2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
28 static struct kmem_cache
*btrfs_ordered_extent_cache
;
30 static u64
entry_end(struct btrfs_ordered_extent
*entry
)
32 if (entry
->file_offset
+ entry
->len
< entry
->file_offset
)
34 return entry
->file_offset
+ entry
->len
;
37 /* returns NULL if the insertion worked, or it returns the node it did find
40 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 file_offset
,
43 struct rb_node
**p
= &root
->rb_node
;
44 struct rb_node
*parent
= NULL
;
45 struct btrfs_ordered_extent
*entry
;
49 entry
= rb_entry(parent
, struct btrfs_ordered_extent
, rb_node
);
51 if (file_offset
< entry
->file_offset
)
53 else if (file_offset
>= entry_end(entry
))
59 rb_link_node(node
, parent
, p
);
60 rb_insert_color(node
, root
);
64 static void ordered_data_tree_panic(struct inode
*inode
, int errno
,
67 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
68 btrfs_panic(fs_info
, errno
, "Inconsistency in ordered tree at offset "
69 "%llu\n", (unsigned long long)offset
);
73 * look for a given offset in the tree, and if it can't be found return the
76 static struct rb_node
*__tree_search(struct rb_root
*root
, u64 file_offset
,
77 struct rb_node
**prev_ret
)
79 struct rb_node
*n
= root
->rb_node
;
80 struct rb_node
*prev
= NULL
;
82 struct btrfs_ordered_extent
*entry
;
83 struct btrfs_ordered_extent
*prev_entry
= NULL
;
86 entry
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
90 if (file_offset
< entry
->file_offset
)
92 else if (file_offset
>= entry_end(entry
))
100 while (prev
&& file_offset
>= entry_end(prev_entry
)) {
101 test
= rb_next(prev
);
104 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
106 if (file_offset
< entry_end(prev_entry
))
112 prev_entry
= rb_entry(prev
, struct btrfs_ordered_extent
,
114 while (prev
&& file_offset
< entry_end(prev_entry
)) {
115 test
= rb_prev(prev
);
118 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
127 * helper to check if a given offset is inside a given entry
129 static int offset_in_entry(struct btrfs_ordered_extent
*entry
, u64 file_offset
)
131 if (file_offset
< entry
->file_offset
||
132 entry
->file_offset
+ entry
->len
<= file_offset
)
137 static int range_overlaps(struct btrfs_ordered_extent
*entry
, u64 file_offset
,
140 if (file_offset
+ len
<= entry
->file_offset
||
141 entry
->file_offset
+ entry
->len
<= file_offset
)
147 * look find the first ordered struct that has this offset, otherwise
148 * the first one less than this offset
150 static inline struct rb_node
*tree_search(struct btrfs_ordered_inode_tree
*tree
,
153 struct rb_root
*root
= &tree
->tree
;
154 struct rb_node
*prev
= NULL
;
156 struct btrfs_ordered_extent
*entry
;
159 entry
= rb_entry(tree
->last
, struct btrfs_ordered_extent
,
161 if (offset_in_entry(entry
, file_offset
))
164 ret
= __tree_search(root
, file_offset
, &prev
);
172 /* allocate and add a new ordered_extent into the per-inode tree.
173 * file_offset is the logical offset in the file
175 * start is the disk block number of an extent already reserved in the
176 * extent allocation tree
178 * len is the length of the extent
180 * The tree is given a single reference on the ordered extent that was
183 static int __btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
184 u64 start
, u64 len
, u64 disk_len
,
185 int type
, int dio
, int compress_type
)
187 struct btrfs_ordered_inode_tree
*tree
;
188 struct rb_node
*node
;
189 struct btrfs_ordered_extent
*entry
;
191 tree
= &BTRFS_I(inode
)->ordered_tree
;
192 entry
= kmem_cache_zalloc(btrfs_ordered_extent_cache
, GFP_NOFS
);
196 entry
->file_offset
= file_offset
;
197 entry
->start
= start
;
199 entry
->disk_len
= disk_len
;
200 entry
->bytes_left
= len
;
201 entry
->inode
= igrab(inode
);
202 entry
->compress_type
= compress_type
;
203 if (type
!= BTRFS_ORDERED_IO_DONE
&& type
!= BTRFS_ORDERED_COMPLETE
)
204 set_bit(type
, &entry
->flags
);
207 set_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
);
209 /* one ref for the tree */
210 atomic_set(&entry
->refs
, 1);
211 init_waitqueue_head(&entry
->wait
);
212 INIT_LIST_HEAD(&entry
->list
);
213 INIT_LIST_HEAD(&entry
->root_extent_list
);
214 INIT_LIST_HEAD(&entry
->work_list
);
215 init_completion(&entry
->completion
);
217 trace_btrfs_ordered_extent_add(inode
, entry
);
219 spin_lock_irq(&tree
->lock
);
220 node
= tree_insert(&tree
->tree
, file_offset
,
223 ordered_data_tree_panic(inode
, -EEXIST
, file_offset
);
224 spin_unlock_irq(&tree
->lock
);
226 spin_lock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
227 list_add_tail(&entry
->root_extent_list
,
228 &BTRFS_I(inode
)->root
->fs_info
->ordered_extents
);
229 spin_unlock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
234 int btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
235 u64 start
, u64 len
, u64 disk_len
, int type
)
237 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
239 BTRFS_COMPRESS_NONE
);
242 int btrfs_add_ordered_extent_dio(struct inode
*inode
, u64 file_offset
,
243 u64 start
, u64 len
, u64 disk_len
, int type
)
245 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
247 BTRFS_COMPRESS_NONE
);
250 int btrfs_add_ordered_extent_compress(struct inode
*inode
, u64 file_offset
,
251 u64 start
, u64 len
, u64 disk_len
,
252 int type
, int compress_type
)
254 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
260 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
261 * when an ordered extent is finished. If the list covers more than one
262 * ordered extent, it is split across multiples.
264 void btrfs_add_ordered_sum(struct inode
*inode
,
265 struct btrfs_ordered_extent
*entry
,
266 struct btrfs_ordered_sum
*sum
)
268 struct btrfs_ordered_inode_tree
*tree
;
270 tree
= &BTRFS_I(inode
)->ordered_tree
;
271 spin_lock_irq(&tree
->lock
);
272 list_add_tail(&sum
->list
, &entry
->list
);
273 spin_unlock_irq(&tree
->lock
);
277 * this is used to account for finished IO across a given range
278 * of the file. The IO may span ordered extents. If
279 * a given ordered_extent is completely done, 1 is returned, otherwise
282 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
283 * to make sure this function only returns 1 once for a given ordered extent.
285 * file_offset is updated to one byte past the range that is recorded as
286 * complete. This allows you to walk forward in the file.
288 int btrfs_dec_test_first_ordered_pending(struct inode
*inode
,
289 struct btrfs_ordered_extent
**cached
,
290 u64
*file_offset
, u64 io_size
, int uptodate
)
292 struct btrfs_ordered_inode_tree
*tree
;
293 struct rb_node
*node
;
294 struct btrfs_ordered_extent
*entry
= NULL
;
301 tree
= &BTRFS_I(inode
)->ordered_tree
;
302 spin_lock_irqsave(&tree
->lock
, flags
);
303 node
= tree_search(tree
, *file_offset
);
309 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
310 if (!offset_in_entry(entry
, *file_offset
)) {
315 dec_start
= max(*file_offset
, entry
->file_offset
);
316 dec_end
= min(*file_offset
+ io_size
, entry
->file_offset
+
318 *file_offset
= dec_end
;
319 if (dec_start
> dec_end
) {
320 printk(KERN_CRIT
"bad ordering dec_start %llu end %llu\n",
321 (unsigned long long)dec_start
,
322 (unsigned long long)dec_end
);
324 to_dec
= dec_end
- dec_start
;
325 if (to_dec
> entry
->bytes_left
) {
326 printk(KERN_CRIT
"bad ordered accounting left %llu size %llu\n",
327 (unsigned long long)entry
->bytes_left
,
328 (unsigned long long)to_dec
);
330 entry
->bytes_left
-= to_dec
;
332 set_bit(BTRFS_ORDERED_IOERR
, &entry
->flags
);
334 if (entry
->bytes_left
== 0)
335 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
339 if (!ret
&& cached
&& entry
) {
341 atomic_inc(&entry
->refs
);
343 spin_unlock_irqrestore(&tree
->lock
, flags
);
348 * this is used to account for finished IO across a given range
349 * of the file. The IO should not span ordered extents. If
350 * a given ordered_extent is completely done, 1 is returned, otherwise
353 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
354 * to make sure this function only returns 1 once for a given ordered extent.
356 int btrfs_dec_test_ordered_pending(struct inode
*inode
,
357 struct btrfs_ordered_extent
**cached
,
358 u64 file_offset
, u64 io_size
, int uptodate
)
360 struct btrfs_ordered_inode_tree
*tree
;
361 struct rb_node
*node
;
362 struct btrfs_ordered_extent
*entry
= NULL
;
366 tree
= &BTRFS_I(inode
)->ordered_tree
;
367 spin_lock_irqsave(&tree
->lock
, flags
);
368 if (cached
&& *cached
) {
373 node
= tree_search(tree
, file_offset
);
379 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
381 if (!offset_in_entry(entry
, file_offset
)) {
386 if (io_size
> entry
->bytes_left
) {
387 printk(KERN_CRIT
"bad ordered accounting left %llu size %llu\n",
388 (unsigned long long)entry
->bytes_left
,
389 (unsigned long long)io_size
);
391 entry
->bytes_left
-= io_size
;
393 set_bit(BTRFS_ORDERED_IOERR
, &entry
->flags
);
395 if (entry
->bytes_left
== 0)
396 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
400 if (!ret
&& cached
&& entry
) {
402 atomic_inc(&entry
->refs
);
404 spin_unlock_irqrestore(&tree
->lock
, flags
);
409 * used to drop a reference on an ordered extent. This will free
410 * the extent if the last reference is dropped
412 void btrfs_put_ordered_extent(struct btrfs_ordered_extent
*entry
)
414 struct list_head
*cur
;
415 struct btrfs_ordered_sum
*sum
;
417 trace_btrfs_ordered_extent_put(entry
->inode
, entry
);
419 if (atomic_dec_and_test(&entry
->refs
)) {
421 btrfs_add_delayed_iput(entry
->inode
);
422 while (!list_empty(&entry
->list
)) {
423 cur
= entry
->list
.next
;
424 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
425 list_del(&sum
->list
);
428 kmem_cache_free(btrfs_ordered_extent_cache
, entry
);
433 * remove an ordered extent from the tree. No references are dropped
434 * and waiters are woken up.
436 void btrfs_remove_ordered_extent(struct inode
*inode
,
437 struct btrfs_ordered_extent
*entry
)
439 struct btrfs_ordered_inode_tree
*tree
;
440 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
441 struct rb_node
*node
;
443 tree
= &BTRFS_I(inode
)->ordered_tree
;
444 spin_lock_irq(&tree
->lock
);
445 node
= &entry
->rb_node
;
446 rb_erase(node
, &tree
->tree
);
448 set_bit(BTRFS_ORDERED_COMPLETE
, &entry
->flags
);
449 spin_unlock_irq(&tree
->lock
);
451 spin_lock(&root
->fs_info
->ordered_extent_lock
);
452 list_del_init(&entry
->root_extent_list
);
454 trace_btrfs_ordered_extent_remove(inode
, entry
);
457 * we have no more ordered extents for this inode and
458 * no dirty pages. We can safely remove it from the
459 * list of ordered extents
461 if (RB_EMPTY_ROOT(&tree
->tree
) &&
462 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
463 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
465 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
466 wake_up(&entry
->wait
);
469 static void btrfs_run_ordered_extent_work(struct btrfs_work
*work
)
471 struct btrfs_ordered_extent
*ordered
;
473 ordered
= container_of(work
, struct btrfs_ordered_extent
, flush_work
);
474 btrfs_start_ordered_extent(ordered
->inode
, ordered
, 1);
475 complete(&ordered
->completion
);
479 * wait for all the ordered extents in a root. This is done when balancing
480 * space between drives.
482 void btrfs_wait_ordered_extents(struct btrfs_root
*root
, int delay_iput
)
484 struct list_head splice
, works
;
485 struct list_head
*cur
;
486 struct btrfs_ordered_extent
*ordered
, *next
;
489 INIT_LIST_HEAD(&splice
);
490 INIT_LIST_HEAD(&works
);
492 spin_lock(&root
->fs_info
->ordered_extent_lock
);
493 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
494 while (!list_empty(&splice
)) {
496 ordered
= list_entry(cur
, struct btrfs_ordered_extent
,
498 list_del_init(&ordered
->root_extent_list
);
499 atomic_inc(&ordered
->refs
);
502 * the inode may be getting freed (in sys_unlink path).
504 inode
= igrab(ordered
->inode
);
506 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
509 ordered
->flush_work
.func
= btrfs_run_ordered_extent_work
;
510 list_add_tail(&ordered
->work_list
, &works
);
511 btrfs_queue_worker(&root
->fs_info
->flush_workers
,
512 &ordered
->flush_work
);
514 btrfs_put_ordered_extent(ordered
);
518 spin_lock(&root
->fs_info
->ordered_extent_lock
);
520 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
522 list_for_each_entry_safe(ordered
, next
, &works
, work_list
) {
523 list_del_init(&ordered
->work_list
);
524 wait_for_completion(&ordered
->completion
);
526 inode
= ordered
->inode
;
527 btrfs_put_ordered_extent(ordered
);
529 btrfs_add_delayed_iput(inode
);
538 * this is used during transaction commit to write all the inodes
539 * added to the ordered operation list. These files must be fully on
540 * disk before the transaction commits.
542 * we have two modes here, one is to just start the IO via filemap_flush
543 * and the other is to wait for all the io. When we wait, we have an
544 * extra check to make sure the ordered operation list really is empty
547 int btrfs_run_ordered_operations(struct btrfs_root
*root
, int wait
)
549 struct btrfs_inode
*btrfs_inode
;
551 struct list_head splice
;
552 struct list_head works
;
553 struct btrfs_delalloc_work
*work
, *next
;
556 INIT_LIST_HEAD(&splice
);
557 INIT_LIST_HEAD(&works
);
559 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
560 spin_lock(&root
->fs_info
->ordered_extent_lock
);
562 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
564 while (!list_empty(&splice
)) {
566 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
569 inode
= &btrfs_inode
->vfs_inode
;
571 list_del_init(&btrfs_inode
->ordered_operations
);
574 * the inode may be getting freed (in sys_unlink path).
576 inode
= igrab(inode
);
578 if (!wait
&& inode
) {
579 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
580 &root
->fs_info
->ordered_operations
);
585 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
587 work
= btrfs_alloc_delalloc_work(inode
, wait
, 1);
589 if (list_empty(&BTRFS_I(inode
)->ordered_operations
))
590 list_add_tail(&btrfs_inode
->ordered_operations
,
592 spin_lock(&root
->fs_info
->ordered_extent_lock
);
593 list_splice_tail(&splice
,
594 &root
->fs_info
->ordered_operations
);
595 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
599 list_add_tail(&work
->list
, &works
);
600 btrfs_queue_worker(&root
->fs_info
->flush_workers
,
604 spin_lock(&root
->fs_info
->ordered_extent_lock
);
606 if (wait
&& !list_empty(&root
->fs_info
->ordered_operations
))
609 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
611 list_for_each_entry_safe(work
, next
, &works
, list
) {
612 list_del_init(&work
->list
);
613 btrfs_wait_and_free_delalloc_work(work
);
615 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
620 * Used to start IO or wait for a given ordered extent to finish.
622 * If wait is one, this effectively waits on page writeback for all the pages
623 * in the extent, and it waits on the io completion code to insert
624 * metadata into the btree corresponding to the extent
626 void btrfs_start_ordered_extent(struct inode
*inode
,
627 struct btrfs_ordered_extent
*entry
,
630 u64 start
= entry
->file_offset
;
631 u64 end
= start
+ entry
->len
- 1;
633 trace_btrfs_ordered_extent_start(inode
, entry
);
636 * pages in the range can be dirty, clean or writeback. We
637 * start IO on any dirty ones so the wait doesn't stall waiting
638 * for the flusher thread to find them
640 if (!test_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
))
641 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
643 wait_event(entry
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
649 * Used to wait on ordered extents across a large range of bytes.
651 void btrfs_wait_ordered_range(struct inode
*inode
, u64 start
, u64 len
)
655 struct btrfs_ordered_extent
*ordered
;
657 if (start
+ len
< start
) {
658 orig_end
= INT_LIMIT(loff_t
);
660 orig_end
= start
+ len
- 1;
661 if (orig_end
> INT_LIMIT(loff_t
))
662 orig_end
= INT_LIMIT(loff_t
);
665 /* start IO across the range first to instantiate any delalloc
668 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
671 * So with compression we will find and lock a dirty page and clear the
672 * first one as dirty, setup an async extent, and immediately return
673 * with the entire range locked but with nobody actually marked with
674 * writeback. So we can't just filemap_write_and_wait_range() and
675 * expect it to work since it will just kick off a thread to do the
676 * actual work. So we need to call filemap_fdatawrite_range _again_
677 * since it will wait on the page lock, which won't be unlocked until
678 * after the pages have been marked as writeback and so we're good to go
679 * from there. We have to do this otherwise we'll miss the ordered
680 * extents and that results in badness. Please Josef, do not think you
681 * know better and pull this out at some point in the future, it is
682 * right and you are wrong.
684 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
685 &BTRFS_I(inode
)->runtime_flags
))
686 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
688 filemap_fdatawait_range(inode
->i_mapping
, start
, orig_end
);
692 ordered
= btrfs_lookup_first_ordered_extent(inode
, end
);
695 if (ordered
->file_offset
> orig_end
) {
696 btrfs_put_ordered_extent(ordered
);
699 if (ordered
->file_offset
+ ordered
->len
< start
) {
700 btrfs_put_ordered_extent(ordered
);
703 btrfs_start_ordered_extent(inode
, ordered
, 1);
704 end
= ordered
->file_offset
;
705 btrfs_put_ordered_extent(ordered
);
706 if (end
== 0 || end
== start
)
713 * find an ordered extent corresponding to file_offset. return NULL if
714 * nothing is found, otherwise take a reference on the extent and return it
716 struct btrfs_ordered_extent
*btrfs_lookup_ordered_extent(struct inode
*inode
,
719 struct btrfs_ordered_inode_tree
*tree
;
720 struct rb_node
*node
;
721 struct btrfs_ordered_extent
*entry
= NULL
;
723 tree
= &BTRFS_I(inode
)->ordered_tree
;
724 spin_lock_irq(&tree
->lock
);
725 node
= tree_search(tree
, file_offset
);
729 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
730 if (!offset_in_entry(entry
, file_offset
))
733 atomic_inc(&entry
->refs
);
735 spin_unlock_irq(&tree
->lock
);
739 /* Since the DIO code tries to lock a wide area we need to look for any ordered
740 * extents that exist in the range, rather than just the start of the range.
742 struct btrfs_ordered_extent
*btrfs_lookup_ordered_range(struct inode
*inode
,
746 struct btrfs_ordered_inode_tree
*tree
;
747 struct rb_node
*node
;
748 struct btrfs_ordered_extent
*entry
= NULL
;
750 tree
= &BTRFS_I(inode
)->ordered_tree
;
751 spin_lock_irq(&tree
->lock
);
752 node
= tree_search(tree
, file_offset
);
754 node
= tree_search(tree
, file_offset
+ len
);
760 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
761 if (range_overlaps(entry
, file_offset
, len
))
764 if (entry
->file_offset
>= file_offset
+ len
) {
769 node
= rb_next(node
);
775 atomic_inc(&entry
->refs
);
776 spin_unlock_irq(&tree
->lock
);
781 * lookup and return any extent before 'file_offset'. NULL is returned
784 struct btrfs_ordered_extent
*
785 btrfs_lookup_first_ordered_extent(struct inode
*inode
, u64 file_offset
)
787 struct btrfs_ordered_inode_tree
*tree
;
788 struct rb_node
*node
;
789 struct btrfs_ordered_extent
*entry
= NULL
;
791 tree
= &BTRFS_I(inode
)->ordered_tree
;
792 spin_lock_irq(&tree
->lock
);
793 node
= tree_search(tree
, file_offset
);
797 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
798 atomic_inc(&entry
->refs
);
800 spin_unlock_irq(&tree
->lock
);
805 * After an extent is done, call this to conditionally update the on disk
806 * i_size. i_size is updated to cover any fully written part of the file.
808 int btrfs_ordered_update_i_size(struct inode
*inode
, u64 offset
,
809 struct btrfs_ordered_extent
*ordered
)
811 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
814 u64 i_size
= i_size_read(inode
);
815 struct rb_node
*node
;
816 struct rb_node
*prev
= NULL
;
817 struct btrfs_ordered_extent
*test
;
821 offset
= entry_end(ordered
);
823 offset
= ALIGN(offset
, BTRFS_I(inode
)->root
->sectorsize
);
825 spin_lock_irq(&tree
->lock
);
826 disk_i_size
= BTRFS_I(inode
)->disk_i_size
;
829 if (disk_i_size
> i_size
) {
830 BTRFS_I(inode
)->disk_i_size
= i_size
;
836 * if the disk i_size is already at the inode->i_size, or
837 * this ordered extent is inside the disk i_size, we're done
839 if (disk_i_size
== i_size
)
843 * We still need to update disk_i_size if outstanding_isize is greater
846 if (offset
<= disk_i_size
&&
847 (!ordered
|| ordered
->outstanding_isize
<= disk_i_size
))
851 * walk backward from this ordered extent to disk_i_size.
852 * if we find an ordered extent then we can't update disk i_size
856 node
= rb_prev(&ordered
->rb_node
);
858 prev
= tree_search(tree
, offset
);
860 * we insert file extents without involving ordered struct,
861 * so there should be no ordered struct cover this offset
864 test
= rb_entry(prev
, struct btrfs_ordered_extent
,
866 BUG_ON(offset_in_entry(test
, offset
));
870 for (; node
; node
= rb_prev(node
)) {
871 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
873 /* We treat this entry as if it doesnt exist */
874 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE
, &test
->flags
))
876 if (test
->file_offset
+ test
->len
<= disk_i_size
)
878 if (test
->file_offset
>= i_size
)
880 if (entry_end(test
) > disk_i_size
) {
882 * we don't update disk_i_size now, so record this
883 * undealt i_size. Or we will not know the real
886 if (test
->outstanding_isize
< offset
)
887 test
->outstanding_isize
= offset
;
889 ordered
->outstanding_isize
>
890 test
->outstanding_isize
)
891 test
->outstanding_isize
=
892 ordered
->outstanding_isize
;
896 new_i_size
= min_t(u64
, offset
, i_size
);
899 * Some ordered extents may completed before the current one, and
900 * we hold the real i_size in ->outstanding_isize.
902 if (ordered
&& ordered
->outstanding_isize
> new_i_size
)
903 new_i_size
= min_t(u64
, ordered
->outstanding_isize
, i_size
);
904 BTRFS_I(inode
)->disk_i_size
= new_i_size
;
908 * We need to do this because we can't remove ordered extents until
909 * after the i_disk_size has been updated and then the inode has been
910 * updated to reflect the change, so we need to tell anybody who finds
911 * this ordered extent that we've already done all the real work, we
912 * just haven't completed all the other work.
915 set_bit(BTRFS_ORDERED_UPDATED_ISIZE
, &ordered
->flags
);
916 spin_unlock_irq(&tree
->lock
);
921 * search the ordered extents for one corresponding to 'offset' and
922 * try to find a checksum. This is used because we allow pages to
923 * be reclaimed before their checksum is actually put into the btree
925 int btrfs_find_ordered_sum(struct inode
*inode
, u64 offset
, u64 disk_bytenr
,
928 struct btrfs_ordered_sum
*ordered_sum
;
929 struct btrfs_sector_sum
*sector_sums
;
930 struct btrfs_ordered_extent
*ordered
;
931 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
932 unsigned long num_sectors
;
934 u32 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
937 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
941 spin_lock_irq(&tree
->lock
);
942 list_for_each_entry_reverse(ordered_sum
, &ordered
->list
, list
) {
943 if (disk_bytenr
>= ordered_sum
->bytenr
) {
944 num_sectors
= ordered_sum
->len
/ sectorsize
;
945 sector_sums
= ordered_sum
->sums
;
946 for (i
= 0; i
< num_sectors
; i
++) {
947 if (sector_sums
[i
].bytenr
== disk_bytenr
) {
948 *sum
= sector_sums
[i
].sum
;
956 spin_unlock_irq(&tree
->lock
);
957 btrfs_put_ordered_extent(ordered
);
963 * add a given inode to the list of inodes that must be fully on
964 * disk before a transaction commit finishes.
966 * This basically gives us the ext3 style data=ordered mode, and it is mostly
967 * used to make sure renamed files are fully on disk.
969 * It is a noop if the inode is already fully on disk.
971 * If trans is not null, we'll do a friendly check for a transaction that
972 * is already flushing things and force the IO down ourselves.
974 void btrfs_add_ordered_operation(struct btrfs_trans_handle
*trans
,
975 struct btrfs_root
*root
, struct inode
*inode
)
979 last_mod
= max(BTRFS_I(inode
)->generation
, BTRFS_I(inode
)->last_trans
);
982 * if this file hasn't been changed since the last transaction
983 * commit, we can safely return without doing anything
985 if (last_mod
< root
->fs_info
->last_trans_committed
)
988 spin_lock(&root
->fs_info
->ordered_extent_lock
);
989 if (list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
990 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
991 &root
->fs_info
->ordered_operations
);
993 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
996 int __init
ordered_data_init(void)
998 btrfs_ordered_extent_cache
= kmem_cache_create("btrfs_ordered_extent",
999 sizeof(struct btrfs_ordered_extent
), 0,
1000 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
1002 if (!btrfs_ordered_extent_cache
)
1008 void ordered_data_exit(void)
1010 if (btrfs_ordered_extent_cache
)
1011 kmem_cache_destroy(btrfs_ordered_extent_cache
);