 /* it would not be safe to go on */
2022 btrfsic_dump_tree(state);
2023 goto continue_loop;
2027 * Clear all references of this block. Do not free
2028 * the block itself even if is not referenced anymore
2029 * because it still carries valueable information
2030 * like whether it was ever written and IO completed.
2032 list_for_each_safe(elem_ref_to, tmp_ref_to,
2033 &block->ref_to_list) {
2034 struct btrfsic_block_link *const l =
2035 list_entry(elem_ref_to,
2036 struct btrfsic_block_link,
2037 node_ref_to);
2039 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2040 btrfsic_print_rem_link(state, l);
2041 l->ref_cnt--;
2042 if (0 == l->ref_cnt) {
2043 list_del(&l->node_ref_to);
2044 list_del(&l->node_ref_from);
2045 btrfsic_block_link_hashtable_remove(l);
2046 btrfsic_block_link_free(l);
2050 if (block->is_superblock)
2051 ret = btrfsic_map_superblock(state, bytenr,
2052 processed_len,
2053 bdev, &block_ctx);
2054 else
2055 ret = btrfsic_map_block(state, bytenr, processed_len,
2056 &block_ctx, 0);
2057 if (ret) {
2058 printk(KERN_INFO
2059 "btrfsic: btrfsic_map_block(root @%llu)"
2060 " failed!\n", (unsigned long long)bytenr);
2061 goto continue_loop;
2063 block_ctx.datav = mapped_datav;
2064 /* the following is required in case of writes to mirrors,
2065 * use the same that was used for the lookup */
2066 block_ctx.dev = dev_state;
2067 block_ctx.dev_bytenr = dev_bytenr;
2069 if (is_metadata || state->include_extent_data) {
2070 block->never_written = 0;
2071 block->iodone_w_error = 0;
2072 if (NULL != bio) {
2073 block->is_iodone = 0;
2074 BUG_ON(NULL == bio_is_patched);
2075 if (!*bio_is_patched) {
2076 block->orig_bio_bh_private =
2077 bio->bi_private;
2078 block->orig_bio_bh_end_io.bio =
2079 bio->bi_end_io;
2080 block->next_in_same_bio = NULL;
2081 bio->bi_private = block;
2082 bio->bi_end_io = btrfsic_bio_end_io;
2083 *bio_is_patched = 1;
2084 } else {
2085 struct btrfsic_block *chained_block =
2086 (struct btrfsic_block *)
2087 bio->bi_private;
2089 BUG_ON(NULL == chained_block);
2090 block->orig_bio_bh_private =
2091 chained_block->orig_bio_bh_private;
2092 block->orig_bio_bh_end_io.bio =
2093 chained_block->orig_bio_bh_end_io.
2094 bio;
2095 block->next_in_same_bio = chained_block;
2096 bio->bi_private = block;
2098 } else if (NULL != bh) {
2099 block->is_iodone = 0;
2100 block->orig_bio_bh_private = bh->b_private;
2101 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2102 block->next_in_same_bio = NULL;
2103 bh->b_private = block;
2104 bh->b_end_io = btrfsic_bh_end_io;
2105 } else {
2106 block->is_iodone = 1;
2107 block->orig_bio_bh_private = NULL;
2108 block->orig_bio_bh_end_io.bio = NULL;
2109 block->next_in_same_bio = NULL;
2113 block->flush_gen = dev_state->last_flush_gen + 1;
2114 block->submit_bio_bh_rw = submit_bio_bh_rw;
2115 if (is_metadata) {
2116 block->logical_bytenr = bytenr;
2117 block->is_metadata = 1;
2118 if (block->is_superblock) {
2119 BUG_ON(PAGE_CACHE_SIZE !=
2120 BTRFS_SUPER_INFO_SIZE);
2121 ret = btrfsic_process_written_superblock(
2122 state,
2123 block,
2124 (struct btrfs_super_block *)
2125 mapped_datav[0]);
2126 if (state->print_mask &
2127 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2128 printk(KERN_INFO
2129 "[after new superblock is written]:\n");
2130 btrfsic_dump_tree_sub(state, block, 0);
2132 } else {
2133 block->mirror_num = 0; /* unknown */
2134 ret = btrfsic_process_metablock(
2135 state,
2136 block,
2137 &block_ctx,
2138 0, 0);
2140 if (ret)
2141 printk(KERN_INFO
2142 "btrfsic: btrfsic_process_metablock"
2143 "(root @%llu) failed!\n",
2144 (unsigned long long)dev_bytenr);
2145 } else {
2146 block->is_metadata = 0;
2147 block->mirror_num = 0; /* unknown */
2148 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2149 if (!state->include_extent_data
2150 && list_empty(&block->ref_from_list)) {
2152 * disk block is overwritten with extent
2153 * data (not meta data) and we are configured
2154 * to not include extent data: take the
2155 * chance and free the block's memory
2157 btrfsic_block_hashtable_remove(block);
2158 list_del(&block->all_blocks_node);
2159 btrfsic_block_free(block);
2162 btrfsic_release_block_ctx(&block_ctx);
2163 } else {
2164 /* block has not been found in hash table */
2165 u64 bytenr;
2167 if (!is_metadata) {
2168 processed_len = state->datablock_size;
2169 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2170 printk(KERN_INFO "Written block (%s/%llu/?)"
2171 " !found in hash table, D.\n",
2172 dev_state->name,
2173 (unsigned long long)dev_bytenr);
2174 if (!state->include_extent_data) {
2175 /* ignore that written D block */
2176 goto continue_loop;
2179 /* this is getting ugly for the
2180 * include_extent_data case... */
2181 bytenr = 0; /* unknown */
2182 block_ctx.start = bytenr;
2183 block_ctx.len = processed_len;
2184 block_ctx.mem_to_free = NULL;
2185 block_ctx.pagev = NULL;
2186 } else {
2187 processed_len = state->metablock_size;
2188 bytenr = le64_to_cpu(((struct btrfs_header *)
2189 mapped_datav[0])->bytenr);
2190 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2191 dev_bytenr);
2192 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2193 printk(KERN_INFO
2194 "Written block @%llu (%s/%llu/?)"
2195 " !found in hash table, M.\n",
2196 (unsigned long long)bytenr,
2197 dev_state->name,
2198 (unsigned long long)dev_bytenr);
2200 ret = btrfsic_map_block(state, bytenr, processed_len,
2201 &block_ctx, 0);
2202 if (ret) {
2203 printk(KERN_INFO
2204 "btrfsic: btrfsic_map_block(root @%llu)"
2205 " failed!\n",
2206 (unsigned long long)dev_bytenr);
2207 goto continue_loop;
2210 block_ctx.datav = mapped_datav;
2211 /* the following is required in case of writes to mirrors,
2212 * use the same that was used for the lookup */
2213 block_ctx.dev = dev_state;
2214 block_ctx.dev_bytenr = dev_bytenr;
2216 block = btrfsic_block_alloc();
2217 if (NULL == block) {
2218 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2219 btrfsic_release_block_ctx(&block_ctx);
2220 goto continue_loop;
2222 block->dev_state = dev_state;
2223 block->dev_bytenr = dev_bytenr;
2224 block->logical_bytenr = bytenr;
2225 block->is_metadata = is_metadata;
2226 block->never_written = 0;
2227 block->iodone_w_error = 0;
2228 block->mirror_num = 0; /* unknown */
2229 block->flush_gen = dev_state->last_flush_gen + 1;
2230 block->submit_bio_bh_rw = submit_bio_bh_rw;
2231 if (NULL != bio) {
2232 block->is_iodone = 0;
2233 BUG_ON(NULL == bio_is_patched);
2234 if (!*bio_is_patched) {
2235 block->orig_bio_bh_private = bio->bi_private;
2236 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2237 block->next_in_same_bio = NULL;
2238 bio->bi_private = block;
2239 bio->bi_end_io = btrfsic_bio_end_io;
2240 *bio_is_patched = 1;
2241 } else {
2242 struct btrfsic_block *chained_block =
2243 (struct btrfsic_block *)
2244 bio->bi_private;
2246 BUG_ON(NULL == chained_block);
2247 block->orig_bio_bh_private =
2248 chained_block->orig_bio_bh_private;
2249 block->orig_bio_bh_end_io.bio =
2250 chained_block->orig_bio_bh_end_io.bio;
2251 block->next_in_same_bio = chained_block;
2252 bio->bi_private = block;
2254 } else if (NULL != bh) {
2255 block->is_iodone = 0;
2256 block->orig_bio_bh_private = bh->b_private;
2257 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2258 block->next_in_same_bio = NULL;
2259 bh->b_private = block;
2260 bh->b_end_io = btrfsic_bh_end_io;
2261 } else {
2262 block->is_iodone = 1;
2263 block->orig_bio_bh_private = NULL;
2264 block->orig_bio_bh_end_io.bio = NULL;
2265 block->next_in_same_bio = NULL;
2267 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2268 printk(KERN_INFO
2269 "New written %c-block @%llu (%s/%llu/%d)\n",
2270 is_metadata ? 'M' : 'D',
2271 (unsigned long long)block->logical_bytenr,
2272 block->dev_state->name,
2273 (unsigned long long)block->dev_bytenr,
2274 block->mirror_num);
2275 list_add(&block->all_blocks_node, &state->all_blocks_list);
2276 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2278 if (is_metadata) {
2279 ret = btrfsic_process_metablock(state, block,
2280 &block_ctx, 0, 0);
2281 if (ret)
2282 printk(KERN_INFO
2283 "btrfsic: process_metablock(root @%llu)"
2284 " failed!\n",
2285 (unsigned long long)dev_bytenr);
2287 btrfsic_release_block_ctx(&block_ctx);
2290 continue_loop:
2291 BUG_ON(!processed_len);
2292 dev_bytenr += processed_len;
2293 mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2294 num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2295 goto again;
2298 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2300 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2301 int iodone_w_error;
2303 /* mutex is not held! This is not save if IO is not yet completed
2304 * on umount */
2305 iodone_w_error = 0;
2306 if (bio_error_status)
2307 iodone_w_error = 1;
2309 BUG_ON(NULL == block);
2310 bp->bi_private = block->orig_bio_bh_private;
2311 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2313 do {
2314 struct btrfsic_block *next_block;
2315 struct btrfsic_dev_state *const dev_state = block->dev_state;
2317 if ((dev_state->state->print_mask &
2318 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2319 printk(KERN_INFO
2320 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2321 bio_error_status,
2322 btrfsic_get_block_type(dev_state->state, block),
2323 (unsigned long long)block->logical_bytenr,
2324 dev_state->name,
2325 (unsigned long long)block->dev_bytenr,
2326 block->mirror_num);
2327 next_block = block->next_in_same_bio;
2328 block->iodone_w_error = iodone_w_error;
2329 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2330 dev_state->last_flush_gen++;
2331 if ((dev_state->state->print_mask &
2332 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2333 printk(KERN_INFO
2334 "bio_end_io() new %s flush_gen=%llu\n",
2335 dev_state->name,
2336 (unsigned long long)
2337 dev_state->last_flush_gen);
2339 if (block->submit_bio_bh_rw & REQ_FUA)
2340 block->flush_gen = 0; /* FUA completed means block is
2341 * on disk */
2342 block->is_iodone = 1; /* for FLUSH, this releases the block */
2343 block = next_block;
2344 } while (NULL != block);
2346 bp->bi_end_io(bp, bio_error_status);
2349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2351 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2352 int iodone_w_error = !uptodate;
2353 struct btrfsic_dev_state *dev_state;
2355 BUG_ON(NULL == block);
2356 dev_state = block->dev_state;
2357 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2358 printk(KERN_INFO
2359 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2360 iodone_w_error,
2361 btrfsic_get_block_type(dev_state->state, block),
2362 (unsigned long long)block->logical_bytenr,
2363 block->dev_state->name,
2364 (unsigned long long)block->dev_bytenr,
2365 block->mirror_num);
2367 block->iodone_w_error = iodone_w_error;
2368 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2369 dev_state->last_flush_gen++;
2370 if ((dev_state->state->print_mask &
2371 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2372 printk(KERN_INFO
2373 "bh_end_io() new %s flush_gen=%llu\n",
2374 dev_state->name,
2375 (unsigned long long)dev_state->last_flush_gen);
2377 if (block->submit_bio_bh_rw & REQ_FUA)
2378 block->flush_gen = 0; /* FUA completed means block is on disk */
2380 bh->b_private = block->orig_bio_bh_private;
2381 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2382 block->is_iodone = 1; /* for FLUSH, this releases the block */
2383 bh->b_end_io(bh, uptodate);
2386 static int btrfsic_process_written_superblock(
2387 struct btrfsic_state *state,
2388 struct btrfsic_block *const superblock,
2389 struct btrfs_super_block *const super_hdr)
2391 int pass;
2393 superblock->generation = btrfs_super_generation(super_hdr);
2394 if (!(superblock->generation > state->max_superblock_generation ||
2395 0 == state->max_superblock_generation)) {
2396 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2397 printk(KERN_INFO
2398 "btrfsic: superblock @%llu (%s/%llu/%d)"
2399 " with old gen %llu <= %llu\n",
2400 (unsigned long long)superblock->logical_bytenr,
2401 superblock->dev_state->name,
2402 (unsigned long long)superblock->dev_bytenr,
2403 superblock->mirror_num,
2404 (unsigned long long)
2405 btrfs_super_generation(super_hdr),
2406 (unsigned long long)
2407 state->max_superblock_generation);
2408 } else {
2409 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2410 printk(KERN_INFO
2411 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2412 " with new gen %llu > %llu\n",
2413 (unsigned long long)superblock->logical_bytenr,
2414 superblock->dev_state->name,
2415 (unsigned long long)superblock->dev_bytenr,
2416 superblock->mirror_num,
2417 (unsigned long long)
2418 btrfs_super_generation(super_hdr),
2419 (unsigned long long)
2420 state->max_superblock_generation);
2422 state->max_superblock_generation =
2423 btrfs_super_generation(super_hdr);
2424 state->latest_superblock = superblock;
2427 for (pass = 0; pass < 3; pass++) {
2428 int ret;
2429 u64 next_bytenr;
2430 struct btrfsic_block *next_block;
2431 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2432 struct btrfsic_block_link *l;
2433 int num_copies;
2434 int mirror_num;
2435 const char *additional_string = NULL;
2436 struct btrfs_disk_key tmp_disk_key;
2438 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
2439 tmp_disk_key.offset = 0;
2441 switch (pass) {
2442 case 0:
2443 tmp_disk_key.objectid =
2444 cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
2445 additional_string = "root ";
2446 next_bytenr = btrfs_super_root(super_hdr);
2447 if (state->print_mask &
2448 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2449 printk(KERN_INFO "root@%llu\n",
2450 (unsigned long long)next_bytenr);
2451 break;
2452 case 1:
2453 tmp_disk_key.objectid =
2454 cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
2455 additional_string = "chunk ";
2456 next_bytenr = btrfs_super_chunk_root(super_hdr);
2457 if (state->print_mask &
2458 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2459 printk(KERN_INFO "chunk@%llu\n",
2460 (unsigned long long)next_bytenr);
2461 break;
2462 case 2:
2463 tmp_disk_key.objectid =
2464 cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
2465 additional_string = "log ";
2466 next_bytenr = btrfs_super_log_root(super_hdr);
2467 if (0 == next_bytenr)
2468 continue;
2469 if (state->print_mask &
2470 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2471 printk(KERN_INFO "log@%llu\n",
2472 (unsigned long long)next_bytenr);
2473 break;
2476 num_copies =
2477 btrfs_num_copies(state->root->fs_info,
2478 next_bytenr, BTRFS_SUPER_INFO_SIZE);
2479 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2480 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2481 (unsigned long long)next_bytenr, num_copies);
2482 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2483 int was_created;
2485 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2486 printk(KERN_INFO
2487 "btrfsic_process_written_superblock("
2488 "mirror_num=%d)\n", mirror_num);
2489 ret = btrfsic_map_block(state, next_bytenr,
2490 BTRFS_SUPER_INFO_SIZE,
2491 &tmp_next_block_ctx,
2492 mirror_num);
2493 if (ret) {
2494 printk(KERN_INFO
2495 "btrfsic: btrfsic_map_block(@%llu,"
2496 " mirror=%d) failed!\n",
2497 (unsigned long long)next_bytenr,
2498 mirror_num);
2499 return -1;
2502 next_block = btrfsic_block_lookup_or_add(
2503 state,
2504 &tmp_next_block_ctx,
2505 additional_string,
2506 1, 0, 1,
2507 mirror_num,
2508 &was_created);
2509 if (NULL == next_block) {
2510 printk(KERN_INFO
2511 "btrfsic: error, kmalloc failed!\n");
2512 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2513 return -1;
2516 next_block->disk_key = tmp_disk_key;
2517 if (was_created)
2518 next_block->generation =
2519 BTRFSIC_GENERATION_UNKNOWN;
2520 l = btrfsic_block_link_lookup_or_add(
2521 state,
2522 &tmp_next_block_ctx,
2523 next_block,
2524 superblock,
2525 BTRFSIC_GENERATION_UNKNOWN);
2526 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2527 if (NULL == l)
2528 return -1;
2532 if (-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)) {
2533 WARN_ON(1);
2534 btrfsic_dump_tree(state);
2537 return 0;
2540 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2541 struct btrfsic_block *const block,
2542 int recursion_level)
2544 struct list_head *elem_ref_to;
2545 int ret = 0;
2547 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2549 * Note that this situation can happen and does not
2550 * indicate an error in regular cases. It happens
2551 * when disk blocks are freed and later reused.
2552 * The check-integrity module is not aware of any
2553 * block free operations, it just recognizes block
2554 * write operations. Therefore it keeps the linkage
2555 * information for a block until a block is
2556 * rewritten. This can temporarily cause incorrect
2557 * and even circular linkage informations. This
2558 * causes no harm unless such blocks are referenced
2559 * by the most recent super block.
2561 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2562 printk(KERN_INFO
2563 "btrfsic: abort cyclic linkage (case 1).\n");
2565 return ret;
2569 * This algorithm is recursive because the amount of used stack
2570 * space is very small and the max recursion depth is limited.
2572 list_for_each(elem_ref_to, &block->ref_to_list) {
2573 const struct btrfsic_block_link *const l =
2574 list_entry(elem_ref_to, struct btrfsic_block_link,
2575 node_ref_to);
2577 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2578 printk(KERN_INFO
2579 "rl=%d, %c @%llu (%s/%llu/%d)"
2580 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2581 recursion_level,
2582 btrfsic_get_block_type(state, block),
2583 (unsigned long long)block->logical_bytenr,
2584 block->dev_state->name,
2585 (unsigned long long)block->dev_bytenr,
2586 block->mirror_num,
2587 l->ref_cnt,
2588 btrfsic_get_block_type(state, l->block_ref_to),
2589 (unsigned long long)
2590 l->block_ref_to->logical_bytenr,
2591 l->block_ref_to->dev_state->name,
2592 (unsigned long long)l->block_ref_to->dev_bytenr,
2593 l->block_ref_to->mirror_num);
2594 if (l->block_ref_to->never_written) {
2595 printk(KERN_INFO "btrfs: attempt to write superblock"
2596 " which references block %c @%llu (%s/%llu/%d)"
2597 " which is never written!\n",
2598 btrfsic_get_block_type(state, l->block_ref_to),
2599 (unsigned long long)
2600 l->block_ref_to->logical_bytenr,
2601 l->block_ref_to->dev_state->name,
2602 (unsigned long long)l->block_ref_to->dev_bytenr,
2603 l->block_ref_to->mirror_num);
2604 ret = -1;
2605 } else if (!l->block_ref_to->is_iodone) {
2606 printk(KERN_INFO "btrfs: attempt to write superblock"
2607 " which references block %c @%llu (%s/%llu/%d)"
2608 " which is not yet iodone!\n",
2609 btrfsic_get_block_type(state, l->block_ref_to),
2610 (unsigned long long)
2611 l->block_ref_to->logical_bytenr,
2612 l->block_ref_to->dev_state->name,
2613 (unsigned long long)l->block_ref_to->dev_bytenr,
2614 l->block_ref_to->mirror_num);
2615 ret = -1;
2616 } else if (l->block_ref_to->iodone_w_error) {
2617 printk(KERN_INFO "btrfs: attempt to write superblock"
2618 " which references block %c @%llu (%s/%llu/%d)"
2619 " which has write error!\n",
2620 btrfsic_get_block_type(state, l->block_ref_to),
2621 (unsigned long long)
2622 l->block_ref_to->logical_bytenr,
2623 l->block_ref_to->dev_state->name,
2624 (unsigned long long)l->block_ref_to->dev_bytenr,
2625 l->block_ref_to->mirror_num);
2626 ret = -1;
2627 } else if (l->parent_generation !=
2628 l->block_ref_to->generation &&
2629 BTRFSIC_GENERATION_UNKNOWN !=
2630 l->parent_generation &&
2631 BTRFSIC_GENERATION_UNKNOWN !=
2632 l->block_ref_to->generation) {
2633 printk(KERN_INFO "btrfs: attempt to write superblock"
2634 " which references block %c @%llu (%s/%llu/%d)"
2635 " with generation %llu !="
2636 " parent generation %llu!\n",
2637 btrfsic_get_block_type(state, l->block_ref_to),
2638 (unsigned long long)
2639 l->block_ref_to->logical_bytenr,
2640 l->block_ref_to->dev_state->name,
2641 (unsigned long long)l->block_ref_to->dev_bytenr,
2642 l->block_ref_to->mirror_num,
2643 (unsigned long long)l->block_ref_to->generation,
2644 (unsigned long long)l->parent_generation);
2645 ret = -1;
2646 } else if (l->block_ref_to->flush_gen >
2647 l->block_ref_to->dev_state->last_flush_gen) {
2648 printk(KERN_INFO "btrfs: attempt to write superblock"
2649 " which references block %c @%llu (%s/%llu/%d)"
2650 " which is not flushed out of disk's write cache"
2651 " (block flush_gen=%llu,"
2652 " dev->flush_gen=%llu)!\n",
2653 btrfsic_get_block_type(state, l->block_ref_to),
2654 (unsigned long long)
2655 l->block_ref_to->logical_bytenr,
2656 l->block_ref_to->dev_state->name,
2657 (unsigned long long)l->block_ref_to->dev_bytenr,
2658 l->block_ref_to->mirror_num,
2659 (unsigned long long)block->flush_gen,
2660 (unsigned long long)
2661 l->block_ref_to->dev_state->last_flush_gen);
2662 ret = -1;
2663 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2664 l->block_ref_to,
2665 recursion_level +
2666 1)) {
2667 ret = -1;
2671 return ret;
2674 static int btrfsic_is_block_ref_by_superblock(
2675 const struct btrfsic_state *state,
2676 const struct btrfsic_block *block,
2677 int recursion_level)
2679 struct list_head *elem_ref_from;
2681 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2682 /* refer to comment at "abort cyclic linkage (case 1)" */
2683 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2684 printk(KERN_INFO
2685 "btrfsic: abort cyclic linkage (case 2).\n");
2687 return 0;
2691 * This algorithm is recursive because the amount of used stack space
2692 * is very small and the max recursion depth is limited.
2694 list_for_each(elem_ref_from, &block->ref_from_list) {
2695 const struct btrfsic_block_link *const l =
2696 list_entry(elem_ref_from, struct btrfsic_block_link,
2697 node_ref_from);
2699 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2700 printk(KERN_INFO
2701 "rl=%d, %c @%llu (%s/%llu/%d)"
2702 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2703 recursion_level,
2704 btrfsic_get_block_type(state, block),
2705 (unsigned long long)block->logical_bytenr,
2706 block->dev_state->name,
2707 (unsigned long long)block->dev_bytenr,
2708 block->mirror_num,
2709 l->ref_cnt,
2710 btrfsic_get_block_type(state, l->block_ref_from),
2711 (unsigned long long)
2712 l->block_ref_from->logical_bytenr,
2713 l->block_ref_from->dev_state->name,
2714 (unsigned long long)
2715 l->block_ref_from->dev_bytenr,
2716 l->block_ref_from->mirror_num);
2717 if (l->block_ref_from->is_superblock &&
2718 state->latest_superblock->dev_bytenr ==
2719 l->block_ref_from->dev_bytenr &&
2720 state->latest_superblock->dev_state->bdev ==
2721 l->block_ref_from->dev_state->bdev)
2722 return 1;
2723 else if (btrfsic_is_block_ref_by_superblock(state,
2724 l->block_ref_from,
2725 recursion_level +
2727 return 1;
2730 return 0;
2733 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2734 const struct btrfsic_block_link *l)
2736 printk(KERN_INFO
2737 "Add %u* link from %c @%llu (%s/%llu/%d)"
2738 " to %c @%llu (%s/%llu/%d).\n",
2739 l->ref_cnt,
2740 btrfsic_get_block_type(state, l->block_ref_from),
2741 (unsigned long long)l->block_ref_from->logical_bytenr,
2742 l->block_ref_from->dev_state->name,
2743 (unsigned long long)l->block_ref_from->dev_bytenr,
2744 l->block_ref_from->mirror_num,
2745 btrfsic_get_block_type(state, l->block_ref_to),
2746 (unsigned long long)l->block_ref_to->logical_bytenr,
2747 l->block_ref_to->dev_state->name,
2748 (unsigned long long)l->block_ref_to->dev_bytenr,
2749 l->block_ref_to->mirror_num);
2752 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2753 const struct btrfsic_block_link *l)
2755 printk(KERN_INFO
2756 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2757 " to %c @%llu (%s/%llu/%d).\n",
2758 l->ref_cnt,
2759 btrfsic_get_block_type(state, l->block_ref_from),
2760 (unsigned long long)l->block_ref_from->logical_bytenr,
2761 l->block_ref_from->dev_state->name,
2762 (unsigned long long)l->block_ref_from->dev_bytenr,
2763 l->block_ref_from->mirror_num,
2764 btrfsic_get_block_type(state, l->block_ref_to),
2765 (unsigned long long)l->block_ref_to->logical_bytenr,
2766 l->block_ref_to->dev_state->name,
2767 (unsigned long long)l->block_ref_to->dev_bytenr,
2768 l->block_ref_to->mirror_num);
2771 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2772 const struct btrfsic_block *block)
2774 if (block->is_superblock &&
2775 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2776 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2777 return 'S';
2778 else if (block->is_superblock)
2779 return 's';
2780 else if (block->is_metadata)
2781 return 'M';
2782 else
2783 return 'D';
2786 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2788 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2791 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2792 const struct btrfsic_block *block,
2793 int indent_level)
2795 struct list_head *elem_ref_to;
2796 int indent_add;
2797 static char buf[80];
2798 int cursor_position;
2801 * Should better fill an on-stack buffer with a complete line and
2802 * dump it at once when it is time to print a newline character.
2806 * This algorithm is recursive because the amount of used stack space
2807 * is very small and the max recursion depth is limited.
2809 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2810 btrfsic_get_block_type(state, block),
2811 (unsigned long long)block->logical_bytenr,
2812 block->dev_state->name,
2813 (unsigned long long)block->dev_bytenr,
2814 block->mirror_num);
2815 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2816 printk("[...]\n");
2817 return;
2819 printk(buf);
2820 indent_level += indent_add;
2821 if (list_empty(&block->ref_to_list)) {
2822 printk("\n");
2823 return;
2825 if (block->mirror_num > 1 &&
2826 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2827 printk(" [...]\n");
2828 return;
2831 cursor_position = indent_level;
2832 list_for_each(elem_ref_to, &block->ref_to_list) {
2833 const struct btrfsic_block_link *const l =
2834 list_entry(elem_ref_to, struct btrfsic_block_link,
2835 node_ref_to);
2837 while (cursor_position < indent_level) {
2838 printk(" ");
2839 cursor_position++;
2841 if (l->ref_cnt > 1)
2842 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2843 else
2844 indent_add = sprintf(buf, " --> ");
2845 if (indent_level + indent_add >
2846 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2847 printk("[...]\n");
2848 cursor_position = 0;
2849 continue;
2852 printk(buf);
2854 btrfsic_dump_tree_sub(state, l->block_ref_to,
2855 indent_level + indent_add);
2856 cursor_position = 0;
2860 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2861 struct btrfsic_state *state,
2862 struct btrfsic_block_data_ctx *next_block_ctx,
2863 struct btrfsic_block *next_block,
2864 struct btrfsic_block *from_block,
2865 u64 parent_generation)
2867 struct btrfsic_block_link *l;
2869 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2870 next_block_ctx->dev_bytenr,
2871 from_block->dev_state->bdev,
2872 from_block->dev_bytenr,
2873 &state->block_link_hashtable);
2874 if (NULL == l) {
2875 l = btrfsic_block_link_alloc();
2876 if (NULL == l) {
2877 printk(KERN_INFO
2878 "btrfsic: error, kmalloc" " failed!\n");
2879 return NULL;
2882 l->block_ref_to = next_block;
2883 l->block_ref_from = from_block;
2884 l->ref_cnt = 1;
2885 l->parent_generation = parent_generation;
2887 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2888 btrfsic_print_add_link(state, l);
2890 list_add(&l->node_ref_to, &from_block->ref_to_list);
2891 list_add(&l->node_ref_from, &next_block->ref_from_list);
2893 btrfsic_block_link_hashtable_add(l,
2894 &state->block_link_hashtable);
2895 } else {
2896 l->ref_cnt++;
2897 l->parent_generation = parent_generation;
2898 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2899 btrfsic_print_add_link(state, l);
2902 return l;
2905 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2906 struct btrfsic_state *state,
2907 struct btrfsic_block_data_ctx *block_ctx,
2908 const char *additional_string,
2909 int is_metadata,
2910 int is_iodone,
2911 int never_written,
2912 int mirror_num,
2913 int *was_created)
2915 struct btrfsic_block *block;
2917 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2918 block_ctx->dev_bytenr,
2919 &state->block_hashtable);
2920 if (NULL == block) {
2921 struct btrfsic_dev_state *dev_state;
2923 block = btrfsic_block_alloc();
2924 if (NULL == block) {
2925 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2926 return NULL;
2928 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2929 if (NULL == dev_state) {
2930 printk(KERN_INFO
2931 "btrfsic: error, lookup dev_state failed!\n");
2932 btrfsic_block_free(block);
2933 return NULL;
2935 block->dev_state = dev_state;
2936 block->dev_bytenr = block_ctx->dev_bytenr;
2937 block->logical_bytenr = block_ctx->start;
2938 block->is_metadata = is_metadata;
2939 block->is_iodone = is_iodone;
2940 block->never_written = never_written;
2941 block->mirror_num = mirror_num;
2942 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2943 printk(KERN_INFO
2944 "New %s%c-block @%llu (%s/%llu/%d)\n",
2945 additional_string,
2946 btrfsic_get_block_type(state, block),
2947 (unsigned long long)block->logical_bytenr,
2948 dev_state->name,
2949 (unsigned long long)block->dev_bytenr,
2950 mirror_num);
2951 list_add(&block->all_blocks_node, &state->all_blocks_list);
2952 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2953 if (NULL != was_created)
2954 *was_created = 1;
2955 } else {
2956 if (NULL != was_created)
2957 *was_created = 0;
2960 return block;
2963 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2964 u64 bytenr,
2965 struct btrfsic_dev_state *dev_state,
2966 u64 dev_bytenr)
2968 int num_copies;
2969 int mirror_num;
2970 int ret;
2971 struct btrfsic_block_data_ctx block_ctx;
2972 int match = 0;
2974 num_copies = btrfs_num_copies(state->root->fs_info,
2975 bytenr, state->metablock_size);
2977 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2978 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2979 &block_ctx, mirror_num);
2980 if (ret) {
2981 printk(KERN_INFO "btrfsic:"
2982 " btrfsic_map_block(logical @%llu,"
2983 " mirror %d) failed!\n",
2984 (unsigned long long)bytenr, mirror_num);
2985 continue;
2988 if (dev_state->bdev == block_ctx.dev->bdev &&
2989 dev_bytenr == block_ctx.dev_bytenr) {
2990 match++;
2991 btrfsic_release_block_ctx(&block_ctx);
2992 break;
2994 btrfsic_release_block_ctx(&block_ctx);
2997 if (!match) {
2998 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2999 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
3000 " phys_bytenr=%llu)!\n",
3001 (unsigned long long)bytenr, dev_state->name,
3002 (unsigned long long)dev_bytenr);
3003 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
3004 ret = btrfsic_map_block(state, bytenr,
3005 state->metablock_size,
3006 &block_ctx, mirror_num);
3007 if (ret)
3008 continue;
3010 printk(KERN_INFO "Read logical bytenr @%llu maps to"
3011 " (%s/%llu/%d)\n",
3012 (unsigned long long)bytenr,
3013 block_ctx.dev->name,
3014 (unsigned long long)block_ctx.dev_bytenr,
3015 mirror_num);
3017 WARN_ON(1);
3021 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
3022 struct block_device *bdev)
3024 struct btrfsic_dev_state *ds;
3026 ds = btrfsic_dev_state_hashtable_lookup(bdev,
3027 &btrfsic_dev_state_hashtable);
3028 return ds;
3031 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
3033 struct btrfsic_dev_state *dev_state;
3035 if (!btrfsic_is_initialized)
3036 return submit_bh(rw, bh);
3038 mutex_lock(&btrfsic_mutex);
3039 /* since btrfsic_submit_bh() might also be called before
3040 * btrfsic_mount(), this might return NULL */
3041 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
3043 /* Only called to write the superblock (incl. FLUSH/FUA) */
3044 if (NULL != dev_state &&
3045 (rw & WRITE) && bh->b_size > 0) {
3046 u64 dev_bytenr;
3048 dev_bytenr = 4096 * bh->b_blocknr;
3049 if (dev_state->state->print_mask &
3050 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3051 printk(KERN_INFO
3052 "submit_bh(rw=0x%x, blocknr=%lu (bytenr %llu),"
3053 " size=%lu, data=%p, bdev=%p)\n",
3054 rw, (unsigned long)bh->b_blocknr,
3055 (unsigned long long)dev_bytenr,
3056 (unsigned long)bh->b_size, bh->b_data,
3057 bh->b_bdev);
3058 btrfsic_process_written_block(dev_state, dev_bytenr,
3059 &bh->b_data, 1, NULL,
3060 NULL, bh, rw);
3061 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3062 if (dev_state->state->print_mask &
3063 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3064 printk(KERN_INFO
3065 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
3066 rw, bh->b_bdev);
3067 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3068 if ((dev_state->state->print_mask &
3069 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3070 BTRFSIC_PRINT_MASK_VERBOSE)))
3071 printk(KERN_INFO
3072 "btrfsic_submit_bh(%s) with FLUSH"
3073 " but dummy block already in use"
3074 " (ignored)!\n",
3075 dev_state->name);
3076 } else {
3077 struct btrfsic_block *const block =
3078 &dev_state->dummy_block_for_bio_bh_flush;
3080 block->is_iodone = 0;
3081 block->never_written = 0;
3082 block->iodone_w_error = 0;
3083 block->flush_gen = dev_state->last_flush_gen + 1;
3084 block->submit_bio_bh_rw = rw;
3085 block->orig_bio_bh_private = bh->b_private;
3086 block->orig_bio_bh_end_io.bh = bh->b_end_io;
3087 block->next_in_same_bio = NULL;
3088 bh->b_private = block;
3089 bh->b_end_io = btrfsic_bh_end_io;
3092 mutex_unlock(&btrfsic_mutex);
3093 return submit_bh(rw, bh);
3096 void btrfsic_submit_bio(int rw, struct bio *bio)
3098 struct btrfsic_dev_state *dev_state;
3100 if (!btrfsic_is_initialized) {
3101 submit_bio(rw, bio);
3102 return;
3105 mutex_lock(&btrfsic_mutex);
3106 /* since btrfsic_submit_bio() is also called before
3107 * btrfsic_mount(), this might return NULL */
3108 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3109 if (NULL != dev_state &&
3110 (rw & WRITE) && NULL != bio->bi_io_vec) {
3111 unsigned int i;
3112 u64 dev_bytenr;
3113 int bio_is_patched;
3114 char **mapped_datav;
3116 dev_bytenr = 512 * bio->bi_sector;
3117 bio_is_patched = 0;
3118 if (dev_state->state->print_mask &
3119 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3120 printk(KERN_INFO
3121 "submit_bio(rw=0x%x, bi_vcnt=%u,"
3122 " bi_sector=%lu (bytenr %llu), bi_bdev=%p)\n",
3123 rw, bio->bi_vcnt, (unsigned long)bio->bi_sector,
3124 (unsigned long long)dev_bytenr,
3125 bio->bi_bdev);
3127 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3128 GFP_NOFS);
3129 if (!mapped_datav)
3130 goto leave;
3131 for (i = 0; i < bio->bi_vcnt; i++) {
3132 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3133 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3134 if (!mapped_datav[i]) {
3135 while (i > 0) {
3136 i--;
3137 kunmap(bio->bi_io_vec[i].bv_page);
3139 kfree(mapped_datav);
3140 goto leave;
3142 if ((BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3143 BTRFSIC_PRINT_MASK_VERBOSE) ==
3144 (dev_state->state->print_mask &
3145 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3146 BTRFSIC_PRINT_MASK_VERBOSE)))
3147 printk(KERN_INFO
3148 "#%u: page=%p, len=%u, offset=%u\n",
3149 i, bio->bi_io_vec[i].bv_page,
3150 bio->bi_io_vec[i].bv_len,
3151 bio->bi_io_vec[i].bv_offset);
3153 btrfsic_process_written_block(dev_state, dev_bytenr,
3154 mapped_datav, bio->bi_vcnt,
3155 bio, &bio_is_patched,
3156 NULL, rw);
3157 while (i > 0) {
3158 i--;
3159 kunmap(bio->bi_io_vec[i].bv_page);
3161 kfree(mapped_datav);
3162 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3163 if (dev_state->state->print_mask &
3164 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3165 printk(KERN_INFO
3166 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3167 rw, bio->bi_bdev);
3168 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3169 if ((dev_state->state->print_mask &
3170 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3171 BTRFSIC_PRINT_MASK_VERBOSE)))
3172 printk(KERN_INFO
3173 "btrfsic_submit_bio(%s) with FLUSH"
3174 " but dummy block already in use"
3175 " (ignored)!\n",
3176 dev_state->name);
3177 } else {
3178 struct btrfsic_block *const block =
3179 &dev_state->dummy_block_for_bio_bh_flush;
3181 block->is_iodone = 0;
3182 block->never_written = 0;
3183 block->iodone_w_error = 0;
3184 block->flush_gen = dev_state->last_flush_gen + 1;
3185 block->submit_bio_bh_rw = rw;
3186 block->orig_bio_bh_private = bio->bi_private;
3187 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3188 block->next_in_same_bio = NULL;
3189 bio->bi_private = block;
3190 bio->bi_end_io = btrfsic_bio_end_io;
3193 leave:
3194 mutex_unlock(&btrfsic_mutex);
3196 submit_bio(rw, bio);
3199 int btrfsic_mount(struct btrfs_root *root,
3200 struct btrfs_fs_devices *fs_devices,
3201 int including_extent_data, u32 print_mask)
3203 int ret;
3204 struct btrfsic_state *state;
3205 struct list_head *dev_head = &fs_devices->devices;
3206 struct btrfs_device *device;
3208 if (root->nodesize != root->leafsize) {
3209 printk(KERN_INFO
3210 "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3211 root->nodesize, root->leafsize);
3212 return -1;
3214 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3215 printk(KERN_INFO
3216 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3217 root->nodesize, (unsigned long)PAGE_CACHE_SIZE);
3218 return -1;
3220 if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3221 printk(KERN_INFO
3222 "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3223 root->leafsize, (unsigned long)PAGE_CACHE_SIZE);
3224 return -1;
3226 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3227 printk(KERN_INFO
3228 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3229 root->sectorsize, (unsigned long)PAGE_CACHE_SIZE);
3230 return -1;
3232 state = kzalloc(sizeof(*state), GFP_NOFS);
3233 if (NULL == state) {
3234 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3235 return -1;
3238 if (!btrfsic_is_initialized) {
3239 mutex_init(&btrfsic_mutex);
3240 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3241 btrfsic_is_initialized = 1;
3243 mutex_lock(&btrfsic_mutex);
3244 state->root = root;
3245 state->print_mask = print_mask;
3246 state->include_extent_data = including_extent_data;
3247 state->csum_size = 0;
3248 state->metablock_size = root->nodesize;
3249 state->datablock_size = root->sectorsize;
3250 INIT_LIST_HEAD(&state->all_blocks_list);
3251 btrfsic_block_hashtable_init(&state->block_hashtable);
3252 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3253 state->max_superblock_generation = 0;
3254 state->latest_superblock = NULL;
3256 list_for_each_entry(device, dev_head, dev_list) {
3257 struct btrfsic_dev_state *ds;
3258 char *p;
3260 if (!device->bdev || !device->name)
3261 continue;
3263 ds = btrfsic_dev_state_alloc();
3264 if (NULL == ds) {
3265 printk(KERN_INFO
3266 "btrfs check-integrity: kmalloc() failed!\n");
3267 mutex_unlock(&btrfsic_mutex);
3268 return -1;
3270 ds->bdev = device->bdev;
3271 ds->state = state;
3272 bdevname(ds->bdev, ds->name);
3273 ds->name[BDEVNAME_SIZE - 1] = '\0';
3274 for (p = ds->name; *p != '\0'; p++);
3275 while (p > ds->name && *p != '/')
3276 p--;
3277 if (*p == '/')
3278 p++;
3279 strlcpy(ds->name, p, sizeof(ds->name));
3280 btrfsic_dev_state_hashtable_add(ds,
3281 &btrfsic_dev_state_hashtable);
3284 ret = btrfsic_process_superblock(state, fs_devices);
3285 if (0 != ret) {
3286 mutex_unlock(&btrfsic_mutex);
3287 btrfsic_unmount(root, fs_devices);
3288 return ret;
3291 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3292 btrfsic_dump_database(state);
3293 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3294 btrfsic_dump_tree(state);
3296 mutex_unlock(&btrfsic_mutex);
3297 return 0;
3300 void btrfsic_unmount(struct btrfs_root *root,
3301 struct btrfs_fs_devices *fs_devices)
3303 struct list_head *elem_all;
3304 struct list_head *tmp_all;
3305 struct btrfsic_state *state;
3306 struct list_head *dev_head = &fs_devices->devices;
3307 struct btrfs_device *device;
3309 if (!btrfsic_is_initialized)
3310 return;
3312 mutex_lock(&btrfsic_mutex);
3314 state = NULL;
3315 list_for_each_entry(device, dev_head, dev_list) {
3316 struct btrfsic_dev_state *ds;
3318 if (!device->bdev || !device->name)
3319 continue;
3321 ds = btrfsic_dev_state_hashtable_lookup(
3322 device->bdev,
3323 &btrfsic_dev_state_hashtable);
3324 if (NULL != ds) {
3325 state = ds->state;
3326 btrfsic_dev_state_hashtable_remove(ds);
3327 btrfsic_dev_state_free(ds);
3331 if (NULL == state) {
3332 printk(KERN_INFO
3333 "btrfsic: error, cannot find state information"
3334 " on umount!\n");
3335 mutex_unlock(&btrfsic_mutex);
3336 return;
3340 * Don't care about keeping the lists' state up to date,
3341 * just free all memory that was allocated dynamically.
3342 * Free the blocks and the block_links.
3344 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3345 struct btrfsic_block *const b_all =
3346 list_entry(elem_all, struct btrfsic_block,
3347 all_blocks_node);
3348 struct list_head *elem_ref_to;
3349 struct list_head *tmp_ref_to;
3351 list_for_each_safe(elem_ref_to, tmp_ref_to,
3352 &b_all->ref_to_list) {
3353 struct btrfsic_block_link *const l =
3354 list_entry(elem_ref_to,
3355 struct btrfsic_block_link,
3356 node_ref_to);
3358 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3359 btrfsic_print_rem_link(state, l);
3361 l->ref_cnt--;
3362 if (0 == l->ref_cnt)
3363 btrfsic_block_link_free(l);
3366 if (b_all->is_iodone || b_all->never_written)
3367 btrfsic_block_free(b_all);
3368 else
3369 printk(KERN_INFO "btrfs: attempt to free %c-block"
3370 " @%llu (%s/%llu/%d) on umount which is"
3371 " not yet iodone!\n",
3372 btrfsic_get_block_type(state, b_all),
3373 (unsigned long long)b_all->logical_bytenr,
3374 b_all->dev_state->name,
3375 (unsigned long long)b_all->dev_bytenr,
3376 b_all->mirror_num);
3379 mutex_unlock(&btrfsic_mutex);
3381 kfree(state);