Linux 3.8-rc7
[cris-mirror.git] / fs / btrfs / transaction.c
blobfc03aa60b68440862e4884f90cb88113d15610a7
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 void put_transaction(struct btrfs_transaction *transaction)
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 memset(transaction, 0, sizeof(*transaction));
44 kmem_cache_free(btrfs_transaction_cachep, transaction);
48 static noinline void switch_commit_root(struct btrfs_root *root)
50 free_extent_buffer(root->commit_root);
51 root->commit_root = btrfs_root_node(root);
55 * either allocate a new transaction or hop into the existing one
57 static noinline int join_transaction(struct btrfs_root *root, int type)
59 struct btrfs_transaction *cur_trans;
60 struct btrfs_fs_info *fs_info = root->fs_info;
62 spin_lock(&fs_info->trans_lock);
63 loop:
64 /* The file system has been taken offline. No new transactions. */
65 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
66 spin_unlock(&fs_info->trans_lock);
67 return -EROFS;
70 if (fs_info->trans_no_join) {
71 /*
72 * If we are JOIN_NOLOCK we're already committing a current
73 * transaction, we just need a handle to deal with something
74 * when committing the transaction, such as inode cache and
75 * space cache. It is a special case.
77 if (type != TRANS_JOIN_NOLOCK) {
78 spin_unlock(&fs_info->trans_lock);
79 return -EBUSY;
83 cur_trans = fs_info->running_transaction;
84 if (cur_trans) {
85 if (cur_trans->aborted) {
86 spin_unlock(&fs_info->trans_lock);
87 return cur_trans->aborted;
89 atomic_inc(&cur_trans->use_count);
90 atomic_inc(&cur_trans->num_writers);
91 cur_trans->num_joined++;
92 spin_unlock(&fs_info->trans_lock);
93 return 0;
95 spin_unlock(&fs_info->trans_lock);
98 * If we are ATTACH, we just want to catch the current transaction,
99 * and commit it. If there is no transaction, just return ENOENT.
101 if (type == TRANS_ATTACH)
102 return -ENOENT;
104 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
105 if (!cur_trans)
106 return -ENOMEM;
108 spin_lock(&fs_info->trans_lock);
109 if (fs_info->running_transaction) {
111 * someone started a transaction after we unlocked. Make sure
112 * to redo the trans_no_join checks above
114 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
115 cur_trans = fs_info->running_transaction;
116 goto loop;
117 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
118 spin_unlock(&fs_info->trans_lock);
119 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
120 return -EROFS;
123 atomic_set(&cur_trans->num_writers, 1);
124 cur_trans->num_joined = 0;
125 init_waitqueue_head(&cur_trans->writer_wait);
126 init_waitqueue_head(&cur_trans->commit_wait);
127 cur_trans->in_commit = 0;
128 cur_trans->blocked = 0;
130 * One for this trans handle, one so it will live on until we
131 * commit the transaction.
133 atomic_set(&cur_trans->use_count, 2);
134 cur_trans->commit_done = 0;
135 cur_trans->start_time = get_seconds();
137 cur_trans->delayed_refs.root = RB_ROOT;
138 cur_trans->delayed_refs.num_entries = 0;
139 cur_trans->delayed_refs.num_heads_ready = 0;
140 cur_trans->delayed_refs.num_heads = 0;
141 cur_trans->delayed_refs.flushing = 0;
142 cur_trans->delayed_refs.run_delayed_start = 0;
145 * although the tree mod log is per file system and not per transaction,
146 * the log must never go across transaction boundaries.
148 smp_mb();
149 if (!list_empty(&fs_info->tree_mod_seq_list))
150 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
151 "creating a fresh transaction\n");
152 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
153 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
154 "creating a fresh transaction\n");
155 atomic_set(&fs_info->tree_mod_seq, 0);
157 spin_lock_init(&cur_trans->commit_lock);
158 spin_lock_init(&cur_trans->delayed_refs.lock);
160 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
161 list_add_tail(&cur_trans->list, &fs_info->trans_list);
162 extent_io_tree_init(&cur_trans->dirty_pages,
163 fs_info->btree_inode->i_mapping);
164 fs_info->generation++;
165 cur_trans->transid = fs_info->generation;
166 fs_info->running_transaction = cur_trans;
167 cur_trans->aborted = 0;
168 spin_unlock(&fs_info->trans_lock);
170 return 0;
174 * this does all the record keeping required to make sure that a reference
175 * counted root is properly recorded in a given transaction. This is required
176 * to make sure the old root from before we joined the transaction is deleted
177 * when the transaction commits
179 static int record_root_in_trans(struct btrfs_trans_handle *trans,
180 struct btrfs_root *root)
182 if (root->ref_cows && root->last_trans < trans->transid) {
183 WARN_ON(root == root->fs_info->extent_root);
184 WARN_ON(root->commit_root != root->node);
187 * see below for in_trans_setup usage rules
188 * we have the reloc mutex held now, so there
189 * is only one writer in this function
191 root->in_trans_setup = 1;
193 /* make sure readers find in_trans_setup before
194 * they find our root->last_trans update
196 smp_wmb();
198 spin_lock(&root->fs_info->fs_roots_radix_lock);
199 if (root->last_trans == trans->transid) {
200 spin_unlock(&root->fs_info->fs_roots_radix_lock);
201 return 0;
203 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
204 (unsigned long)root->root_key.objectid,
205 BTRFS_ROOT_TRANS_TAG);
206 spin_unlock(&root->fs_info->fs_roots_radix_lock);
207 root->last_trans = trans->transid;
209 /* this is pretty tricky. We don't want to
210 * take the relocation lock in btrfs_record_root_in_trans
211 * unless we're really doing the first setup for this root in
212 * this transaction.
214 * Normally we'd use root->last_trans as a flag to decide
215 * if we want to take the expensive mutex.
217 * But, we have to set root->last_trans before we
218 * init the relocation root, otherwise, we trip over warnings
219 * in ctree.c. The solution used here is to flag ourselves
220 * with root->in_trans_setup. When this is 1, we're still
221 * fixing up the reloc trees and everyone must wait.
223 * When this is zero, they can trust root->last_trans and fly
224 * through btrfs_record_root_in_trans without having to take the
225 * lock. smp_wmb() makes sure that all the writes above are
226 * done before we pop in the zero below
228 btrfs_init_reloc_root(trans, root);
229 smp_wmb();
230 root->in_trans_setup = 0;
232 return 0;
236 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
237 struct btrfs_root *root)
239 if (!root->ref_cows)
240 return 0;
243 * see record_root_in_trans for comments about in_trans_setup usage
244 * and barriers
246 smp_rmb();
247 if (root->last_trans == trans->transid &&
248 !root->in_trans_setup)
249 return 0;
251 mutex_lock(&root->fs_info->reloc_mutex);
252 record_root_in_trans(trans, root);
253 mutex_unlock(&root->fs_info->reloc_mutex);
255 return 0;
258 /* wait for commit against the current transaction to become unblocked
259 * when this is done, it is safe to start a new transaction, but the current
260 * transaction might not be fully on disk.
262 static void wait_current_trans(struct btrfs_root *root)
264 struct btrfs_transaction *cur_trans;
266 spin_lock(&root->fs_info->trans_lock);
267 cur_trans = root->fs_info->running_transaction;
268 if (cur_trans && cur_trans->blocked) {
269 atomic_inc(&cur_trans->use_count);
270 spin_unlock(&root->fs_info->trans_lock);
272 wait_event(root->fs_info->transaction_wait,
273 !cur_trans->blocked);
274 put_transaction(cur_trans);
275 } else {
276 spin_unlock(&root->fs_info->trans_lock);
280 static int may_wait_transaction(struct btrfs_root *root, int type)
282 if (root->fs_info->log_root_recovering)
283 return 0;
285 if (type == TRANS_USERSPACE)
286 return 1;
288 if (type == TRANS_START &&
289 !atomic_read(&root->fs_info->open_ioctl_trans))
290 return 1;
292 return 0;
295 static struct btrfs_trans_handle *
296 start_transaction(struct btrfs_root *root, u64 num_items, int type,
297 enum btrfs_reserve_flush_enum flush)
299 struct btrfs_trans_handle *h;
300 struct btrfs_transaction *cur_trans;
301 u64 num_bytes = 0;
302 int ret;
303 u64 qgroup_reserved = 0;
305 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
306 return ERR_PTR(-EROFS);
308 if (current->journal_info) {
309 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
310 h = current->journal_info;
311 h->use_count++;
312 WARN_ON(h->use_count > 2);
313 h->orig_rsv = h->block_rsv;
314 h->block_rsv = NULL;
315 goto got_it;
319 * Do the reservation before we join the transaction so we can do all
320 * the appropriate flushing if need be.
322 if (num_items > 0 && root != root->fs_info->chunk_root) {
323 if (root->fs_info->quota_enabled &&
324 is_fstree(root->root_key.objectid)) {
325 qgroup_reserved = num_items * root->leafsize;
326 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
327 if (ret)
328 return ERR_PTR(ret);
331 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
332 ret = btrfs_block_rsv_add(root,
333 &root->fs_info->trans_block_rsv,
334 num_bytes, flush);
335 if (ret)
336 goto reserve_fail;
338 again:
339 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
340 if (!h) {
341 ret = -ENOMEM;
342 goto alloc_fail;
346 * If we are JOIN_NOLOCK we're already committing a transaction and
347 * waiting on this guy, so we don't need to do the sb_start_intwrite
348 * because we're already holding a ref. We need this because we could
349 * have raced in and did an fsync() on a file which can kick a commit
350 * and then we deadlock with somebody doing a freeze.
352 * If we are ATTACH, it means we just want to catch the current
353 * transaction and commit it, so we needn't do sb_start_intwrite().
355 if (type < TRANS_JOIN_NOLOCK)
356 sb_start_intwrite(root->fs_info->sb);
358 if (may_wait_transaction(root, type))
359 wait_current_trans(root);
361 do {
362 ret = join_transaction(root, type);
363 if (ret == -EBUSY)
364 wait_current_trans(root);
365 } while (ret == -EBUSY);
367 if (ret < 0) {
368 /* We must get the transaction if we are JOIN_NOLOCK. */
369 BUG_ON(type == TRANS_JOIN_NOLOCK);
370 goto join_fail;
373 cur_trans = root->fs_info->running_transaction;
375 h->transid = cur_trans->transid;
376 h->transaction = cur_trans;
377 h->blocks_used = 0;
378 h->bytes_reserved = 0;
379 h->root = root;
380 h->delayed_ref_updates = 0;
381 h->use_count = 1;
382 h->adding_csums = 0;
383 h->block_rsv = NULL;
384 h->orig_rsv = NULL;
385 h->aborted = 0;
386 h->qgroup_reserved = qgroup_reserved;
387 h->delayed_ref_elem.seq = 0;
388 h->type = type;
389 INIT_LIST_HEAD(&h->qgroup_ref_list);
390 INIT_LIST_HEAD(&h->new_bgs);
392 smp_mb();
393 if (cur_trans->blocked && may_wait_transaction(root, type)) {
394 btrfs_commit_transaction(h, root);
395 goto again;
398 if (num_bytes) {
399 trace_btrfs_space_reservation(root->fs_info, "transaction",
400 h->transid, num_bytes, 1);
401 h->block_rsv = &root->fs_info->trans_block_rsv;
402 h->bytes_reserved = num_bytes;
405 got_it:
406 btrfs_record_root_in_trans(h, root);
408 if (!current->journal_info && type != TRANS_USERSPACE)
409 current->journal_info = h;
410 return h;
412 join_fail:
413 if (type < TRANS_JOIN_NOLOCK)
414 sb_end_intwrite(root->fs_info->sb);
415 kmem_cache_free(btrfs_trans_handle_cachep, h);
416 alloc_fail:
417 if (num_bytes)
418 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
419 num_bytes);
420 reserve_fail:
421 if (qgroup_reserved)
422 btrfs_qgroup_free(root, qgroup_reserved);
423 return ERR_PTR(ret);
426 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
427 int num_items)
429 return start_transaction(root, num_items, TRANS_START,
430 BTRFS_RESERVE_FLUSH_ALL);
433 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
434 struct btrfs_root *root, int num_items)
436 return start_transaction(root, num_items, TRANS_START,
437 BTRFS_RESERVE_FLUSH_LIMIT);
440 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
442 return start_transaction(root, 0, TRANS_JOIN, 0);
445 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
447 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
450 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
452 return start_transaction(root, 0, TRANS_USERSPACE, 0);
455 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
457 return start_transaction(root, 0, TRANS_ATTACH, 0);
460 /* wait for a transaction commit to be fully complete */
461 static noinline void wait_for_commit(struct btrfs_root *root,
462 struct btrfs_transaction *commit)
464 wait_event(commit->commit_wait, commit->commit_done);
467 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
469 struct btrfs_transaction *cur_trans = NULL, *t;
470 int ret = 0;
472 if (transid) {
473 if (transid <= root->fs_info->last_trans_committed)
474 goto out;
476 ret = -EINVAL;
477 /* find specified transaction */
478 spin_lock(&root->fs_info->trans_lock);
479 list_for_each_entry(t, &root->fs_info->trans_list, list) {
480 if (t->transid == transid) {
481 cur_trans = t;
482 atomic_inc(&cur_trans->use_count);
483 ret = 0;
484 break;
486 if (t->transid > transid) {
487 ret = 0;
488 break;
491 spin_unlock(&root->fs_info->trans_lock);
492 /* The specified transaction doesn't exist */
493 if (!cur_trans)
494 goto out;
495 } else {
496 /* find newest transaction that is committing | committed */
497 spin_lock(&root->fs_info->trans_lock);
498 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
499 list) {
500 if (t->in_commit) {
501 if (t->commit_done)
502 break;
503 cur_trans = t;
504 atomic_inc(&cur_trans->use_count);
505 break;
508 spin_unlock(&root->fs_info->trans_lock);
509 if (!cur_trans)
510 goto out; /* nothing committing|committed */
513 wait_for_commit(root, cur_trans);
514 put_transaction(cur_trans);
515 out:
516 return ret;
519 void btrfs_throttle(struct btrfs_root *root)
521 if (!atomic_read(&root->fs_info->open_ioctl_trans))
522 wait_current_trans(root);
525 static int should_end_transaction(struct btrfs_trans_handle *trans,
526 struct btrfs_root *root)
528 int ret;
530 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
531 return ret ? 1 : 0;
534 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
535 struct btrfs_root *root)
537 struct btrfs_transaction *cur_trans = trans->transaction;
538 int updates;
539 int err;
541 smp_mb();
542 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
543 return 1;
545 updates = trans->delayed_ref_updates;
546 trans->delayed_ref_updates = 0;
547 if (updates) {
548 err = btrfs_run_delayed_refs(trans, root, updates);
549 if (err) /* Error code will also eval true */
550 return err;
553 return should_end_transaction(trans, root);
556 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
557 struct btrfs_root *root, int throttle)
559 struct btrfs_transaction *cur_trans = trans->transaction;
560 struct btrfs_fs_info *info = root->fs_info;
561 int count = 0;
562 int lock = (trans->type != TRANS_JOIN_NOLOCK);
563 int err = 0;
565 if (--trans->use_count) {
566 trans->block_rsv = trans->orig_rsv;
567 return 0;
571 * do the qgroup accounting as early as possible
573 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
575 btrfs_trans_release_metadata(trans, root);
576 trans->block_rsv = NULL;
578 * the same root has to be passed to start_transaction and
579 * end_transaction. Subvolume quota depends on this.
581 WARN_ON(trans->root != root);
583 if (trans->qgroup_reserved) {
584 btrfs_qgroup_free(root, trans->qgroup_reserved);
585 trans->qgroup_reserved = 0;
588 if (!list_empty(&trans->new_bgs))
589 btrfs_create_pending_block_groups(trans, root);
591 while (count < 2) {
592 unsigned long cur = trans->delayed_ref_updates;
593 trans->delayed_ref_updates = 0;
594 if (cur &&
595 trans->transaction->delayed_refs.num_heads_ready > 64) {
596 trans->delayed_ref_updates = 0;
597 btrfs_run_delayed_refs(trans, root, cur);
598 } else {
599 break;
601 count++;
603 btrfs_trans_release_metadata(trans, root);
604 trans->block_rsv = NULL;
606 if (!list_empty(&trans->new_bgs))
607 btrfs_create_pending_block_groups(trans, root);
609 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
610 should_end_transaction(trans, root)) {
611 trans->transaction->blocked = 1;
612 smp_wmb();
615 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
616 if (throttle) {
618 * We may race with somebody else here so end up having
619 * to call end_transaction on ourselves again, so inc
620 * our use_count.
622 trans->use_count++;
623 return btrfs_commit_transaction(trans, root);
624 } else {
625 wake_up_process(info->transaction_kthread);
629 if (trans->type < TRANS_JOIN_NOLOCK)
630 sb_end_intwrite(root->fs_info->sb);
632 WARN_ON(cur_trans != info->running_transaction);
633 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
634 atomic_dec(&cur_trans->num_writers);
636 smp_mb();
637 if (waitqueue_active(&cur_trans->writer_wait))
638 wake_up(&cur_trans->writer_wait);
639 put_transaction(cur_trans);
641 if (current->journal_info == trans)
642 current->journal_info = NULL;
644 if (throttle)
645 btrfs_run_delayed_iputs(root);
647 if (trans->aborted ||
648 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
649 err = -EIO;
651 assert_qgroups_uptodate(trans);
653 memset(trans, 0, sizeof(*trans));
654 kmem_cache_free(btrfs_trans_handle_cachep, trans);
655 return err;
658 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
659 struct btrfs_root *root)
661 int ret;
663 ret = __btrfs_end_transaction(trans, root, 0);
664 if (ret)
665 return ret;
666 return 0;
669 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
670 struct btrfs_root *root)
672 int ret;
674 ret = __btrfs_end_transaction(trans, root, 1);
675 if (ret)
676 return ret;
677 return 0;
680 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
681 struct btrfs_root *root)
683 return __btrfs_end_transaction(trans, root, 1);
687 * when btree blocks are allocated, they have some corresponding bits set for
688 * them in one of two extent_io trees. This is used to make sure all of
689 * those extents are sent to disk but does not wait on them
691 int btrfs_write_marked_extents(struct btrfs_root *root,
692 struct extent_io_tree *dirty_pages, int mark)
694 int err = 0;
695 int werr = 0;
696 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
697 struct extent_state *cached_state = NULL;
698 u64 start = 0;
699 u64 end;
701 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
702 mark, &cached_state)) {
703 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
704 mark, &cached_state, GFP_NOFS);
705 cached_state = NULL;
706 err = filemap_fdatawrite_range(mapping, start, end);
707 if (err)
708 werr = err;
709 cond_resched();
710 start = end + 1;
712 if (err)
713 werr = err;
714 return werr;
718 * when btree blocks are allocated, they have some corresponding bits set for
719 * them in one of two extent_io trees. This is used to make sure all of
720 * those extents are on disk for transaction or log commit. We wait
721 * on all the pages and clear them from the dirty pages state tree
723 int btrfs_wait_marked_extents(struct btrfs_root *root,
724 struct extent_io_tree *dirty_pages, int mark)
726 int err = 0;
727 int werr = 0;
728 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
729 struct extent_state *cached_state = NULL;
730 u64 start = 0;
731 u64 end;
733 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
734 EXTENT_NEED_WAIT, &cached_state)) {
735 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
736 0, 0, &cached_state, GFP_NOFS);
737 err = filemap_fdatawait_range(mapping, start, end);
738 if (err)
739 werr = err;
740 cond_resched();
741 start = end + 1;
743 if (err)
744 werr = err;
745 return werr;
749 * when btree blocks are allocated, they have some corresponding bits set for
750 * them in one of two extent_io trees. This is used to make sure all of
751 * those extents are on disk for transaction or log commit
753 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
754 struct extent_io_tree *dirty_pages, int mark)
756 int ret;
757 int ret2;
759 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
760 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
762 if (ret)
763 return ret;
764 if (ret2)
765 return ret2;
766 return 0;
769 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
770 struct btrfs_root *root)
772 if (!trans || !trans->transaction) {
773 struct inode *btree_inode;
774 btree_inode = root->fs_info->btree_inode;
775 return filemap_write_and_wait(btree_inode->i_mapping);
777 return btrfs_write_and_wait_marked_extents(root,
778 &trans->transaction->dirty_pages,
779 EXTENT_DIRTY);
783 * this is used to update the root pointer in the tree of tree roots.
785 * But, in the case of the extent allocation tree, updating the root
786 * pointer may allocate blocks which may change the root of the extent
787 * allocation tree.
789 * So, this loops and repeats and makes sure the cowonly root didn't
790 * change while the root pointer was being updated in the metadata.
792 static int update_cowonly_root(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root)
795 int ret;
796 u64 old_root_bytenr;
797 u64 old_root_used;
798 struct btrfs_root *tree_root = root->fs_info->tree_root;
800 old_root_used = btrfs_root_used(&root->root_item);
801 btrfs_write_dirty_block_groups(trans, root);
803 while (1) {
804 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
805 if (old_root_bytenr == root->node->start &&
806 old_root_used == btrfs_root_used(&root->root_item))
807 break;
809 btrfs_set_root_node(&root->root_item, root->node);
810 ret = btrfs_update_root(trans, tree_root,
811 &root->root_key,
812 &root->root_item);
813 if (ret)
814 return ret;
816 old_root_used = btrfs_root_used(&root->root_item);
817 ret = btrfs_write_dirty_block_groups(trans, root);
818 if (ret)
819 return ret;
822 if (root != root->fs_info->extent_root)
823 switch_commit_root(root);
825 return 0;
829 * update all the cowonly tree roots on disk
831 * The error handling in this function may not be obvious. Any of the
832 * failures will cause the file system to go offline. We still need
833 * to clean up the delayed refs.
835 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
836 struct btrfs_root *root)
838 struct btrfs_fs_info *fs_info = root->fs_info;
839 struct list_head *next;
840 struct extent_buffer *eb;
841 int ret;
843 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
844 if (ret)
845 return ret;
847 eb = btrfs_lock_root_node(fs_info->tree_root);
848 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
849 0, &eb);
850 btrfs_tree_unlock(eb);
851 free_extent_buffer(eb);
853 if (ret)
854 return ret;
856 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
857 if (ret)
858 return ret;
860 ret = btrfs_run_dev_stats(trans, root->fs_info);
861 WARN_ON(ret);
862 ret = btrfs_run_dev_replace(trans, root->fs_info);
863 WARN_ON(ret);
865 ret = btrfs_run_qgroups(trans, root->fs_info);
866 BUG_ON(ret);
868 /* run_qgroups might have added some more refs */
869 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
870 BUG_ON(ret);
872 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
873 next = fs_info->dirty_cowonly_roots.next;
874 list_del_init(next);
875 root = list_entry(next, struct btrfs_root, dirty_list);
877 ret = update_cowonly_root(trans, root);
878 if (ret)
879 return ret;
882 down_write(&fs_info->extent_commit_sem);
883 switch_commit_root(fs_info->extent_root);
884 up_write(&fs_info->extent_commit_sem);
886 btrfs_after_dev_replace_commit(fs_info);
888 return 0;
892 * dead roots are old snapshots that need to be deleted. This allocates
893 * a dirty root struct and adds it into the list of dead roots that need to
894 * be deleted
896 int btrfs_add_dead_root(struct btrfs_root *root)
898 spin_lock(&root->fs_info->trans_lock);
899 list_add(&root->root_list, &root->fs_info->dead_roots);
900 spin_unlock(&root->fs_info->trans_lock);
901 return 0;
905 * update all the cowonly tree roots on disk
907 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
908 struct btrfs_root *root)
910 struct btrfs_root *gang[8];
911 struct btrfs_fs_info *fs_info = root->fs_info;
912 int i;
913 int ret;
914 int err = 0;
916 spin_lock(&fs_info->fs_roots_radix_lock);
917 while (1) {
918 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
919 (void **)gang, 0,
920 ARRAY_SIZE(gang),
921 BTRFS_ROOT_TRANS_TAG);
922 if (ret == 0)
923 break;
924 for (i = 0; i < ret; i++) {
925 root = gang[i];
926 radix_tree_tag_clear(&fs_info->fs_roots_radix,
927 (unsigned long)root->root_key.objectid,
928 BTRFS_ROOT_TRANS_TAG);
929 spin_unlock(&fs_info->fs_roots_radix_lock);
931 btrfs_free_log(trans, root);
932 btrfs_update_reloc_root(trans, root);
933 btrfs_orphan_commit_root(trans, root);
935 btrfs_save_ino_cache(root, trans);
937 /* see comments in should_cow_block() */
938 root->force_cow = 0;
939 smp_wmb();
941 if (root->commit_root != root->node) {
942 mutex_lock(&root->fs_commit_mutex);
943 switch_commit_root(root);
944 btrfs_unpin_free_ino(root);
945 mutex_unlock(&root->fs_commit_mutex);
947 btrfs_set_root_node(&root->root_item,
948 root->node);
951 err = btrfs_update_root(trans, fs_info->tree_root,
952 &root->root_key,
953 &root->root_item);
954 spin_lock(&fs_info->fs_roots_radix_lock);
955 if (err)
956 break;
959 spin_unlock(&fs_info->fs_roots_radix_lock);
960 return err;
964 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
965 * otherwise every leaf in the btree is read and defragged.
967 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
969 struct btrfs_fs_info *info = root->fs_info;
970 struct btrfs_trans_handle *trans;
971 int ret;
973 if (xchg(&root->defrag_running, 1))
974 return 0;
976 while (1) {
977 trans = btrfs_start_transaction(root, 0);
978 if (IS_ERR(trans))
979 return PTR_ERR(trans);
981 ret = btrfs_defrag_leaves(trans, root, cacheonly);
983 btrfs_end_transaction(trans, root);
984 btrfs_btree_balance_dirty(info->tree_root);
985 cond_resched();
987 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
988 break;
990 root->defrag_running = 0;
991 return ret;
995 * new snapshots need to be created at a very specific time in the
996 * transaction commit. This does the actual creation
998 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
999 struct btrfs_fs_info *fs_info,
1000 struct btrfs_pending_snapshot *pending)
1002 struct btrfs_key key;
1003 struct btrfs_root_item *new_root_item;
1004 struct btrfs_root *tree_root = fs_info->tree_root;
1005 struct btrfs_root *root = pending->root;
1006 struct btrfs_root *parent_root;
1007 struct btrfs_block_rsv *rsv;
1008 struct inode *parent_inode;
1009 struct btrfs_path *path;
1010 struct btrfs_dir_item *dir_item;
1011 struct dentry *parent;
1012 struct dentry *dentry;
1013 struct extent_buffer *tmp;
1014 struct extent_buffer *old;
1015 struct timespec cur_time = CURRENT_TIME;
1016 int ret;
1017 u64 to_reserve = 0;
1018 u64 index = 0;
1019 u64 objectid;
1020 u64 root_flags;
1021 uuid_le new_uuid;
1023 path = btrfs_alloc_path();
1024 if (!path) {
1025 ret = pending->error = -ENOMEM;
1026 goto path_alloc_fail;
1029 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1030 if (!new_root_item) {
1031 ret = pending->error = -ENOMEM;
1032 goto root_item_alloc_fail;
1035 ret = btrfs_find_free_objectid(tree_root, &objectid);
1036 if (ret) {
1037 pending->error = ret;
1038 goto no_free_objectid;
1041 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1043 if (to_reserve > 0) {
1044 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1045 to_reserve,
1046 BTRFS_RESERVE_NO_FLUSH);
1047 if (ret) {
1048 pending->error = ret;
1049 goto no_free_objectid;
1053 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1054 objectid, pending->inherit);
1055 if (ret) {
1056 pending->error = ret;
1057 goto no_free_objectid;
1060 key.objectid = objectid;
1061 key.offset = (u64)-1;
1062 key.type = BTRFS_ROOT_ITEM_KEY;
1064 rsv = trans->block_rsv;
1065 trans->block_rsv = &pending->block_rsv;
1067 dentry = pending->dentry;
1068 parent = dget_parent(dentry);
1069 parent_inode = parent->d_inode;
1070 parent_root = BTRFS_I(parent_inode)->root;
1071 record_root_in_trans(trans, parent_root);
1074 * insert the directory item
1076 ret = btrfs_set_inode_index(parent_inode, &index);
1077 BUG_ON(ret); /* -ENOMEM */
1079 /* check if there is a file/dir which has the same name. */
1080 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1081 btrfs_ino(parent_inode),
1082 dentry->d_name.name,
1083 dentry->d_name.len, 0);
1084 if (dir_item != NULL && !IS_ERR(dir_item)) {
1085 pending->error = -EEXIST;
1086 goto fail;
1087 } else if (IS_ERR(dir_item)) {
1088 ret = PTR_ERR(dir_item);
1089 btrfs_abort_transaction(trans, root, ret);
1090 goto fail;
1092 btrfs_release_path(path);
1095 * pull in the delayed directory update
1096 * and the delayed inode item
1097 * otherwise we corrupt the FS during
1098 * snapshot
1100 ret = btrfs_run_delayed_items(trans, root);
1101 if (ret) { /* Transaction aborted */
1102 btrfs_abort_transaction(trans, root, ret);
1103 goto fail;
1106 record_root_in_trans(trans, root);
1107 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1108 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1109 btrfs_check_and_init_root_item(new_root_item);
1111 root_flags = btrfs_root_flags(new_root_item);
1112 if (pending->readonly)
1113 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1114 else
1115 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1116 btrfs_set_root_flags(new_root_item, root_flags);
1118 btrfs_set_root_generation_v2(new_root_item,
1119 trans->transid);
1120 uuid_le_gen(&new_uuid);
1121 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1122 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1123 BTRFS_UUID_SIZE);
1124 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1125 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1126 btrfs_set_root_otransid(new_root_item, trans->transid);
1127 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1128 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1129 btrfs_set_root_stransid(new_root_item, 0);
1130 btrfs_set_root_rtransid(new_root_item, 0);
1132 old = btrfs_lock_root_node(root);
1133 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1134 if (ret) {
1135 btrfs_tree_unlock(old);
1136 free_extent_buffer(old);
1137 btrfs_abort_transaction(trans, root, ret);
1138 goto fail;
1141 btrfs_set_lock_blocking(old);
1143 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1144 /* clean up in any case */
1145 btrfs_tree_unlock(old);
1146 free_extent_buffer(old);
1147 if (ret) {
1148 btrfs_abort_transaction(trans, root, ret);
1149 goto fail;
1152 /* see comments in should_cow_block() */
1153 root->force_cow = 1;
1154 smp_wmb();
1156 btrfs_set_root_node(new_root_item, tmp);
1157 /* record when the snapshot was created in key.offset */
1158 key.offset = trans->transid;
1159 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1160 btrfs_tree_unlock(tmp);
1161 free_extent_buffer(tmp);
1162 if (ret) {
1163 btrfs_abort_transaction(trans, root, ret);
1164 goto fail;
1168 * insert root back/forward references
1170 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1171 parent_root->root_key.objectid,
1172 btrfs_ino(parent_inode), index,
1173 dentry->d_name.name, dentry->d_name.len);
1174 if (ret) {
1175 btrfs_abort_transaction(trans, root, ret);
1176 goto fail;
1179 key.offset = (u64)-1;
1180 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1181 if (IS_ERR(pending->snap)) {
1182 ret = PTR_ERR(pending->snap);
1183 btrfs_abort_transaction(trans, root, ret);
1184 goto fail;
1187 ret = btrfs_reloc_post_snapshot(trans, pending);
1188 if (ret) {
1189 btrfs_abort_transaction(trans, root, ret);
1190 goto fail;
1193 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1194 if (ret) {
1195 btrfs_abort_transaction(trans, root, ret);
1196 goto fail;
1199 ret = btrfs_insert_dir_item(trans, parent_root,
1200 dentry->d_name.name, dentry->d_name.len,
1201 parent_inode, &key,
1202 BTRFS_FT_DIR, index);
1203 /* We have check then name at the beginning, so it is impossible. */
1204 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1205 if (ret) {
1206 btrfs_abort_transaction(trans, root, ret);
1207 goto fail;
1210 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1211 dentry->d_name.len * 2);
1212 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1213 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1214 if (ret)
1215 btrfs_abort_transaction(trans, root, ret);
1216 fail:
1217 dput(parent);
1218 trans->block_rsv = rsv;
1219 no_free_objectid:
1220 kfree(new_root_item);
1221 root_item_alloc_fail:
1222 btrfs_free_path(path);
1223 path_alloc_fail:
1224 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1225 return ret;
1229 * create all the snapshots we've scheduled for creation
1231 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1232 struct btrfs_fs_info *fs_info)
1234 struct btrfs_pending_snapshot *pending;
1235 struct list_head *head = &trans->transaction->pending_snapshots;
1237 list_for_each_entry(pending, head, list)
1238 create_pending_snapshot(trans, fs_info, pending);
1239 return 0;
1242 static void update_super_roots(struct btrfs_root *root)
1244 struct btrfs_root_item *root_item;
1245 struct btrfs_super_block *super;
1247 super = root->fs_info->super_copy;
1249 root_item = &root->fs_info->chunk_root->root_item;
1250 super->chunk_root = root_item->bytenr;
1251 super->chunk_root_generation = root_item->generation;
1252 super->chunk_root_level = root_item->level;
1254 root_item = &root->fs_info->tree_root->root_item;
1255 super->root = root_item->bytenr;
1256 super->generation = root_item->generation;
1257 super->root_level = root_item->level;
1258 if (btrfs_test_opt(root, SPACE_CACHE))
1259 super->cache_generation = root_item->generation;
1262 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1264 int ret = 0;
1265 spin_lock(&info->trans_lock);
1266 if (info->running_transaction)
1267 ret = info->running_transaction->in_commit;
1268 spin_unlock(&info->trans_lock);
1269 return ret;
1272 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1274 int ret = 0;
1275 spin_lock(&info->trans_lock);
1276 if (info->running_transaction)
1277 ret = info->running_transaction->blocked;
1278 spin_unlock(&info->trans_lock);
1279 return ret;
1283 * wait for the current transaction commit to start and block subsequent
1284 * transaction joins
1286 static void wait_current_trans_commit_start(struct btrfs_root *root,
1287 struct btrfs_transaction *trans)
1289 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1293 * wait for the current transaction to start and then become unblocked.
1294 * caller holds ref.
1296 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1297 struct btrfs_transaction *trans)
1299 wait_event(root->fs_info->transaction_wait,
1300 trans->commit_done || (trans->in_commit && !trans->blocked));
1304 * commit transactions asynchronously. once btrfs_commit_transaction_async
1305 * returns, any subsequent transaction will not be allowed to join.
1307 struct btrfs_async_commit {
1308 struct btrfs_trans_handle *newtrans;
1309 struct btrfs_root *root;
1310 struct delayed_work work;
1313 static void do_async_commit(struct work_struct *work)
1315 struct btrfs_async_commit *ac =
1316 container_of(work, struct btrfs_async_commit, work.work);
1319 * We've got freeze protection passed with the transaction.
1320 * Tell lockdep about it.
1322 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1323 rwsem_acquire_read(
1324 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1325 0, 1, _THIS_IP_);
1327 current->journal_info = ac->newtrans;
1329 btrfs_commit_transaction(ac->newtrans, ac->root);
1330 kfree(ac);
1333 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1334 struct btrfs_root *root,
1335 int wait_for_unblock)
1337 struct btrfs_async_commit *ac;
1338 struct btrfs_transaction *cur_trans;
1340 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1341 if (!ac)
1342 return -ENOMEM;
1344 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1345 ac->root = root;
1346 ac->newtrans = btrfs_join_transaction(root);
1347 if (IS_ERR(ac->newtrans)) {
1348 int err = PTR_ERR(ac->newtrans);
1349 kfree(ac);
1350 return err;
1353 /* take transaction reference */
1354 cur_trans = trans->transaction;
1355 atomic_inc(&cur_trans->use_count);
1357 btrfs_end_transaction(trans, root);
1360 * Tell lockdep we've released the freeze rwsem, since the
1361 * async commit thread will be the one to unlock it.
1363 if (trans->type < TRANS_JOIN_NOLOCK)
1364 rwsem_release(
1365 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1366 1, _THIS_IP_);
1368 schedule_delayed_work(&ac->work, 0);
1370 /* wait for transaction to start and unblock */
1371 if (wait_for_unblock)
1372 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1373 else
1374 wait_current_trans_commit_start(root, cur_trans);
1376 if (current->journal_info == trans)
1377 current->journal_info = NULL;
1379 put_transaction(cur_trans);
1380 return 0;
1384 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1385 struct btrfs_root *root, int err)
1387 struct btrfs_transaction *cur_trans = trans->transaction;
1389 WARN_ON(trans->use_count > 1);
1391 btrfs_abort_transaction(trans, root, err);
1393 spin_lock(&root->fs_info->trans_lock);
1394 list_del_init(&cur_trans->list);
1395 if (cur_trans == root->fs_info->running_transaction) {
1396 root->fs_info->running_transaction = NULL;
1397 root->fs_info->trans_no_join = 0;
1399 spin_unlock(&root->fs_info->trans_lock);
1401 btrfs_cleanup_one_transaction(trans->transaction, root);
1403 put_transaction(cur_trans);
1404 put_transaction(cur_trans);
1406 trace_btrfs_transaction_commit(root);
1408 btrfs_scrub_continue(root);
1410 if (current->journal_info == trans)
1411 current->journal_info = NULL;
1413 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1416 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1417 struct btrfs_root *root)
1419 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1420 int snap_pending = 0;
1421 int ret;
1423 if (!flush_on_commit) {
1424 spin_lock(&root->fs_info->trans_lock);
1425 if (!list_empty(&trans->transaction->pending_snapshots))
1426 snap_pending = 1;
1427 spin_unlock(&root->fs_info->trans_lock);
1430 if (flush_on_commit || snap_pending) {
1431 btrfs_start_delalloc_inodes(root, 1);
1432 btrfs_wait_ordered_extents(root, 1);
1435 ret = btrfs_run_delayed_items(trans, root);
1436 if (ret)
1437 return ret;
1440 * running the delayed items may have added new refs. account
1441 * them now so that they hinder processing of more delayed refs
1442 * as little as possible.
1444 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1447 * rename don't use btrfs_join_transaction, so, once we
1448 * set the transaction to blocked above, we aren't going
1449 * to get any new ordered operations. We can safely run
1450 * it here and no for sure that nothing new will be added
1451 * to the list
1453 btrfs_run_ordered_operations(root, 1);
1455 return 0;
1459 * btrfs_transaction state sequence:
1460 * in_commit = 0, blocked = 0 (initial)
1461 * in_commit = 1, blocked = 1
1462 * blocked = 0
1463 * commit_done = 1
1465 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1466 struct btrfs_root *root)
1468 unsigned long joined = 0;
1469 struct btrfs_transaction *cur_trans = trans->transaction;
1470 struct btrfs_transaction *prev_trans = NULL;
1471 DEFINE_WAIT(wait);
1472 int ret;
1473 int should_grow = 0;
1474 unsigned long now = get_seconds();
1476 ret = btrfs_run_ordered_operations(root, 0);
1477 if (ret) {
1478 btrfs_abort_transaction(trans, root, ret);
1479 goto cleanup_transaction;
1482 /* Stop the commit early if ->aborted is set */
1483 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1484 ret = cur_trans->aborted;
1485 goto cleanup_transaction;
1488 /* make a pass through all the delayed refs we have so far
1489 * any runnings procs may add more while we are here
1491 ret = btrfs_run_delayed_refs(trans, root, 0);
1492 if (ret)
1493 goto cleanup_transaction;
1495 btrfs_trans_release_metadata(trans, root);
1496 trans->block_rsv = NULL;
1498 cur_trans = trans->transaction;
1501 * set the flushing flag so procs in this transaction have to
1502 * start sending their work down.
1504 cur_trans->delayed_refs.flushing = 1;
1506 if (!list_empty(&trans->new_bgs))
1507 btrfs_create_pending_block_groups(trans, root);
1509 ret = btrfs_run_delayed_refs(trans, root, 0);
1510 if (ret)
1511 goto cleanup_transaction;
1513 spin_lock(&cur_trans->commit_lock);
1514 if (cur_trans->in_commit) {
1515 spin_unlock(&cur_trans->commit_lock);
1516 atomic_inc(&cur_trans->use_count);
1517 ret = btrfs_end_transaction(trans, root);
1519 wait_for_commit(root, cur_trans);
1521 put_transaction(cur_trans);
1523 return ret;
1526 trans->transaction->in_commit = 1;
1527 trans->transaction->blocked = 1;
1528 spin_unlock(&cur_trans->commit_lock);
1529 wake_up(&root->fs_info->transaction_blocked_wait);
1531 spin_lock(&root->fs_info->trans_lock);
1532 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1533 prev_trans = list_entry(cur_trans->list.prev,
1534 struct btrfs_transaction, list);
1535 if (!prev_trans->commit_done) {
1536 atomic_inc(&prev_trans->use_count);
1537 spin_unlock(&root->fs_info->trans_lock);
1539 wait_for_commit(root, prev_trans);
1541 put_transaction(prev_trans);
1542 } else {
1543 spin_unlock(&root->fs_info->trans_lock);
1545 } else {
1546 spin_unlock(&root->fs_info->trans_lock);
1549 if (!btrfs_test_opt(root, SSD) &&
1550 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1551 should_grow = 1;
1553 do {
1554 joined = cur_trans->num_joined;
1556 WARN_ON(cur_trans != trans->transaction);
1558 ret = btrfs_flush_all_pending_stuffs(trans, root);
1559 if (ret)
1560 goto cleanup_transaction;
1562 prepare_to_wait(&cur_trans->writer_wait, &wait,
1563 TASK_UNINTERRUPTIBLE);
1565 if (atomic_read(&cur_trans->num_writers) > 1)
1566 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1567 else if (should_grow)
1568 schedule_timeout(1);
1570 finish_wait(&cur_trans->writer_wait, &wait);
1571 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1572 (should_grow && cur_trans->num_joined != joined));
1574 ret = btrfs_flush_all_pending_stuffs(trans, root);
1575 if (ret)
1576 goto cleanup_transaction;
1579 * Ok now we need to make sure to block out any other joins while we
1580 * commit the transaction. We could have started a join before setting
1581 * no_join so make sure to wait for num_writers to == 1 again.
1583 spin_lock(&root->fs_info->trans_lock);
1584 root->fs_info->trans_no_join = 1;
1585 spin_unlock(&root->fs_info->trans_lock);
1586 wait_event(cur_trans->writer_wait,
1587 atomic_read(&cur_trans->num_writers) == 1);
1589 /* ->aborted might be set after the previous check, so check it */
1590 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1591 ret = cur_trans->aborted;
1592 goto cleanup_transaction;
1595 * the reloc mutex makes sure that we stop
1596 * the balancing code from coming in and moving
1597 * extents around in the middle of the commit
1599 mutex_lock(&root->fs_info->reloc_mutex);
1602 * We needn't worry about the delayed items because we will
1603 * deal with them in create_pending_snapshot(), which is the
1604 * core function of the snapshot creation.
1606 ret = create_pending_snapshots(trans, root->fs_info);
1607 if (ret) {
1608 mutex_unlock(&root->fs_info->reloc_mutex);
1609 goto cleanup_transaction;
1613 * We insert the dir indexes of the snapshots and update the inode
1614 * of the snapshots' parents after the snapshot creation, so there
1615 * are some delayed items which are not dealt with. Now deal with
1616 * them.
1618 * We needn't worry that this operation will corrupt the snapshots,
1619 * because all the tree which are snapshoted will be forced to COW
1620 * the nodes and leaves.
1622 ret = btrfs_run_delayed_items(trans, root);
1623 if (ret) {
1624 mutex_unlock(&root->fs_info->reloc_mutex);
1625 goto cleanup_transaction;
1628 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1629 if (ret) {
1630 mutex_unlock(&root->fs_info->reloc_mutex);
1631 goto cleanup_transaction;
1635 * make sure none of the code above managed to slip in a
1636 * delayed item
1638 btrfs_assert_delayed_root_empty(root);
1640 WARN_ON(cur_trans != trans->transaction);
1642 btrfs_scrub_pause(root);
1643 /* btrfs_commit_tree_roots is responsible for getting the
1644 * various roots consistent with each other. Every pointer
1645 * in the tree of tree roots has to point to the most up to date
1646 * root for every subvolume and other tree. So, we have to keep
1647 * the tree logging code from jumping in and changing any
1648 * of the trees.
1650 * At this point in the commit, there can't be any tree-log
1651 * writers, but a little lower down we drop the trans mutex
1652 * and let new people in. By holding the tree_log_mutex
1653 * from now until after the super is written, we avoid races
1654 * with the tree-log code.
1656 mutex_lock(&root->fs_info->tree_log_mutex);
1658 ret = commit_fs_roots(trans, root);
1659 if (ret) {
1660 mutex_unlock(&root->fs_info->tree_log_mutex);
1661 mutex_unlock(&root->fs_info->reloc_mutex);
1662 goto cleanup_transaction;
1665 /* commit_fs_roots gets rid of all the tree log roots, it is now
1666 * safe to free the root of tree log roots
1668 btrfs_free_log_root_tree(trans, root->fs_info);
1670 ret = commit_cowonly_roots(trans, root);
1671 if (ret) {
1672 mutex_unlock(&root->fs_info->tree_log_mutex);
1673 mutex_unlock(&root->fs_info->reloc_mutex);
1674 goto cleanup_transaction;
1678 * The tasks which save the space cache and inode cache may also
1679 * update ->aborted, check it.
1681 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1682 ret = cur_trans->aborted;
1683 mutex_unlock(&root->fs_info->tree_log_mutex);
1684 mutex_unlock(&root->fs_info->reloc_mutex);
1685 goto cleanup_transaction;
1688 btrfs_prepare_extent_commit(trans, root);
1690 cur_trans = root->fs_info->running_transaction;
1692 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1693 root->fs_info->tree_root->node);
1694 switch_commit_root(root->fs_info->tree_root);
1696 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1697 root->fs_info->chunk_root->node);
1698 switch_commit_root(root->fs_info->chunk_root);
1700 assert_qgroups_uptodate(trans);
1701 update_super_roots(root);
1703 if (!root->fs_info->log_root_recovering) {
1704 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1705 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1708 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1709 sizeof(*root->fs_info->super_copy));
1711 trans->transaction->blocked = 0;
1712 spin_lock(&root->fs_info->trans_lock);
1713 root->fs_info->running_transaction = NULL;
1714 root->fs_info->trans_no_join = 0;
1715 spin_unlock(&root->fs_info->trans_lock);
1716 mutex_unlock(&root->fs_info->reloc_mutex);
1718 wake_up(&root->fs_info->transaction_wait);
1720 ret = btrfs_write_and_wait_transaction(trans, root);
1721 if (ret) {
1722 btrfs_error(root->fs_info, ret,
1723 "Error while writing out transaction.");
1724 mutex_unlock(&root->fs_info->tree_log_mutex);
1725 goto cleanup_transaction;
1728 ret = write_ctree_super(trans, root, 0);
1729 if (ret) {
1730 mutex_unlock(&root->fs_info->tree_log_mutex);
1731 goto cleanup_transaction;
1735 * the super is written, we can safely allow the tree-loggers
1736 * to go about their business
1738 mutex_unlock(&root->fs_info->tree_log_mutex);
1740 btrfs_finish_extent_commit(trans, root);
1742 cur_trans->commit_done = 1;
1744 root->fs_info->last_trans_committed = cur_trans->transid;
1746 wake_up(&cur_trans->commit_wait);
1748 spin_lock(&root->fs_info->trans_lock);
1749 list_del_init(&cur_trans->list);
1750 spin_unlock(&root->fs_info->trans_lock);
1752 put_transaction(cur_trans);
1753 put_transaction(cur_trans);
1755 if (trans->type < TRANS_JOIN_NOLOCK)
1756 sb_end_intwrite(root->fs_info->sb);
1758 trace_btrfs_transaction_commit(root);
1760 btrfs_scrub_continue(root);
1762 if (current->journal_info == trans)
1763 current->journal_info = NULL;
1765 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1767 if (current != root->fs_info->transaction_kthread)
1768 btrfs_run_delayed_iputs(root);
1770 return ret;
1772 cleanup_transaction:
1773 btrfs_trans_release_metadata(trans, root);
1774 trans->block_rsv = NULL;
1775 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1776 // WARN_ON(1);
1777 if (current->journal_info == trans)
1778 current->journal_info = NULL;
1779 cleanup_transaction(trans, root, ret);
1781 return ret;
1785 * interface function to delete all the snapshots we have scheduled for deletion
1787 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1789 LIST_HEAD(list);
1790 struct btrfs_fs_info *fs_info = root->fs_info;
1792 spin_lock(&fs_info->trans_lock);
1793 list_splice_init(&fs_info->dead_roots, &list);
1794 spin_unlock(&fs_info->trans_lock);
1796 while (!list_empty(&list)) {
1797 int ret;
1799 root = list_entry(list.next, struct btrfs_root, root_list);
1800 list_del(&root->root_list);
1802 btrfs_kill_all_delayed_nodes(root);
1804 if (btrfs_header_backref_rev(root->node) <
1805 BTRFS_MIXED_BACKREF_REV)
1806 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1807 else
1808 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1809 BUG_ON(ret < 0);
1811 return 0;