Linux 3.8-rc7
[cris-mirror.git] / fs / ceph / caps.c
bloba1d9bb30c1bf9fc5460286ff465e2bcbc338bf30
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
11 #include "super.h"
12 #include "mds_client.h"
13 #include <linux/ceph/decode.h>
14 #include <linux/ceph/messenger.h>
17 * Capability management
19 * The Ceph metadata servers control client access to inode metadata
20 * and file data by issuing capabilities, granting clients permission
21 * to read and/or write both inode field and file data to OSDs
22 * (storage nodes). Each capability consists of a set of bits
23 * indicating which operations are allowed.
25 * If the client holds a *_SHARED cap, the client has a coherent value
26 * that can be safely read from the cached inode.
28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29 * client is allowed to change inode attributes (e.g., file size,
30 * mtime), note its dirty state in the ceph_cap, and asynchronously
31 * flush that metadata change to the MDS.
33 * In the event of a conflicting operation (perhaps by another
34 * client), the MDS will revoke the conflicting client capabilities.
36 * In order for a client to cache an inode, it must hold a capability
37 * with at least one MDS server. When inodes are released, release
38 * notifications are batched and periodically sent en masse to the MDS
39 * cluster to release server state.
44 * Generate readable cap strings for debugging output.
46 #define MAX_CAP_STR 20
47 static char cap_str[MAX_CAP_STR][40];
48 static DEFINE_SPINLOCK(cap_str_lock);
49 static int last_cap_str;
51 static char *gcap_string(char *s, int c)
53 if (c & CEPH_CAP_GSHARED)
54 *s++ = 's';
55 if (c & CEPH_CAP_GEXCL)
56 *s++ = 'x';
57 if (c & CEPH_CAP_GCACHE)
58 *s++ = 'c';
59 if (c & CEPH_CAP_GRD)
60 *s++ = 'r';
61 if (c & CEPH_CAP_GWR)
62 *s++ = 'w';
63 if (c & CEPH_CAP_GBUFFER)
64 *s++ = 'b';
65 if (c & CEPH_CAP_GLAZYIO)
66 *s++ = 'l';
67 return s;
70 const char *ceph_cap_string(int caps)
72 int i;
73 char *s;
74 int c;
76 spin_lock(&cap_str_lock);
77 i = last_cap_str++;
78 if (last_cap_str == MAX_CAP_STR)
79 last_cap_str = 0;
80 spin_unlock(&cap_str_lock);
82 s = cap_str[i];
84 if (caps & CEPH_CAP_PIN)
85 *s++ = 'p';
87 c = (caps >> CEPH_CAP_SAUTH) & 3;
88 if (c) {
89 *s++ = 'A';
90 s = gcap_string(s, c);
93 c = (caps >> CEPH_CAP_SLINK) & 3;
94 if (c) {
95 *s++ = 'L';
96 s = gcap_string(s, c);
99 c = (caps >> CEPH_CAP_SXATTR) & 3;
100 if (c) {
101 *s++ = 'X';
102 s = gcap_string(s, c);
105 c = caps >> CEPH_CAP_SFILE;
106 if (c) {
107 *s++ = 'F';
108 s = gcap_string(s, c);
111 if (s == cap_str[i])
112 *s++ = '-';
113 *s = 0;
114 return cap_str[i];
117 void ceph_caps_init(struct ceph_mds_client *mdsc)
119 INIT_LIST_HEAD(&mdsc->caps_list);
120 spin_lock_init(&mdsc->caps_list_lock);
123 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
125 struct ceph_cap *cap;
127 spin_lock(&mdsc->caps_list_lock);
128 while (!list_empty(&mdsc->caps_list)) {
129 cap = list_first_entry(&mdsc->caps_list,
130 struct ceph_cap, caps_item);
131 list_del(&cap->caps_item);
132 kmem_cache_free(ceph_cap_cachep, cap);
134 mdsc->caps_total_count = 0;
135 mdsc->caps_avail_count = 0;
136 mdsc->caps_use_count = 0;
137 mdsc->caps_reserve_count = 0;
138 mdsc->caps_min_count = 0;
139 spin_unlock(&mdsc->caps_list_lock);
142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
144 spin_lock(&mdsc->caps_list_lock);
145 mdsc->caps_min_count += delta;
146 BUG_ON(mdsc->caps_min_count < 0);
147 spin_unlock(&mdsc->caps_list_lock);
150 int ceph_reserve_caps(struct ceph_mds_client *mdsc,
151 struct ceph_cap_reservation *ctx, int need)
153 int i;
154 struct ceph_cap *cap;
155 int have;
156 int alloc = 0;
157 LIST_HEAD(newcaps);
158 int ret = 0;
160 dout("reserve caps ctx=%p need=%d\n", ctx, need);
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc->caps_list_lock);
164 if (mdsc->caps_avail_count >= need)
165 have = need;
166 else
167 have = mdsc->caps_avail_count;
168 mdsc->caps_avail_count -= have;
169 mdsc->caps_reserve_count += have;
170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 mdsc->caps_reserve_count +
172 mdsc->caps_avail_count);
173 spin_unlock(&mdsc->caps_list_lock);
175 for (i = have; i < need; i++) {
176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 if (!cap) {
178 ret = -ENOMEM;
179 goto out_alloc_count;
181 list_add(&cap->caps_item, &newcaps);
182 alloc++;
184 BUG_ON(have + alloc != need);
186 spin_lock(&mdsc->caps_list_lock);
187 mdsc->caps_total_count += alloc;
188 mdsc->caps_reserve_count += alloc;
189 list_splice(&newcaps, &mdsc->caps_list);
191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
192 mdsc->caps_reserve_count +
193 mdsc->caps_avail_count);
194 spin_unlock(&mdsc->caps_list_lock);
196 ctx->count = need;
197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
199 mdsc->caps_reserve_count, mdsc->caps_avail_count);
200 return 0;
202 out_alloc_count:
203 /* we didn't manage to reserve as much as we needed */
204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
205 ctx, need, have);
206 return ret;
209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
210 struct ceph_cap_reservation *ctx)
212 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
213 if (ctx->count) {
214 spin_lock(&mdsc->caps_list_lock);
215 BUG_ON(mdsc->caps_reserve_count < ctx->count);
216 mdsc->caps_reserve_count -= ctx->count;
217 mdsc->caps_avail_count += ctx->count;
218 ctx->count = 0;
219 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
220 mdsc->caps_total_count, mdsc->caps_use_count,
221 mdsc->caps_reserve_count, mdsc->caps_avail_count);
222 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
223 mdsc->caps_reserve_count +
224 mdsc->caps_avail_count);
225 spin_unlock(&mdsc->caps_list_lock);
227 return 0;
230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
231 struct ceph_cap_reservation *ctx)
233 struct ceph_cap *cap = NULL;
235 /* temporary, until we do something about cap import/export */
236 if (!ctx) {
237 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
238 if (cap) {
239 spin_lock(&mdsc->caps_list_lock);
240 mdsc->caps_use_count++;
241 mdsc->caps_total_count++;
242 spin_unlock(&mdsc->caps_list_lock);
244 return cap;
247 spin_lock(&mdsc->caps_list_lock);
248 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
249 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
250 mdsc->caps_reserve_count, mdsc->caps_avail_count);
251 BUG_ON(!ctx->count);
252 BUG_ON(ctx->count > mdsc->caps_reserve_count);
253 BUG_ON(list_empty(&mdsc->caps_list));
255 ctx->count--;
256 mdsc->caps_reserve_count--;
257 mdsc->caps_use_count++;
259 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
260 list_del(&cap->caps_item);
262 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
263 mdsc->caps_reserve_count + mdsc->caps_avail_count);
264 spin_unlock(&mdsc->caps_list_lock);
265 return cap;
268 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
270 spin_lock(&mdsc->caps_list_lock);
271 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
272 cap, mdsc->caps_total_count, mdsc->caps_use_count,
273 mdsc->caps_reserve_count, mdsc->caps_avail_count);
274 mdsc->caps_use_count--;
276 * Keep some preallocated caps around (ceph_min_count), to
277 * avoid lots of free/alloc churn.
279 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
280 mdsc->caps_min_count) {
281 mdsc->caps_total_count--;
282 kmem_cache_free(ceph_cap_cachep, cap);
283 } else {
284 mdsc->caps_avail_count++;
285 list_add(&cap->caps_item, &mdsc->caps_list);
288 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
289 mdsc->caps_reserve_count + mdsc->caps_avail_count);
290 spin_unlock(&mdsc->caps_list_lock);
293 void ceph_reservation_status(struct ceph_fs_client *fsc,
294 int *total, int *avail, int *used, int *reserved,
295 int *min)
297 struct ceph_mds_client *mdsc = fsc->mdsc;
299 if (total)
300 *total = mdsc->caps_total_count;
301 if (avail)
302 *avail = mdsc->caps_avail_count;
303 if (used)
304 *used = mdsc->caps_use_count;
305 if (reserved)
306 *reserved = mdsc->caps_reserve_count;
307 if (min)
308 *min = mdsc->caps_min_count;
312 * Find ceph_cap for given mds, if any.
314 * Called with i_ceph_lock held.
316 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
318 struct ceph_cap *cap;
319 struct rb_node *n = ci->i_caps.rb_node;
321 while (n) {
322 cap = rb_entry(n, struct ceph_cap, ci_node);
323 if (mds < cap->mds)
324 n = n->rb_left;
325 else if (mds > cap->mds)
326 n = n->rb_right;
327 else
328 return cap;
330 return NULL;
333 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
335 struct ceph_cap *cap;
337 spin_lock(&ci->i_ceph_lock);
338 cap = __get_cap_for_mds(ci, mds);
339 spin_unlock(&ci->i_ceph_lock);
340 return cap;
344 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
346 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
348 struct ceph_cap *cap;
349 int mds = -1;
350 struct rb_node *p;
352 /* prefer mds with WR|BUFFER|EXCL caps */
353 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
354 cap = rb_entry(p, struct ceph_cap, ci_node);
355 mds = cap->mds;
356 if (cap->issued & (CEPH_CAP_FILE_WR |
357 CEPH_CAP_FILE_BUFFER |
358 CEPH_CAP_FILE_EXCL))
359 break;
361 return mds;
364 int ceph_get_cap_mds(struct inode *inode)
366 struct ceph_inode_info *ci = ceph_inode(inode);
367 int mds;
368 spin_lock(&ci->i_ceph_lock);
369 mds = __ceph_get_cap_mds(ceph_inode(inode));
370 spin_unlock(&ci->i_ceph_lock);
371 return mds;
375 * Called under i_ceph_lock.
377 static void __insert_cap_node(struct ceph_inode_info *ci,
378 struct ceph_cap *new)
380 struct rb_node **p = &ci->i_caps.rb_node;
381 struct rb_node *parent = NULL;
382 struct ceph_cap *cap = NULL;
384 while (*p) {
385 parent = *p;
386 cap = rb_entry(parent, struct ceph_cap, ci_node);
387 if (new->mds < cap->mds)
388 p = &(*p)->rb_left;
389 else if (new->mds > cap->mds)
390 p = &(*p)->rb_right;
391 else
392 BUG();
395 rb_link_node(&new->ci_node, parent, p);
396 rb_insert_color(&new->ci_node, &ci->i_caps);
400 * (re)set cap hold timeouts, which control the delayed release
401 * of unused caps back to the MDS. Should be called on cap use.
403 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
404 struct ceph_inode_info *ci)
406 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
408 ci->i_hold_caps_min = round_jiffies(jiffies +
409 ma->caps_wanted_delay_min * HZ);
410 ci->i_hold_caps_max = round_jiffies(jiffies +
411 ma->caps_wanted_delay_max * HZ);
412 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
413 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
417 * (Re)queue cap at the end of the delayed cap release list.
419 * If I_FLUSH is set, leave the inode at the front of the list.
421 * Caller holds i_ceph_lock
422 * -> we take mdsc->cap_delay_lock
424 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
425 struct ceph_inode_info *ci)
427 __cap_set_timeouts(mdsc, ci);
428 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
429 ci->i_ceph_flags, ci->i_hold_caps_max);
430 if (!mdsc->stopping) {
431 spin_lock(&mdsc->cap_delay_lock);
432 if (!list_empty(&ci->i_cap_delay_list)) {
433 if (ci->i_ceph_flags & CEPH_I_FLUSH)
434 goto no_change;
435 list_del_init(&ci->i_cap_delay_list);
437 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
438 no_change:
439 spin_unlock(&mdsc->cap_delay_lock);
444 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
445 * indicating we should send a cap message to flush dirty metadata
446 * asap, and move to the front of the delayed cap list.
448 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
449 struct ceph_inode_info *ci)
451 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
452 spin_lock(&mdsc->cap_delay_lock);
453 ci->i_ceph_flags |= CEPH_I_FLUSH;
454 if (!list_empty(&ci->i_cap_delay_list))
455 list_del_init(&ci->i_cap_delay_list);
456 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
457 spin_unlock(&mdsc->cap_delay_lock);
461 * Cancel delayed work on cap.
463 * Caller must hold i_ceph_lock.
465 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
466 struct ceph_inode_info *ci)
468 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
469 if (list_empty(&ci->i_cap_delay_list))
470 return;
471 spin_lock(&mdsc->cap_delay_lock);
472 list_del_init(&ci->i_cap_delay_list);
473 spin_unlock(&mdsc->cap_delay_lock);
477 * Common issue checks for add_cap, handle_cap_grant.
479 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
480 unsigned issued)
482 unsigned had = __ceph_caps_issued(ci, NULL);
485 * Each time we receive FILE_CACHE anew, we increment
486 * i_rdcache_gen.
488 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
489 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
490 ci->i_rdcache_gen++;
493 * if we are newly issued FILE_SHARED, clear D_COMPLETE; we
494 * don't know what happened to this directory while we didn't
495 * have the cap.
497 if ((issued & CEPH_CAP_FILE_SHARED) &&
498 (had & CEPH_CAP_FILE_SHARED) == 0) {
499 ci->i_shared_gen++;
500 if (S_ISDIR(ci->vfs_inode.i_mode))
501 ceph_dir_clear_complete(&ci->vfs_inode);
506 * Add a capability under the given MDS session.
508 * Caller should hold session snap_rwsem (read) and s_mutex.
510 * @fmode is the open file mode, if we are opening a file, otherwise
511 * it is < 0. (This is so we can atomically add the cap and add an
512 * open file reference to it.)
514 int ceph_add_cap(struct inode *inode,
515 struct ceph_mds_session *session, u64 cap_id,
516 int fmode, unsigned issued, unsigned wanted,
517 unsigned seq, unsigned mseq, u64 realmino, int flags,
518 struct ceph_cap_reservation *caps_reservation)
520 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
521 struct ceph_inode_info *ci = ceph_inode(inode);
522 struct ceph_cap *new_cap = NULL;
523 struct ceph_cap *cap;
524 int mds = session->s_mds;
525 int actual_wanted;
527 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
528 session->s_mds, cap_id, ceph_cap_string(issued), seq);
531 * If we are opening the file, include file mode wanted bits
532 * in wanted.
534 if (fmode >= 0)
535 wanted |= ceph_caps_for_mode(fmode);
537 retry:
538 spin_lock(&ci->i_ceph_lock);
539 cap = __get_cap_for_mds(ci, mds);
540 if (!cap) {
541 if (new_cap) {
542 cap = new_cap;
543 new_cap = NULL;
544 } else {
545 spin_unlock(&ci->i_ceph_lock);
546 new_cap = get_cap(mdsc, caps_reservation);
547 if (new_cap == NULL)
548 return -ENOMEM;
549 goto retry;
552 cap->issued = 0;
553 cap->implemented = 0;
554 cap->mds = mds;
555 cap->mds_wanted = 0;
557 cap->ci = ci;
558 __insert_cap_node(ci, cap);
560 /* clear out old exporting info? (i.e. on cap import) */
561 if (ci->i_cap_exporting_mds == mds) {
562 ci->i_cap_exporting_issued = 0;
563 ci->i_cap_exporting_mseq = 0;
564 ci->i_cap_exporting_mds = -1;
567 /* add to session cap list */
568 cap->session = session;
569 spin_lock(&session->s_cap_lock);
570 list_add_tail(&cap->session_caps, &session->s_caps);
571 session->s_nr_caps++;
572 spin_unlock(&session->s_cap_lock);
573 } else if (new_cap)
574 ceph_put_cap(mdsc, new_cap);
576 if (!ci->i_snap_realm) {
578 * add this inode to the appropriate snap realm
580 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
581 realmino);
582 if (realm) {
583 ceph_get_snap_realm(mdsc, realm);
584 spin_lock(&realm->inodes_with_caps_lock);
585 ci->i_snap_realm = realm;
586 list_add(&ci->i_snap_realm_item,
587 &realm->inodes_with_caps);
588 spin_unlock(&realm->inodes_with_caps_lock);
589 } else {
590 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
591 realmino);
592 WARN_ON(!realm);
596 __check_cap_issue(ci, cap, issued);
599 * If we are issued caps we don't want, or the mds' wanted
600 * value appears to be off, queue a check so we'll release
601 * later and/or update the mds wanted value.
603 actual_wanted = __ceph_caps_wanted(ci);
604 if ((wanted & ~actual_wanted) ||
605 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
606 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
607 ceph_cap_string(issued), ceph_cap_string(wanted),
608 ceph_cap_string(actual_wanted));
609 __cap_delay_requeue(mdsc, ci);
612 if (flags & CEPH_CAP_FLAG_AUTH)
613 ci->i_auth_cap = cap;
614 else if (ci->i_auth_cap == cap)
615 ci->i_auth_cap = NULL;
617 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
618 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
619 ceph_cap_string(issued|cap->issued), seq, mds);
620 cap->cap_id = cap_id;
621 cap->issued = issued;
622 cap->implemented |= issued;
623 cap->mds_wanted |= wanted;
624 cap->seq = seq;
625 cap->issue_seq = seq;
626 cap->mseq = mseq;
627 cap->cap_gen = session->s_cap_gen;
629 if (fmode >= 0)
630 __ceph_get_fmode(ci, fmode);
631 spin_unlock(&ci->i_ceph_lock);
632 wake_up_all(&ci->i_cap_wq);
633 return 0;
637 * Return true if cap has not timed out and belongs to the current
638 * generation of the MDS session (i.e. has not gone 'stale' due to
639 * us losing touch with the mds).
641 static int __cap_is_valid(struct ceph_cap *cap)
643 unsigned long ttl;
644 u32 gen;
646 spin_lock(&cap->session->s_gen_ttl_lock);
647 gen = cap->session->s_cap_gen;
648 ttl = cap->session->s_cap_ttl;
649 spin_unlock(&cap->session->s_gen_ttl_lock);
651 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
652 dout("__cap_is_valid %p cap %p issued %s "
653 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
654 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
655 return 0;
658 return 1;
662 * Return set of valid cap bits issued to us. Note that caps time
663 * out, and may be invalidated in bulk if the client session times out
664 * and session->s_cap_gen is bumped.
666 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
668 int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
669 struct ceph_cap *cap;
670 struct rb_node *p;
672 if (implemented)
673 *implemented = 0;
674 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
675 cap = rb_entry(p, struct ceph_cap, ci_node);
676 if (!__cap_is_valid(cap))
677 continue;
678 dout("__ceph_caps_issued %p cap %p issued %s\n",
679 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
680 have |= cap->issued;
681 if (implemented)
682 *implemented |= cap->implemented;
684 return have;
688 * Get cap bits issued by caps other than @ocap
690 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
692 int have = ci->i_snap_caps;
693 struct ceph_cap *cap;
694 struct rb_node *p;
696 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
697 cap = rb_entry(p, struct ceph_cap, ci_node);
698 if (cap == ocap)
699 continue;
700 if (!__cap_is_valid(cap))
701 continue;
702 have |= cap->issued;
704 return have;
708 * Move a cap to the end of the LRU (oldest caps at list head, newest
709 * at list tail).
711 static void __touch_cap(struct ceph_cap *cap)
713 struct ceph_mds_session *s = cap->session;
715 spin_lock(&s->s_cap_lock);
716 if (s->s_cap_iterator == NULL) {
717 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
718 s->s_mds);
719 list_move_tail(&cap->session_caps, &s->s_caps);
720 } else {
721 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
722 &cap->ci->vfs_inode, cap, s->s_mds);
724 spin_unlock(&s->s_cap_lock);
728 * Check if we hold the given mask. If so, move the cap(s) to the
729 * front of their respective LRUs. (This is the preferred way for
730 * callers to check for caps they want.)
732 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
734 struct ceph_cap *cap;
735 struct rb_node *p;
736 int have = ci->i_snap_caps;
738 if ((have & mask) == mask) {
739 dout("__ceph_caps_issued_mask %p snap issued %s"
740 " (mask %s)\n", &ci->vfs_inode,
741 ceph_cap_string(have),
742 ceph_cap_string(mask));
743 return 1;
746 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
747 cap = rb_entry(p, struct ceph_cap, ci_node);
748 if (!__cap_is_valid(cap))
749 continue;
750 if ((cap->issued & mask) == mask) {
751 dout("__ceph_caps_issued_mask %p cap %p issued %s"
752 " (mask %s)\n", &ci->vfs_inode, cap,
753 ceph_cap_string(cap->issued),
754 ceph_cap_string(mask));
755 if (touch)
756 __touch_cap(cap);
757 return 1;
760 /* does a combination of caps satisfy mask? */
761 have |= cap->issued;
762 if ((have & mask) == mask) {
763 dout("__ceph_caps_issued_mask %p combo issued %s"
764 " (mask %s)\n", &ci->vfs_inode,
765 ceph_cap_string(cap->issued),
766 ceph_cap_string(mask));
767 if (touch) {
768 struct rb_node *q;
770 /* touch this + preceding caps */
771 __touch_cap(cap);
772 for (q = rb_first(&ci->i_caps); q != p;
773 q = rb_next(q)) {
774 cap = rb_entry(q, struct ceph_cap,
775 ci_node);
776 if (!__cap_is_valid(cap))
777 continue;
778 __touch_cap(cap);
781 return 1;
785 return 0;
789 * Return true if mask caps are currently being revoked by an MDS.
791 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
793 struct inode *inode = &ci->vfs_inode;
794 struct ceph_cap *cap;
795 struct rb_node *p;
796 int ret = 0;
798 spin_lock(&ci->i_ceph_lock);
799 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
800 cap = rb_entry(p, struct ceph_cap, ci_node);
801 if (__cap_is_valid(cap) &&
802 (cap->implemented & ~cap->issued & mask)) {
803 ret = 1;
804 break;
807 spin_unlock(&ci->i_ceph_lock);
808 dout("ceph_caps_revoking %p %s = %d\n", inode,
809 ceph_cap_string(mask), ret);
810 return ret;
813 int __ceph_caps_used(struct ceph_inode_info *ci)
815 int used = 0;
816 if (ci->i_pin_ref)
817 used |= CEPH_CAP_PIN;
818 if (ci->i_rd_ref)
819 used |= CEPH_CAP_FILE_RD;
820 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
821 used |= CEPH_CAP_FILE_CACHE;
822 if (ci->i_wr_ref)
823 used |= CEPH_CAP_FILE_WR;
824 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
825 used |= CEPH_CAP_FILE_BUFFER;
826 return used;
830 * wanted, by virtue of open file modes
832 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
834 int want = 0;
835 int mode;
836 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
837 if (ci->i_nr_by_mode[mode])
838 want |= ceph_caps_for_mode(mode);
839 return want;
843 * Return caps we have registered with the MDS(s) as 'wanted'.
845 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
847 struct ceph_cap *cap;
848 struct rb_node *p;
849 int mds_wanted = 0;
851 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
852 cap = rb_entry(p, struct ceph_cap, ci_node);
853 if (!__cap_is_valid(cap))
854 continue;
855 mds_wanted |= cap->mds_wanted;
857 return mds_wanted;
861 * called under i_ceph_lock
863 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
865 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
869 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
871 * caller should hold i_ceph_lock.
872 * caller will not hold session s_mutex if called from destroy_inode.
874 void __ceph_remove_cap(struct ceph_cap *cap)
876 struct ceph_mds_session *session = cap->session;
877 struct ceph_inode_info *ci = cap->ci;
878 struct ceph_mds_client *mdsc =
879 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
880 int removed = 0;
882 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
884 /* remove from session list */
885 spin_lock(&session->s_cap_lock);
886 if (session->s_cap_iterator == cap) {
887 /* not yet, we are iterating over this very cap */
888 dout("__ceph_remove_cap delaying %p removal from session %p\n",
889 cap, cap->session);
890 } else {
891 list_del_init(&cap->session_caps);
892 session->s_nr_caps--;
893 cap->session = NULL;
894 removed = 1;
896 /* protect backpointer with s_cap_lock: see iterate_session_caps */
897 cap->ci = NULL;
898 spin_unlock(&session->s_cap_lock);
900 /* remove from inode list */
901 rb_erase(&cap->ci_node, &ci->i_caps);
902 if (ci->i_auth_cap == cap)
903 ci->i_auth_cap = NULL;
905 if (removed)
906 ceph_put_cap(mdsc, cap);
908 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
909 struct ceph_snap_realm *realm = ci->i_snap_realm;
910 spin_lock(&realm->inodes_with_caps_lock);
911 list_del_init(&ci->i_snap_realm_item);
912 ci->i_snap_realm_counter++;
913 ci->i_snap_realm = NULL;
914 spin_unlock(&realm->inodes_with_caps_lock);
915 ceph_put_snap_realm(mdsc, realm);
917 if (!__ceph_is_any_real_caps(ci))
918 __cap_delay_cancel(mdsc, ci);
922 * Build and send a cap message to the given MDS.
924 * Caller should be holding s_mutex.
926 static int send_cap_msg(struct ceph_mds_session *session,
927 u64 ino, u64 cid, int op,
928 int caps, int wanted, int dirty,
929 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
930 u64 size, u64 max_size,
931 struct timespec *mtime, struct timespec *atime,
932 u64 time_warp_seq,
933 uid_t uid, gid_t gid, umode_t mode,
934 u64 xattr_version,
935 struct ceph_buffer *xattrs_buf,
936 u64 follows)
938 struct ceph_mds_caps *fc;
939 struct ceph_msg *msg;
941 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
942 " seq %u/%u mseq %u follows %lld size %llu/%llu"
943 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
944 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
945 ceph_cap_string(dirty),
946 seq, issue_seq, mseq, follows, size, max_size,
947 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
949 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
950 if (!msg)
951 return -ENOMEM;
953 msg->hdr.tid = cpu_to_le64(flush_tid);
955 fc = msg->front.iov_base;
956 memset(fc, 0, sizeof(*fc));
958 fc->cap_id = cpu_to_le64(cid);
959 fc->op = cpu_to_le32(op);
960 fc->seq = cpu_to_le32(seq);
961 fc->issue_seq = cpu_to_le32(issue_seq);
962 fc->migrate_seq = cpu_to_le32(mseq);
963 fc->caps = cpu_to_le32(caps);
964 fc->wanted = cpu_to_le32(wanted);
965 fc->dirty = cpu_to_le32(dirty);
966 fc->ino = cpu_to_le64(ino);
967 fc->snap_follows = cpu_to_le64(follows);
969 fc->size = cpu_to_le64(size);
970 fc->max_size = cpu_to_le64(max_size);
971 if (mtime)
972 ceph_encode_timespec(&fc->mtime, mtime);
973 if (atime)
974 ceph_encode_timespec(&fc->atime, atime);
975 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
977 fc->uid = cpu_to_le32(uid);
978 fc->gid = cpu_to_le32(gid);
979 fc->mode = cpu_to_le32(mode);
981 fc->xattr_version = cpu_to_le64(xattr_version);
982 if (xattrs_buf) {
983 msg->middle = ceph_buffer_get(xattrs_buf);
984 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
985 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
988 ceph_con_send(&session->s_con, msg);
989 return 0;
992 static void __queue_cap_release(struct ceph_mds_session *session,
993 u64 ino, u64 cap_id, u32 migrate_seq,
994 u32 issue_seq)
996 struct ceph_msg *msg;
997 struct ceph_mds_cap_release *head;
998 struct ceph_mds_cap_item *item;
1000 spin_lock(&session->s_cap_lock);
1001 BUG_ON(!session->s_num_cap_releases);
1002 msg = list_first_entry(&session->s_cap_releases,
1003 struct ceph_msg, list_head);
1005 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1006 ino, session->s_mds, msg, session->s_num_cap_releases);
1008 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1009 head = msg->front.iov_base;
1010 le32_add_cpu(&head->num, 1);
1011 item = msg->front.iov_base + msg->front.iov_len;
1012 item->ino = cpu_to_le64(ino);
1013 item->cap_id = cpu_to_le64(cap_id);
1014 item->migrate_seq = cpu_to_le32(migrate_seq);
1015 item->seq = cpu_to_le32(issue_seq);
1017 session->s_num_cap_releases--;
1019 msg->front.iov_len += sizeof(*item);
1020 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1021 dout(" release msg %p full\n", msg);
1022 list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1023 } else {
1024 dout(" release msg %p at %d/%d (%d)\n", msg,
1025 (int)le32_to_cpu(head->num),
1026 (int)CEPH_CAPS_PER_RELEASE,
1027 (int)msg->front.iov_len);
1029 spin_unlock(&session->s_cap_lock);
1033 * Queue cap releases when an inode is dropped from our cache. Since
1034 * inode is about to be destroyed, there is no need for i_ceph_lock.
1036 void ceph_queue_caps_release(struct inode *inode)
1038 struct ceph_inode_info *ci = ceph_inode(inode);
1039 struct rb_node *p;
1041 p = rb_first(&ci->i_caps);
1042 while (p) {
1043 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1044 struct ceph_mds_session *session = cap->session;
1046 __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1047 cap->mseq, cap->issue_seq);
1048 p = rb_next(p);
1049 __ceph_remove_cap(cap);
1054 * Send a cap msg on the given inode. Update our caps state, then
1055 * drop i_ceph_lock and send the message.
1057 * Make note of max_size reported/requested from mds, revoked caps
1058 * that have now been implemented.
1060 * Make half-hearted attempt ot to invalidate page cache if we are
1061 * dropping RDCACHE. Note that this will leave behind locked pages
1062 * that we'll then need to deal with elsewhere.
1064 * Return non-zero if delayed release, or we experienced an error
1065 * such that the caller should requeue + retry later.
1067 * called with i_ceph_lock, then drops it.
1068 * caller should hold snap_rwsem (read), s_mutex.
1070 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1071 int op, int used, int want, int retain, int flushing,
1072 unsigned *pflush_tid)
1073 __releases(cap->ci->i_ceph_lock)
1075 struct ceph_inode_info *ci = cap->ci;
1076 struct inode *inode = &ci->vfs_inode;
1077 u64 cap_id = cap->cap_id;
1078 int held, revoking, dropping, keep;
1079 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1080 u64 size, max_size;
1081 struct timespec mtime, atime;
1082 int wake = 0;
1083 umode_t mode;
1084 uid_t uid;
1085 gid_t gid;
1086 struct ceph_mds_session *session;
1087 u64 xattr_version = 0;
1088 struct ceph_buffer *xattr_blob = NULL;
1089 int delayed = 0;
1090 u64 flush_tid = 0;
1091 int i;
1092 int ret;
1094 held = cap->issued | cap->implemented;
1095 revoking = cap->implemented & ~cap->issued;
1096 retain &= ~revoking;
1097 dropping = cap->issued & ~retain;
1099 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1100 inode, cap, cap->session,
1101 ceph_cap_string(held), ceph_cap_string(held & retain),
1102 ceph_cap_string(revoking));
1103 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1105 session = cap->session;
1107 /* don't release wanted unless we've waited a bit. */
1108 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1109 time_before(jiffies, ci->i_hold_caps_min)) {
1110 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1111 ceph_cap_string(cap->issued),
1112 ceph_cap_string(cap->issued & retain),
1113 ceph_cap_string(cap->mds_wanted),
1114 ceph_cap_string(want));
1115 want |= cap->mds_wanted;
1116 retain |= cap->issued;
1117 delayed = 1;
1119 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1121 cap->issued &= retain; /* drop bits we don't want */
1122 if (cap->implemented & ~cap->issued) {
1124 * Wake up any waiters on wanted -> needed transition.
1125 * This is due to the weird transition from buffered
1126 * to sync IO... we need to flush dirty pages _before_
1127 * allowing sync writes to avoid reordering.
1129 wake = 1;
1131 cap->implemented &= cap->issued | used;
1132 cap->mds_wanted = want;
1134 if (flushing) {
1136 * assign a tid for flush operations so we can avoid
1137 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1138 * clean type races. track latest tid for every bit
1139 * so we can handle flush AxFw, flush Fw, and have the
1140 * first ack clean Ax.
1142 flush_tid = ++ci->i_cap_flush_last_tid;
1143 if (pflush_tid)
1144 *pflush_tid = flush_tid;
1145 dout(" cap_flush_tid %d\n", (int)flush_tid);
1146 for (i = 0; i < CEPH_CAP_BITS; i++)
1147 if (flushing & (1 << i))
1148 ci->i_cap_flush_tid[i] = flush_tid;
1150 follows = ci->i_head_snapc->seq;
1151 } else {
1152 follows = 0;
1155 keep = cap->implemented;
1156 seq = cap->seq;
1157 issue_seq = cap->issue_seq;
1158 mseq = cap->mseq;
1159 size = inode->i_size;
1160 ci->i_reported_size = size;
1161 max_size = ci->i_wanted_max_size;
1162 ci->i_requested_max_size = max_size;
1163 mtime = inode->i_mtime;
1164 atime = inode->i_atime;
1165 time_warp_seq = ci->i_time_warp_seq;
1166 uid = inode->i_uid;
1167 gid = inode->i_gid;
1168 mode = inode->i_mode;
1170 if (flushing & CEPH_CAP_XATTR_EXCL) {
1171 __ceph_build_xattrs_blob(ci);
1172 xattr_blob = ci->i_xattrs.blob;
1173 xattr_version = ci->i_xattrs.version;
1176 spin_unlock(&ci->i_ceph_lock);
1178 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1179 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1180 size, max_size, &mtime, &atime, time_warp_seq,
1181 uid, gid, mode, xattr_version, xattr_blob,
1182 follows);
1183 if (ret < 0) {
1184 dout("error sending cap msg, must requeue %p\n", inode);
1185 delayed = 1;
1188 if (wake)
1189 wake_up_all(&ci->i_cap_wq);
1191 return delayed;
1195 * When a snapshot is taken, clients accumulate dirty metadata on
1196 * inodes with capabilities in ceph_cap_snaps to describe the file
1197 * state at the time the snapshot was taken. This must be flushed
1198 * asynchronously back to the MDS once sync writes complete and dirty
1199 * data is written out.
1201 * Unless @again is true, skip cap_snaps that were already sent to
1202 * the MDS (i.e., during this session).
1204 * Called under i_ceph_lock. Takes s_mutex as needed.
1206 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1207 struct ceph_mds_session **psession,
1208 int again)
1209 __releases(ci->i_ceph_lock)
1210 __acquires(ci->i_ceph_lock)
1212 struct inode *inode = &ci->vfs_inode;
1213 int mds;
1214 struct ceph_cap_snap *capsnap;
1215 u32 mseq;
1216 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1217 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1218 session->s_mutex */
1219 u64 next_follows = 0; /* keep track of how far we've gotten through the
1220 i_cap_snaps list, and skip these entries next time
1221 around to avoid an infinite loop */
1223 if (psession)
1224 session = *psession;
1226 dout("__flush_snaps %p\n", inode);
1227 retry:
1228 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1229 /* avoid an infiniute loop after retry */
1230 if (capsnap->follows < next_follows)
1231 continue;
1233 * we need to wait for sync writes to complete and for dirty
1234 * pages to be written out.
1236 if (capsnap->dirty_pages || capsnap->writing)
1237 break;
1240 * if cap writeback already occurred, we should have dropped
1241 * the capsnap in ceph_put_wrbuffer_cap_refs.
1243 BUG_ON(capsnap->dirty == 0);
1245 /* pick mds, take s_mutex */
1246 if (ci->i_auth_cap == NULL) {
1247 dout("no auth cap (migrating?), doing nothing\n");
1248 goto out;
1251 /* only flush each capsnap once */
1252 if (!again && !list_empty(&capsnap->flushing_item)) {
1253 dout("already flushed %p, skipping\n", capsnap);
1254 continue;
1257 mds = ci->i_auth_cap->session->s_mds;
1258 mseq = ci->i_auth_cap->mseq;
1260 if (session && session->s_mds != mds) {
1261 dout("oops, wrong session %p mutex\n", session);
1262 mutex_unlock(&session->s_mutex);
1263 ceph_put_mds_session(session);
1264 session = NULL;
1266 if (!session) {
1267 spin_unlock(&ci->i_ceph_lock);
1268 mutex_lock(&mdsc->mutex);
1269 session = __ceph_lookup_mds_session(mdsc, mds);
1270 mutex_unlock(&mdsc->mutex);
1271 if (session) {
1272 dout("inverting session/ino locks on %p\n",
1273 session);
1274 mutex_lock(&session->s_mutex);
1277 * if session == NULL, we raced against a cap
1278 * deletion or migration. retry, and we'll
1279 * get a better @mds value next time.
1281 spin_lock(&ci->i_ceph_lock);
1282 goto retry;
1285 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1286 atomic_inc(&capsnap->nref);
1287 if (!list_empty(&capsnap->flushing_item))
1288 list_del_init(&capsnap->flushing_item);
1289 list_add_tail(&capsnap->flushing_item,
1290 &session->s_cap_snaps_flushing);
1291 spin_unlock(&ci->i_ceph_lock);
1293 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1294 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1295 send_cap_msg(session, ceph_vino(inode).ino, 0,
1296 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1297 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1298 capsnap->size, 0,
1299 &capsnap->mtime, &capsnap->atime,
1300 capsnap->time_warp_seq,
1301 capsnap->uid, capsnap->gid, capsnap->mode,
1302 capsnap->xattr_version, capsnap->xattr_blob,
1303 capsnap->follows);
1305 next_follows = capsnap->follows + 1;
1306 ceph_put_cap_snap(capsnap);
1308 spin_lock(&ci->i_ceph_lock);
1309 goto retry;
1312 /* we flushed them all; remove this inode from the queue */
1313 spin_lock(&mdsc->snap_flush_lock);
1314 list_del_init(&ci->i_snap_flush_item);
1315 spin_unlock(&mdsc->snap_flush_lock);
1317 out:
1318 if (psession)
1319 *psession = session;
1320 else if (session) {
1321 mutex_unlock(&session->s_mutex);
1322 ceph_put_mds_session(session);
1326 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1328 spin_lock(&ci->i_ceph_lock);
1329 __ceph_flush_snaps(ci, NULL, 0);
1330 spin_unlock(&ci->i_ceph_lock);
1334 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1335 * Caller is then responsible for calling __mark_inode_dirty with the
1336 * returned flags value.
1338 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1340 struct ceph_mds_client *mdsc =
1341 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1342 struct inode *inode = &ci->vfs_inode;
1343 int was = ci->i_dirty_caps;
1344 int dirty = 0;
1346 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1347 ceph_cap_string(mask), ceph_cap_string(was),
1348 ceph_cap_string(was | mask));
1349 ci->i_dirty_caps |= mask;
1350 if (was == 0) {
1351 if (!ci->i_head_snapc)
1352 ci->i_head_snapc = ceph_get_snap_context(
1353 ci->i_snap_realm->cached_context);
1354 dout(" inode %p now dirty snapc %p auth cap %p\n",
1355 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1356 BUG_ON(!list_empty(&ci->i_dirty_item));
1357 spin_lock(&mdsc->cap_dirty_lock);
1358 if (ci->i_auth_cap)
1359 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1360 else
1361 list_add(&ci->i_dirty_item,
1362 &mdsc->cap_dirty_migrating);
1363 spin_unlock(&mdsc->cap_dirty_lock);
1364 if (ci->i_flushing_caps == 0) {
1365 ihold(inode);
1366 dirty |= I_DIRTY_SYNC;
1369 BUG_ON(list_empty(&ci->i_dirty_item));
1370 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1371 (mask & CEPH_CAP_FILE_BUFFER))
1372 dirty |= I_DIRTY_DATASYNC;
1373 __cap_delay_requeue(mdsc, ci);
1374 return dirty;
1378 * Add dirty inode to the flushing list. Assigned a seq number so we
1379 * can wait for caps to flush without starving.
1381 * Called under i_ceph_lock.
1383 static int __mark_caps_flushing(struct inode *inode,
1384 struct ceph_mds_session *session)
1386 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1387 struct ceph_inode_info *ci = ceph_inode(inode);
1388 int flushing;
1390 BUG_ON(ci->i_dirty_caps == 0);
1391 BUG_ON(list_empty(&ci->i_dirty_item));
1393 flushing = ci->i_dirty_caps;
1394 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1395 ceph_cap_string(flushing),
1396 ceph_cap_string(ci->i_flushing_caps),
1397 ceph_cap_string(ci->i_flushing_caps | flushing));
1398 ci->i_flushing_caps |= flushing;
1399 ci->i_dirty_caps = 0;
1400 dout(" inode %p now !dirty\n", inode);
1402 spin_lock(&mdsc->cap_dirty_lock);
1403 list_del_init(&ci->i_dirty_item);
1405 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1406 if (list_empty(&ci->i_flushing_item)) {
1407 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1408 mdsc->num_cap_flushing++;
1409 dout(" inode %p now flushing seq %lld\n", inode,
1410 ci->i_cap_flush_seq);
1411 } else {
1412 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1413 dout(" inode %p now flushing (more) seq %lld\n", inode,
1414 ci->i_cap_flush_seq);
1416 spin_unlock(&mdsc->cap_dirty_lock);
1418 return flushing;
1422 * try to invalidate mapping pages without blocking.
1424 static int try_nonblocking_invalidate(struct inode *inode)
1426 struct ceph_inode_info *ci = ceph_inode(inode);
1427 u32 invalidating_gen = ci->i_rdcache_gen;
1429 spin_unlock(&ci->i_ceph_lock);
1430 invalidate_mapping_pages(&inode->i_data, 0, -1);
1431 spin_lock(&ci->i_ceph_lock);
1433 if (inode->i_data.nrpages == 0 &&
1434 invalidating_gen == ci->i_rdcache_gen) {
1435 /* success. */
1436 dout("try_nonblocking_invalidate %p success\n", inode);
1437 /* save any racing async invalidate some trouble */
1438 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1439 return 0;
1441 dout("try_nonblocking_invalidate %p failed\n", inode);
1442 return -1;
1446 * Swiss army knife function to examine currently used and wanted
1447 * versus held caps. Release, flush, ack revoked caps to mds as
1448 * appropriate.
1450 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1451 * cap release further.
1452 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1453 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1454 * further delay.
1456 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1457 struct ceph_mds_session *session)
1459 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1460 struct ceph_mds_client *mdsc = fsc->mdsc;
1461 struct inode *inode = &ci->vfs_inode;
1462 struct ceph_cap *cap;
1463 int file_wanted, used;
1464 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1465 int issued, implemented, want, retain, revoking, flushing = 0;
1466 int mds = -1; /* keep track of how far we've gone through i_caps list
1467 to avoid an infinite loop on retry */
1468 struct rb_node *p;
1469 int tried_invalidate = 0;
1470 int delayed = 0, sent = 0, force_requeue = 0, num;
1471 int queue_invalidate = 0;
1472 int is_delayed = flags & CHECK_CAPS_NODELAY;
1474 /* if we are unmounting, flush any unused caps immediately. */
1475 if (mdsc->stopping)
1476 is_delayed = 1;
1478 spin_lock(&ci->i_ceph_lock);
1480 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1481 flags |= CHECK_CAPS_FLUSH;
1483 /* flush snaps first time around only */
1484 if (!list_empty(&ci->i_cap_snaps))
1485 __ceph_flush_snaps(ci, &session, 0);
1486 goto retry_locked;
1487 retry:
1488 spin_lock(&ci->i_ceph_lock);
1489 retry_locked:
1490 file_wanted = __ceph_caps_file_wanted(ci);
1491 used = __ceph_caps_used(ci);
1492 want = file_wanted | used;
1493 issued = __ceph_caps_issued(ci, &implemented);
1494 revoking = implemented & ~issued;
1496 retain = want | CEPH_CAP_PIN;
1497 if (!mdsc->stopping && inode->i_nlink > 0) {
1498 if (want) {
1499 retain |= CEPH_CAP_ANY; /* be greedy */
1500 } else {
1501 retain |= CEPH_CAP_ANY_SHARED;
1503 * keep RD only if we didn't have the file open RW,
1504 * because then the mds would revoke it anyway to
1505 * journal max_size=0.
1507 if (ci->i_max_size == 0)
1508 retain |= CEPH_CAP_ANY_RD;
1512 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1513 " issued %s revoking %s retain %s %s%s%s\n", inode,
1514 ceph_cap_string(file_wanted),
1515 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1516 ceph_cap_string(ci->i_flushing_caps),
1517 ceph_cap_string(issued), ceph_cap_string(revoking),
1518 ceph_cap_string(retain),
1519 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1520 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1521 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1524 * If we no longer need to hold onto old our caps, and we may
1525 * have cached pages, but don't want them, then try to invalidate.
1526 * If we fail, it's because pages are locked.... try again later.
1528 if ((!is_delayed || mdsc->stopping) &&
1529 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1530 inode->i_data.nrpages && /* have cached pages */
1531 (file_wanted == 0 || /* no open files */
1532 (revoking & (CEPH_CAP_FILE_CACHE|
1533 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1534 !tried_invalidate) {
1535 dout("check_caps trying to invalidate on %p\n", inode);
1536 if (try_nonblocking_invalidate(inode) < 0) {
1537 if (revoking & (CEPH_CAP_FILE_CACHE|
1538 CEPH_CAP_FILE_LAZYIO)) {
1539 dout("check_caps queuing invalidate\n");
1540 queue_invalidate = 1;
1541 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1542 } else {
1543 dout("check_caps failed to invalidate pages\n");
1544 /* we failed to invalidate pages. check these
1545 caps again later. */
1546 force_requeue = 1;
1547 __cap_set_timeouts(mdsc, ci);
1550 tried_invalidate = 1;
1551 goto retry_locked;
1554 num = 0;
1555 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1556 cap = rb_entry(p, struct ceph_cap, ci_node);
1557 num++;
1559 /* avoid looping forever */
1560 if (mds >= cap->mds ||
1561 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1562 continue;
1564 /* NOTE: no side-effects allowed, until we take s_mutex */
1566 revoking = cap->implemented & ~cap->issued;
1567 dout(" mds%d cap %p issued %s implemented %s revoking %s\n",
1568 cap->mds, cap, ceph_cap_string(cap->issued),
1569 ceph_cap_string(cap->implemented),
1570 ceph_cap_string(revoking));
1572 if (cap == ci->i_auth_cap &&
1573 (cap->issued & CEPH_CAP_FILE_WR)) {
1574 /* request larger max_size from MDS? */
1575 if (ci->i_wanted_max_size > ci->i_max_size &&
1576 ci->i_wanted_max_size > ci->i_requested_max_size) {
1577 dout("requesting new max_size\n");
1578 goto ack;
1581 /* approaching file_max? */
1582 if ((inode->i_size << 1) >= ci->i_max_size &&
1583 (ci->i_reported_size << 1) < ci->i_max_size) {
1584 dout("i_size approaching max_size\n");
1585 goto ack;
1588 /* flush anything dirty? */
1589 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1590 ci->i_dirty_caps) {
1591 dout("flushing dirty caps\n");
1592 goto ack;
1595 /* completed revocation? going down and there are no caps? */
1596 if (revoking && (revoking & used) == 0) {
1597 dout("completed revocation of %s\n",
1598 ceph_cap_string(cap->implemented & ~cap->issued));
1599 goto ack;
1602 /* want more caps from mds? */
1603 if (want & ~(cap->mds_wanted | cap->issued))
1604 goto ack;
1606 /* things we might delay */
1607 if ((cap->issued & ~retain) == 0 &&
1608 cap->mds_wanted == want)
1609 continue; /* nope, all good */
1611 if (is_delayed)
1612 goto ack;
1614 /* delay? */
1615 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1616 time_before(jiffies, ci->i_hold_caps_max)) {
1617 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1618 ceph_cap_string(cap->issued),
1619 ceph_cap_string(cap->issued & retain),
1620 ceph_cap_string(cap->mds_wanted),
1621 ceph_cap_string(want));
1622 delayed++;
1623 continue;
1626 ack:
1627 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1628 dout(" skipping %p I_NOFLUSH set\n", inode);
1629 continue;
1632 if (session && session != cap->session) {
1633 dout("oops, wrong session %p mutex\n", session);
1634 mutex_unlock(&session->s_mutex);
1635 session = NULL;
1637 if (!session) {
1638 session = cap->session;
1639 if (mutex_trylock(&session->s_mutex) == 0) {
1640 dout("inverting session/ino locks on %p\n",
1641 session);
1642 spin_unlock(&ci->i_ceph_lock);
1643 if (took_snap_rwsem) {
1644 up_read(&mdsc->snap_rwsem);
1645 took_snap_rwsem = 0;
1647 mutex_lock(&session->s_mutex);
1648 goto retry;
1651 /* take snap_rwsem after session mutex */
1652 if (!took_snap_rwsem) {
1653 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1654 dout("inverting snap/in locks on %p\n",
1655 inode);
1656 spin_unlock(&ci->i_ceph_lock);
1657 down_read(&mdsc->snap_rwsem);
1658 took_snap_rwsem = 1;
1659 goto retry;
1661 took_snap_rwsem = 1;
1664 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1665 flushing = __mark_caps_flushing(inode, session);
1666 else
1667 flushing = 0;
1669 mds = cap->mds; /* remember mds, so we don't repeat */
1670 sent++;
1672 /* __send_cap drops i_ceph_lock */
1673 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1674 retain, flushing, NULL);
1675 goto retry; /* retake i_ceph_lock and restart our cap scan. */
1679 * Reschedule delayed caps release if we delayed anything,
1680 * otherwise cancel.
1682 if (delayed && is_delayed)
1683 force_requeue = 1; /* __send_cap delayed release; requeue */
1684 if (!delayed && !is_delayed)
1685 __cap_delay_cancel(mdsc, ci);
1686 else if (!is_delayed || force_requeue)
1687 __cap_delay_requeue(mdsc, ci);
1689 spin_unlock(&ci->i_ceph_lock);
1691 if (queue_invalidate)
1692 ceph_queue_invalidate(inode);
1694 if (session)
1695 mutex_unlock(&session->s_mutex);
1696 if (took_snap_rwsem)
1697 up_read(&mdsc->snap_rwsem);
1701 * Try to flush dirty caps back to the auth mds.
1703 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1704 unsigned *flush_tid)
1706 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1707 struct ceph_inode_info *ci = ceph_inode(inode);
1708 int unlock_session = session ? 0 : 1;
1709 int flushing = 0;
1711 retry:
1712 spin_lock(&ci->i_ceph_lock);
1713 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1714 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1715 goto out;
1717 if (ci->i_dirty_caps && ci->i_auth_cap) {
1718 struct ceph_cap *cap = ci->i_auth_cap;
1719 int used = __ceph_caps_used(ci);
1720 int want = __ceph_caps_wanted(ci);
1721 int delayed;
1723 if (!session) {
1724 spin_unlock(&ci->i_ceph_lock);
1725 session = cap->session;
1726 mutex_lock(&session->s_mutex);
1727 goto retry;
1729 BUG_ON(session != cap->session);
1730 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1731 goto out;
1733 flushing = __mark_caps_flushing(inode, session);
1735 /* __send_cap drops i_ceph_lock */
1736 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1737 cap->issued | cap->implemented, flushing,
1738 flush_tid);
1739 if (!delayed)
1740 goto out_unlocked;
1742 spin_lock(&ci->i_ceph_lock);
1743 __cap_delay_requeue(mdsc, ci);
1745 out:
1746 spin_unlock(&ci->i_ceph_lock);
1747 out_unlocked:
1748 if (session && unlock_session)
1749 mutex_unlock(&session->s_mutex);
1750 return flushing;
1754 * Return true if we've flushed caps through the given flush_tid.
1756 static int caps_are_flushed(struct inode *inode, unsigned tid)
1758 struct ceph_inode_info *ci = ceph_inode(inode);
1759 int i, ret = 1;
1761 spin_lock(&ci->i_ceph_lock);
1762 for (i = 0; i < CEPH_CAP_BITS; i++)
1763 if ((ci->i_flushing_caps & (1 << i)) &&
1764 ci->i_cap_flush_tid[i] <= tid) {
1765 /* still flushing this bit */
1766 ret = 0;
1767 break;
1769 spin_unlock(&ci->i_ceph_lock);
1770 return ret;
1774 * Wait on any unsafe replies for the given inode. First wait on the
1775 * newest request, and make that the upper bound. Then, if there are
1776 * more requests, keep waiting on the oldest as long as it is still older
1777 * than the original request.
1779 static void sync_write_wait(struct inode *inode)
1781 struct ceph_inode_info *ci = ceph_inode(inode);
1782 struct list_head *head = &ci->i_unsafe_writes;
1783 struct ceph_osd_request *req;
1784 u64 last_tid;
1786 spin_lock(&ci->i_unsafe_lock);
1787 if (list_empty(head))
1788 goto out;
1790 /* set upper bound as _last_ entry in chain */
1791 req = list_entry(head->prev, struct ceph_osd_request,
1792 r_unsafe_item);
1793 last_tid = req->r_tid;
1795 do {
1796 ceph_osdc_get_request(req);
1797 spin_unlock(&ci->i_unsafe_lock);
1798 dout("sync_write_wait on tid %llu (until %llu)\n",
1799 req->r_tid, last_tid);
1800 wait_for_completion(&req->r_safe_completion);
1801 spin_lock(&ci->i_unsafe_lock);
1802 ceph_osdc_put_request(req);
1805 * from here on look at first entry in chain, since we
1806 * only want to wait for anything older than last_tid
1808 if (list_empty(head))
1809 break;
1810 req = list_entry(head->next, struct ceph_osd_request,
1811 r_unsafe_item);
1812 } while (req->r_tid < last_tid);
1813 out:
1814 spin_unlock(&ci->i_unsafe_lock);
1817 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1819 struct inode *inode = file->f_mapping->host;
1820 struct ceph_inode_info *ci = ceph_inode(inode);
1821 unsigned flush_tid;
1822 int ret;
1823 int dirty;
1825 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1826 sync_write_wait(inode);
1828 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1829 if (ret < 0)
1830 return ret;
1831 mutex_lock(&inode->i_mutex);
1833 dirty = try_flush_caps(inode, NULL, &flush_tid);
1834 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1837 * only wait on non-file metadata writeback (the mds
1838 * can recover size and mtime, so we don't need to
1839 * wait for that)
1841 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1842 dout("fsync waiting for flush_tid %u\n", flush_tid);
1843 ret = wait_event_interruptible(ci->i_cap_wq,
1844 caps_are_flushed(inode, flush_tid));
1847 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1848 mutex_unlock(&inode->i_mutex);
1849 return ret;
1853 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1854 * queue inode for flush but don't do so immediately, because we can
1855 * get by with fewer MDS messages if we wait for data writeback to
1856 * complete first.
1858 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1860 struct ceph_inode_info *ci = ceph_inode(inode);
1861 unsigned flush_tid;
1862 int err = 0;
1863 int dirty;
1864 int wait = wbc->sync_mode == WB_SYNC_ALL;
1866 dout("write_inode %p wait=%d\n", inode, wait);
1867 if (wait) {
1868 dirty = try_flush_caps(inode, NULL, &flush_tid);
1869 if (dirty)
1870 err = wait_event_interruptible(ci->i_cap_wq,
1871 caps_are_flushed(inode, flush_tid));
1872 } else {
1873 struct ceph_mds_client *mdsc =
1874 ceph_sb_to_client(inode->i_sb)->mdsc;
1876 spin_lock(&ci->i_ceph_lock);
1877 if (__ceph_caps_dirty(ci))
1878 __cap_delay_requeue_front(mdsc, ci);
1879 spin_unlock(&ci->i_ceph_lock);
1881 return err;
1885 * After a recovering MDS goes active, we need to resend any caps
1886 * we were flushing.
1888 * Caller holds session->s_mutex.
1890 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1891 struct ceph_mds_session *session)
1893 struct ceph_cap_snap *capsnap;
1895 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1896 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1897 flushing_item) {
1898 struct ceph_inode_info *ci = capsnap->ci;
1899 struct inode *inode = &ci->vfs_inode;
1900 struct ceph_cap *cap;
1902 spin_lock(&ci->i_ceph_lock);
1903 cap = ci->i_auth_cap;
1904 if (cap && cap->session == session) {
1905 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1906 cap, capsnap);
1907 __ceph_flush_snaps(ci, &session, 1);
1908 } else {
1909 pr_err("%p auth cap %p not mds%d ???\n", inode,
1910 cap, session->s_mds);
1912 spin_unlock(&ci->i_ceph_lock);
1916 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1917 struct ceph_mds_session *session)
1919 struct ceph_inode_info *ci;
1921 kick_flushing_capsnaps(mdsc, session);
1923 dout("kick_flushing_caps mds%d\n", session->s_mds);
1924 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1925 struct inode *inode = &ci->vfs_inode;
1926 struct ceph_cap *cap;
1927 int delayed = 0;
1929 spin_lock(&ci->i_ceph_lock);
1930 cap = ci->i_auth_cap;
1931 if (cap && cap->session == session) {
1932 dout("kick_flushing_caps %p cap %p %s\n", inode,
1933 cap, ceph_cap_string(ci->i_flushing_caps));
1934 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1935 __ceph_caps_used(ci),
1936 __ceph_caps_wanted(ci),
1937 cap->issued | cap->implemented,
1938 ci->i_flushing_caps, NULL);
1939 if (delayed) {
1940 spin_lock(&ci->i_ceph_lock);
1941 __cap_delay_requeue(mdsc, ci);
1942 spin_unlock(&ci->i_ceph_lock);
1944 } else {
1945 pr_err("%p auth cap %p not mds%d ???\n", inode,
1946 cap, session->s_mds);
1947 spin_unlock(&ci->i_ceph_lock);
1952 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1953 struct ceph_mds_session *session,
1954 struct inode *inode)
1956 struct ceph_inode_info *ci = ceph_inode(inode);
1957 struct ceph_cap *cap;
1958 int delayed = 0;
1960 spin_lock(&ci->i_ceph_lock);
1961 cap = ci->i_auth_cap;
1962 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1963 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
1964 __ceph_flush_snaps(ci, &session, 1);
1965 if (ci->i_flushing_caps) {
1966 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1967 __ceph_caps_used(ci),
1968 __ceph_caps_wanted(ci),
1969 cap->issued | cap->implemented,
1970 ci->i_flushing_caps, NULL);
1971 if (delayed) {
1972 spin_lock(&ci->i_ceph_lock);
1973 __cap_delay_requeue(mdsc, ci);
1974 spin_unlock(&ci->i_ceph_lock);
1976 } else {
1977 spin_unlock(&ci->i_ceph_lock);
1983 * Take references to capabilities we hold, so that we don't release
1984 * them to the MDS prematurely.
1986 * Protected by i_ceph_lock.
1988 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1990 if (got & CEPH_CAP_PIN)
1991 ci->i_pin_ref++;
1992 if (got & CEPH_CAP_FILE_RD)
1993 ci->i_rd_ref++;
1994 if (got & CEPH_CAP_FILE_CACHE)
1995 ci->i_rdcache_ref++;
1996 if (got & CEPH_CAP_FILE_WR)
1997 ci->i_wr_ref++;
1998 if (got & CEPH_CAP_FILE_BUFFER) {
1999 if (ci->i_wb_ref == 0)
2000 ihold(&ci->vfs_inode);
2001 ci->i_wb_ref++;
2002 dout("__take_cap_refs %p wb %d -> %d (?)\n",
2003 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2008 * Try to grab cap references. Specify those refs we @want, and the
2009 * minimal set we @need. Also include the larger offset we are writing
2010 * to (when applicable), and check against max_size here as well.
2011 * Note that caller is responsible for ensuring max_size increases are
2012 * requested from the MDS.
2014 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2015 int *got, loff_t endoff, int *check_max, int *err)
2017 struct inode *inode = &ci->vfs_inode;
2018 int ret = 0;
2019 int have, implemented;
2020 int file_wanted;
2022 dout("get_cap_refs %p need %s want %s\n", inode,
2023 ceph_cap_string(need), ceph_cap_string(want));
2024 spin_lock(&ci->i_ceph_lock);
2026 /* make sure file is actually open */
2027 file_wanted = __ceph_caps_file_wanted(ci);
2028 if ((file_wanted & need) == 0) {
2029 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2030 ceph_cap_string(need), ceph_cap_string(file_wanted));
2031 *err = -EBADF;
2032 ret = 1;
2033 goto out;
2036 if (need & CEPH_CAP_FILE_WR) {
2037 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2038 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2039 inode, endoff, ci->i_max_size);
2040 if (endoff > ci->i_wanted_max_size) {
2041 *check_max = 1;
2042 ret = 1;
2044 goto out;
2047 * If a sync write is in progress, we must wait, so that we
2048 * can get a final snapshot value for size+mtime.
2050 if (__ceph_have_pending_cap_snap(ci)) {
2051 dout("get_cap_refs %p cap_snap_pending\n", inode);
2052 goto out;
2055 have = __ceph_caps_issued(ci, &implemented);
2058 * disallow writes while a truncate is pending
2060 if (ci->i_truncate_pending)
2061 have &= ~CEPH_CAP_FILE_WR;
2063 if ((have & need) == need) {
2065 * Look at (implemented & ~have & not) so that we keep waiting
2066 * on transition from wanted -> needed caps. This is needed
2067 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2068 * going before a prior buffered writeback happens.
2070 int not = want & ~(have & need);
2071 int revoking = implemented & ~have;
2072 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2073 inode, ceph_cap_string(have), ceph_cap_string(not),
2074 ceph_cap_string(revoking));
2075 if ((revoking & not) == 0) {
2076 *got = need | (have & want);
2077 __take_cap_refs(ci, *got);
2078 ret = 1;
2080 } else {
2081 dout("get_cap_refs %p have %s needed %s\n", inode,
2082 ceph_cap_string(have), ceph_cap_string(need));
2084 out:
2085 spin_unlock(&ci->i_ceph_lock);
2086 dout("get_cap_refs %p ret %d got %s\n", inode,
2087 ret, ceph_cap_string(*got));
2088 return ret;
2092 * Check the offset we are writing up to against our current
2093 * max_size. If necessary, tell the MDS we want to write to
2094 * a larger offset.
2096 static void check_max_size(struct inode *inode, loff_t endoff)
2098 struct ceph_inode_info *ci = ceph_inode(inode);
2099 int check = 0;
2101 /* do we need to explicitly request a larger max_size? */
2102 spin_lock(&ci->i_ceph_lock);
2103 if ((endoff >= ci->i_max_size ||
2104 endoff > (inode->i_size << 1)) &&
2105 endoff > ci->i_wanted_max_size) {
2106 dout("write %p at large endoff %llu, req max_size\n",
2107 inode, endoff);
2108 ci->i_wanted_max_size = endoff;
2109 check = 1;
2111 spin_unlock(&ci->i_ceph_lock);
2112 if (check)
2113 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2117 * Wait for caps, and take cap references. If we can't get a WR cap
2118 * due to a small max_size, make sure we check_max_size (and possibly
2119 * ask the mds) so we don't get hung up indefinitely.
2121 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2122 loff_t endoff)
2124 int check_max, ret, err;
2126 retry:
2127 if (endoff > 0)
2128 check_max_size(&ci->vfs_inode, endoff);
2129 check_max = 0;
2130 err = 0;
2131 ret = wait_event_interruptible(ci->i_cap_wq,
2132 try_get_cap_refs(ci, need, want,
2133 got, endoff,
2134 &check_max, &err));
2135 if (err)
2136 ret = err;
2137 if (check_max)
2138 goto retry;
2139 return ret;
2143 * Take cap refs. Caller must already know we hold at least one ref
2144 * on the caps in question or we don't know this is safe.
2146 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2148 spin_lock(&ci->i_ceph_lock);
2149 __take_cap_refs(ci, caps);
2150 spin_unlock(&ci->i_ceph_lock);
2154 * Release cap refs.
2156 * If we released the last ref on any given cap, call ceph_check_caps
2157 * to release (or schedule a release).
2159 * If we are releasing a WR cap (from a sync write), finalize any affected
2160 * cap_snap, and wake up any waiters.
2162 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2164 struct inode *inode = &ci->vfs_inode;
2165 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2166 struct ceph_cap_snap *capsnap;
2168 spin_lock(&ci->i_ceph_lock);
2169 if (had & CEPH_CAP_PIN)
2170 --ci->i_pin_ref;
2171 if (had & CEPH_CAP_FILE_RD)
2172 if (--ci->i_rd_ref == 0)
2173 last++;
2174 if (had & CEPH_CAP_FILE_CACHE)
2175 if (--ci->i_rdcache_ref == 0)
2176 last++;
2177 if (had & CEPH_CAP_FILE_BUFFER) {
2178 if (--ci->i_wb_ref == 0) {
2179 last++;
2180 put++;
2182 dout("put_cap_refs %p wb %d -> %d (?)\n",
2183 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2185 if (had & CEPH_CAP_FILE_WR)
2186 if (--ci->i_wr_ref == 0) {
2187 last++;
2188 if (!list_empty(&ci->i_cap_snaps)) {
2189 capsnap = list_first_entry(&ci->i_cap_snaps,
2190 struct ceph_cap_snap,
2191 ci_item);
2192 if (capsnap->writing) {
2193 capsnap->writing = 0;
2194 flushsnaps =
2195 __ceph_finish_cap_snap(ci,
2196 capsnap);
2197 wake = 1;
2201 spin_unlock(&ci->i_ceph_lock);
2203 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2204 last ? " last" : "", put ? " put" : "");
2206 if (last && !flushsnaps)
2207 ceph_check_caps(ci, 0, NULL);
2208 else if (flushsnaps)
2209 ceph_flush_snaps(ci);
2210 if (wake)
2211 wake_up_all(&ci->i_cap_wq);
2212 if (put)
2213 iput(inode);
2217 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2218 * context. Adjust per-snap dirty page accounting as appropriate.
2219 * Once all dirty data for a cap_snap is flushed, flush snapped file
2220 * metadata back to the MDS. If we dropped the last ref, call
2221 * ceph_check_caps.
2223 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2224 struct ceph_snap_context *snapc)
2226 struct inode *inode = &ci->vfs_inode;
2227 int last = 0;
2228 int complete_capsnap = 0;
2229 int drop_capsnap = 0;
2230 int found = 0;
2231 struct ceph_cap_snap *capsnap = NULL;
2233 spin_lock(&ci->i_ceph_lock);
2234 ci->i_wrbuffer_ref -= nr;
2235 last = !ci->i_wrbuffer_ref;
2237 if (ci->i_head_snapc == snapc) {
2238 ci->i_wrbuffer_ref_head -= nr;
2239 if (ci->i_wrbuffer_ref_head == 0 &&
2240 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2241 BUG_ON(!ci->i_head_snapc);
2242 ceph_put_snap_context(ci->i_head_snapc);
2243 ci->i_head_snapc = NULL;
2245 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2246 inode,
2247 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2248 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2249 last ? " LAST" : "");
2250 } else {
2251 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2252 if (capsnap->context == snapc) {
2253 found = 1;
2254 break;
2257 BUG_ON(!found);
2258 capsnap->dirty_pages -= nr;
2259 if (capsnap->dirty_pages == 0) {
2260 complete_capsnap = 1;
2261 if (capsnap->dirty == 0)
2262 /* cap writeback completed before we created
2263 * the cap_snap; no FLUSHSNAP is needed */
2264 drop_capsnap = 1;
2266 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2267 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2268 inode, capsnap, capsnap->context->seq,
2269 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2270 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2271 last ? " (wrbuffer last)" : "",
2272 complete_capsnap ? " (complete capsnap)" : "",
2273 drop_capsnap ? " (drop capsnap)" : "");
2274 if (drop_capsnap) {
2275 ceph_put_snap_context(capsnap->context);
2276 list_del(&capsnap->ci_item);
2277 list_del(&capsnap->flushing_item);
2278 ceph_put_cap_snap(capsnap);
2282 spin_unlock(&ci->i_ceph_lock);
2284 if (last) {
2285 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2286 iput(inode);
2287 } else if (complete_capsnap) {
2288 ceph_flush_snaps(ci);
2289 wake_up_all(&ci->i_cap_wq);
2291 if (drop_capsnap)
2292 iput(inode);
2296 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2297 * actually be a revocation if it specifies a smaller cap set.)
2299 * caller holds s_mutex and i_ceph_lock, we drop both.
2301 * return value:
2302 * 0 - ok
2303 * 1 - check_caps on auth cap only (writeback)
2304 * 2 - check_caps (ack revoke)
2306 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2307 struct ceph_mds_session *session,
2308 struct ceph_cap *cap,
2309 struct ceph_buffer *xattr_buf)
2310 __releases(ci->i_ceph_lock)
2312 struct ceph_inode_info *ci = ceph_inode(inode);
2313 int mds = session->s_mds;
2314 int seq = le32_to_cpu(grant->seq);
2315 int newcaps = le32_to_cpu(grant->caps);
2316 int issued, implemented, used, wanted, dirty;
2317 u64 size = le64_to_cpu(grant->size);
2318 u64 max_size = le64_to_cpu(grant->max_size);
2319 struct timespec mtime, atime, ctime;
2320 int check_caps = 0;
2321 int wake = 0;
2322 int writeback = 0;
2323 int revoked_rdcache = 0;
2324 int queue_invalidate = 0;
2326 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2327 inode, cap, mds, seq, ceph_cap_string(newcaps));
2328 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2329 inode->i_size);
2332 * If CACHE is being revoked, and we have no dirty buffers,
2333 * try to invalidate (once). (If there are dirty buffers, we
2334 * will invalidate _after_ writeback.)
2336 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2337 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2338 !ci->i_wrbuffer_ref) {
2339 if (try_nonblocking_invalidate(inode) == 0) {
2340 revoked_rdcache = 1;
2341 } else {
2342 /* there were locked pages.. invalidate later
2343 in a separate thread. */
2344 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2345 queue_invalidate = 1;
2346 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2351 /* side effects now are allowed */
2353 issued = __ceph_caps_issued(ci, &implemented);
2354 issued |= implemented | __ceph_caps_dirty(ci);
2356 cap->cap_gen = session->s_cap_gen;
2358 __check_cap_issue(ci, cap, newcaps);
2360 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2361 inode->i_mode = le32_to_cpu(grant->mode);
2362 inode->i_uid = le32_to_cpu(grant->uid);
2363 inode->i_gid = le32_to_cpu(grant->gid);
2364 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2365 inode->i_uid, inode->i_gid);
2368 if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2369 set_nlink(inode, le32_to_cpu(grant->nlink));
2371 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2372 int len = le32_to_cpu(grant->xattr_len);
2373 u64 version = le64_to_cpu(grant->xattr_version);
2375 if (version > ci->i_xattrs.version) {
2376 dout(" got new xattrs v%llu on %p len %d\n",
2377 version, inode, len);
2378 if (ci->i_xattrs.blob)
2379 ceph_buffer_put(ci->i_xattrs.blob);
2380 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2381 ci->i_xattrs.version = version;
2385 /* size/ctime/mtime/atime? */
2386 ceph_fill_file_size(inode, issued,
2387 le32_to_cpu(grant->truncate_seq),
2388 le64_to_cpu(grant->truncate_size), size);
2389 ceph_decode_timespec(&mtime, &grant->mtime);
2390 ceph_decode_timespec(&atime, &grant->atime);
2391 ceph_decode_timespec(&ctime, &grant->ctime);
2392 ceph_fill_file_time(inode, issued,
2393 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2394 &atime);
2396 /* max size increase? */
2397 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2398 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2399 ci->i_max_size = max_size;
2400 if (max_size >= ci->i_wanted_max_size) {
2401 ci->i_wanted_max_size = 0; /* reset */
2402 ci->i_requested_max_size = 0;
2404 wake = 1;
2407 /* check cap bits */
2408 wanted = __ceph_caps_wanted(ci);
2409 used = __ceph_caps_used(ci);
2410 dirty = __ceph_caps_dirty(ci);
2411 dout(" my wanted = %s, used = %s, dirty %s\n",
2412 ceph_cap_string(wanted),
2413 ceph_cap_string(used),
2414 ceph_cap_string(dirty));
2415 if (wanted != le32_to_cpu(grant->wanted)) {
2416 dout("mds wanted %s -> %s\n",
2417 ceph_cap_string(le32_to_cpu(grant->wanted)),
2418 ceph_cap_string(wanted));
2419 grant->wanted = cpu_to_le32(wanted);
2422 cap->seq = seq;
2424 /* file layout may have changed */
2425 ci->i_layout = grant->layout;
2427 /* revocation, grant, or no-op? */
2428 if (cap->issued & ~newcaps) {
2429 int revoking = cap->issued & ~newcaps;
2431 dout("revocation: %s -> %s (revoking %s)\n",
2432 ceph_cap_string(cap->issued),
2433 ceph_cap_string(newcaps),
2434 ceph_cap_string(revoking));
2435 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2436 writeback = 1; /* initiate writeback; will delay ack */
2437 else if (revoking == CEPH_CAP_FILE_CACHE &&
2438 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2439 queue_invalidate)
2440 ; /* do nothing yet, invalidation will be queued */
2441 else if (cap == ci->i_auth_cap)
2442 check_caps = 1; /* check auth cap only */
2443 else
2444 check_caps = 2; /* check all caps */
2445 cap->issued = newcaps;
2446 cap->implemented |= newcaps;
2447 } else if (cap->issued == newcaps) {
2448 dout("caps unchanged: %s -> %s\n",
2449 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2450 } else {
2451 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2452 ceph_cap_string(newcaps));
2453 cap->issued = newcaps;
2454 cap->implemented |= newcaps; /* add bits only, to
2455 * avoid stepping on a
2456 * pending revocation */
2457 wake = 1;
2459 BUG_ON(cap->issued & ~cap->implemented);
2461 spin_unlock(&ci->i_ceph_lock);
2462 if (writeback)
2464 * queue inode for writeback: we can't actually call
2465 * filemap_write_and_wait, etc. from message handler
2466 * context.
2468 ceph_queue_writeback(inode);
2469 if (queue_invalidate)
2470 ceph_queue_invalidate(inode);
2471 if (wake)
2472 wake_up_all(&ci->i_cap_wq);
2474 if (check_caps == 1)
2475 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2476 session);
2477 else if (check_caps == 2)
2478 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2479 else
2480 mutex_unlock(&session->s_mutex);
2484 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2485 * MDS has been safely committed.
2487 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2488 struct ceph_mds_caps *m,
2489 struct ceph_mds_session *session,
2490 struct ceph_cap *cap)
2491 __releases(ci->i_ceph_lock)
2493 struct ceph_inode_info *ci = ceph_inode(inode);
2494 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2495 unsigned seq = le32_to_cpu(m->seq);
2496 int dirty = le32_to_cpu(m->dirty);
2497 int cleaned = 0;
2498 int drop = 0;
2499 int i;
2501 for (i = 0; i < CEPH_CAP_BITS; i++)
2502 if ((dirty & (1 << i)) &&
2503 flush_tid == ci->i_cap_flush_tid[i])
2504 cleaned |= 1 << i;
2506 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2507 " flushing %s -> %s\n",
2508 inode, session->s_mds, seq, ceph_cap_string(dirty),
2509 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2510 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2512 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2513 goto out;
2515 ci->i_flushing_caps &= ~cleaned;
2517 spin_lock(&mdsc->cap_dirty_lock);
2518 if (ci->i_flushing_caps == 0) {
2519 list_del_init(&ci->i_flushing_item);
2520 if (!list_empty(&session->s_cap_flushing))
2521 dout(" mds%d still flushing cap on %p\n",
2522 session->s_mds,
2523 &list_entry(session->s_cap_flushing.next,
2524 struct ceph_inode_info,
2525 i_flushing_item)->vfs_inode);
2526 mdsc->num_cap_flushing--;
2527 wake_up_all(&mdsc->cap_flushing_wq);
2528 dout(" inode %p now !flushing\n", inode);
2530 if (ci->i_dirty_caps == 0) {
2531 dout(" inode %p now clean\n", inode);
2532 BUG_ON(!list_empty(&ci->i_dirty_item));
2533 drop = 1;
2534 if (ci->i_wrbuffer_ref_head == 0) {
2535 BUG_ON(!ci->i_head_snapc);
2536 ceph_put_snap_context(ci->i_head_snapc);
2537 ci->i_head_snapc = NULL;
2539 } else {
2540 BUG_ON(list_empty(&ci->i_dirty_item));
2543 spin_unlock(&mdsc->cap_dirty_lock);
2544 wake_up_all(&ci->i_cap_wq);
2546 out:
2547 spin_unlock(&ci->i_ceph_lock);
2548 if (drop)
2549 iput(inode);
2553 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2554 * throw away our cap_snap.
2556 * Caller hold s_mutex.
2558 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2559 struct ceph_mds_caps *m,
2560 struct ceph_mds_session *session)
2562 struct ceph_inode_info *ci = ceph_inode(inode);
2563 u64 follows = le64_to_cpu(m->snap_follows);
2564 struct ceph_cap_snap *capsnap;
2565 int drop = 0;
2567 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2568 inode, ci, session->s_mds, follows);
2570 spin_lock(&ci->i_ceph_lock);
2571 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2572 if (capsnap->follows == follows) {
2573 if (capsnap->flush_tid != flush_tid) {
2574 dout(" cap_snap %p follows %lld tid %lld !="
2575 " %lld\n", capsnap, follows,
2576 flush_tid, capsnap->flush_tid);
2577 break;
2579 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2580 dout(" removing %p cap_snap %p follows %lld\n",
2581 inode, capsnap, follows);
2582 ceph_put_snap_context(capsnap->context);
2583 list_del(&capsnap->ci_item);
2584 list_del(&capsnap->flushing_item);
2585 ceph_put_cap_snap(capsnap);
2586 drop = 1;
2587 break;
2588 } else {
2589 dout(" skipping cap_snap %p follows %lld\n",
2590 capsnap, capsnap->follows);
2593 spin_unlock(&ci->i_ceph_lock);
2594 if (drop)
2595 iput(inode);
2599 * Handle TRUNC from MDS, indicating file truncation.
2601 * caller hold s_mutex.
2603 static void handle_cap_trunc(struct inode *inode,
2604 struct ceph_mds_caps *trunc,
2605 struct ceph_mds_session *session)
2606 __releases(ci->i_ceph_lock)
2608 struct ceph_inode_info *ci = ceph_inode(inode);
2609 int mds = session->s_mds;
2610 int seq = le32_to_cpu(trunc->seq);
2611 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2612 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2613 u64 size = le64_to_cpu(trunc->size);
2614 int implemented = 0;
2615 int dirty = __ceph_caps_dirty(ci);
2616 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2617 int queue_trunc = 0;
2619 issued |= implemented | dirty;
2621 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2622 inode, mds, seq, truncate_size, truncate_seq);
2623 queue_trunc = ceph_fill_file_size(inode, issued,
2624 truncate_seq, truncate_size, size);
2625 spin_unlock(&ci->i_ceph_lock);
2627 if (queue_trunc)
2628 ceph_queue_vmtruncate(inode);
2632 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2633 * different one. If we are the most recent migration we've seen (as
2634 * indicated by mseq), make note of the migrating cap bits for the
2635 * duration (until we see the corresponding IMPORT).
2637 * caller holds s_mutex
2639 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2640 struct ceph_mds_session *session,
2641 int *open_target_sessions)
2643 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2644 struct ceph_inode_info *ci = ceph_inode(inode);
2645 int mds = session->s_mds;
2646 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2647 struct ceph_cap *cap = NULL, *t;
2648 struct rb_node *p;
2649 int remember = 1;
2651 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2652 inode, ci, mds, mseq);
2654 spin_lock(&ci->i_ceph_lock);
2656 /* make sure we haven't seen a higher mseq */
2657 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2658 t = rb_entry(p, struct ceph_cap, ci_node);
2659 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2660 dout(" higher mseq on cap from mds%d\n",
2661 t->session->s_mds);
2662 remember = 0;
2664 if (t->session->s_mds == mds)
2665 cap = t;
2668 if (cap) {
2669 if (remember) {
2670 /* make note */
2671 ci->i_cap_exporting_mds = mds;
2672 ci->i_cap_exporting_mseq = mseq;
2673 ci->i_cap_exporting_issued = cap->issued;
2676 * make sure we have open sessions with all possible
2677 * export targets, so that we get the matching IMPORT
2679 *open_target_sessions = 1;
2682 * we can't flush dirty caps that we've seen the
2683 * EXPORT but no IMPORT for
2685 spin_lock(&mdsc->cap_dirty_lock);
2686 if (!list_empty(&ci->i_dirty_item)) {
2687 dout(" moving %p to cap_dirty_migrating\n",
2688 inode);
2689 list_move(&ci->i_dirty_item,
2690 &mdsc->cap_dirty_migrating);
2692 spin_unlock(&mdsc->cap_dirty_lock);
2694 __ceph_remove_cap(cap);
2696 /* else, we already released it */
2698 spin_unlock(&ci->i_ceph_lock);
2702 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2703 * clean them up.
2705 * caller holds s_mutex.
2707 static void handle_cap_import(struct ceph_mds_client *mdsc,
2708 struct inode *inode, struct ceph_mds_caps *im,
2709 struct ceph_mds_session *session,
2710 void *snaptrace, int snaptrace_len)
2712 struct ceph_inode_info *ci = ceph_inode(inode);
2713 int mds = session->s_mds;
2714 unsigned issued = le32_to_cpu(im->caps);
2715 unsigned wanted = le32_to_cpu(im->wanted);
2716 unsigned seq = le32_to_cpu(im->seq);
2717 unsigned mseq = le32_to_cpu(im->migrate_seq);
2718 u64 realmino = le64_to_cpu(im->realm);
2719 u64 cap_id = le64_to_cpu(im->cap_id);
2721 if (ci->i_cap_exporting_mds >= 0 &&
2722 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2723 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2724 " - cleared exporting from mds%d\n",
2725 inode, ci, mds, mseq,
2726 ci->i_cap_exporting_mds);
2727 ci->i_cap_exporting_issued = 0;
2728 ci->i_cap_exporting_mseq = 0;
2729 ci->i_cap_exporting_mds = -1;
2731 spin_lock(&mdsc->cap_dirty_lock);
2732 if (!list_empty(&ci->i_dirty_item)) {
2733 dout(" moving %p back to cap_dirty\n", inode);
2734 list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2736 spin_unlock(&mdsc->cap_dirty_lock);
2737 } else {
2738 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2739 inode, ci, mds, mseq);
2742 down_write(&mdsc->snap_rwsem);
2743 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2744 false);
2745 downgrade_write(&mdsc->snap_rwsem);
2746 ceph_add_cap(inode, session, cap_id, -1,
2747 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2748 NULL /* no caps context */);
2749 kick_flushing_inode_caps(mdsc, session, inode);
2750 up_read(&mdsc->snap_rwsem);
2752 /* make sure we re-request max_size, if necessary */
2753 spin_lock(&ci->i_ceph_lock);
2754 ci->i_wanted_max_size = 0; /* reset */
2755 ci->i_requested_max_size = 0;
2756 spin_unlock(&ci->i_ceph_lock);
2760 * Handle a caps message from the MDS.
2762 * Identify the appropriate session, inode, and call the right handler
2763 * based on the cap op.
2765 void ceph_handle_caps(struct ceph_mds_session *session,
2766 struct ceph_msg *msg)
2768 struct ceph_mds_client *mdsc = session->s_mdsc;
2769 struct super_block *sb = mdsc->fsc->sb;
2770 struct inode *inode;
2771 struct ceph_inode_info *ci;
2772 struct ceph_cap *cap;
2773 struct ceph_mds_caps *h;
2774 int mds = session->s_mds;
2775 int op;
2776 u32 seq, mseq;
2777 struct ceph_vino vino;
2778 u64 cap_id;
2779 u64 size, max_size;
2780 u64 tid;
2781 void *snaptrace;
2782 size_t snaptrace_len;
2783 void *flock;
2784 u32 flock_len;
2785 int open_target_sessions = 0;
2787 dout("handle_caps from mds%d\n", mds);
2789 /* decode */
2790 tid = le64_to_cpu(msg->hdr.tid);
2791 if (msg->front.iov_len < sizeof(*h))
2792 goto bad;
2793 h = msg->front.iov_base;
2794 op = le32_to_cpu(h->op);
2795 vino.ino = le64_to_cpu(h->ino);
2796 vino.snap = CEPH_NOSNAP;
2797 cap_id = le64_to_cpu(h->cap_id);
2798 seq = le32_to_cpu(h->seq);
2799 mseq = le32_to_cpu(h->migrate_seq);
2800 size = le64_to_cpu(h->size);
2801 max_size = le64_to_cpu(h->max_size);
2803 snaptrace = h + 1;
2804 snaptrace_len = le32_to_cpu(h->snap_trace_len);
2806 if (le16_to_cpu(msg->hdr.version) >= 2) {
2807 void *p, *end;
2809 p = snaptrace + snaptrace_len;
2810 end = msg->front.iov_base + msg->front.iov_len;
2811 ceph_decode_32_safe(&p, end, flock_len, bad);
2812 flock = p;
2813 } else {
2814 flock = NULL;
2815 flock_len = 0;
2818 mutex_lock(&session->s_mutex);
2819 session->s_seq++;
2820 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2821 (unsigned)seq);
2823 /* lookup ino */
2824 inode = ceph_find_inode(sb, vino);
2825 ci = ceph_inode(inode);
2826 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2827 vino.snap, inode);
2828 if (!inode) {
2829 dout(" i don't have ino %llx\n", vino.ino);
2831 if (op == CEPH_CAP_OP_IMPORT)
2832 __queue_cap_release(session, vino.ino, cap_id,
2833 mseq, seq);
2834 goto flush_cap_releases;
2837 /* these will work even if we don't have a cap yet */
2838 switch (op) {
2839 case CEPH_CAP_OP_FLUSHSNAP_ACK:
2840 handle_cap_flushsnap_ack(inode, tid, h, session);
2841 goto done;
2843 case CEPH_CAP_OP_EXPORT:
2844 handle_cap_export(inode, h, session, &open_target_sessions);
2845 goto done;
2847 case CEPH_CAP_OP_IMPORT:
2848 handle_cap_import(mdsc, inode, h, session,
2849 snaptrace, snaptrace_len);
2852 /* the rest require a cap */
2853 spin_lock(&ci->i_ceph_lock);
2854 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2855 if (!cap) {
2856 dout(" no cap on %p ino %llx.%llx from mds%d\n",
2857 inode, ceph_ino(inode), ceph_snap(inode), mds);
2858 spin_unlock(&ci->i_ceph_lock);
2859 goto flush_cap_releases;
2862 /* note that each of these drops i_ceph_lock for us */
2863 switch (op) {
2864 case CEPH_CAP_OP_REVOKE:
2865 case CEPH_CAP_OP_GRANT:
2866 case CEPH_CAP_OP_IMPORT:
2867 handle_cap_grant(inode, h, session, cap, msg->middle);
2868 goto done_unlocked;
2870 case CEPH_CAP_OP_FLUSH_ACK:
2871 handle_cap_flush_ack(inode, tid, h, session, cap);
2872 break;
2874 case CEPH_CAP_OP_TRUNC:
2875 handle_cap_trunc(inode, h, session);
2876 break;
2878 default:
2879 spin_unlock(&ci->i_ceph_lock);
2880 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2881 ceph_cap_op_name(op));
2884 goto done;
2886 flush_cap_releases:
2888 * send any full release message to try to move things
2889 * along for the mds (who clearly thinks we still have this
2890 * cap).
2892 ceph_add_cap_releases(mdsc, session);
2893 ceph_send_cap_releases(mdsc, session);
2895 done:
2896 mutex_unlock(&session->s_mutex);
2897 done_unlocked:
2898 if (inode)
2899 iput(inode);
2900 if (open_target_sessions)
2901 ceph_mdsc_open_export_target_sessions(mdsc, session);
2902 return;
2904 bad:
2905 pr_err("ceph_handle_caps: corrupt message\n");
2906 ceph_msg_dump(msg);
2907 return;
2911 * Delayed work handler to process end of delayed cap release LRU list.
2913 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2915 struct ceph_inode_info *ci;
2916 int flags = CHECK_CAPS_NODELAY;
2918 dout("check_delayed_caps\n");
2919 while (1) {
2920 spin_lock(&mdsc->cap_delay_lock);
2921 if (list_empty(&mdsc->cap_delay_list))
2922 break;
2923 ci = list_first_entry(&mdsc->cap_delay_list,
2924 struct ceph_inode_info,
2925 i_cap_delay_list);
2926 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2927 time_before(jiffies, ci->i_hold_caps_max))
2928 break;
2929 list_del_init(&ci->i_cap_delay_list);
2930 spin_unlock(&mdsc->cap_delay_lock);
2931 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2932 ceph_check_caps(ci, flags, NULL);
2934 spin_unlock(&mdsc->cap_delay_lock);
2938 * Flush all dirty caps to the mds
2940 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2942 struct ceph_inode_info *ci;
2943 struct inode *inode;
2945 dout("flush_dirty_caps\n");
2946 spin_lock(&mdsc->cap_dirty_lock);
2947 while (!list_empty(&mdsc->cap_dirty)) {
2948 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
2949 i_dirty_item);
2950 inode = &ci->vfs_inode;
2951 ihold(inode);
2952 dout("flush_dirty_caps %p\n", inode);
2953 spin_unlock(&mdsc->cap_dirty_lock);
2954 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
2955 iput(inode);
2956 spin_lock(&mdsc->cap_dirty_lock);
2958 spin_unlock(&mdsc->cap_dirty_lock);
2959 dout("flush_dirty_caps done\n");
2963 * Drop open file reference. If we were the last open file,
2964 * we may need to release capabilities to the MDS (or schedule
2965 * their delayed release).
2967 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2969 struct inode *inode = &ci->vfs_inode;
2970 int last = 0;
2972 spin_lock(&ci->i_ceph_lock);
2973 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2974 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2975 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2976 if (--ci->i_nr_by_mode[fmode] == 0)
2977 last++;
2978 spin_unlock(&ci->i_ceph_lock);
2980 if (last && ci->i_vino.snap == CEPH_NOSNAP)
2981 ceph_check_caps(ci, 0, NULL);
2985 * Helpers for embedding cap and dentry lease releases into mds
2986 * requests.
2988 * @force is used by dentry_release (below) to force inclusion of a
2989 * record for the directory inode, even when there aren't any caps to
2990 * drop.
2992 int ceph_encode_inode_release(void **p, struct inode *inode,
2993 int mds, int drop, int unless, int force)
2995 struct ceph_inode_info *ci = ceph_inode(inode);
2996 struct ceph_cap *cap;
2997 struct ceph_mds_request_release *rel = *p;
2998 int used, dirty;
2999 int ret = 0;
3001 spin_lock(&ci->i_ceph_lock);
3002 used = __ceph_caps_used(ci);
3003 dirty = __ceph_caps_dirty(ci);
3005 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3006 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3007 ceph_cap_string(unless));
3009 /* only drop unused, clean caps */
3010 drop &= ~(used | dirty);
3012 cap = __get_cap_for_mds(ci, mds);
3013 if (cap && __cap_is_valid(cap)) {
3014 if (force ||
3015 ((cap->issued & drop) &&
3016 (cap->issued & unless) == 0)) {
3017 if ((cap->issued & drop) &&
3018 (cap->issued & unless) == 0) {
3019 dout("encode_inode_release %p cap %p %s -> "
3020 "%s\n", inode, cap,
3021 ceph_cap_string(cap->issued),
3022 ceph_cap_string(cap->issued & ~drop));
3023 cap->issued &= ~drop;
3024 cap->implemented &= ~drop;
3025 if (ci->i_ceph_flags & CEPH_I_NODELAY) {
3026 int wanted = __ceph_caps_wanted(ci);
3027 dout(" wanted %s -> %s (act %s)\n",
3028 ceph_cap_string(cap->mds_wanted),
3029 ceph_cap_string(cap->mds_wanted &
3030 ~wanted),
3031 ceph_cap_string(wanted));
3032 cap->mds_wanted &= wanted;
3034 } else {
3035 dout("encode_inode_release %p cap %p %s"
3036 " (force)\n", inode, cap,
3037 ceph_cap_string(cap->issued));
3040 rel->ino = cpu_to_le64(ceph_ino(inode));
3041 rel->cap_id = cpu_to_le64(cap->cap_id);
3042 rel->seq = cpu_to_le32(cap->seq);
3043 rel->issue_seq = cpu_to_le32(cap->issue_seq),
3044 rel->mseq = cpu_to_le32(cap->mseq);
3045 rel->caps = cpu_to_le32(cap->issued);
3046 rel->wanted = cpu_to_le32(cap->mds_wanted);
3047 rel->dname_len = 0;
3048 rel->dname_seq = 0;
3049 *p += sizeof(*rel);
3050 ret = 1;
3051 } else {
3052 dout("encode_inode_release %p cap %p %s\n",
3053 inode, cap, ceph_cap_string(cap->issued));
3056 spin_unlock(&ci->i_ceph_lock);
3057 return ret;
3060 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3061 int mds, int drop, int unless)
3063 struct inode *dir = dentry->d_parent->d_inode;
3064 struct ceph_mds_request_release *rel = *p;
3065 struct ceph_dentry_info *di = ceph_dentry(dentry);
3066 int force = 0;
3067 int ret;
3070 * force an record for the directory caps if we have a dentry lease.
3071 * this is racy (can't take i_ceph_lock and d_lock together), but it
3072 * doesn't have to be perfect; the mds will revoke anything we don't
3073 * release.
3075 spin_lock(&dentry->d_lock);
3076 if (di->lease_session && di->lease_session->s_mds == mds)
3077 force = 1;
3078 spin_unlock(&dentry->d_lock);
3080 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3082 spin_lock(&dentry->d_lock);
3083 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3084 dout("encode_dentry_release %p mds%d seq %d\n",
3085 dentry, mds, (int)di->lease_seq);
3086 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3087 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3088 *p += dentry->d_name.len;
3089 rel->dname_seq = cpu_to_le32(di->lease_seq);
3090 __ceph_mdsc_drop_dentry_lease(dentry);
3092 spin_unlock(&dentry->d_lock);
3093 return ret;