2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 void put_transaction(struct btrfs_transaction
*transaction
)
39 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
40 if (atomic_dec_and_test(&transaction
->use_count
)) {
41 BUG_ON(!list_empty(&transaction
->list
));
42 WARN_ON(transaction
->delayed_refs
.root
.rb_node
);
43 memset(transaction
, 0, sizeof(*transaction
));
44 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
48 static noinline
void switch_commit_root(struct btrfs_root
*root
)
50 free_extent_buffer(root
->commit_root
);
51 root
->commit_root
= btrfs_root_node(root
);
55 * either allocate a new transaction or hop into the existing one
57 static noinline
int join_transaction(struct btrfs_root
*root
, int type
)
59 struct btrfs_transaction
*cur_trans
;
60 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
62 spin_lock(&fs_info
->trans_lock
);
64 /* The file system has been taken offline. No new transactions. */
65 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
66 spin_unlock(&fs_info
->trans_lock
);
70 if (fs_info
->trans_no_join
) {
72 * If we are JOIN_NOLOCK we're already committing a current
73 * transaction, we just need a handle to deal with something
74 * when committing the transaction, such as inode cache and
75 * space cache. It is a special case.
77 if (type
!= TRANS_JOIN_NOLOCK
) {
78 spin_unlock(&fs_info
->trans_lock
);
83 cur_trans
= fs_info
->running_transaction
;
85 if (cur_trans
->aborted
) {
86 spin_unlock(&fs_info
->trans_lock
);
87 return cur_trans
->aborted
;
89 atomic_inc(&cur_trans
->use_count
);
90 atomic_inc(&cur_trans
->num_writers
);
91 cur_trans
->num_joined
++;
92 spin_unlock(&fs_info
->trans_lock
);
95 spin_unlock(&fs_info
->trans_lock
);
98 * If we are ATTACH, we just want to catch the current transaction,
99 * and commit it. If there is no transaction, just return ENOENT.
101 if (type
== TRANS_ATTACH
)
104 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
108 spin_lock(&fs_info
->trans_lock
);
109 if (fs_info
->running_transaction
) {
111 * someone started a transaction after we unlocked. Make sure
112 * to redo the trans_no_join checks above
114 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
115 cur_trans
= fs_info
->running_transaction
;
117 } else if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
118 spin_unlock(&fs_info
->trans_lock
);
119 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
123 atomic_set(&cur_trans
->num_writers
, 1);
124 cur_trans
->num_joined
= 0;
125 init_waitqueue_head(&cur_trans
->writer_wait
);
126 init_waitqueue_head(&cur_trans
->commit_wait
);
127 cur_trans
->in_commit
= 0;
128 cur_trans
->blocked
= 0;
130 * One for this trans handle, one so it will live on until we
131 * commit the transaction.
133 atomic_set(&cur_trans
->use_count
, 2);
134 cur_trans
->commit_done
= 0;
135 cur_trans
->start_time
= get_seconds();
137 cur_trans
->delayed_refs
.root
= RB_ROOT
;
138 cur_trans
->delayed_refs
.num_entries
= 0;
139 cur_trans
->delayed_refs
.num_heads_ready
= 0;
140 cur_trans
->delayed_refs
.num_heads
= 0;
141 cur_trans
->delayed_refs
.flushing
= 0;
142 cur_trans
->delayed_refs
.run_delayed_start
= 0;
145 * although the tree mod log is per file system and not per transaction,
146 * the log must never go across transaction boundaries.
149 if (!list_empty(&fs_info
->tree_mod_seq_list
))
150 WARN(1, KERN_ERR
"btrfs: tree_mod_seq_list not empty when "
151 "creating a fresh transaction\n");
152 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
153 WARN(1, KERN_ERR
"btrfs: tree_mod_log rb tree not empty when "
154 "creating a fresh transaction\n");
155 atomic_set(&fs_info
->tree_mod_seq
, 0);
157 spin_lock_init(&cur_trans
->commit_lock
);
158 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
160 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
161 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
162 extent_io_tree_init(&cur_trans
->dirty_pages
,
163 fs_info
->btree_inode
->i_mapping
);
164 fs_info
->generation
++;
165 cur_trans
->transid
= fs_info
->generation
;
166 fs_info
->running_transaction
= cur_trans
;
167 cur_trans
->aborted
= 0;
168 spin_unlock(&fs_info
->trans_lock
);
174 * this does all the record keeping required to make sure that a reference
175 * counted root is properly recorded in a given transaction. This is required
176 * to make sure the old root from before we joined the transaction is deleted
177 * when the transaction commits
179 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
180 struct btrfs_root
*root
)
182 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
183 WARN_ON(root
== root
->fs_info
->extent_root
);
184 WARN_ON(root
->commit_root
!= root
->node
);
187 * see below for in_trans_setup usage rules
188 * we have the reloc mutex held now, so there
189 * is only one writer in this function
191 root
->in_trans_setup
= 1;
193 /* make sure readers find in_trans_setup before
194 * they find our root->last_trans update
198 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
199 if (root
->last_trans
== trans
->transid
) {
200 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
203 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
204 (unsigned long)root
->root_key
.objectid
,
205 BTRFS_ROOT_TRANS_TAG
);
206 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
207 root
->last_trans
= trans
->transid
;
209 /* this is pretty tricky. We don't want to
210 * take the relocation lock in btrfs_record_root_in_trans
211 * unless we're really doing the first setup for this root in
214 * Normally we'd use root->last_trans as a flag to decide
215 * if we want to take the expensive mutex.
217 * But, we have to set root->last_trans before we
218 * init the relocation root, otherwise, we trip over warnings
219 * in ctree.c. The solution used here is to flag ourselves
220 * with root->in_trans_setup. When this is 1, we're still
221 * fixing up the reloc trees and everyone must wait.
223 * When this is zero, they can trust root->last_trans and fly
224 * through btrfs_record_root_in_trans without having to take the
225 * lock. smp_wmb() makes sure that all the writes above are
226 * done before we pop in the zero below
228 btrfs_init_reloc_root(trans
, root
);
230 root
->in_trans_setup
= 0;
236 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
237 struct btrfs_root
*root
)
243 * see record_root_in_trans for comments about in_trans_setup usage
247 if (root
->last_trans
== trans
->transid
&&
248 !root
->in_trans_setup
)
251 mutex_lock(&root
->fs_info
->reloc_mutex
);
252 record_root_in_trans(trans
, root
);
253 mutex_unlock(&root
->fs_info
->reloc_mutex
);
258 /* wait for commit against the current transaction to become unblocked
259 * when this is done, it is safe to start a new transaction, but the current
260 * transaction might not be fully on disk.
262 static void wait_current_trans(struct btrfs_root
*root
)
264 struct btrfs_transaction
*cur_trans
;
266 spin_lock(&root
->fs_info
->trans_lock
);
267 cur_trans
= root
->fs_info
->running_transaction
;
268 if (cur_trans
&& cur_trans
->blocked
) {
269 atomic_inc(&cur_trans
->use_count
);
270 spin_unlock(&root
->fs_info
->trans_lock
);
272 wait_event(root
->fs_info
->transaction_wait
,
273 !cur_trans
->blocked
);
274 put_transaction(cur_trans
);
276 spin_unlock(&root
->fs_info
->trans_lock
);
280 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
282 if (root
->fs_info
->log_root_recovering
)
285 if (type
== TRANS_USERSPACE
)
288 if (type
== TRANS_START
&&
289 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
295 static struct btrfs_trans_handle
*
296 start_transaction(struct btrfs_root
*root
, u64 num_items
, int type
,
297 enum btrfs_reserve_flush_enum flush
)
299 struct btrfs_trans_handle
*h
;
300 struct btrfs_transaction
*cur_trans
;
303 u64 qgroup_reserved
= 0;
305 if (root
->fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
306 return ERR_PTR(-EROFS
);
308 if (current
->journal_info
) {
309 WARN_ON(type
!= TRANS_JOIN
&& type
!= TRANS_JOIN_NOLOCK
);
310 h
= current
->journal_info
;
312 WARN_ON(h
->use_count
> 2);
313 h
->orig_rsv
= h
->block_rsv
;
319 * Do the reservation before we join the transaction so we can do all
320 * the appropriate flushing if need be.
322 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
323 if (root
->fs_info
->quota_enabled
&&
324 is_fstree(root
->root_key
.objectid
)) {
325 qgroup_reserved
= num_items
* root
->leafsize
;
326 ret
= btrfs_qgroup_reserve(root
, qgroup_reserved
);
331 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
332 ret
= btrfs_block_rsv_add(root
,
333 &root
->fs_info
->trans_block_rsv
,
339 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
346 * If we are JOIN_NOLOCK we're already committing a transaction and
347 * waiting on this guy, so we don't need to do the sb_start_intwrite
348 * because we're already holding a ref. We need this because we could
349 * have raced in and did an fsync() on a file which can kick a commit
350 * and then we deadlock with somebody doing a freeze.
352 * If we are ATTACH, it means we just want to catch the current
353 * transaction and commit it, so we needn't do sb_start_intwrite().
355 if (type
< TRANS_JOIN_NOLOCK
)
356 sb_start_intwrite(root
->fs_info
->sb
);
358 if (may_wait_transaction(root
, type
))
359 wait_current_trans(root
);
362 ret
= join_transaction(root
, type
);
364 wait_current_trans(root
);
365 } while (ret
== -EBUSY
);
368 /* We must get the transaction if we are JOIN_NOLOCK. */
369 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
373 cur_trans
= root
->fs_info
->running_transaction
;
375 h
->transid
= cur_trans
->transid
;
376 h
->transaction
= cur_trans
;
378 h
->bytes_reserved
= 0;
380 h
->delayed_ref_updates
= 0;
386 h
->qgroup_reserved
= qgroup_reserved
;
387 h
->delayed_ref_elem
.seq
= 0;
389 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
390 INIT_LIST_HEAD(&h
->new_bgs
);
393 if (cur_trans
->blocked
&& may_wait_transaction(root
, type
)) {
394 btrfs_commit_transaction(h
, root
);
399 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
400 h
->transid
, num_bytes
, 1);
401 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
402 h
->bytes_reserved
= num_bytes
;
406 btrfs_record_root_in_trans(h
, root
);
408 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
409 current
->journal_info
= h
;
413 if (type
< TRANS_JOIN_NOLOCK
)
414 sb_end_intwrite(root
->fs_info
->sb
);
415 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
418 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
422 btrfs_qgroup_free(root
, qgroup_reserved
);
426 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
429 return start_transaction(root
, num_items
, TRANS_START
,
430 BTRFS_RESERVE_FLUSH_ALL
);
433 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
434 struct btrfs_root
*root
, int num_items
)
436 return start_transaction(root
, num_items
, TRANS_START
,
437 BTRFS_RESERVE_FLUSH_LIMIT
);
440 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
442 return start_transaction(root
, 0, TRANS_JOIN
, 0);
445 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
447 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
450 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
452 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
455 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
457 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
460 /* wait for a transaction commit to be fully complete */
461 static noinline
void wait_for_commit(struct btrfs_root
*root
,
462 struct btrfs_transaction
*commit
)
464 wait_event(commit
->commit_wait
, commit
->commit_done
);
467 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
469 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
473 if (transid
<= root
->fs_info
->last_trans_committed
)
477 /* find specified transaction */
478 spin_lock(&root
->fs_info
->trans_lock
);
479 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
480 if (t
->transid
== transid
) {
482 atomic_inc(&cur_trans
->use_count
);
486 if (t
->transid
> transid
) {
491 spin_unlock(&root
->fs_info
->trans_lock
);
492 /* The specified transaction doesn't exist */
496 /* find newest transaction that is committing | committed */
497 spin_lock(&root
->fs_info
->trans_lock
);
498 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
504 atomic_inc(&cur_trans
->use_count
);
508 spin_unlock(&root
->fs_info
->trans_lock
);
510 goto out
; /* nothing committing|committed */
513 wait_for_commit(root
, cur_trans
);
514 put_transaction(cur_trans
);
519 void btrfs_throttle(struct btrfs_root
*root
)
521 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
522 wait_current_trans(root
);
525 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
526 struct btrfs_root
*root
)
530 ret
= btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
534 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
535 struct btrfs_root
*root
)
537 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
542 if (cur_trans
->blocked
|| cur_trans
->delayed_refs
.flushing
)
545 updates
= trans
->delayed_ref_updates
;
546 trans
->delayed_ref_updates
= 0;
548 err
= btrfs_run_delayed_refs(trans
, root
, updates
);
549 if (err
) /* Error code will also eval true */
553 return should_end_transaction(trans
, root
);
556 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
557 struct btrfs_root
*root
, int throttle
)
559 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
560 struct btrfs_fs_info
*info
= root
->fs_info
;
562 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
565 if (--trans
->use_count
) {
566 trans
->block_rsv
= trans
->orig_rsv
;
571 * do the qgroup accounting as early as possible
573 err
= btrfs_delayed_refs_qgroup_accounting(trans
, info
);
575 btrfs_trans_release_metadata(trans
, root
);
576 trans
->block_rsv
= NULL
;
578 * the same root has to be passed to start_transaction and
579 * end_transaction. Subvolume quota depends on this.
581 WARN_ON(trans
->root
!= root
);
583 if (trans
->qgroup_reserved
) {
584 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
585 trans
->qgroup_reserved
= 0;
588 if (!list_empty(&trans
->new_bgs
))
589 btrfs_create_pending_block_groups(trans
, root
);
592 unsigned long cur
= trans
->delayed_ref_updates
;
593 trans
->delayed_ref_updates
= 0;
595 trans
->transaction
->delayed_refs
.num_heads_ready
> 64) {
596 trans
->delayed_ref_updates
= 0;
597 btrfs_run_delayed_refs(trans
, root
, cur
);
603 btrfs_trans_release_metadata(trans
, root
);
604 trans
->block_rsv
= NULL
;
606 if (!list_empty(&trans
->new_bgs
))
607 btrfs_create_pending_block_groups(trans
, root
);
609 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
610 should_end_transaction(trans
, root
)) {
611 trans
->transaction
->blocked
= 1;
615 if (lock
&& cur_trans
->blocked
&& !cur_trans
->in_commit
) {
618 * We may race with somebody else here so end up having
619 * to call end_transaction on ourselves again, so inc
623 return btrfs_commit_transaction(trans
, root
);
625 wake_up_process(info
->transaction_kthread
);
629 if (trans
->type
< TRANS_JOIN_NOLOCK
)
630 sb_end_intwrite(root
->fs_info
->sb
);
632 WARN_ON(cur_trans
!= info
->running_transaction
);
633 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
634 atomic_dec(&cur_trans
->num_writers
);
637 if (waitqueue_active(&cur_trans
->writer_wait
))
638 wake_up(&cur_trans
->writer_wait
);
639 put_transaction(cur_trans
);
641 if (current
->journal_info
== trans
)
642 current
->journal_info
= NULL
;
645 btrfs_run_delayed_iputs(root
);
647 if (trans
->aborted
||
648 root
->fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
651 assert_qgroups_uptodate(trans
);
653 memset(trans
, 0, sizeof(*trans
));
654 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
658 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
659 struct btrfs_root
*root
)
663 ret
= __btrfs_end_transaction(trans
, root
, 0);
669 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
670 struct btrfs_root
*root
)
674 ret
= __btrfs_end_transaction(trans
, root
, 1);
680 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle
*trans
,
681 struct btrfs_root
*root
)
683 return __btrfs_end_transaction(trans
, root
, 1);
687 * when btree blocks are allocated, they have some corresponding bits set for
688 * them in one of two extent_io trees. This is used to make sure all of
689 * those extents are sent to disk but does not wait on them
691 int btrfs_write_marked_extents(struct btrfs_root
*root
,
692 struct extent_io_tree
*dirty_pages
, int mark
)
696 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
697 struct extent_state
*cached_state
= NULL
;
701 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
702 mark
, &cached_state
)) {
703 convert_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
704 mark
, &cached_state
, GFP_NOFS
);
706 err
= filemap_fdatawrite_range(mapping
, start
, end
);
718 * when btree blocks are allocated, they have some corresponding bits set for
719 * them in one of two extent_io trees. This is used to make sure all of
720 * those extents are on disk for transaction or log commit. We wait
721 * on all the pages and clear them from the dirty pages state tree
723 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
724 struct extent_io_tree
*dirty_pages
, int mark
)
728 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
729 struct extent_state
*cached_state
= NULL
;
733 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
734 EXTENT_NEED_WAIT
, &cached_state
)) {
735 clear_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
736 0, 0, &cached_state
, GFP_NOFS
);
737 err
= filemap_fdatawait_range(mapping
, start
, end
);
749 * when btree blocks are allocated, they have some corresponding bits set for
750 * them in one of two extent_io trees. This is used to make sure all of
751 * those extents are on disk for transaction or log commit
753 int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
754 struct extent_io_tree
*dirty_pages
, int mark
)
759 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
760 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
769 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
770 struct btrfs_root
*root
)
772 if (!trans
|| !trans
->transaction
) {
773 struct inode
*btree_inode
;
774 btree_inode
= root
->fs_info
->btree_inode
;
775 return filemap_write_and_wait(btree_inode
->i_mapping
);
777 return btrfs_write_and_wait_marked_extents(root
,
778 &trans
->transaction
->dirty_pages
,
783 * this is used to update the root pointer in the tree of tree roots.
785 * But, in the case of the extent allocation tree, updating the root
786 * pointer may allocate blocks which may change the root of the extent
789 * So, this loops and repeats and makes sure the cowonly root didn't
790 * change while the root pointer was being updated in the metadata.
792 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
793 struct btrfs_root
*root
)
798 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
800 old_root_used
= btrfs_root_used(&root
->root_item
);
801 btrfs_write_dirty_block_groups(trans
, root
);
804 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
805 if (old_root_bytenr
== root
->node
->start
&&
806 old_root_used
== btrfs_root_used(&root
->root_item
))
809 btrfs_set_root_node(&root
->root_item
, root
->node
);
810 ret
= btrfs_update_root(trans
, tree_root
,
816 old_root_used
= btrfs_root_used(&root
->root_item
);
817 ret
= btrfs_write_dirty_block_groups(trans
, root
);
822 if (root
!= root
->fs_info
->extent_root
)
823 switch_commit_root(root
);
829 * update all the cowonly tree roots on disk
831 * The error handling in this function may not be obvious. Any of the
832 * failures will cause the file system to go offline. We still need
833 * to clean up the delayed refs.
835 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
836 struct btrfs_root
*root
)
838 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
839 struct list_head
*next
;
840 struct extent_buffer
*eb
;
843 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
847 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
848 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
850 btrfs_tree_unlock(eb
);
851 free_extent_buffer(eb
);
856 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
860 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
862 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
865 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
868 /* run_qgroups might have added some more refs */
869 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
872 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
873 next
= fs_info
->dirty_cowonly_roots
.next
;
875 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
877 ret
= update_cowonly_root(trans
, root
);
882 down_write(&fs_info
->extent_commit_sem
);
883 switch_commit_root(fs_info
->extent_root
);
884 up_write(&fs_info
->extent_commit_sem
);
886 btrfs_after_dev_replace_commit(fs_info
);
892 * dead roots are old snapshots that need to be deleted. This allocates
893 * a dirty root struct and adds it into the list of dead roots that need to
896 int btrfs_add_dead_root(struct btrfs_root
*root
)
898 spin_lock(&root
->fs_info
->trans_lock
);
899 list_add(&root
->root_list
, &root
->fs_info
->dead_roots
);
900 spin_unlock(&root
->fs_info
->trans_lock
);
905 * update all the cowonly tree roots on disk
907 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
908 struct btrfs_root
*root
)
910 struct btrfs_root
*gang
[8];
911 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
916 spin_lock(&fs_info
->fs_roots_radix_lock
);
918 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
921 BTRFS_ROOT_TRANS_TAG
);
924 for (i
= 0; i
< ret
; i
++) {
926 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
927 (unsigned long)root
->root_key
.objectid
,
928 BTRFS_ROOT_TRANS_TAG
);
929 spin_unlock(&fs_info
->fs_roots_radix_lock
);
931 btrfs_free_log(trans
, root
);
932 btrfs_update_reloc_root(trans
, root
);
933 btrfs_orphan_commit_root(trans
, root
);
935 btrfs_save_ino_cache(root
, trans
);
937 /* see comments in should_cow_block() */
941 if (root
->commit_root
!= root
->node
) {
942 mutex_lock(&root
->fs_commit_mutex
);
943 switch_commit_root(root
);
944 btrfs_unpin_free_ino(root
);
945 mutex_unlock(&root
->fs_commit_mutex
);
947 btrfs_set_root_node(&root
->root_item
,
951 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
954 spin_lock(&fs_info
->fs_roots_radix_lock
);
959 spin_unlock(&fs_info
->fs_roots_radix_lock
);
964 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
965 * otherwise every leaf in the btree is read and defragged.
967 int btrfs_defrag_root(struct btrfs_root
*root
, int cacheonly
)
969 struct btrfs_fs_info
*info
= root
->fs_info
;
970 struct btrfs_trans_handle
*trans
;
973 if (xchg(&root
->defrag_running
, 1))
977 trans
= btrfs_start_transaction(root
, 0);
979 return PTR_ERR(trans
);
981 ret
= btrfs_defrag_leaves(trans
, root
, cacheonly
);
983 btrfs_end_transaction(trans
, root
);
984 btrfs_btree_balance_dirty(info
->tree_root
);
987 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
990 root
->defrag_running
= 0;
995 * new snapshots need to be created at a very specific time in the
996 * transaction commit. This does the actual creation
998 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
999 struct btrfs_fs_info
*fs_info
,
1000 struct btrfs_pending_snapshot
*pending
)
1002 struct btrfs_key key
;
1003 struct btrfs_root_item
*new_root_item
;
1004 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1005 struct btrfs_root
*root
= pending
->root
;
1006 struct btrfs_root
*parent_root
;
1007 struct btrfs_block_rsv
*rsv
;
1008 struct inode
*parent_inode
;
1009 struct btrfs_path
*path
;
1010 struct btrfs_dir_item
*dir_item
;
1011 struct dentry
*parent
;
1012 struct dentry
*dentry
;
1013 struct extent_buffer
*tmp
;
1014 struct extent_buffer
*old
;
1015 struct timespec cur_time
= CURRENT_TIME
;
1023 path
= btrfs_alloc_path();
1025 ret
= pending
->error
= -ENOMEM
;
1026 goto path_alloc_fail
;
1029 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1030 if (!new_root_item
) {
1031 ret
= pending
->error
= -ENOMEM
;
1032 goto root_item_alloc_fail
;
1035 ret
= btrfs_find_free_objectid(tree_root
, &objectid
);
1037 pending
->error
= ret
;
1038 goto no_free_objectid
;
1041 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
1043 if (to_reserve
> 0) {
1044 ret
= btrfs_block_rsv_add(root
, &pending
->block_rsv
,
1046 BTRFS_RESERVE_NO_FLUSH
);
1048 pending
->error
= ret
;
1049 goto no_free_objectid
;
1053 ret
= btrfs_qgroup_inherit(trans
, fs_info
, root
->root_key
.objectid
,
1054 objectid
, pending
->inherit
);
1056 pending
->error
= ret
;
1057 goto no_free_objectid
;
1060 key
.objectid
= objectid
;
1061 key
.offset
= (u64
)-1;
1062 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1064 rsv
= trans
->block_rsv
;
1065 trans
->block_rsv
= &pending
->block_rsv
;
1067 dentry
= pending
->dentry
;
1068 parent
= dget_parent(dentry
);
1069 parent_inode
= parent
->d_inode
;
1070 parent_root
= BTRFS_I(parent_inode
)->root
;
1071 record_root_in_trans(trans
, parent_root
);
1074 * insert the directory item
1076 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1077 BUG_ON(ret
); /* -ENOMEM */
1079 /* check if there is a file/dir which has the same name. */
1080 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1081 btrfs_ino(parent_inode
),
1082 dentry
->d_name
.name
,
1083 dentry
->d_name
.len
, 0);
1084 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1085 pending
->error
= -EEXIST
;
1087 } else if (IS_ERR(dir_item
)) {
1088 ret
= PTR_ERR(dir_item
);
1089 btrfs_abort_transaction(trans
, root
, ret
);
1092 btrfs_release_path(path
);
1095 * pull in the delayed directory update
1096 * and the delayed inode item
1097 * otherwise we corrupt the FS during
1100 ret
= btrfs_run_delayed_items(trans
, root
);
1101 if (ret
) { /* Transaction aborted */
1102 btrfs_abort_transaction(trans
, root
, ret
);
1106 record_root_in_trans(trans
, root
);
1107 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1108 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1109 btrfs_check_and_init_root_item(new_root_item
);
1111 root_flags
= btrfs_root_flags(new_root_item
);
1112 if (pending
->readonly
)
1113 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1115 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1116 btrfs_set_root_flags(new_root_item
, root_flags
);
1118 btrfs_set_root_generation_v2(new_root_item
,
1120 uuid_le_gen(&new_uuid
);
1121 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1122 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1124 new_root_item
->otime
.sec
= cpu_to_le64(cur_time
.tv_sec
);
1125 new_root_item
->otime
.nsec
= cpu_to_le32(cur_time
.tv_nsec
);
1126 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1127 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1128 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1129 btrfs_set_root_stransid(new_root_item
, 0);
1130 btrfs_set_root_rtransid(new_root_item
, 0);
1132 old
= btrfs_lock_root_node(root
);
1133 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1135 btrfs_tree_unlock(old
);
1136 free_extent_buffer(old
);
1137 btrfs_abort_transaction(trans
, root
, ret
);
1141 btrfs_set_lock_blocking(old
);
1143 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1144 /* clean up in any case */
1145 btrfs_tree_unlock(old
);
1146 free_extent_buffer(old
);
1148 btrfs_abort_transaction(trans
, root
, ret
);
1152 /* see comments in should_cow_block() */
1153 root
->force_cow
= 1;
1156 btrfs_set_root_node(new_root_item
, tmp
);
1157 /* record when the snapshot was created in key.offset */
1158 key
.offset
= trans
->transid
;
1159 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1160 btrfs_tree_unlock(tmp
);
1161 free_extent_buffer(tmp
);
1163 btrfs_abort_transaction(trans
, root
, ret
);
1168 * insert root back/forward references
1170 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1171 parent_root
->root_key
.objectid
,
1172 btrfs_ino(parent_inode
), index
,
1173 dentry
->d_name
.name
, dentry
->d_name
.len
);
1175 btrfs_abort_transaction(trans
, root
, ret
);
1179 key
.offset
= (u64
)-1;
1180 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1181 if (IS_ERR(pending
->snap
)) {
1182 ret
= PTR_ERR(pending
->snap
);
1183 btrfs_abort_transaction(trans
, root
, ret
);
1187 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1189 btrfs_abort_transaction(trans
, root
, ret
);
1193 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1195 btrfs_abort_transaction(trans
, root
, ret
);
1199 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1200 dentry
->d_name
.name
, dentry
->d_name
.len
,
1202 BTRFS_FT_DIR
, index
);
1203 /* We have check then name at the beginning, so it is impossible. */
1204 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1206 btrfs_abort_transaction(trans
, root
, ret
);
1210 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1211 dentry
->d_name
.len
* 2);
1212 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1213 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1215 btrfs_abort_transaction(trans
, root
, ret
);
1218 trans
->block_rsv
= rsv
;
1220 kfree(new_root_item
);
1221 root_item_alloc_fail
:
1222 btrfs_free_path(path
);
1224 btrfs_block_rsv_release(root
, &pending
->block_rsv
, (u64
)-1);
1229 * create all the snapshots we've scheduled for creation
1231 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1232 struct btrfs_fs_info
*fs_info
)
1234 struct btrfs_pending_snapshot
*pending
;
1235 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1237 list_for_each_entry(pending
, head
, list
)
1238 create_pending_snapshot(trans
, fs_info
, pending
);
1242 static void update_super_roots(struct btrfs_root
*root
)
1244 struct btrfs_root_item
*root_item
;
1245 struct btrfs_super_block
*super
;
1247 super
= root
->fs_info
->super_copy
;
1249 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1250 super
->chunk_root
= root_item
->bytenr
;
1251 super
->chunk_root_generation
= root_item
->generation
;
1252 super
->chunk_root_level
= root_item
->level
;
1254 root_item
= &root
->fs_info
->tree_root
->root_item
;
1255 super
->root
= root_item
->bytenr
;
1256 super
->generation
= root_item
->generation
;
1257 super
->root_level
= root_item
->level
;
1258 if (btrfs_test_opt(root
, SPACE_CACHE
))
1259 super
->cache_generation
= root_item
->generation
;
1262 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1265 spin_lock(&info
->trans_lock
);
1266 if (info
->running_transaction
)
1267 ret
= info
->running_transaction
->in_commit
;
1268 spin_unlock(&info
->trans_lock
);
1272 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1275 spin_lock(&info
->trans_lock
);
1276 if (info
->running_transaction
)
1277 ret
= info
->running_transaction
->blocked
;
1278 spin_unlock(&info
->trans_lock
);
1283 * wait for the current transaction commit to start and block subsequent
1286 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1287 struct btrfs_transaction
*trans
)
1289 wait_event(root
->fs_info
->transaction_blocked_wait
, trans
->in_commit
);
1293 * wait for the current transaction to start and then become unblocked.
1296 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1297 struct btrfs_transaction
*trans
)
1299 wait_event(root
->fs_info
->transaction_wait
,
1300 trans
->commit_done
|| (trans
->in_commit
&& !trans
->blocked
));
1304 * commit transactions asynchronously. once btrfs_commit_transaction_async
1305 * returns, any subsequent transaction will not be allowed to join.
1307 struct btrfs_async_commit
{
1308 struct btrfs_trans_handle
*newtrans
;
1309 struct btrfs_root
*root
;
1310 struct delayed_work work
;
1313 static void do_async_commit(struct work_struct
*work
)
1315 struct btrfs_async_commit
*ac
=
1316 container_of(work
, struct btrfs_async_commit
, work
.work
);
1319 * We've got freeze protection passed with the transaction.
1320 * Tell lockdep about it.
1322 if (ac
->newtrans
->type
< TRANS_JOIN_NOLOCK
)
1324 &ac
->root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1327 current
->journal_info
= ac
->newtrans
;
1329 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1333 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1334 struct btrfs_root
*root
,
1335 int wait_for_unblock
)
1337 struct btrfs_async_commit
*ac
;
1338 struct btrfs_transaction
*cur_trans
;
1340 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1344 INIT_DELAYED_WORK(&ac
->work
, do_async_commit
);
1346 ac
->newtrans
= btrfs_join_transaction(root
);
1347 if (IS_ERR(ac
->newtrans
)) {
1348 int err
= PTR_ERR(ac
->newtrans
);
1353 /* take transaction reference */
1354 cur_trans
= trans
->transaction
;
1355 atomic_inc(&cur_trans
->use_count
);
1357 btrfs_end_transaction(trans
, root
);
1360 * Tell lockdep we've released the freeze rwsem, since the
1361 * async commit thread will be the one to unlock it.
1363 if (trans
->type
< TRANS_JOIN_NOLOCK
)
1365 &root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1368 schedule_delayed_work(&ac
->work
, 0);
1370 /* wait for transaction to start and unblock */
1371 if (wait_for_unblock
)
1372 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1374 wait_current_trans_commit_start(root
, cur_trans
);
1376 if (current
->journal_info
== trans
)
1377 current
->journal_info
= NULL
;
1379 put_transaction(cur_trans
);
1384 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1385 struct btrfs_root
*root
, int err
)
1387 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1389 WARN_ON(trans
->use_count
> 1);
1391 btrfs_abort_transaction(trans
, root
, err
);
1393 spin_lock(&root
->fs_info
->trans_lock
);
1394 list_del_init(&cur_trans
->list
);
1395 if (cur_trans
== root
->fs_info
->running_transaction
) {
1396 root
->fs_info
->running_transaction
= NULL
;
1397 root
->fs_info
->trans_no_join
= 0;
1399 spin_unlock(&root
->fs_info
->trans_lock
);
1401 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1403 put_transaction(cur_trans
);
1404 put_transaction(cur_trans
);
1406 trace_btrfs_transaction_commit(root
);
1408 btrfs_scrub_continue(root
);
1410 if (current
->journal_info
== trans
)
1411 current
->journal_info
= NULL
;
1413 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1416 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle
*trans
,
1417 struct btrfs_root
*root
)
1419 int flush_on_commit
= btrfs_test_opt(root
, FLUSHONCOMMIT
);
1420 int snap_pending
= 0;
1423 if (!flush_on_commit
) {
1424 spin_lock(&root
->fs_info
->trans_lock
);
1425 if (!list_empty(&trans
->transaction
->pending_snapshots
))
1427 spin_unlock(&root
->fs_info
->trans_lock
);
1430 if (flush_on_commit
|| snap_pending
) {
1431 btrfs_start_delalloc_inodes(root
, 1);
1432 btrfs_wait_ordered_extents(root
, 1);
1435 ret
= btrfs_run_delayed_items(trans
, root
);
1440 * running the delayed items may have added new refs. account
1441 * them now so that they hinder processing of more delayed refs
1442 * as little as possible.
1444 btrfs_delayed_refs_qgroup_accounting(trans
, root
->fs_info
);
1447 * rename don't use btrfs_join_transaction, so, once we
1448 * set the transaction to blocked above, we aren't going
1449 * to get any new ordered operations. We can safely run
1450 * it here and no for sure that nothing new will be added
1453 btrfs_run_ordered_operations(root
, 1);
1459 * btrfs_transaction state sequence:
1460 * in_commit = 0, blocked = 0 (initial)
1461 * in_commit = 1, blocked = 1
1465 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1466 struct btrfs_root
*root
)
1468 unsigned long joined
= 0;
1469 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1470 struct btrfs_transaction
*prev_trans
= NULL
;
1473 int should_grow
= 0;
1474 unsigned long now
= get_seconds();
1476 ret
= btrfs_run_ordered_operations(root
, 0);
1478 btrfs_abort_transaction(trans
, root
, ret
);
1479 goto cleanup_transaction
;
1482 /* Stop the commit early if ->aborted is set */
1483 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1484 ret
= cur_trans
->aborted
;
1485 goto cleanup_transaction
;
1488 /* make a pass through all the delayed refs we have so far
1489 * any runnings procs may add more while we are here
1491 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1493 goto cleanup_transaction
;
1495 btrfs_trans_release_metadata(trans
, root
);
1496 trans
->block_rsv
= NULL
;
1498 cur_trans
= trans
->transaction
;
1501 * set the flushing flag so procs in this transaction have to
1502 * start sending their work down.
1504 cur_trans
->delayed_refs
.flushing
= 1;
1506 if (!list_empty(&trans
->new_bgs
))
1507 btrfs_create_pending_block_groups(trans
, root
);
1509 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1511 goto cleanup_transaction
;
1513 spin_lock(&cur_trans
->commit_lock
);
1514 if (cur_trans
->in_commit
) {
1515 spin_unlock(&cur_trans
->commit_lock
);
1516 atomic_inc(&cur_trans
->use_count
);
1517 ret
= btrfs_end_transaction(trans
, root
);
1519 wait_for_commit(root
, cur_trans
);
1521 put_transaction(cur_trans
);
1526 trans
->transaction
->in_commit
= 1;
1527 trans
->transaction
->blocked
= 1;
1528 spin_unlock(&cur_trans
->commit_lock
);
1529 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1531 spin_lock(&root
->fs_info
->trans_lock
);
1532 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1533 prev_trans
= list_entry(cur_trans
->list
.prev
,
1534 struct btrfs_transaction
, list
);
1535 if (!prev_trans
->commit_done
) {
1536 atomic_inc(&prev_trans
->use_count
);
1537 spin_unlock(&root
->fs_info
->trans_lock
);
1539 wait_for_commit(root
, prev_trans
);
1541 put_transaction(prev_trans
);
1543 spin_unlock(&root
->fs_info
->trans_lock
);
1546 spin_unlock(&root
->fs_info
->trans_lock
);
1549 if (!btrfs_test_opt(root
, SSD
) &&
1550 (now
< cur_trans
->start_time
|| now
- cur_trans
->start_time
< 1))
1554 joined
= cur_trans
->num_joined
;
1556 WARN_ON(cur_trans
!= trans
->transaction
);
1558 ret
= btrfs_flush_all_pending_stuffs(trans
, root
);
1560 goto cleanup_transaction
;
1562 prepare_to_wait(&cur_trans
->writer_wait
, &wait
,
1563 TASK_UNINTERRUPTIBLE
);
1565 if (atomic_read(&cur_trans
->num_writers
) > 1)
1566 schedule_timeout(MAX_SCHEDULE_TIMEOUT
);
1567 else if (should_grow
)
1568 schedule_timeout(1);
1570 finish_wait(&cur_trans
->writer_wait
, &wait
);
1571 } while (atomic_read(&cur_trans
->num_writers
) > 1 ||
1572 (should_grow
&& cur_trans
->num_joined
!= joined
));
1574 ret
= btrfs_flush_all_pending_stuffs(trans
, root
);
1576 goto cleanup_transaction
;
1579 * Ok now we need to make sure to block out any other joins while we
1580 * commit the transaction. We could have started a join before setting
1581 * no_join so make sure to wait for num_writers to == 1 again.
1583 spin_lock(&root
->fs_info
->trans_lock
);
1584 root
->fs_info
->trans_no_join
= 1;
1585 spin_unlock(&root
->fs_info
->trans_lock
);
1586 wait_event(cur_trans
->writer_wait
,
1587 atomic_read(&cur_trans
->num_writers
) == 1);
1589 /* ->aborted might be set after the previous check, so check it */
1590 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1591 ret
= cur_trans
->aborted
;
1592 goto cleanup_transaction
;
1595 * the reloc mutex makes sure that we stop
1596 * the balancing code from coming in and moving
1597 * extents around in the middle of the commit
1599 mutex_lock(&root
->fs_info
->reloc_mutex
);
1602 * We needn't worry about the delayed items because we will
1603 * deal with them in create_pending_snapshot(), which is the
1604 * core function of the snapshot creation.
1606 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1608 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1609 goto cleanup_transaction
;
1613 * We insert the dir indexes of the snapshots and update the inode
1614 * of the snapshots' parents after the snapshot creation, so there
1615 * are some delayed items which are not dealt with. Now deal with
1618 * We needn't worry that this operation will corrupt the snapshots,
1619 * because all the tree which are snapshoted will be forced to COW
1620 * the nodes and leaves.
1622 ret
= btrfs_run_delayed_items(trans
, root
);
1624 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1625 goto cleanup_transaction
;
1628 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1630 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1631 goto cleanup_transaction
;
1635 * make sure none of the code above managed to slip in a
1638 btrfs_assert_delayed_root_empty(root
);
1640 WARN_ON(cur_trans
!= trans
->transaction
);
1642 btrfs_scrub_pause(root
);
1643 /* btrfs_commit_tree_roots is responsible for getting the
1644 * various roots consistent with each other. Every pointer
1645 * in the tree of tree roots has to point to the most up to date
1646 * root for every subvolume and other tree. So, we have to keep
1647 * the tree logging code from jumping in and changing any
1650 * At this point in the commit, there can't be any tree-log
1651 * writers, but a little lower down we drop the trans mutex
1652 * and let new people in. By holding the tree_log_mutex
1653 * from now until after the super is written, we avoid races
1654 * with the tree-log code.
1656 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1658 ret
= commit_fs_roots(trans
, root
);
1660 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1661 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1662 goto cleanup_transaction
;
1665 /* commit_fs_roots gets rid of all the tree log roots, it is now
1666 * safe to free the root of tree log roots
1668 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1670 ret
= commit_cowonly_roots(trans
, root
);
1672 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1673 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1674 goto cleanup_transaction
;
1678 * The tasks which save the space cache and inode cache may also
1679 * update ->aborted, check it.
1681 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1682 ret
= cur_trans
->aborted
;
1683 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1684 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1685 goto cleanup_transaction
;
1688 btrfs_prepare_extent_commit(trans
, root
);
1690 cur_trans
= root
->fs_info
->running_transaction
;
1692 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1693 root
->fs_info
->tree_root
->node
);
1694 switch_commit_root(root
->fs_info
->tree_root
);
1696 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1697 root
->fs_info
->chunk_root
->node
);
1698 switch_commit_root(root
->fs_info
->chunk_root
);
1700 assert_qgroups_uptodate(trans
);
1701 update_super_roots(root
);
1703 if (!root
->fs_info
->log_root_recovering
) {
1704 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
1705 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
1708 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
1709 sizeof(*root
->fs_info
->super_copy
));
1711 trans
->transaction
->blocked
= 0;
1712 spin_lock(&root
->fs_info
->trans_lock
);
1713 root
->fs_info
->running_transaction
= NULL
;
1714 root
->fs_info
->trans_no_join
= 0;
1715 spin_unlock(&root
->fs_info
->trans_lock
);
1716 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1718 wake_up(&root
->fs_info
->transaction_wait
);
1720 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1722 btrfs_error(root
->fs_info
, ret
,
1723 "Error while writing out transaction.");
1724 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1725 goto cleanup_transaction
;
1728 ret
= write_ctree_super(trans
, root
, 0);
1730 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1731 goto cleanup_transaction
;
1735 * the super is written, we can safely allow the tree-loggers
1736 * to go about their business
1738 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1740 btrfs_finish_extent_commit(trans
, root
);
1742 cur_trans
->commit_done
= 1;
1744 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1746 wake_up(&cur_trans
->commit_wait
);
1748 spin_lock(&root
->fs_info
->trans_lock
);
1749 list_del_init(&cur_trans
->list
);
1750 spin_unlock(&root
->fs_info
->trans_lock
);
1752 put_transaction(cur_trans
);
1753 put_transaction(cur_trans
);
1755 if (trans
->type
< TRANS_JOIN_NOLOCK
)
1756 sb_end_intwrite(root
->fs_info
->sb
);
1758 trace_btrfs_transaction_commit(root
);
1760 btrfs_scrub_continue(root
);
1762 if (current
->journal_info
== trans
)
1763 current
->journal_info
= NULL
;
1765 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1767 if (current
!= root
->fs_info
->transaction_kthread
)
1768 btrfs_run_delayed_iputs(root
);
1772 cleanup_transaction
:
1773 btrfs_trans_release_metadata(trans
, root
);
1774 trans
->block_rsv
= NULL
;
1775 btrfs_printk(root
->fs_info
, "Skipping commit of aborted transaction.\n");
1777 if (current
->journal_info
== trans
)
1778 current
->journal_info
= NULL
;
1779 cleanup_transaction(trans
, root
, ret
);
1785 * interface function to delete all the snapshots we have scheduled for deletion
1787 int btrfs_clean_old_snapshots(struct btrfs_root
*root
)
1790 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1792 spin_lock(&fs_info
->trans_lock
);
1793 list_splice_init(&fs_info
->dead_roots
, &list
);
1794 spin_unlock(&fs_info
->trans_lock
);
1796 while (!list_empty(&list
)) {
1799 root
= list_entry(list
.next
, struct btrfs_root
, root_list
);
1800 list_del(&root
->root_list
);
1802 btrfs_kill_all_delayed_nodes(root
);
1804 if (btrfs_header_backref_rev(root
->node
) <
1805 BTRFS_MIXED_BACKREF_REV
)
1806 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
1808 ret
=btrfs_drop_snapshot(root
, NULL
, 1, 0);