Linux 3.8-rc7
[cris-mirror.git] / fs / dcache.c
blob19153a0a810c1d12de751d5d416a5c1b6fe8c9bb
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
138 #endif
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
146 #include <asm/word-at-a-time.h>
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
158 unsigned long a,b,mask;
160 for (;;) {
161 a = *(unsigned long *)cs;
162 b = load_unaligned_zeropad(ct);
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
177 #else
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
191 #endif
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
195 const unsigned char *cs;
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
217 static void __d_free(struct rcu_head *head)
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
228 * no locks, please.
230 static void d_free(struct dentry *dentry)
232 BUG_ON(dentry->d_count);
233 this_cpu_dec(nr_dentry);
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 __d_free(&dentry->d_u.d_rcu);
240 else
241 call_rcu(&dentry->d_u.d_rcu, __d_free);
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
263 static void dentry_iput(struct dentry * dentry)
264 __releases(dentry->d_lock)
265 __releases(dentry->d_inode->i_lock)
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 hlist_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&inode->i_lock);
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
288 static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
290 __releases(dentry->d_inode->i_lock)
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 hlist_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
297 spin_unlock(&inode->i_lock);
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
309 static void dentry_lru_add(struct dentry *dentry)
311 if (list_empty(&dentry->d_lru)) {
312 spin_lock(&dcache_lru_lock);
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
315 dentry_stat.nr_unused++;
316 spin_unlock(&dcache_lru_lock);
320 static void __dentry_lru_del(struct dentry *dentry)
322 list_del_init(&dentry->d_lru);
323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
329 * Remove a dentry with references from the LRU.
331 static void dentry_lru_del(struct dentry *dentry)
333 if (!list_empty(&dentry->d_lru)) {
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
345 static void dentry_lru_prune(struct dentry *dentry)
347 if (!list_empty(&dentry->d_lru)) {
348 if (dentry->d_flags & DCACHE_OP_PRUNE)
349 dentry->d_op->d_prune(dentry);
351 spin_lock(&dcache_lru_lock);
352 __dentry_lru_del(dentry);
353 spin_unlock(&dcache_lru_lock);
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
359 spin_lock(&dcache_lru_lock);
360 if (list_empty(&dentry->d_lru)) {
361 list_add_tail(&dentry->d_lru, list);
362 dentry->d_sb->s_nr_dentry_unused++;
363 dentry_stat.nr_unused++;
364 } else {
365 list_move_tail(&dentry->d_lru, list);
367 spin_unlock(&dcache_lru_lock);
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
373 * @parent: parent dentry
375 * The dentry must already be unhashed and removed from the LRU.
377 * If this is the root of the dentry tree, return NULL.
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380 * d_kill.
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 __releases(dentry->d_lock)
384 __releases(parent->d_lock)
385 __releases(dentry->d_inode->i_lock)
387 list_del(&dentry->d_u.d_child);
389 * Inform try_to_ascend() that we are no longer attached to the
390 * dentry tree
392 dentry->d_flags |= DCACHE_DENTRY_KILLED;
393 if (parent)
394 spin_unlock(&parent->d_lock);
395 dentry_iput(dentry);
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
400 d_free(dentry);
401 return parent;
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
407 * appropriate.
409 static void __d_shrink(struct dentry *dentry)
411 if (!d_unhashed(dentry)) {
412 struct hlist_bl_head *b;
413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 b = &dentry->d_sb->s_anon;
415 else
416 b = d_hash(dentry->d_parent, dentry->d_name.hash);
418 hlist_bl_lock(b);
419 __hlist_bl_del(&dentry->d_hash);
420 dentry->d_hash.pprev = NULL;
421 hlist_bl_unlock(b);
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
438 * __d_drop requires dentry->d_lock.
440 void __d_drop(struct dentry *dentry)
442 if (!d_unhashed(dentry)) {
443 __d_shrink(dentry);
444 dentry_rcuwalk_barrier(dentry);
447 EXPORT_SYMBOL(__d_drop);
449 void d_drop(struct dentry *dentry)
451 spin_lock(&dentry->d_lock);
452 __d_drop(dentry);
453 spin_unlock(&dentry->d_lock);
455 EXPORT_SYMBOL(d_drop);
458 * Finish off a dentry we've decided to kill.
459 * dentry->d_lock must be held, returns with it unlocked.
460 * If ref is non-zero, then decrement the refcount too.
461 * Returns dentry requiring refcount drop, or NULL if we're done.
463 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
464 __releases(dentry->d_lock)
466 struct inode *inode;
467 struct dentry *parent;
469 inode = dentry->d_inode;
470 if (inode && !spin_trylock(&inode->i_lock)) {
471 relock:
472 spin_unlock(&dentry->d_lock);
473 cpu_relax();
474 return dentry; /* try again with same dentry */
476 if (IS_ROOT(dentry))
477 parent = NULL;
478 else
479 parent = dentry->d_parent;
480 if (parent && !spin_trylock(&parent->d_lock)) {
481 if (inode)
482 spin_unlock(&inode->i_lock);
483 goto relock;
486 if (ref)
487 dentry->d_count--;
489 * if dentry was on the d_lru list delete it from there.
490 * inform the fs via d_prune that this dentry is about to be
491 * unhashed and destroyed.
493 dentry_lru_prune(dentry);
494 /* if it was on the hash then remove it */
495 __d_drop(dentry);
496 return d_kill(dentry, parent);
500 * This is dput
502 * This is complicated by the fact that we do not want to put
503 * dentries that are no longer on any hash chain on the unused
504 * list: we'd much rather just get rid of them immediately.
506 * However, that implies that we have to traverse the dentry
507 * tree upwards to the parents which might _also_ now be
508 * scheduled for deletion (it may have been only waiting for
509 * its last child to go away).
511 * This tail recursion is done by hand as we don't want to depend
512 * on the compiler to always get this right (gcc generally doesn't).
513 * Real recursion would eat up our stack space.
517 * dput - release a dentry
518 * @dentry: dentry to release
520 * Release a dentry. This will drop the usage count and if appropriate
521 * call the dentry unlink method as well as removing it from the queues and
522 * releasing its resources. If the parent dentries were scheduled for release
523 * they too may now get deleted.
525 void dput(struct dentry *dentry)
527 if (!dentry)
528 return;
530 repeat:
531 if (dentry->d_count == 1)
532 might_sleep();
533 spin_lock(&dentry->d_lock);
534 BUG_ON(!dentry->d_count);
535 if (dentry->d_count > 1) {
536 dentry->d_count--;
537 spin_unlock(&dentry->d_lock);
538 return;
541 if (dentry->d_flags & DCACHE_OP_DELETE) {
542 if (dentry->d_op->d_delete(dentry))
543 goto kill_it;
546 /* Unreachable? Get rid of it */
547 if (d_unhashed(dentry))
548 goto kill_it;
550 dentry->d_flags |= DCACHE_REFERENCED;
551 dentry_lru_add(dentry);
553 dentry->d_count--;
554 spin_unlock(&dentry->d_lock);
555 return;
557 kill_it:
558 dentry = dentry_kill(dentry, 1);
559 if (dentry)
560 goto repeat;
562 EXPORT_SYMBOL(dput);
565 * d_invalidate - invalidate a dentry
566 * @dentry: dentry to invalidate
568 * Try to invalidate the dentry if it turns out to be
569 * possible. If there are other dentries that can be
570 * reached through this one we can't delete it and we
571 * return -EBUSY. On success we return 0.
573 * no dcache lock.
576 int d_invalidate(struct dentry * dentry)
579 * If it's already been dropped, return OK.
581 spin_lock(&dentry->d_lock);
582 if (d_unhashed(dentry)) {
583 spin_unlock(&dentry->d_lock);
584 return 0;
587 * Check whether to do a partial shrink_dcache
588 * to get rid of unused child entries.
590 if (!list_empty(&dentry->d_subdirs)) {
591 spin_unlock(&dentry->d_lock);
592 shrink_dcache_parent(dentry);
593 spin_lock(&dentry->d_lock);
597 * Somebody else still using it?
599 * If it's a directory, we can't drop it
600 * for fear of somebody re-populating it
601 * with children (even though dropping it
602 * would make it unreachable from the root,
603 * we might still populate it if it was a
604 * working directory or similar).
605 * We also need to leave mountpoints alone,
606 * directory or not.
608 if (dentry->d_count > 1 && dentry->d_inode) {
609 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
610 spin_unlock(&dentry->d_lock);
611 return -EBUSY;
615 __d_drop(dentry);
616 spin_unlock(&dentry->d_lock);
617 return 0;
619 EXPORT_SYMBOL(d_invalidate);
621 /* This must be called with d_lock held */
622 static inline void __dget_dlock(struct dentry *dentry)
624 dentry->d_count++;
627 static inline void __dget(struct dentry *dentry)
629 spin_lock(&dentry->d_lock);
630 __dget_dlock(dentry);
631 spin_unlock(&dentry->d_lock);
634 struct dentry *dget_parent(struct dentry *dentry)
636 struct dentry *ret;
638 repeat:
640 * Don't need rcu_dereference because we re-check it was correct under
641 * the lock.
643 rcu_read_lock();
644 ret = dentry->d_parent;
645 spin_lock(&ret->d_lock);
646 if (unlikely(ret != dentry->d_parent)) {
647 spin_unlock(&ret->d_lock);
648 rcu_read_unlock();
649 goto repeat;
651 rcu_read_unlock();
652 BUG_ON(!ret->d_count);
653 ret->d_count++;
654 spin_unlock(&ret->d_lock);
655 return ret;
657 EXPORT_SYMBOL(dget_parent);
660 * d_find_alias - grab a hashed alias of inode
661 * @inode: inode in question
662 * @want_discon: flag, used by d_splice_alias, to request
663 * that only a DISCONNECTED alias be returned.
665 * If inode has a hashed alias, or is a directory and has any alias,
666 * acquire the reference to alias and return it. Otherwise return NULL.
667 * Notice that if inode is a directory there can be only one alias and
668 * it can be unhashed only if it has no children, or if it is the root
669 * of a filesystem.
671 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
672 * any other hashed alias over that one unless @want_discon is set,
673 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
675 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
677 struct dentry *alias, *discon_alias;
678 struct hlist_node *p;
680 again:
681 discon_alias = NULL;
682 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
683 spin_lock(&alias->d_lock);
684 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
685 if (IS_ROOT(alias) &&
686 (alias->d_flags & DCACHE_DISCONNECTED)) {
687 discon_alias = alias;
688 } else if (!want_discon) {
689 __dget_dlock(alias);
690 spin_unlock(&alias->d_lock);
691 return alias;
694 spin_unlock(&alias->d_lock);
696 if (discon_alias) {
697 alias = discon_alias;
698 spin_lock(&alias->d_lock);
699 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
700 if (IS_ROOT(alias) &&
701 (alias->d_flags & DCACHE_DISCONNECTED)) {
702 __dget_dlock(alias);
703 spin_unlock(&alias->d_lock);
704 return alias;
707 spin_unlock(&alias->d_lock);
708 goto again;
710 return NULL;
713 struct dentry *d_find_alias(struct inode *inode)
715 struct dentry *de = NULL;
717 if (!hlist_empty(&inode->i_dentry)) {
718 spin_lock(&inode->i_lock);
719 de = __d_find_alias(inode, 0);
720 spin_unlock(&inode->i_lock);
722 return de;
724 EXPORT_SYMBOL(d_find_alias);
727 * Try to kill dentries associated with this inode.
728 * WARNING: you must own a reference to inode.
730 void d_prune_aliases(struct inode *inode)
732 struct dentry *dentry;
733 struct hlist_node *p;
734 restart:
735 spin_lock(&inode->i_lock);
736 hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
737 spin_lock(&dentry->d_lock);
738 if (!dentry->d_count) {
739 __dget_dlock(dentry);
740 __d_drop(dentry);
741 spin_unlock(&dentry->d_lock);
742 spin_unlock(&inode->i_lock);
743 dput(dentry);
744 goto restart;
746 spin_unlock(&dentry->d_lock);
748 spin_unlock(&inode->i_lock);
750 EXPORT_SYMBOL(d_prune_aliases);
753 * Try to throw away a dentry - free the inode, dput the parent.
754 * Requires dentry->d_lock is held, and dentry->d_count == 0.
755 * Releases dentry->d_lock.
757 * This may fail if locks cannot be acquired no problem, just try again.
759 static void try_prune_one_dentry(struct dentry *dentry)
760 __releases(dentry->d_lock)
762 struct dentry *parent;
764 parent = dentry_kill(dentry, 0);
766 * If dentry_kill returns NULL, we have nothing more to do.
767 * if it returns the same dentry, trylocks failed. In either
768 * case, just loop again.
770 * Otherwise, we need to prune ancestors too. This is necessary
771 * to prevent quadratic behavior of shrink_dcache_parent(), but
772 * is also expected to be beneficial in reducing dentry cache
773 * fragmentation.
775 if (!parent)
776 return;
777 if (parent == dentry)
778 return;
780 /* Prune ancestors. */
781 dentry = parent;
782 while (dentry) {
783 spin_lock(&dentry->d_lock);
784 if (dentry->d_count > 1) {
785 dentry->d_count--;
786 spin_unlock(&dentry->d_lock);
787 return;
789 dentry = dentry_kill(dentry, 1);
793 static void shrink_dentry_list(struct list_head *list)
795 struct dentry *dentry;
797 rcu_read_lock();
798 for (;;) {
799 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
800 if (&dentry->d_lru == list)
801 break; /* empty */
802 spin_lock(&dentry->d_lock);
803 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
804 spin_unlock(&dentry->d_lock);
805 continue;
809 * We found an inuse dentry which was not removed from
810 * the LRU because of laziness during lookup. Do not free
811 * it - just keep it off the LRU list.
813 if (dentry->d_count) {
814 dentry_lru_del(dentry);
815 spin_unlock(&dentry->d_lock);
816 continue;
819 rcu_read_unlock();
821 try_prune_one_dentry(dentry);
823 rcu_read_lock();
825 rcu_read_unlock();
829 * prune_dcache_sb - shrink the dcache
830 * @sb: superblock
831 * @count: number of entries to try to free
833 * Attempt to shrink the superblock dcache LRU by @count entries. This is
834 * done when we need more memory an called from the superblock shrinker
835 * function.
837 * This function may fail to free any resources if all the dentries are in
838 * use.
840 void prune_dcache_sb(struct super_block *sb, int count)
842 struct dentry *dentry;
843 LIST_HEAD(referenced);
844 LIST_HEAD(tmp);
846 relock:
847 spin_lock(&dcache_lru_lock);
848 while (!list_empty(&sb->s_dentry_lru)) {
849 dentry = list_entry(sb->s_dentry_lru.prev,
850 struct dentry, d_lru);
851 BUG_ON(dentry->d_sb != sb);
853 if (!spin_trylock(&dentry->d_lock)) {
854 spin_unlock(&dcache_lru_lock);
855 cpu_relax();
856 goto relock;
859 if (dentry->d_flags & DCACHE_REFERENCED) {
860 dentry->d_flags &= ~DCACHE_REFERENCED;
861 list_move(&dentry->d_lru, &referenced);
862 spin_unlock(&dentry->d_lock);
863 } else {
864 list_move_tail(&dentry->d_lru, &tmp);
865 dentry->d_flags |= DCACHE_SHRINK_LIST;
866 spin_unlock(&dentry->d_lock);
867 if (!--count)
868 break;
870 cond_resched_lock(&dcache_lru_lock);
872 if (!list_empty(&referenced))
873 list_splice(&referenced, &sb->s_dentry_lru);
874 spin_unlock(&dcache_lru_lock);
876 shrink_dentry_list(&tmp);
880 * shrink_dcache_sb - shrink dcache for a superblock
881 * @sb: superblock
883 * Shrink the dcache for the specified super block. This is used to free
884 * the dcache before unmounting a file system.
886 void shrink_dcache_sb(struct super_block *sb)
888 LIST_HEAD(tmp);
890 spin_lock(&dcache_lru_lock);
891 while (!list_empty(&sb->s_dentry_lru)) {
892 list_splice_init(&sb->s_dentry_lru, &tmp);
893 spin_unlock(&dcache_lru_lock);
894 shrink_dentry_list(&tmp);
895 spin_lock(&dcache_lru_lock);
897 spin_unlock(&dcache_lru_lock);
899 EXPORT_SYMBOL(shrink_dcache_sb);
902 * destroy a single subtree of dentries for unmount
903 * - see the comments on shrink_dcache_for_umount() for a description of the
904 * locking
906 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
908 struct dentry *parent;
910 BUG_ON(!IS_ROOT(dentry));
912 for (;;) {
913 /* descend to the first leaf in the current subtree */
914 while (!list_empty(&dentry->d_subdirs))
915 dentry = list_entry(dentry->d_subdirs.next,
916 struct dentry, d_u.d_child);
918 /* consume the dentries from this leaf up through its parents
919 * until we find one with children or run out altogether */
920 do {
921 struct inode *inode;
924 * remove the dentry from the lru, and inform
925 * the fs that this dentry is about to be
926 * unhashed and destroyed.
928 dentry_lru_prune(dentry);
929 __d_shrink(dentry);
931 if (dentry->d_count != 0) {
932 printk(KERN_ERR
933 "BUG: Dentry %p{i=%lx,n=%s}"
934 " still in use (%d)"
935 " [unmount of %s %s]\n",
936 dentry,
937 dentry->d_inode ?
938 dentry->d_inode->i_ino : 0UL,
939 dentry->d_name.name,
940 dentry->d_count,
941 dentry->d_sb->s_type->name,
942 dentry->d_sb->s_id);
943 BUG();
946 if (IS_ROOT(dentry)) {
947 parent = NULL;
948 list_del(&dentry->d_u.d_child);
949 } else {
950 parent = dentry->d_parent;
951 parent->d_count--;
952 list_del(&dentry->d_u.d_child);
955 inode = dentry->d_inode;
956 if (inode) {
957 dentry->d_inode = NULL;
958 hlist_del_init(&dentry->d_alias);
959 if (dentry->d_op && dentry->d_op->d_iput)
960 dentry->d_op->d_iput(dentry, inode);
961 else
962 iput(inode);
965 d_free(dentry);
967 /* finished when we fall off the top of the tree,
968 * otherwise we ascend to the parent and move to the
969 * next sibling if there is one */
970 if (!parent)
971 return;
972 dentry = parent;
973 } while (list_empty(&dentry->d_subdirs));
975 dentry = list_entry(dentry->d_subdirs.next,
976 struct dentry, d_u.d_child);
981 * destroy the dentries attached to a superblock on unmounting
982 * - we don't need to use dentry->d_lock because:
983 * - the superblock is detached from all mountings and open files, so the
984 * dentry trees will not be rearranged by the VFS
985 * - s_umount is write-locked, so the memory pressure shrinker will ignore
986 * any dentries belonging to this superblock that it comes across
987 * - the filesystem itself is no longer permitted to rearrange the dentries
988 * in this superblock
990 void shrink_dcache_for_umount(struct super_block *sb)
992 struct dentry *dentry;
994 if (down_read_trylock(&sb->s_umount))
995 BUG();
997 dentry = sb->s_root;
998 sb->s_root = NULL;
999 dentry->d_count--;
1000 shrink_dcache_for_umount_subtree(dentry);
1002 while (!hlist_bl_empty(&sb->s_anon)) {
1003 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1004 shrink_dcache_for_umount_subtree(dentry);
1009 * This tries to ascend one level of parenthood, but
1010 * we can race with renaming, so we need to re-check
1011 * the parenthood after dropping the lock and check
1012 * that the sequence number still matches.
1014 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1016 struct dentry *new = old->d_parent;
1018 rcu_read_lock();
1019 spin_unlock(&old->d_lock);
1020 spin_lock(&new->d_lock);
1023 * might go back up the wrong parent if we have had a rename
1024 * or deletion
1026 if (new != old->d_parent ||
1027 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1028 (!locked && read_seqretry(&rename_lock, seq))) {
1029 spin_unlock(&new->d_lock);
1030 new = NULL;
1032 rcu_read_unlock();
1033 return new;
1038 * Search for at least 1 mount point in the dentry's subdirs.
1039 * We descend to the next level whenever the d_subdirs
1040 * list is non-empty and continue searching.
1044 * have_submounts - check for mounts over a dentry
1045 * @parent: dentry to check.
1047 * Return true if the parent or its subdirectories contain
1048 * a mount point
1050 int have_submounts(struct dentry *parent)
1052 struct dentry *this_parent;
1053 struct list_head *next;
1054 unsigned seq;
1055 int locked = 0;
1057 seq = read_seqbegin(&rename_lock);
1058 again:
1059 this_parent = parent;
1061 if (d_mountpoint(parent))
1062 goto positive;
1063 spin_lock(&this_parent->d_lock);
1064 repeat:
1065 next = this_parent->d_subdirs.next;
1066 resume:
1067 while (next != &this_parent->d_subdirs) {
1068 struct list_head *tmp = next;
1069 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1070 next = tmp->next;
1072 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1073 /* Have we found a mount point ? */
1074 if (d_mountpoint(dentry)) {
1075 spin_unlock(&dentry->d_lock);
1076 spin_unlock(&this_parent->d_lock);
1077 goto positive;
1079 if (!list_empty(&dentry->d_subdirs)) {
1080 spin_unlock(&this_parent->d_lock);
1081 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1082 this_parent = dentry;
1083 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1084 goto repeat;
1086 spin_unlock(&dentry->d_lock);
1089 * All done at this level ... ascend and resume the search.
1091 if (this_parent != parent) {
1092 struct dentry *child = this_parent;
1093 this_parent = try_to_ascend(this_parent, locked, seq);
1094 if (!this_parent)
1095 goto rename_retry;
1096 next = child->d_u.d_child.next;
1097 goto resume;
1099 spin_unlock(&this_parent->d_lock);
1100 if (!locked && read_seqretry(&rename_lock, seq))
1101 goto rename_retry;
1102 if (locked)
1103 write_sequnlock(&rename_lock);
1104 return 0; /* No mount points found in tree */
1105 positive:
1106 if (!locked && read_seqretry(&rename_lock, seq))
1107 goto rename_retry;
1108 if (locked)
1109 write_sequnlock(&rename_lock);
1110 return 1;
1112 rename_retry:
1113 if (locked)
1114 goto again;
1115 locked = 1;
1116 write_seqlock(&rename_lock);
1117 goto again;
1119 EXPORT_SYMBOL(have_submounts);
1122 * Search the dentry child list of the specified parent,
1123 * and move any unused dentries to the end of the unused
1124 * list for prune_dcache(). We descend to the next level
1125 * whenever the d_subdirs list is non-empty and continue
1126 * searching.
1128 * It returns zero iff there are no unused children,
1129 * otherwise it returns the number of children moved to
1130 * the end of the unused list. This may not be the total
1131 * number of unused children, because select_parent can
1132 * drop the lock and return early due to latency
1133 * constraints.
1135 static int select_parent(struct dentry *parent, struct list_head *dispose)
1137 struct dentry *this_parent;
1138 struct list_head *next;
1139 unsigned seq;
1140 int found = 0;
1141 int locked = 0;
1143 seq = read_seqbegin(&rename_lock);
1144 again:
1145 this_parent = parent;
1146 spin_lock(&this_parent->d_lock);
1147 repeat:
1148 next = this_parent->d_subdirs.next;
1149 resume:
1150 while (next != &this_parent->d_subdirs) {
1151 struct list_head *tmp = next;
1152 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1153 next = tmp->next;
1155 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1158 * move only zero ref count dentries to the dispose list.
1160 * Those which are presently on the shrink list, being processed
1161 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1162 * loop in shrink_dcache_parent() might not make any progress
1163 * and loop forever.
1165 if (dentry->d_count) {
1166 dentry_lru_del(dentry);
1167 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1168 dentry_lru_move_list(dentry, dispose);
1169 dentry->d_flags |= DCACHE_SHRINK_LIST;
1170 found++;
1173 * We can return to the caller if we have found some (this
1174 * ensures forward progress). We'll be coming back to find
1175 * the rest.
1177 if (found && need_resched()) {
1178 spin_unlock(&dentry->d_lock);
1179 goto out;
1183 * Descend a level if the d_subdirs list is non-empty.
1185 if (!list_empty(&dentry->d_subdirs)) {
1186 spin_unlock(&this_parent->d_lock);
1187 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1188 this_parent = dentry;
1189 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1190 goto repeat;
1193 spin_unlock(&dentry->d_lock);
1196 * All done at this level ... ascend and resume the search.
1198 if (this_parent != parent) {
1199 struct dentry *child = this_parent;
1200 this_parent = try_to_ascend(this_parent, locked, seq);
1201 if (!this_parent)
1202 goto rename_retry;
1203 next = child->d_u.d_child.next;
1204 goto resume;
1206 out:
1207 spin_unlock(&this_parent->d_lock);
1208 if (!locked && read_seqretry(&rename_lock, seq))
1209 goto rename_retry;
1210 if (locked)
1211 write_sequnlock(&rename_lock);
1212 return found;
1214 rename_retry:
1215 if (found)
1216 return found;
1217 if (locked)
1218 goto again;
1219 locked = 1;
1220 write_seqlock(&rename_lock);
1221 goto again;
1225 * shrink_dcache_parent - prune dcache
1226 * @parent: parent of entries to prune
1228 * Prune the dcache to remove unused children of the parent dentry.
1230 void shrink_dcache_parent(struct dentry * parent)
1232 LIST_HEAD(dispose);
1233 int found;
1235 while ((found = select_parent(parent, &dispose)) != 0)
1236 shrink_dentry_list(&dispose);
1238 EXPORT_SYMBOL(shrink_dcache_parent);
1241 * __d_alloc - allocate a dcache entry
1242 * @sb: filesystem it will belong to
1243 * @name: qstr of the name
1245 * Allocates a dentry. It returns %NULL if there is insufficient memory
1246 * available. On a success the dentry is returned. The name passed in is
1247 * copied and the copy passed in may be reused after this call.
1250 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1252 struct dentry *dentry;
1253 char *dname;
1255 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1256 if (!dentry)
1257 return NULL;
1260 * We guarantee that the inline name is always NUL-terminated.
1261 * This way the memcpy() done by the name switching in rename
1262 * will still always have a NUL at the end, even if we might
1263 * be overwriting an internal NUL character
1265 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1266 if (name->len > DNAME_INLINE_LEN-1) {
1267 dname = kmalloc(name->len + 1, GFP_KERNEL);
1268 if (!dname) {
1269 kmem_cache_free(dentry_cache, dentry);
1270 return NULL;
1272 } else {
1273 dname = dentry->d_iname;
1276 dentry->d_name.len = name->len;
1277 dentry->d_name.hash = name->hash;
1278 memcpy(dname, name->name, name->len);
1279 dname[name->len] = 0;
1281 /* Make sure we always see the terminating NUL character */
1282 smp_wmb();
1283 dentry->d_name.name = dname;
1285 dentry->d_count = 1;
1286 dentry->d_flags = 0;
1287 spin_lock_init(&dentry->d_lock);
1288 seqcount_init(&dentry->d_seq);
1289 dentry->d_inode = NULL;
1290 dentry->d_parent = dentry;
1291 dentry->d_sb = sb;
1292 dentry->d_op = NULL;
1293 dentry->d_fsdata = NULL;
1294 INIT_HLIST_BL_NODE(&dentry->d_hash);
1295 INIT_LIST_HEAD(&dentry->d_lru);
1296 INIT_LIST_HEAD(&dentry->d_subdirs);
1297 INIT_HLIST_NODE(&dentry->d_alias);
1298 INIT_LIST_HEAD(&dentry->d_u.d_child);
1299 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1301 this_cpu_inc(nr_dentry);
1303 return dentry;
1307 * d_alloc - allocate a dcache entry
1308 * @parent: parent of entry to allocate
1309 * @name: qstr of the name
1311 * Allocates a dentry. It returns %NULL if there is insufficient memory
1312 * available. On a success the dentry is returned. The name passed in is
1313 * copied and the copy passed in may be reused after this call.
1315 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1317 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1318 if (!dentry)
1319 return NULL;
1321 spin_lock(&parent->d_lock);
1323 * don't need child lock because it is not subject
1324 * to concurrency here
1326 __dget_dlock(parent);
1327 dentry->d_parent = parent;
1328 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1329 spin_unlock(&parent->d_lock);
1331 return dentry;
1333 EXPORT_SYMBOL(d_alloc);
1335 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1337 struct dentry *dentry = __d_alloc(sb, name);
1338 if (dentry)
1339 dentry->d_flags |= DCACHE_DISCONNECTED;
1340 return dentry;
1342 EXPORT_SYMBOL(d_alloc_pseudo);
1344 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1346 struct qstr q;
1348 q.name = name;
1349 q.len = strlen(name);
1350 q.hash = full_name_hash(q.name, q.len);
1351 return d_alloc(parent, &q);
1353 EXPORT_SYMBOL(d_alloc_name);
1355 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1357 WARN_ON_ONCE(dentry->d_op);
1358 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1359 DCACHE_OP_COMPARE |
1360 DCACHE_OP_REVALIDATE |
1361 DCACHE_OP_DELETE ));
1362 dentry->d_op = op;
1363 if (!op)
1364 return;
1365 if (op->d_hash)
1366 dentry->d_flags |= DCACHE_OP_HASH;
1367 if (op->d_compare)
1368 dentry->d_flags |= DCACHE_OP_COMPARE;
1369 if (op->d_revalidate)
1370 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1371 if (op->d_delete)
1372 dentry->d_flags |= DCACHE_OP_DELETE;
1373 if (op->d_prune)
1374 dentry->d_flags |= DCACHE_OP_PRUNE;
1377 EXPORT_SYMBOL(d_set_d_op);
1379 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1381 spin_lock(&dentry->d_lock);
1382 if (inode) {
1383 if (unlikely(IS_AUTOMOUNT(inode)))
1384 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1385 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1387 dentry->d_inode = inode;
1388 dentry_rcuwalk_barrier(dentry);
1389 spin_unlock(&dentry->d_lock);
1390 fsnotify_d_instantiate(dentry, inode);
1394 * d_instantiate - fill in inode information for a dentry
1395 * @entry: dentry to complete
1396 * @inode: inode to attach to this dentry
1398 * Fill in inode information in the entry.
1400 * This turns negative dentries into productive full members
1401 * of society.
1403 * NOTE! This assumes that the inode count has been incremented
1404 * (or otherwise set) by the caller to indicate that it is now
1405 * in use by the dcache.
1408 void d_instantiate(struct dentry *entry, struct inode * inode)
1410 BUG_ON(!hlist_unhashed(&entry->d_alias));
1411 if (inode)
1412 spin_lock(&inode->i_lock);
1413 __d_instantiate(entry, inode);
1414 if (inode)
1415 spin_unlock(&inode->i_lock);
1416 security_d_instantiate(entry, inode);
1418 EXPORT_SYMBOL(d_instantiate);
1421 * d_instantiate_unique - instantiate a non-aliased dentry
1422 * @entry: dentry to instantiate
1423 * @inode: inode to attach to this dentry
1425 * Fill in inode information in the entry. On success, it returns NULL.
1426 * If an unhashed alias of "entry" already exists, then we return the
1427 * aliased dentry instead and drop one reference to inode.
1429 * Note that in order to avoid conflicts with rename() etc, the caller
1430 * had better be holding the parent directory semaphore.
1432 * This also assumes that the inode count has been incremented
1433 * (or otherwise set) by the caller to indicate that it is now
1434 * in use by the dcache.
1436 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1437 struct inode *inode)
1439 struct dentry *alias;
1440 int len = entry->d_name.len;
1441 const char *name = entry->d_name.name;
1442 unsigned int hash = entry->d_name.hash;
1443 struct hlist_node *p;
1445 if (!inode) {
1446 __d_instantiate(entry, NULL);
1447 return NULL;
1450 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
1452 * Don't need alias->d_lock here, because aliases with
1453 * d_parent == entry->d_parent are not subject to name or
1454 * parent changes, because the parent inode i_mutex is held.
1456 if (alias->d_name.hash != hash)
1457 continue;
1458 if (alias->d_parent != entry->d_parent)
1459 continue;
1460 if (alias->d_name.len != len)
1461 continue;
1462 if (dentry_cmp(alias, name, len))
1463 continue;
1464 __dget(alias);
1465 return alias;
1468 __d_instantiate(entry, inode);
1469 return NULL;
1472 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1474 struct dentry *result;
1476 BUG_ON(!hlist_unhashed(&entry->d_alias));
1478 if (inode)
1479 spin_lock(&inode->i_lock);
1480 result = __d_instantiate_unique(entry, inode);
1481 if (inode)
1482 spin_unlock(&inode->i_lock);
1484 if (!result) {
1485 security_d_instantiate(entry, inode);
1486 return NULL;
1489 BUG_ON(!d_unhashed(result));
1490 iput(inode);
1491 return result;
1494 EXPORT_SYMBOL(d_instantiate_unique);
1496 struct dentry *d_make_root(struct inode *root_inode)
1498 struct dentry *res = NULL;
1500 if (root_inode) {
1501 static const struct qstr name = QSTR_INIT("/", 1);
1503 res = __d_alloc(root_inode->i_sb, &name);
1504 if (res)
1505 d_instantiate(res, root_inode);
1506 else
1507 iput(root_inode);
1509 return res;
1511 EXPORT_SYMBOL(d_make_root);
1513 static struct dentry * __d_find_any_alias(struct inode *inode)
1515 struct dentry *alias;
1517 if (hlist_empty(&inode->i_dentry))
1518 return NULL;
1519 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1520 __dget(alias);
1521 return alias;
1525 * d_find_any_alias - find any alias for a given inode
1526 * @inode: inode to find an alias for
1528 * If any aliases exist for the given inode, take and return a
1529 * reference for one of them. If no aliases exist, return %NULL.
1531 struct dentry *d_find_any_alias(struct inode *inode)
1533 struct dentry *de;
1535 spin_lock(&inode->i_lock);
1536 de = __d_find_any_alias(inode);
1537 spin_unlock(&inode->i_lock);
1538 return de;
1540 EXPORT_SYMBOL(d_find_any_alias);
1543 * d_obtain_alias - find or allocate a dentry for a given inode
1544 * @inode: inode to allocate the dentry for
1546 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1547 * similar open by handle operations. The returned dentry may be anonymous,
1548 * or may have a full name (if the inode was already in the cache).
1550 * When called on a directory inode, we must ensure that the inode only ever
1551 * has one dentry. If a dentry is found, that is returned instead of
1552 * allocating a new one.
1554 * On successful return, the reference to the inode has been transferred
1555 * to the dentry. In case of an error the reference on the inode is released.
1556 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1557 * be passed in and will be the error will be propagate to the return value,
1558 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1560 struct dentry *d_obtain_alias(struct inode *inode)
1562 static const struct qstr anonstring = QSTR_INIT("/", 1);
1563 struct dentry *tmp;
1564 struct dentry *res;
1566 if (!inode)
1567 return ERR_PTR(-ESTALE);
1568 if (IS_ERR(inode))
1569 return ERR_CAST(inode);
1571 res = d_find_any_alias(inode);
1572 if (res)
1573 goto out_iput;
1575 tmp = __d_alloc(inode->i_sb, &anonstring);
1576 if (!tmp) {
1577 res = ERR_PTR(-ENOMEM);
1578 goto out_iput;
1581 spin_lock(&inode->i_lock);
1582 res = __d_find_any_alias(inode);
1583 if (res) {
1584 spin_unlock(&inode->i_lock);
1585 dput(tmp);
1586 goto out_iput;
1589 /* attach a disconnected dentry */
1590 spin_lock(&tmp->d_lock);
1591 tmp->d_inode = inode;
1592 tmp->d_flags |= DCACHE_DISCONNECTED;
1593 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1594 hlist_bl_lock(&tmp->d_sb->s_anon);
1595 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1596 hlist_bl_unlock(&tmp->d_sb->s_anon);
1597 spin_unlock(&tmp->d_lock);
1598 spin_unlock(&inode->i_lock);
1599 security_d_instantiate(tmp, inode);
1601 return tmp;
1603 out_iput:
1604 if (res && !IS_ERR(res))
1605 security_d_instantiate(res, inode);
1606 iput(inode);
1607 return res;
1609 EXPORT_SYMBOL(d_obtain_alias);
1612 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1613 * @inode: the inode which may have a disconnected dentry
1614 * @dentry: a negative dentry which we want to point to the inode.
1616 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1617 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1618 * and return it, else simply d_add the inode to the dentry and return NULL.
1620 * This is needed in the lookup routine of any filesystem that is exportable
1621 * (via knfsd) so that we can build dcache paths to directories effectively.
1623 * If a dentry was found and moved, then it is returned. Otherwise NULL
1624 * is returned. This matches the expected return value of ->lookup.
1627 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1629 struct dentry *new = NULL;
1631 if (IS_ERR(inode))
1632 return ERR_CAST(inode);
1634 if (inode && S_ISDIR(inode->i_mode)) {
1635 spin_lock(&inode->i_lock);
1636 new = __d_find_alias(inode, 1);
1637 if (new) {
1638 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1639 spin_unlock(&inode->i_lock);
1640 security_d_instantiate(new, inode);
1641 d_move(new, dentry);
1642 iput(inode);
1643 } else {
1644 /* already taking inode->i_lock, so d_add() by hand */
1645 __d_instantiate(dentry, inode);
1646 spin_unlock(&inode->i_lock);
1647 security_d_instantiate(dentry, inode);
1648 d_rehash(dentry);
1650 } else
1651 d_add(dentry, inode);
1652 return new;
1654 EXPORT_SYMBOL(d_splice_alias);
1657 * d_add_ci - lookup or allocate new dentry with case-exact name
1658 * @inode: the inode case-insensitive lookup has found
1659 * @dentry: the negative dentry that was passed to the parent's lookup func
1660 * @name: the case-exact name to be associated with the returned dentry
1662 * This is to avoid filling the dcache with case-insensitive names to the
1663 * same inode, only the actual correct case is stored in the dcache for
1664 * case-insensitive filesystems.
1666 * For a case-insensitive lookup match and if the the case-exact dentry
1667 * already exists in in the dcache, use it and return it.
1669 * If no entry exists with the exact case name, allocate new dentry with
1670 * the exact case, and return the spliced entry.
1672 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1673 struct qstr *name)
1675 int error;
1676 struct dentry *found;
1677 struct dentry *new;
1680 * First check if a dentry matching the name already exists,
1681 * if not go ahead and create it now.
1683 found = d_hash_and_lookup(dentry->d_parent, name);
1684 if (!found) {
1685 new = d_alloc(dentry->d_parent, name);
1686 if (!new) {
1687 error = -ENOMEM;
1688 goto err_out;
1691 found = d_splice_alias(inode, new);
1692 if (found) {
1693 dput(new);
1694 return found;
1696 return new;
1700 * If a matching dentry exists, and it's not negative use it.
1702 * Decrement the reference count to balance the iget() done
1703 * earlier on.
1705 if (found->d_inode) {
1706 if (unlikely(found->d_inode != inode)) {
1707 /* This can't happen because bad inodes are unhashed. */
1708 BUG_ON(!is_bad_inode(inode));
1709 BUG_ON(!is_bad_inode(found->d_inode));
1711 iput(inode);
1712 return found;
1716 * Negative dentry: instantiate it unless the inode is a directory and
1717 * already has a dentry.
1719 new = d_splice_alias(inode, found);
1720 if (new) {
1721 dput(found);
1722 found = new;
1724 return found;
1726 err_out:
1727 iput(inode);
1728 return ERR_PTR(error);
1730 EXPORT_SYMBOL(d_add_ci);
1733 * Do the slow-case of the dentry name compare.
1735 * Unlike the dentry_cmp() function, we need to atomically
1736 * load the name, length and inode information, so that the
1737 * filesystem can rely on them, and can use the 'name' and
1738 * 'len' information without worrying about walking off the
1739 * end of memory etc.
1741 * Thus the read_seqcount_retry() and the "duplicate" info
1742 * in arguments (the low-level filesystem should not look
1743 * at the dentry inode or name contents directly, since
1744 * rename can change them while we're in RCU mode).
1746 enum slow_d_compare {
1747 D_COMP_OK,
1748 D_COMP_NOMATCH,
1749 D_COMP_SEQRETRY,
1752 static noinline enum slow_d_compare slow_dentry_cmp(
1753 const struct dentry *parent,
1754 struct inode *inode,
1755 struct dentry *dentry,
1756 unsigned int seq,
1757 const struct qstr *name)
1759 int tlen = dentry->d_name.len;
1760 const char *tname = dentry->d_name.name;
1761 struct inode *i = dentry->d_inode;
1763 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1764 cpu_relax();
1765 return D_COMP_SEQRETRY;
1767 if (parent->d_op->d_compare(parent, inode,
1768 dentry, i,
1769 tlen, tname, name))
1770 return D_COMP_NOMATCH;
1771 return D_COMP_OK;
1775 * __d_lookup_rcu - search for a dentry (racy, store-free)
1776 * @parent: parent dentry
1777 * @name: qstr of name we wish to find
1778 * @seqp: returns d_seq value at the point where the dentry was found
1779 * @inode: returns dentry->d_inode when the inode was found valid.
1780 * Returns: dentry, or NULL
1782 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1783 * resolution (store-free path walking) design described in
1784 * Documentation/filesystems/path-lookup.txt.
1786 * This is not to be used outside core vfs.
1788 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1789 * held, and rcu_read_lock held. The returned dentry must not be stored into
1790 * without taking d_lock and checking d_seq sequence count against @seq
1791 * returned here.
1793 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1794 * function.
1796 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1797 * the returned dentry, so long as its parent's seqlock is checked after the
1798 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1799 * is formed, giving integrity down the path walk.
1801 * NOTE! The caller *has* to check the resulting dentry against the sequence
1802 * number we've returned before using any of the resulting dentry state!
1804 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1805 const struct qstr *name,
1806 unsigned *seqp, struct inode *inode)
1808 u64 hashlen = name->hash_len;
1809 const unsigned char *str = name->name;
1810 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1811 struct hlist_bl_node *node;
1812 struct dentry *dentry;
1815 * Note: There is significant duplication with __d_lookup_rcu which is
1816 * required to prevent single threaded performance regressions
1817 * especially on architectures where smp_rmb (in seqcounts) are costly.
1818 * Keep the two functions in sync.
1822 * The hash list is protected using RCU.
1824 * Carefully use d_seq when comparing a candidate dentry, to avoid
1825 * races with d_move().
1827 * It is possible that concurrent renames can mess up our list
1828 * walk here and result in missing our dentry, resulting in the
1829 * false-negative result. d_lookup() protects against concurrent
1830 * renames using rename_lock seqlock.
1832 * See Documentation/filesystems/path-lookup.txt for more details.
1834 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1835 unsigned seq;
1837 seqretry:
1839 * The dentry sequence count protects us from concurrent
1840 * renames, and thus protects inode, parent and name fields.
1842 * The caller must perform a seqcount check in order
1843 * to do anything useful with the returned dentry,
1844 * including using the 'd_inode' pointer.
1846 * NOTE! We do a "raw" seqcount_begin here. That means that
1847 * we don't wait for the sequence count to stabilize if it
1848 * is in the middle of a sequence change. If we do the slow
1849 * dentry compare, we will do seqretries until it is stable,
1850 * and if we end up with a successful lookup, we actually
1851 * want to exit RCU lookup anyway.
1853 seq = raw_seqcount_begin(&dentry->d_seq);
1854 if (dentry->d_parent != parent)
1855 continue;
1856 if (d_unhashed(dentry))
1857 continue;
1858 *seqp = seq;
1860 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1861 if (dentry->d_name.hash != hashlen_hash(hashlen))
1862 continue;
1863 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1864 case D_COMP_OK:
1865 return dentry;
1866 case D_COMP_NOMATCH:
1867 continue;
1868 default:
1869 goto seqretry;
1873 if (dentry->d_name.hash_len != hashlen)
1874 continue;
1875 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1876 return dentry;
1878 return NULL;
1882 * d_lookup - search for a dentry
1883 * @parent: parent dentry
1884 * @name: qstr of name we wish to find
1885 * Returns: dentry, or NULL
1887 * d_lookup searches the children of the parent dentry for the name in
1888 * question. If the dentry is found its reference count is incremented and the
1889 * dentry is returned. The caller must use dput to free the entry when it has
1890 * finished using it. %NULL is returned if the dentry does not exist.
1892 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1894 struct dentry *dentry;
1895 unsigned seq;
1897 do {
1898 seq = read_seqbegin(&rename_lock);
1899 dentry = __d_lookup(parent, name);
1900 if (dentry)
1901 break;
1902 } while (read_seqretry(&rename_lock, seq));
1903 return dentry;
1905 EXPORT_SYMBOL(d_lookup);
1908 * __d_lookup - search for a dentry (racy)
1909 * @parent: parent dentry
1910 * @name: qstr of name we wish to find
1911 * Returns: dentry, or NULL
1913 * __d_lookup is like d_lookup, however it may (rarely) return a
1914 * false-negative result due to unrelated rename activity.
1916 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1917 * however it must be used carefully, eg. with a following d_lookup in
1918 * the case of failure.
1920 * __d_lookup callers must be commented.
1922 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1924 unsigned int len = name->len;
1925 unsigned int hash = name->hash;
1926 const unsigned char *str = name->name;
1927 struct hlist_bl_head *b = d_hash(parent, hash);
1928 struct hlist_bl_node *node;
1929 struct dentry *found = NULL;
1930 struct dentry *dentry;
1933 * Note: There is significant duplication with __d_lookup_rcu which is
1934 * required to prevent single threaded performance regressions
1935 * especially on architectures where smp_rmb (in seqcounts) are costly.
1936 * Keep the two functions in sync.
1940 * The hash list is protected using RCU.
1942 * Take d_lock when comparing a candidate dentry, to avoid races
1943 * with d_move().
1945 * It is possible that concurrent renames can mess up our list
1946 * walk here and result in missing our dentry, resulting in the
1947 * false-negative result. d_lookup() protects against concurrent
1948 * renames using rename_lock seqlock.
1950 * See Documentation/filesystems/path-lookup.txt for more details.
1952 rcu_read_lock();
1954 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1956 if (dentry->d_name.hash != hash)
1957 continue;
1959 spin_lock(&dentry->d_lock);
1960 if (dentry->d_parent != parent)
1961 goto next;
1962 if (d_unhashed(dentry))
1963 goto next;
1966 * It is safe to compare names since d_move() cannot
1967 * change the qstr (protected by d_lock).
1969 if (parent->d_flags & DCACHE_OP_COMPARE) {
1970 int tlen = dentry->d_name.len;
1971 const char *tname = dentry->d_name.name;
1972 if (parent->d_op->d_compare(parent, parent->d_inode,
1973 dentry, dentry->d_inode,
1974 tlen, tname, name))
1975 goto next;
1976 } else {
1977 if (dentry->d_name.len != len)
1978 goto next;
1979 if (dentry_cmp(dentry, str, len))
1980 goto next;
1983 dentry->d_count++;
1984 found = dentry;
1985 spin_unlock(&dentry->d_lock);
1986 break;
1987 next:
1988 spin_unlock(&dentry->d_lock);
1990 rcu_read_unlock();
1992 return found;
1996 * d_hash_and_lookup - hash the qstr then search for a dentry
1997 * @dir: Directory to search in
1998 * @name: qstr of name we wish to find
2000 * On hash failure or on lookup failure NULL is returned.
2002 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2004 struct dentry *dentry = NULL;
2007 * Check for a fs-specific hash function. Note that we must
2008 * calculate the standard hash first, as the d_op->d_hash()
2009 * routine may choose to leave the hash value unchanged.
2011 name->hash = full_name_hash(name->name, name->len);
2012 if (dir->d_flags & DCACHE_OP_HASH) {
2013 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
2014 goto out;
2016 dentry = d_lookup(dir, name);
2017 out:
2018 return dentry;
2022 * d_validate - verify dentry provided from insecure source (deprecated)
2023 * @dentry: The dentry alleged to be valid child of @dparent
2024 * @dparent: The parent dentry (known to be valid)
2026 * An insecure source has sent us a dentry, here we verify it and dget() it.
2027 * This is used by ncpfs in its readdir implementation.
2028 * Zero is returned in the dentry is invalid.
2030 * This function is slow for big directories, and deprecated, do not use it.
2032 int d_validate(struct dentry *dentry, struct dentry *dparent)
2034 struct dentry *child;
2036 spin_lock(&dparent->d_lock);
2037 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2038 if (dentry == child) {
2039 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2040 __dget_dlock(dentry);
2041 spin_unlock(&dentry->d_lock);
2042 spin_unlock(&dparent->d_lock);
2043 return 1;
2046 spin_unlock(&dparent->d_lock);
2048 return 0;
2050 EXPORT_SYMBOL(d_validate);
2053 * When a file is deleted, we have two options:
2054 * - turn this dentry into a negative dentry
2055 * - unhash this dentry and free it.
2057 * Usually, we want to just turn this into
2058 * a negative dentry, but if anybody else is
2059 * currently using the dentry or the inode
2060 * we can't do that and we fall back on removing
2061 * it from the hash queues and waiting for
2062 * it to be deleted later when it has no users
2066 * d_delete - delete a dentry
2067 * @dentry: The dentry to delete
2069 * Turn the dentry into a negative dentry if possible, otherwise
2070 * remove it from the hash queues so it can be deleted later
2073 void d_delete(struct dentry * dentry)
2075 struct inode *inode;
2076 int isdir = 0;
2078 * Are we the only user?
2080 again:
2081 spin_lock(&dentry->d_lock);
2082 inode = dentry->d_inode;
2083 isdir = S_ISDIR(inode->i_mode);
2084 if (dentry->d_count == 1) {
2085 if (!spin_trylock(&inode->i_lock)) {
2086 spin_unlock(&dentry->d_lock);
2087 cpu_relax();
2088 goto again;
2090 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2091 dentry_unlink_inode(dentry);
2092 fsnotify_nameremove(dentry, isdir);
2093 return;
2096 if (!d_unhashed(dentry))
2097 __d_drop(dentry);
2099 spin_unlock(&dentry->d_lock);
2101 fsnotify_nameremove(dentry, isdir);
2103 EXPORT_SYMBOL(d_delete);
2105 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2107 BUG_ON(!d_unhashed(entry));
2108 hlist_bl_lock(b);
2109 entry->d_flags |= DCACHE_RCUACCESS;
2110 hlist_bl_add_head_rcu(&entry->d_hash, b);
2111 hlist_bl_unlock(b);
2114 static void _d_rehash(struct dentry * entry)
2116 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2120 * d_rehash - add an entry back to the hash
2121 * @entry: dentry to add to the hash
2123 * Adds a dentry to the hash according to its name.
2126 void d_rehash(struct dentry * entry)
2128 spin_lock(&entry->d_lock);
2129 _d_rehash(entry);
2130 spin_unlock(&entry->d_lock);
2132 EXPORT_SYMBOL(d_rehash);
2135 * dentry_update_name_case - update case insensitive dentry with a new name
2136 * @dentry: dentry to be updated
2137 * @name: new name
2139 * Update a case insensitive dentry with new case of name.
2141 * dentry must have been returned by d_lookup with name @name. Old and new
2142 * name lengths must match (ie. no d_compare which allows mismatched name
2143 * lengths).
2145 * Parent inode i_mutex must be held over d_lookup and into this call (to
2146 * keep renames and concurrent inserts, and readdir(2) away).
2148 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2150 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2151 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2153 spin_lock(&dentry->d_lock);
2154 write_seqcount_begin(&dentry->d_seq);
2155 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2156 write_seqcount_end(&dentry->d_seq);
2157 spin_unlock(&dentry->d_lock);
2159 EXPORT_SYMBOL(dentry_update_name_case);
2161 static void switch_names(struct dentry *dentry, struct dentry *target)
2163 if (dname_external(target)) {
2164 if (dname_external(dentry)) {
2166 * Both external: swap the pointers
2168 swap(target->d_name.name, dentry->d_name.name);
2169 } else {
2171 * dentry:internal, target:external. Steal target's
2172 * storage and make target internal.
2174 memcpy(target->d_iname, dentry->d_name.name,
2175 dentry->d_name.len + 1);
2176 dentry->d_name.name = target->d_name.name;
2177 target->d_name.name = target->d_iname;
2179 } else {
2180 if (dname_external(dentry)) {
2182 * dentry:external, target:internal. Give dentry's
2183 * storage to target and make dentry internal
2185 memcpy(dentry->d_iname, target->d_name.name,
2186 target->d_name.len + 1);
2187 target->d_name.name = dentry->d_name.name;
2188 dentry->d_name.name = dentry->d_iname;
2189 } else {
2191 * Both are internal. Just copy target to dentry
2193 memcpy(dentry->d_iname, target->d_name.name,
2194 target->d_name.len + 1);
2195 dentry->d_name.len = target->d_name.len;
2196 return;
2199 swap(dentry->d_name.len, target->d_name.len);
2202 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2205 * XXXX: do we really need to take target->d_lock?
2207 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2208 spin_lock(&target->d_parent->d_lock);
2209 else {
2210 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2211 spin_lock(&dentry->d_parent->d_lock);
2212 spin_lock_nested(&target->d_parent->d_lock,
2213 DENTRY_D_LOCK_NESTED);
2214 } else {
2215 spin_lock(&target->d_parent->d_lock);
2216 spin_lock_nested(&dentry->d_parent->d_lock,
2217 DENTRY_D_LOCK_NESTED);
2220 if (target < dentry) {
2221 spin_lock_nested(&target->d_lock, 2);
2222 spin_lock_nested(&dentry->d_lock, 3);
2223 } else {
2224 spin_lock_nested(&dentry->d_lock, 2);
2225 spin_lock_nested(&target->d_lock, 3);
2229 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2230 struct dentry *target)
2232 if (target->d_parent != dentry->d_parent)
2233 spin_unlock(&dentry->d_parent->d_lock);
2234 if (target->d_parent != target)
2235 spin_unlock(&target->d_parent->d_lock);
2239 * When switching names, the actual string doesn't strictly have to
2240 * be preserved in the target - because we're dropping the target
2241 * anyway. As such, we can just do a simple memcpy() to copy over
2242 * the new name before we switch.
2244 * Note that we have to be a lot more careful about getting the hash
2245 * switched - we have to switch the hash value properly even if it
2246 * then no longer matches the actual (corrupted) string of the target.
2247 * The hash value has to match the hash queue that the dentry is on..
2250 * __d_move - move a dentry
2251 * @dentry: entry to move
2252 * @target: new dentry
2254 * Update the dcache to reflect the move of a file name. Negative
2255 * dcache entries should not be moved in this way. Caller must hold
2256 * rename_lock, the i_mutex of the source and target directories,
2257 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2259 static void __d_move(struct dentry * dentry, struct dentry * target)
2261 if (!dentry->d_inode)
2262 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2264 BUG_ON(d_ancestor(dentry, target));
2265 BUG_ON(d_ancestor(target, dentry));
2267 dentry_lock_for_move(dentry, target);
2269 write_seqcount_begin(&dentry->d_seq);
2270 write_seqcount_begin(&target->d_seq);
2272 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2275 * Move the dentry to the target hash queue. Don't bother checking
2276 * for the same hash queue because of how unlikely it is.
2278 __d_drop(dentry);
2279 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2281 /* Unhash the target: dput() will then get rid of it */
2282 __d_drop(target);
2284 list_del(&dentry->d_u.d_child);
2285 list_del(&target->d_u.d_child);
2287 /* Switch the names.. */
2288 switch_names(dentry, target);
2289 swap(dentry->d_name.hash, target->d_name.hash);
2291 /* ... and switch the parents */
2292 if (IS_ROOT(dentry)) {
2293 dentry->d_parent = target->d_parent;
2294 target->d_parent = target;
2295 INIT_LIST_HEAD(&target->d_u.d_child);
2296 } else {
2297 swap(dentry->d_parent, target->d_parent);
2299 /* And add them back to the (new) parent lists */
2300 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2303 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2305 write_seqcount_end(&target->d_seq);
2306 write_seqcount_end(&dentry->d_seq);
2308 dentry_unlock_parents_for_move(dentry, target);
2309 spin_unlock(&target->d_lock);
2310 fsnotify_d_move(dentry);
2311 spin_unlock(&dentry->d_lock);
2315 * d_move - move a dentry
2316 * @dentry: entry to move
2317 * @target: new dentry
2319 * Update the dcache to reflect the move of a file name. Negative
2320 * dcache entries should not be moved in this way. See the locking
2321 * requirements for __d_move.
2323 void d_move(struct dentry *dentry, struct dentry *target)
2325 write_seqlock(&rename_lock);
2326 __d_move(dentry, target);
2327 write_sequnlock(&rename_lock);
2329 EXPORT_SYMBOL(d_move);
2332 * d_ancestor - search for an ancestor
2333 * @p1: ancestor dentry
2334 * @p2: child dentry
2336 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2337 * an ancestor of p2, else NULL.
2339 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2341 struct dentry *p;
2343 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2344 if (p->d_parent == p1)
2345 return p;
2347 return NULL;
2351 * This helper attempts to cope with remotely renamed directories
2353 * It assumes that the caller is already holding
2354 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2356 * Note: If ever the locking in lock_rename() changes, then please
2357 * remember to update this too...
2359 static struct dentry *__d_unalias(struct inode *inode,
2360 struct dentry *dentry, struct dentry *alias)
2362 struct mutex *m1 = NULL, *m2 = NULL;
2363 struct dentry *ret = ERR_PTR(-EBUSY);
2365 /* If alias and dentry share a parent, then no extra locks required */
2366 if (alias->d_parent == dentry->d_parent)
2367 goto out_unalias;
2369 /* See lock_rename() */
2370 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2371 goto out_err;
2372 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2373 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2374 goto out_err;
2375 m2 = &alias->d_parent->d_inode->i_mutex;
2376 out_unalias:
2377 if (likely(!d_mountpoint(alias))) {
2378 __d_move(alias, dentry);
2379 ret = alias;
2381 out_err:
2382 spin_unlock(&inode->i_lock);
2383 if (m2)
2384 mutex_unlock(m2);
2385 if (m1)
2386 mutex_unlock(m1);
2387 return ret;
2391 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2392 * named dentry in place of the dentry to be replaced.
2393 * returns with anon->d_lock held!
2395 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2397 struct dentry *dparent, *aparent;
2399 dentry_lock_for_move(anon, dentry);
2401 write_seqcount_begin(&dentry->d_seq);
2402 write_seqcount_begin(&anon->d_seq);
2404 dparent = dentry->d_parent;
2405 aparent = anon->d_parent;
2407 switch_names(dentry, anon);
2408 swap(dentry->d_name.hash, anon->d_name.hash);
2410 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2411 list_del(&dentry->d_u.d_child);
2412 if (!IS_ROOT(dentry))
2413 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2414 else
2415 INIT_LIST_HEAD(&dentry->d_u.d_child);
2417 anon->d_parent = (dparent == dentry) ? anon : dparent;
2418 list_del(&anon->d_u.d_child);
2419 if (!IS_ROOT(anon))
2420 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2421 else
2422 INIT_LIST_HEAD(&anon->d_u.d_child);
2424 write_seqcount_end(&dentry->d_seq);
2425 write_seqcount_end(&anon->d_seq);
2427 dentry_unlock_parents_for_move(anon, dentry);
2428 spin_unlock(&dentry->d_lock);
2430 /* anon->d_lock still locked, returns locked */
2431 anon->d_flags &= ~DCACHE_DISCONNECTED;
2435 * d_materialise_unique - introduce an inode into the tree
2436 * @dentry: candidate dentry
2437 * @inode: inode to bind to the dentry, to which aliases may be attached
2439 * Introduces an dentry into the tree, substituting an extant disconnected
2440 * root directory alias in its place if there is one. Caller must hold the
2441 * i_mutex of the parent directory.
2443 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2445 struct dentry *actual;
2447 BUG_ON(!d_unhashed(dentry));
2449 if (!inode) {
2450 actual = dentry;
2451 __d_instantiate(dentry, NULL);
2452 d_rehash(actual);
2453 goto out_nolock;
2456 spin_lock(&inode->i_lock);
2458 if (S_ISDIR(inode->i_mode)) {
2459 struct dentry *alias;
2461 /* Does an aliased dentry already exist? */
2462 alias = __d_find_alias(inode, 0);
2463 if (alias) {
2464 actual = alias;
2465 write_seqlock(&rename_lock);
2467 if (d_ancestor(alias, dentry)) {
2468 /* Check for loops */
2469 actual = ERR_PTR(-ELOOP);
2470 spin_unlock(&inode->i_lock);
2471 } else if (IS_ROOT(alias)) {
2472 /* Is this an anonymous mountpoint that we
2473 * could splice into our tree? */
2474 __d_materialise_dentry(dentry, alias);
2475 write_sequnlock(&rename_lock);
2476 __d_drop(alias);
2477 goto found;
2478 } else {
2479 /* Nope, but we must(!) avoid directory
2480 * aliasing. This drops inode->i_lock */
2481 actual = __d_unalias(inode, dentry, alias);
2483 write_sequnlock(&rename_lock);
2484 if (IS_ERR(actual)) {
2485 if (PTR_ERR(actual) == -ELOOP)
2486 pr_warn_ratelimited(
2487 "VFS: Lookup of '%s' in %s %s"
2488 " would have caused loop\n",
2489 dentry->d_name.name,
2490 inode->i_sb->s_type->name,
2491 inode->i_sb->s_id);
2492 dput(alias);
2494 goto out_nolock;
2498 /* Add a unique reference */
2499 actual = __d_instantiate_unique(dentry, inode);
2500 if (!actual)
2501 actual = dentry;
2502 else
2503 BUG_ON(!d_unhashed(actual));
2505 spin_lock(&actual->d_lock);
2506 found:
2507 _d_rehash(actual);
2508 spin_unlock(&actual->d_lock);
2509 spin_unlock(&inode->i_lock);
2510 out_nolock:
2511 if (actual == dentry) {
2512 security_d_instantiate(dentry, inode);
2513 return NULL;
2516 iput(inode);
2517 return actual;
2519 EXPORT_SYMBOL_GPL(d_materialise_unique);
2521 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2523 *buflen -= namelen;
2524 if (*buflen < 0)
2525 return -ENAMETOOLONG;
2526 *buffer -= namelen;
2527 memcpy(*buffer, str, namelen);
2528 return 0;
2531 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2533 return prepend(buffer, buflen, name->name, name->len);
2537 * prepend_path - Prepend path string to a buffer
2538 * @path: the dentry/vfsmount to report
2539 * @root: root vfsmnt/dentry
2540 * @buffer: pointer to the end of the buffer
2541 * @buflen: pointer to buffer length
2543 * Caller holds the rename_lock.
2545 static int prepend_path(const struct path *path,
2546 const struct path *root,
2547 char **buffer, int *buflen)
2549 struct dentry *dentry = path->dentry;
2550 struct vfsmount *vfsmnt = path->mnt;
2551 struct mount *mnt = real_mount(vfsmnt);
2552 bool slash = false;
2553 int error = 0;
2555 br_read_lock(&vfsmount_lock);
2556 while (dentry != root->dentry || vfsmnt != root->mnt) {
2557 struct dentry * parent;
2559 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2560 /* Global root? */
2561 if (!mnt_has_parent(mnt))
2562 goto global_root;
2563 dentry = mnt->mnt_mountpoint;
2564 mnt = mnt->mnt_parent;
2565 vfsmnt = &mnt->mnt;
2566 continue;
2568 parent = dentry->d_parent;
2569 prefetch(parent);
2570 spin_lock(&dentry->d_lock);
2571 error = prepend_name(buffer, buflen, &dentry->d_name);
2572 spin_unlock(&dentry->d_lock);
2573 if (!error)
2574 error = prepend(buffer, buflen, "/", 1);
2575 if (error)
2576 break;
2578 slash = true;
2579 dentry = parent;
2582 if (!error && !slash)
2583 error = prepend(buffer, buflen, "/", 1);
2585 out:
2586 br_read_unlock(&vfsmount_lock);
2587 return error;
2589 global_root:
2591 * Filesystems needing to implement special "root names"
2592 * should do so with ->d_dname()
2594 if (IS_ROOT(dentry) &&
2595 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2596 WARN(1, "Root dentry has weird name <%.*s>\n",
2597 (int) dentry->d_name.len, dentry->d_name.name);
2599 if (!slash)
2600 error = prepend(buffer, buflen, "/", 1);
2601 if (!error)
2602 error = is_mounted(vfsmnt) ? 1 : 2;
2603 goto out;
2607 * __d_path - return the path of a dentry
2608 * @path: the dentry/vfsmount to report
2609 * @root: root vfsmnt/dentry
2610 * @buf: buffer to return value in
2611 * @buflen: buffer length
2613 * Convert a dentry into an ASCII path name.
2615 * Returns a pointer into the buffer or an error code if the
2616 * path was too long.
2618 * "buflen" should be positive.
2620 * If the path is not reachable from the supplied root, return %NULL.
2622 char *__d_path(const struct path *path,
2623 const struct path *root,
2624 char *buf, int buflen)
2626 char *res = buf + buflen;
2627 int error;
2629 prepend(&res, &buflen, "\0", 1);
2630 write_seqlock(&rename_lock);
2631 error = prepend_path(path, root, &res, &buflen);
2632 write_sequnlock(&rename_lock);
2634 if (error < 0)
2635 return ERR_PTR(error);
2636 if (error > 0)
2637 return NULL;
2638 return res;
2641 char *d_absolute_path(const struct path *path,
2642 char *buf, int buflen)
2644 struct path root = {};
2645 char *res = buf + buflen;
2646 int error;
2648 prepend(&res, &buflen, "\0", 1);
2649 write_seqlock(&rename_lock);
2650 error = prepend_path(path, &root, &res, &buflen);
2651 write_sequnlock(&rename_lock);
2653 if (error > 1)
2654 error = -EINVAL;
2655 if (error < 0)
2656 return ERR_PTR(error);
2657 return res;
2661 * same as __d_path but appends "(deleted)" for unlinked files.
2663 static int path_with_deleted(const struct path *path,
2664 const struct path *root,
2665 char **buf, int *buflen)
2667 prepend(buf, buflen, "\0", 1);
2668 if (d_unlinked(path->dentry)) {
2669 int error = prepend(buf, buflen, " (deleted)", 10);
2670 if (error)
2671 return error;
2674 return prepend_path(path, root, buf, buflen);
2677 static int prepend_unreachable(char **buffer, int *buflen)
2679 return prepend(buffer, buflen, "(unreachable)", 13);
2683 * d_path - return the path of a dentry
2684 * @path: path to report
2685 * @buf: buffer to return value in
2686 * @buflen: buffer length
2688 * Convert a dentry into an ASCII path name. If the entry has been deleted
2689 * the string " (deleted)" is appended. Note that this is ambiguous.
2691 * Returns a pointer into the buffer or an error code if the path was
2692 * too long. Note: Callers should use the returned pointer, not the passed
2693 * in buffer, to use the name! The implementation often starts at an offset
2694 * into the buffer, and may leave 0 bytes at the start.
2696 * "buflen" should be positive.
2698 char *d_path(const struct path *path, char *buf, int buflen)
2700 char *res = buf + buflen;
2701 struct path root;
2702 int error;
2705 * We have various synthetic filesystems that never get mounted. On
2706 * these filesystems dentries are never used for lookup purposes, and
2707 * thus don't need to be hashed. They also don't need a name until a
2708 * user wants to identify the object in /proc/pid/fd/. The little hack
2709 * below allows us to generate a name for these objects on demand:
2711 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2712 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2714 get_fs_root(current->fs, &root);
2715 write_seqlock(&rename_lock);
2716 error = path_with_deleted(path, &root, &res, &buflen);
2717 if (error < 0)
2718 res = ERR_PTR(error);
2719 write_sequnlock(&rename_lock);
2720 path_put(&root);
2721 return res;
2723 EXPORT_SYMBOL(d_path);
2726 * d_path_with_unreachable - return the path of a dentry
2727 * @path: path to report
2728 * @buf: buffer to return value in
2729 * @buflen: buffer length
2731 * The difference from d_path() is that this prepends "(unreachable)"
2732 * to paths which are unreachable from the current process' root.
2734 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2736 char *res = buf + buflen;
2737 struct path root;
2738 int error;
2740 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2741 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2743 get_fs_root(current->fs, &root);
2744 write_seqlock(&rename_lock);
2745 error = path_with_deleted(path, &root, &res, &buflen);
2746 if (error > 0)
2747 error = prepend_unreachable(&res, &buflen);
2748 write_sequnlock(&rename_lock);
2749 path_put(&root);
2750 if (error)
2751 res = ERR_PTR(error);
2753 return res;
2757 * Helper function for dentry_operations.d_dname() members
2759 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2760 const char *fmt, ...)
2762 va_list args;
2763 char temp[64];
2764 int sz;
2766 va_start(args, fmt);
2767 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2768 va_end(args);
2770 if (sz > sizeof(temp) || sz > buflen)
2771 return ERR_PTR(-ENAMETOOLONG);
2773 buffer += buflen - sz;
2774 return memcpy(buffer, temp, sz);
2778 * Write full pathname from the root of the filesystem into the buffer.
2780 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2782 char *end = buf + buflen;
2783 char *retval;
2785 prepend(&end, &buflen, "\0", 1);
2786 if (buflen < 1)
2787 goto Elong;
2788 /* Get '/' right */
2789 retval = end-1;
2790 *retval = '/';
2792 while (!IS_ROOT(dentry)) {
2793 struct dentry *parent = dentry->d_parent;
2794 int error;
2796 prefetch(parent);
2797 spin_lock(&dentry->d_lock);
2798 error = prepend_name(&end, &buflen, &dentry->d_name);
2799 spin_unlock(&dentry->d_lock);
2800 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2801 goto Elong;
2803 retval = end;
2804 dentry = parent;
2806 return retval;
2807 Elong:
2808 return ERR_PTR(-ENAMETOOLONG);
2811 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2813 char *retval;
2815 write_seqlock(&rename_lock);
2816 retval = __dentry_path(dentry, buf, buflen);
2817 write_sequnlock(&rename_lock);
2819 return retval;
2821 EXPORT_SYMBOL(dentry_path_raw);
2823 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2825 char *p = NULL;
2826 char *retval;
2828 write_seqlock(&rename_lock);
2829 if (d_unlinked(dentry)) {
2830 p = buf + buflen;
2831 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2832 goto Elong;
2833 buflen++;
2835 retval = __dentry_path(dentry, buf, buflen);
2836 write_sequnlock(&rename_lock);
2837 if (!IS_ERR(retval) && p)
2838 *p = '/'; /* restore '/' overriden with '\0' */
2839 return retval;
2840 Elong:
2841 return ERR_PTR(-ENAMETOOLONG);
2845 * NOTE! The user-level library version returns a
2846 * character pointer. The kernel system call just
2847 * returns the length of the buffer filled (which
2848 * includes the ending '\0' character), or a negative
2849 * error value. So libc would do something like
2851 * char *getcwd(char * buf, size_t size)
2853 * int retval;
2855 * retval = sys_getcwd(buf, size);
2856 * if (retval >= 0)
2857 * return buf;
2858 * errno = -retval;
2859 * return NULL;
2862 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2864 int error;
2865 struct path pwd, root;
2866 char *page = (char *) __get_free_page(GFP_USER);
2868 if (!page)
2869 return -ENOMEM;
2871 get_fs_root_and_pwd(current->fs, &root, &pwd);
2873 error = -ENOENT;
2874 write_seqlock(&rename_lock);
2875 if (!d_unlinked(pwd.dentry)) {
2876 unsigned long len;
2877 char *cwd = page + PAGE_SIZE;
2878 int buflen = PAGE_SIZE;
2880 prepend(&cwd, &buflen, "\0", 1);
2881 error = prepend_path(&pwd, &root, &cwd, &buflen);
2882 write_sequnlock(&rename_lock);
2884 if (error < 0)
2885 goto out;
2887 /* Unreachable from current root */
2888 if (error > 0) {
2889 error = prepend_unreachable(&cwd, &buflen);
2890 if (error)
2891 goto out;
2894 error = -ERANGE;
2895 len = PAGE_SIZE + page - cwd;
2896 if (len <= size) {
2897 error = len;
2898 if (copy_to_user(buf, cwd, len))
2899 error = -EFAULT;
2901 } else {
2902 write_sequnlock(&rename_lock);
2905 out:
2906 path_put(&pwd);
2907 path_put(&root);
2908 free_page((unsigned long) page);
2909 return error;
2913 * Test whether new_dentry is a subdirectory of old_dentry.
2915 * Trivially implemented using the dcache structure
2919 * is_subdir - is new dentry a subdirectory of old_dentry
2920 * @new_dentry: new dentry
2921 * @old_dentry: old dentry
2923 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2924 * Returns 0 otherwise.
2925 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2928 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2930 int result;
2931 unsigned seq;
2933 if (new_dentry == old_dentry)
2934 return 1;
2936 do {
2937 /* for restarting inner loop in case of seq retry */
2938 seq = read_seqbegin(&rename_lock);
2940 * Need rcu_readlock to protect against the d_parent trashing
2941 * due to d_move
2943 rcu_read_lock();
2944 if (d_ancestor(old_dentry, new_dentry))
2945 result = 1;
2946 else
2947 result = 0;
2948 rcu_read_unlock();
2949 } while (read_seqretry(&rename_lock, seq));
2951 return result;
2954 void d_genocide(struct dentry *root)
2956 struct dentry *this_parent;
2957 struct list_head *next;
2958 unsigned seq;
2959 int locked = 0;
2961 seq = read_seqbegin(&rename_lock);
2962 again:
2963 this_parent = root;
2964 spin_lock(&this_parent->d_lock);
2965 repeat:
2966 next = this_parent->d_subdirs.next;
2967 resume:
2968 while (next != &this_parent->d_subdirs) {
2969 struct list_head *tmp = next;
2970 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2971 next = tmp->next;
2973 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2974 if (d_unhashed(dentry) || !dentry->d_inode) {
2975 spin_unlock(&dentry->d_lock);
2976 continue;
2978 if (!list_empty(&dentry->d_subdirs)) {
2979 spin_unlock(&this_parent->d_lock);
2980 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2981 this_parent = dentry;
2982 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2983 goto repeat;
2985 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2986 dentry->d_flags |= DCACHE_GENOCIDE;
2987 dentry->d_count--;
2989 spin_unlock(&dentry->d_lock);
2991 if (this_parent != root) {
2992 struct dentry *child = this_parent;
2993 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2994 this_parent->d_flags |= DCACHE_GENOCIDE;
2995 this_parent->d_count--;
2997 this_parent = try_to_ascend(this_parent, locked, seq);
2998 if (!this_parent)
2999 goto rename_retry;
3000 next = child->d_u.d_child.next;
3001 goto resume;
3003 spin_unlock(&this_parent->d_lock);
3004 if (!locked && read_seqretry(&rename_lock, seq))
3005 goto rename_retry;
3006 if (locked)
3007 write_sequnlock(&rename_lock);
3008 return;
3010 rename_retry:
3011 if (locked)
3012 goto again;
3013 locked = 1;
3014 write_seqlock(&rename_lock);
3015 goto again;
3019 * find_inode_number - check for dentry with name
3020 * @dir: directory to check
3021 * @name: Name to find.
3023 * Check whether a dentry already exists for the given name,
3024 * and return the inode number if it has an inode. Otherwise
3025 * 0 is returned.
3027 * This routine is used to post-process directory listings for
3028 * filesystems using synthetic inode numbers, and is necessary
3029 * to keep getcwd() working.
3032 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3034 struct dentry * dentry;
3035 ino_t ino = 0;
3037 dentry = d_hash_and_lookup(dir, name);
3038 if (dentry) {
3039 if (dentry->d_inode)
3040 ino = dentry->d_inode->i_ino;
3041 dput(dentry);
3043 return ino;
3045 EXPORT_SYMBOL(find_inode_number);
3047 static __initdata unsigned long dhash_entries;
3048 static int __init set_dhash_entries(char *str)
3050 if (!str)
3051 return 0;
3052 dhash_entries = simple_strtoul(str, &str, 0);
3053 return 1;
3055 __setup("dhash_entries=", set_dhash_entries);
3057 static void __init dcache_init_early(void)
3059 unsigned int loop;
3061 /* If hashes are distributed across NUMA nodes, defer
3062 * hash allocation until vmalloc space is available.
3064 if (hashdist)
3065 return;
3067 dentry_hashtable =
3068 alloc_large_system_hash("Dentry cache",
3069 sizeof(struct hlist_bl_head),
3070 dhash_entries,
3072 HASH_EARLY,
3073 &d_hash_shift,
3074 &d_hash_mask,
3078 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3079 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3082 static void __init dcache_init(void)
3084 unsigned int loop;
3087 * A constructor could be added for stable state like the lists,
3088 * but it is probably not worth it because of the cache nature
3089 * of the dcache.
3091 dentry_cache = KMEM_CACHE(dentry,
3092 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3094 /* Hash may have been set up in dcache_init_early */
3095 if (!hashdist)
3096 return;
3098 dentry_hashtable =
3099 alloc_large_system_hash("Dentry cache",
3100 sizeof(struct hlist_bl_head),
3101 dhash_entries,
3104 &d_hash_shift,
3105 &d_hash_mask,
3109 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3110 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3113 /* SLAB cache for __getname() consumers */
3114 struct kmem_cache *names_cachep __read_mostly;
3115 EXPORT_SYMBOL(names_cachep);
3117 EXPORT_SYMBOL(d_genocide);
3119 void __init vfs_caches_init_early(void)
3121 dcache_init_early();
3122 inode_init_early();
3125 void __init vfs_caches_init(unsigned long mempages)
3127 unsigned long reserve;
3129 /* Base hash sizes on available memory, with a reserve equal to
3130 150% of current kernel size */
3132 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3133 mempages -= reserve;
3135 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3136 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3138 dcache_init();
3139 inode_init();
3140 files_init(mempages);
3141 mnt_init();
3142 bdev_cache_init();
3143 chrdev_init();