Linux 3.8-rc7
[cris-mirror.git] / fs / fs-writeback.c
blob310972b72a6654c1597fc11f717954606561c47e
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
33 * 4MB minimal write chunk size
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
55 /**
56 * writeback_in_progress - determine whether there is writeback in progress
57 * @bdi: the device's backing_dev_info structure.
59 * Determine whether there is writeback waiting to be handled against a
60 * backing device.
62 int writeback_in_progress(struct backing_dev_info *bdi)
64 return test_bit(BDI_writeback_running, &bdi->state);
66 EXPORT_SYMBOL(writeback_in_progress);
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 struct super_block *sb = inode->i_sb;
72 if (strcmp(sb->s_type->name, "bdev") == 0)
73 return inode->i_mapping->backing_dev_info;
75 return sb->s_bdi;
78 static inline struct inode *wb_inode(struct list_head *head)
80 return list_entry(head, struct inode, i_wb_list);
84 * Include the creation of the trace points after defining the
85 * wb_writeback_work structure and inline functions so that the definition
86 * remains local to this file.
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
94 if (bdi->wb.task) {
95 wake_up_process(bdi->wb.task);
96 } else {
98 * The bdi thread isn't there, wake up the forker thread which
99 * will create and run it.
101 wake_up_process(default_backing_dev_info.wb.task);
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106 struct wb_writeback_work *work)
108 trace_writeback_queue(bdi, work);
110 spin_lock_bh(&bdi->wb_lock);
111 list_add_tail(&work->list, &bdi->work_list);
112 if (!bdi->wb.task)
113 trace_writeback_nothread(bdi, work);
114 bdi_wakeup_flusher(bdi);
115 spin_unlock_bh(&bdi->wb_lock);
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120 bool range_cyclic, enum wb_reason reason)
122 struct wb_writeback_work *work;
125 * This is WB_SYNC_NONE writeback, so if allocation fails just
126 * wakeup the thread for old dirty data writeback
128 work = kzalloc(sizeof(*work), GFP_ATOMIC);
129 if (!work) {
130 if (bdi->wb.task) {
131 trace_writeback_nowork(bdi);
132 wake_up_process(bdi->wb.task);
134 return;
137 work->sync_mode = WB_SYNC_NONE;
138 work->nr_pages = nr_pages;
139 work->range_cyclic = range_cyclic;
140 work->reason = reason;
142 bdi_queue_work(bdi, work);
146 * bdi_start_writeback - start writeback
147 * @bdi: the backing device to write from
148 * @nr_pages: the number of pages to write
149 * @reason: reason why some writeback work was initiated
151 * Description:
152 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
153 * started when this function returns, we make no guarantees on
154 * completion. Caller need not hold sb s_umount semaphore.
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158 enum wb_reason reason)
160 __bdi_start_writeback(bdi, nr_pages, true, reason);
164 * bdi_start_background_writeback - start background writeback
165 * @bdi: the backing device to write from
167 * Description:
168 * This makes sure WB_SYNC_NONE background writeback happens. When
169 * this function returns, it is only guaranteed that for given BDI
170 * some IO is happening if we are over background dirty threshold.
171 * Caller need not hold sb s_umount semaphore.
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
176 * We just wake up the flusher thread. It will perform background
177 * writeback as soon as there is no other work to do.
179 trace_writeback_wake_background(bdi);
180 spin_lock_bh(&bdi->wb_lock);
181 bdi_wakeup_flusher(bdi);
182 spin_unlock_bh(&bdi->wb_lock);
186 * Remove the inode from the writeback list it is on.
188 void inode_wb_list_del(struct inode *inode)
190 struct backing_dev_info *bdi = inode_to_bdi(inode);
192 spin_lock(&bdi->wb.list_lock);
193 list_del_init(&inode->i_wb_list);
194 spin_unlock(&bdi->wb.list_lock);
198 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199 * furthest end of its superblock's dirty-inode list.
201 * Before stamping the inode's ->dirtied_when, we check to see whether it is
202 * already the most-recently-dirtied inode on the b_dirty list. If that is
203 * the case then the inode must have been redirtied while it was being written
204 * out and we don't reset its dirtied_when.
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
208 assert_spin_locked(&wb->list_lock);
209 if (!list_empty(&wb->b_dirty)) {
210 struct inode *tail;
212 tail = wb_inode(wb->b_dirty.next);
213 if (time_before(inode->dirtied_when, tail->dirtied_when))
214 inode->dirtied_when = jiffies;
216 list_move(&inode->i_wb_list, &wb->b_dirty);
220 * requeue inode for re-scanning after bdi->b_io list is exhausted.
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
224 assert_spin_locked(&wb->list_lock);
225 list_move(&inode->i_wb_list, &wb->b_more_io);
228 static void inode_sync_complete(struct inode *inode)
230 inode->i_state &= ~I_SYNC;
231 /* If inode is clean an unused, put it into LRU now... */
232 inode_add_lru(inode);
233 /* Waiters must see I_SYNC cleared before being woken up */
234 smp_mb();
235 wake_up_bit(&inode->i_state, __I_SYNC);
238 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
240 bool ret = time_after(inode->dirtied_when, t);
241 #ifndef CONFIG_64BIT
243 * For inodes being constantly redirtied, dirtied_when can get stuck.
244 * It _appears_ to be in the future, but is actually in distant past.
245 * This test is necessary to prevent such wrapped-around relative times
246 * from permanently stopping the whole bdi writeback.
248 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
249 #endif
250 return ret;
254 * Move expired (dirtied before work->older_than_this) dirty inodes from
255 * @delaying_queue to @dispatch_queue.
257 static int move_expired_inodes(struct list_head *delaying_queue,
258 struct list_head *dispatch_queue,
259 struct wb_writeback_work *work)
261 LIST_HEAD(tmp);
262 struct list_head *pos, *node;
263 struct super_block *sb = NULL;
264 struct inode *inode;
265 int do_sb_sort = 0;
266 int moved = 0;
268 while (!list_empty(delaying_queue)) {
269 inode = wb_inode(delaying_queue->prev);
270 if (work->older_than_this &&
271 inode_dirtied_after(inode, *work->older_than_this))
272 break;
273 if (sb && sb != inode->i_sb)
274 do_sb_sort = 1;
275 sb = inode->i_sb;
276 list_move(&inode->i_wb_list, &tmp);
277 moved++;
280 /* just one sb in list, splice to dispatch_queue and we're done */
281 if (!do_sb_sort) {
282 list_splice(&tmp, dispatch_queue);
283 goto out;
286 /* Move inodes from one superblock together */
287 while (!list_empty(&tmp)) {
288 sb = wb_inode(tmp.prev)->i_sb;
289 list_for_each_prev_safe(pos, node, &tmp) {
290 inode = wb_inode(pos);
291 if (inode->i_sb == sb)
292 list_move(&inode->i_wb_list, dispatch_queue);
295 out:
296 return moved;
300 * Queue all expired dirty inodes for io, eldest first.
301 * Before
302 * newly dirtied b_dirty b_io b_more_io
303 * =============> gf edc BA
304 * After
305 * newly dirtied b_dirty b_io b_more_io
306 * =============> g fBAedc
308 * +--> dequeue for IO
310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
312 int moved;
313 assert_spin_locked(&wb->list_lock);
314 list_splice_init(&wb->b_more_io, &wb->b_io);
315 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
316 trace_writeback_queue_io(wb, work, moved);
319 static int write_inode(struct inode *inode, struct writeback_control *wbc)
321 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
322 return inode->i_sb->s_op->write_inode(inode, wbc);
323 return 0;
327 * Wait for writeback on an inode to complete. Called with i_lock held.
328 * Caller must make sure inode cannot go away when we drop i_lock.
330 static void __inode_wait_for_writeback(struct inode *inode)
331 __releases(inode->i_lock)
332 __acquires(inode->i_lock)
334 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
335 wait_queue_head_t *wqh;
337 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
338 while (inode->i_state & I_SYNC) {
339 spin_unlock(&inode->i_lock);
340 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
341 spin_lock(&inode->i_lock);
346 * Wait for writeback on an inode to complete. Caller must have inode pinned.
348 void inode_wait_for_writeback(struct inode *inode)
350 spin_lock(&inode->i_lock);
351 __inode_wait_for_writeback(inode);
352 spin_unlock(&inode->i_lock);
356 * Sleep until I_SYNC is cleared. This function must be called with i_lock
357 * held and drops it. It is aimed for callers not holding any inode reference
358 * so once i_lock is dropped, inode can go away.
360 static void inode_sleep_on_writeback(struct inode *inode)
361 __releases(inode->i_lock)
363 DEFINE_WAIT(wait);
364 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
365 int sleep;
367 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
368 sleep = inode->i_state & I_SYNC;
369 spin_unlock(&inode->i_lock);
370 if (sleep)
371 schedule();
372 finish_wait(wqh, &wait);
376 * Find proper writeback list for the inode depending on its current state and
377 * possibly also change of its state while we were doing writeback. Here we
378 * handle things such as livelock prevention or fairness of writeback among
379 * inodes. This function can be called only by flusher thread - noone else
380 * processes all inodes in writeback lists and requeueing inodes behind flusher
381 * thread's back can have unexpected consequences.
383 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
384 struct writeback_control *wbc)
386 if (inode->i_state & I_FREEING)
387 return;
390 * Sync livelock prevention. Each inode is tagged and synced in one
391 * shot. If still dirty, it will be redirty_tail()'ed below. Update
392 * the dirty time to prevent enqueue and sync it again.
394 if ((inode->i_state & I_DIRTY) &&
395 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
396 inode->dirtied_when = jiffies;
398 if (wbc->pages_skipped) {
400 * writeback is not making progress due to locked
401 * buffers. Skip this inode for now.
403 redirty_tail(inode, wb);
404 return;
407 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
409 * We didn't write back all the pages. nfs_writepages()
410 * sometimes bales out without doing anything.
412 if (wbc->nr_to_write <= 0) {
413 /* Slice used up. Queue for next turn. */
414 requeue_io(inode, wb);
415 } else {
417 * Writeback blocked by something other than
418 * congestion. Delay the inode for some time to
419 * avoid spinning on the CPU (100% iowait)
420 * retrying writeback of the dirty page/inode
421 * that cannot be performed immediately.
423 redirty_tail(inode, wb);
425 } else if (inode->i_state & I_DIRTY) {
427 * Filesystems can dirty the inode during writeback operations,
428 * such as delayed allocation during submission or metadata
429 * updates after data IO completion.
431 redirty_tail(inode, wb);
432 } else {
433 /* The inode is clean. Remove from writeback lists. */
434 list_del_init(&inode->i_wb_list);
439 * Write out an inode and its dirty pages. Do not update the writeback list
440 * linkage. That is left to the caller. The caller is also responsible for
441 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
443 static int
444 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
446 struct address_space *mapping = inode->i_mapping;
447 long nr_to_write = wbc->nr_to_write;
448 unsigned dirty;
449 int ret;
451 WARN_ON(!(inode->i_state & I_SYNC));
453 ret = do_writepages(mapping, wbc);
456 * Make sure to wait on the data before writing out the metadata.
457 * This is important for filesystems that modify metadata on data
458 * I/O completion.
460 if (wbc->sync_mode == WB_SYNC_ALL) {
461 int err = filemap_fdatawait(mapping);
462 if (ret == 0)
463 ret = err;
467 * Some filesystems may redirty the inode during the writeback
468 * due to delalloc, clear dirty metadata flags right before
469 * write_inode()
471 spin_lock(&inode->i_lock);
472 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
473 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
474 inode->i_state &= ~I_DIRTY_PAGES;
475 dirty = inode->i_state & I_DIRTY;
476 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
477 spin_unlock(&inode->i_lock);
478 /* Don't write the inode if only I_DIRTY_PAGES was set */
479 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
480 int err = write_inode(inode, wbc);
481 if (ret == 0)
482 ret = err;
484 trace_writeback_single_inode(inode, wbc, nr_to_write);
485 return ret;
489 * Write out an inode's dirty pages. Either the caller has an active reference
490 * on the inode or the inode has I_WILL_FREE set.
492 * This function is designed to be called for writing back one inode which
493 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
494 * and does more profound writeback list handling in writeback_sb_inodes().
496 static int
497 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
498 struct writeback_control *wbc)
500 int ret = 0;
502 spin_lock(&inode->i_lock);
503 if (!atomic_read(&inode->i_count))
504 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
505 else
506 WARN_ON(inode->i_state & I_WILL_FREE);
508 if (inode->i_state & I_SYNC) {
509 if (wbc->sync_mode != WB_SYNC_ALL)
510 goto out;
512 * It's a data-integrity sync. We must wait. Since callers hold
513 * inode reference or inode has I_WILL_FREE set, it cannot go
514 * away under us.
516 __inode_wait_for_writeback(inode);
518 WARN_ON(inode->i_state & I_SYNC);
520 * Skip inode if it is clean. We don't want to mess with writeback
521 * lists in this function since flusher thread may be doing for example
522 * sync in parallel and if we move the inode, it could get skipped. So
523 * here we make sure inode is on some writeback list and leave it there
524 * unless we have completely cleaned the inode.
526 if (!(inode->i_state & I_DIRTY))
527 goto out;
528 inode->i_state |= I_SYNC;
529 spin_unlock(&inode->i_lock);
531 ret = __writeback_single_inode(inode, wbc);
533 spin_lock(&wb->list_lock);
534 spin_lock(&inode->i_lock);
536 * If inode is clean, remove it from writeback lists. Otherwise don't
537 * touch it. See comment above for explanation.
539 if (!(inode->i_state & I_DIRTY))
540 list_del_init(&inode->i_wb_list);
541 spin_unlock(&wb->list_lock);
542 inode_sync_complete(inode);
543 out:
544 spin_unlock(&inode->i_lock);
545 return ret;
548 static long writeback_chunk_size(struct backing_dev_info *bdi,
549 struct wb_writeback_work *work)
551 long pages;
554 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
555 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
556 * here avoids calling into writeback_inodes_wb() more than once.
558 * The intended call sequence for WB_SYNC_ALL writeback is:
560 * wb_writeback()
561 * writeback_sb_inodes() <== called only once
562 * write_cache_pages() <== called once for each inode
563 * (quickly) tag currently dirty pages
564 * (maybe slowly) sync all tagged pages
566 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
567 pages = LONG_MAX;
568 else {
569 pages = min(bdi->avg_write_bandwidth / 2,
570 global_dirty_limit / DIRTY_SCOPE);
571 pages = min(pages, work->nr_pages);
572 pages = round_down(pages + MIN_WRITEBACK_PAGES,
573 MIN_WRITEBACK_PAGES);
576 return pages;
580 * Write a portion of b_io inodes which belong to @sb.
582 * Return the number of pages and/or inodes written.
584 static long writeback_sb_inodes(struct super_block *sb,
585 struct bdi_writeback *wb,
586 struct wb_writeback_work *work)
588 struct writeback_control wbc = {
589 .sync_mode = work->sync_mode,
590 .tagged_writepages = work->tagged_writepages,
591 .for_kupdate = work->for_kupdate,
592 .for_background = work->for_background,
593 .range_cyclic = work->range_cyclic,
594 .range_start = 0,
595 .range_end = LLONG_MAX,
597 unsigned long start_time = jiffies;
598 long write_chunk;
599 long wrote = 0; /* count both pages and inodes */
601 while (!list_empty(&wb->b_io)) {
602 struct inode *inode = wb_inode(wb->b_io.prev);
604 if (inode->i_sb != sb) {
605 if (work->sb) {
607 * We only want to write back data for this
608 * superblock, move all inodes not belonging
609 * to it back onto the dirty list.
611 redirty_tail(inode, wb);
612 continue;
616 * The inode belongs to a different superblock.
617 * Bounce back to the caller to unpin this and
618 * pin the next superblock.
620 break;
624 * Don't bother with new inodes or inodes being freed, first
625 * kind does not need periodic writeout yet, and for the latter
626 * kind writeout is handled by the freer.
628 spin_lock(&inode->i_lock);
629 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
630 spin_unlock(&inode->i_lock);
631 redirty_tail(inode, wb);
632 continue;
634 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
636 * If this inode is locked for writeback and we are not
637 * doing writeback-for-data-integrity, move it to
638 * b_more_io so that writeback can proceed with the
639 * other inodes on s_io.
641 * We'll have another go at writing back this inode
642 * when we completed a full scan of b_io.
644 spin_unlock(&inode->i_lock);
645 requeue_io(inode, wb);
646 trace_writeback_sb_inodes_requeue(inode);
647 continue;
649 spin_unlock(&wb->list_lock);
652 * We already requeued the inode if it had I_SYNC set and we
653 * are doing WB_SYNC_NONE writeback. So this catches only the
654 * WB_SYNC_ALL case.
656 if (inode->i_state & I_SYNC) {
657 /* Wait for I_SYNC. This function drops i_lock... */
658 inode_sleep_on_writeback(inode);
659 /* Inode may be gone, start again */
660 spin_lock(&wb->list_lock);
661 continue;
663 inode->i_state |= I_SYNC;
664 spin_unlock(&inode->i_lock);
666 write_chunk = writeback_chunk_size(wb->bdi, work);
667 wbc.nr_to_write = write_chunk;
668 wbc.pages_skipped = 0;
671 * We use I_SYNC to pin the inode in memory. While it is set
672 * evict_inode() will wait so the inode cannot be freed.
674 __writeback_single_inode(inode, &wbc);
676 work->nr_pages -= write_chunk - wbc.nr_to_write;
677 wrote += write_chunk - wbc.nr_to_write;
678 spin_lock(&wb->list_lock);
679 spin_lock(&inode->i_lock);
680 if (!(inode->i_state & I_DIRTY))
681 wrote++;
682 requeue_inode(inode, wb, &wbc);
683 inode_sync_complete(inode);
684 spin_unlock(&inode->i_lock);
685 cond_resched_lock(&wb->list_lock);
687 * bail out to wb_writeback() often enough to check
688 * background threshold and other termination conditions.
690 if (wrote) {
691 if (time_is_before_jiffies(start_time + HZ / 10UL))
692 break;
693 if (work->nr_pages <= 0)
694 break;
697 return wrote;
700 static long __writeback_inodes_wb(struct bdi_writeback *wb,
701 struct wb_writeback_work *work)
703 unsigned long start_time = jiffies;
704 long wrote = 0;
706 while (!list_empty(&wb->b_io)) {
707 struct inode *inode = wb_inode(wb->b_io.prev);
708 struct super_block *sb = inode->i_sb;
710 if (!grab_super_passive(sb)) {
712 * grab_super_passive() may fail consistently due to
713 * s_umount being grabbed by someone else. Don't use
714 * requeue_io() to avoid busy retrying the inode/sb.
716 redirty_tail(inode, wb);
717 continue;
719 wrote += writeback_sb_inodes(sb, wb, work);
720 drop_super(sb);
722 /* refer to the same tests at the end of writeback_sb_inodes */
723 if (wrote) {
724 if (time_is_before_jiffies(start_time + HZ / 10UL))
725 break;
726 if (work->nr_pages <= 0)
727 break;
730 /* Leave any unwritten inodes on b_io */
731 return wrote;
734 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
735 enum wb_reason reason)
737 struct wb_writeback_work work = {
738 .nr_pages = nr_pages,
739 .sync_mode = WB_SYNC_NONE,
740 .range_cyclic = 1,
741 .reason = reason,
744 spin_lock(&wb->list_lock);
745 if (list_empty(&wb->b_io))
746 queue_io(wb, &work);
747 __writeback_inodes_wb(wb, &work);
748 spin_unlock(&wb->list_lock);
750 return nr_pages - work.nr_pages;
753 static bool over_bground_thresh(struct backing_dev_info *bdi)
755 unsigned long background_thresh, dirty_thresh;
757 global_dirty_limits(&background_thresh, &dirty_thresh);
759 if (global_page_state(NR_FILE_DIRTY) +
760 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
761 return true;
763 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
764 bdi_dirty_limit(bdi, background_thresh))
765 return true;
767 return false;
771 * Called under wb->list_lock. If there are multiple wb per bdi,
772 * only the flusher working on the first wb should do it.
774 static void wb_update_bandwidth(struct bdi_writeback *wb,
775 unsigned long start_time)
777 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
781 * Explicit flushing or periodic writeback of "old" data.
783 * Define "old": the first time one of an inode's pages is dirtied, we mark the
784 * dirtying-time in the inode's address_space. So this periodic writeback code
785 * just walks the superblock inode list, writing back any inodes which are
786 * older than a specific point in time.
788 * Try to run once per dirty_writeback_interval. But if a writeback event
789 * takes longer than a dirty_writeback_interval interval, then leave a
790 * one-second gap.
792 * older_than_this takes precedence over nr_to_write. So we'll only write back
793 * all dirty pages if they are all attached to "old" mappings.
795 static long wb_writeback(struct bdi_writeback *wb,
796 struct wb_writeback_work *work)
798 unsigned long wb_start = jiffies;
799 long nr_pages = work->nr_pages;
800 unsigned long oldest_jif;
801 struct inode *inode;
802 long progress;
804 oldest_jif = jiffies;
805 work->older_than_this = &oldest_jif;
807 spin_lock(&wb->list_lock);
808 for (;;) {
810 * Stop writeback when nr_pages has been consumed
812 if (work->nr_pages <= 0)
813 break;
816 * Background writeout and kupdate-style writeback may
817 * run forever. Stop them if there is other work to do
818 * so that e.g. sync can proceed. They'll be restarted
819 * after the other works are all done.
821 if ((work->for_background || work->for_kupdate) &&
822 !list_empty(&wb->bdi->work_list))
823 break;
826 * For background writeout, stop when we are below the
827 * background dirty threshold
829 if (work->for_background && !over_bground_thresh(wb->bdi))
830 break;
833 * Kupdate and background works are special and we want to
834 * include all inodes that need writing. Livelock avoidance is
835 * handled by these works yielding to any other work so we are
836 * safe.
838 if (work->for_kupdate) {
839 oldest_jif = jiffies -
840 msecs_to_jiffies(dirty_expire_interval * 10);
841 } else if (work->for_background)
842 oldest_jif = jiffies;
844 trace_writeback_start(wb->bdi, work);
845 if (list_empty(&wb->b_io))
846 queue_io(wb, work);
847 if (work->sb)
848 progress = writeback_sb_inodes(work->sb, wb, work);
849 else
850 progress = __writeback_inodes_wb(wb, work);
851 trace_writeback_written(wb->bdi, work);
853 wb_update_bandwidth(wb, wb_start);
856 * Did we write something? Try for more
858 * Dirty inodes are moved to b_io for writeback in batches.
859 * The completion of the current batch does not necessarily
860 * mean the overall work is done. So we keep looping as long
861 * as made some progress on cleaning pages or inodes.
863 if (progress)
864 continue;
866 * No more inodes for IO, bail
868 if (list_empty(&wb->b_more_io))
869 break;
871 * Nothing written. Wait for some inode to
872 * become available for writeback. Otherwise
873 * we'll just busyloop.
875 if (!list_empty(&wb->b_more_io)) {
876 trace_writeback_wait(wb->bdi, work);
877 inode = wb_inode(wb->b_more_io.prev);
878 spin_lock(&inode->i_lock);
879 spin_unlock(&wb->list_lock);
880 /* This function drops i_lock... */
881 inode_sleep_on_writeback(inode);
882 spin_lock(&wb->list_lock);
885 spin_unlock(&wb->list_lock);
887 return nr_pages - work->nr_pages;
891 * Return the next wb_writeback_work struct that hasn't been processed yet.
893 static struct wb_writeback_work *
894 get_next_work_item(struct backing_dev_info *bdi)
896 struct wb_writeback_work *work = NULL;
898 spin_lock_bh(&bdi->wb_lock);
899 if (!list_empty(&bdi->work_list)) {
900 work = list_entry(bdi->work_list.next,
901 struct wb_writeback_work, list);
902 list_del_init(&work->list);
904 spin_unlock_bh(&bdi->wb_lock);
905 return work;
909 * Add in the number of potentially dirty inodes, because each inode
910 * write can dirty pagecache in the underlying blockdev.
912 static unsigned long get_nr_dirty_pages(void)
914 return global_page_state(NR_FILE_DIRTY) +
915 global_page_state(NR_UNSTABLE_NFS) +
916 get_nr_dirty_inodes();
919 static long wb_check_background_flush(struct bdi_writeback *wb)
921 if (over_bground_thresh(wb->bdi)) {
923 struct wb_writeback_work work = {
924 .nr_pages = LONG_MAX,
925 .sync_mode = WB_SYNC_NONE,
926 .for_background = 1,
927 .range_cyclic = 1,
928 .reason = WB_REASON_BACKGROUND,
931 return wb_writeback(wb, &work);
934 return 0;
937 static long wb_check_old_data_flush(struct bdi_writeback *wb)
939 unsigned long expired;
940 long nr_pages;
943 * When set to zero, disable periodic writeback
945 if (!dirty_writeback_interval)
946 return 0;
948 expired = wb->last_old_flush +
949 msecs_to_jiffies(dirty_writeback_interval * 10);
950 if (time_before(jiffies, expired))
951 return 0;
953 wb->last_old_flush = jiffies;
954 nr_pages = get_nr_dirty_pages();
956 if (nr_pages) {
957 struct wb_writeback_work work = {
958 .nr_pages = nr_pages,
959 .sync_mode = WB_SYNC_NONE,
960 .for_kupdate = 1,
961 .range_cyclic = 1,
962 .reason = WB_REASON_PERIODIC,
965 return wb_writeback(wb, &work);
968 return 0;
972 * Retrieve work items and do the writeback they describe
974 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
976 struct backing_dev_info *bdi = wb->bdi;
977 struct wb_writeback_work *work;
978 long wrote = 0;
980 set_bit(BDI_writeback_running, &wb->bdi->state);
981 while ((work = get_next_work_item(bdi)) != NULL) {
983 * Override sync mode, in case we must wait for completion
984 * because this thread is exiting now.
986 if (force_wait)
987 work->sync_mode = WB_SYNC_ALL;
989 trace_writeback_exec(bdi, work);
991 wrote += wb_writeback(wb, work);
994 * Notify the caller of completion if this is a synchronous
995 * work item, otherwise just free it.
997 if (work->done)
998 complete(work->done);
999 else
1000 kfree(work);
1004 * Check for periodic writeback, kupdated() style
1006 wrote += wb_check_old_data_flush(wb);
1007 wrote += wb_check_background_flush(wb);
1008 clear_bit(BDI_writeback_running, &wb->bdi->state);
1010 return wrote;
1014 * Handle writeback of dirty data for the device backed by this bdi. Also
1015 * wakes up periodically and does kupdated style flushing.
1017 int bdi_writeback_thread(void *data)
1019 struct bdi_writeback *wb = data;
1020 struct backing_dev_info *bdi = wb->bdi;
1021 long pages_written;
1023 current->flags |= PF_SWAPWRITE;
1024 set_freezable();
1025 wb->last_active = jiffies;
1028 * Our parent may run at a different priority, just set us to normal
1030 set_user_nice(current, 0);
1032 trace_writeback_thread_start(bdi);
1034 while (!kthread_freezable_should_stop(NULL)) {
1036 * Remove own delayed wake-up timer, since we are already awake
1037 * and we'll take care of the periodic write-back.
1039 del_timer(&wb->wakeup_timer);
1041 pages_written = wb_do_writeback(wb, 0);
1043 trace_writeback_pages_written(pages_written);
1045 if (pages_written)
1046 wb->last_active = jiffies;
1048 set_current_state(TASK_INTERRUPTIBLE);
1049 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1050 __set_current_state(TASK_RUNNING);
1051 continue;
1054 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1055 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1056 else {
1058 * We have nothing to do, so can go sleep without any
1059 * timeout and save power. When a work is queued or
1060 * something is made dirty - we will be woken up.
1062 schedule();
1066 /* Flush any work that raced with us exiting */
1067 if (!list_empty(&bdi->work_list))
1068 wb_do_writeback(wb, 1);
1070 trace_writeback_thread_stop(bdi);
1071 return 0;
1076 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1077 * the whole world.
1079 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1081 struct backing_dev_info *bdi;
1083 if (!nr_pages) {
1084 nr_pages = global_page_state(NR_FILE_DIRTY) +
1085 global_page_state(NR_UNSTABLE_NFS);
1088 rcu_read_lock();
1089 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1090 if (!bdi_has_dirty_io(bdi))
1091 continue;
1092 __bdi_start_writeback(bdi, nr_pages, false, reason);
1094 rcu_read_unlock();
1097 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1099 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1100 struct dentry *dentry;
1101 const char *name = "?";
1103 dentry = d_find_alias(inode);
1104 if (dentry) {
1105 spin_lock(&dentry->d_lock);
1106 name = (const char *) dentry->d_name.name;
1108 printk(KERN_DEBUG
1109 "%s(%d): dirtied inode %lu (%s) on %s\n",
1110 current->comm, task_pid_nr(current), inode->i_ino,
1111 name, inode->i_sb->s_id);
1112 if (dentry) {
1113 spin_unlock(&dentry->d_lock);
1114 dput(dentry);
1120 * __mark_inode_dirty - internal function
1121 * @inode: inode to mark
1122 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1123 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1124 * mark_inode_dirty_sync.
1126 * Put the inode on the super block's dirty list.
1128 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1129 * dirty list only if it is hashed or if it refers to a blockdev.
1130 * If it was not hashed, it will never be added to the dirty list
1131 * even if it is later hashed, as it will have been marked dirty already.
1133 * In short, make sure you hash any inodes _before_ you start marking
1134 * them dirty.
1136 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1137 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1138 * the kernel-internal blockdev inode represents the dirtying time of the
1139 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1140 * page->mapping->host, so the page-dirtying time is recorded in the internal
1141 * blockdev inode.
1143 void __mark_inode_dirty(struct inode *inode, int flags)
1145 struct super_block *sb = inode->i_sb;
1146 struct backing_dev_info *bdi = NULL;
1149 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1150 * dirty the inode itself
1152 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1153 if (sb->s_op->dirty_inode)
1154 sb->s_op->dirty_inode(inode, flags);
1158 * make sure that changes are seen by all cpus before we test i_state
1159 * -- mikulas
1161 smp_mb();
1163 /* avoid the locking if we can */
1164 if ((inode->i_state & flags) == flags)
1165 return;
1167 if (unlikely(block_dump))
1168 block_dump___mark_inode_dirty(inode);
1170 spin_lock(&inode->i_lock);
1171 if ((inode->i_state & flags) != flags) {
1172 const int was_dirty = inode->i_state & I_DIRTY;
1174 inode->i_state |= flags;
1177 * If the inode is being synced, just update its dirty state.
1178 * The unlocker will place the inode on the appropriate
1179 * superblock list, based upon its state.
1181 if (inode->i_state & I_SYNC)
1182 goto out_unlock_inode;
1185 * Only add valid (hashed) inodes to the superblock's
1186 * dirty list. Add blockdev inodes as well.
1188 if (!S_ISBLK(inode->i_mode)) {
1189 if (inode_unhashed(inode))
1190 goto out_unlock_inode;
1192 if (inode->i_state & I_FREEING)
1193 goto out_unlock_inode;
1196 * If the inode was already on b_dirty/b_io/b_more_io, don't
1197 * reposition it (that would break b_dirty time-ordering).
1199 if (!was_dirty) {
1200 bool wakeup_bdi = false;
1201 bdi = inode_to_bdi(inode);
1203 if (bdi_cap_writeback_dirty(bdi)) {
1204 WARN(!test_bit(BDI_registered, &bdi->state),
1205 "bdi-%s not registered\n", bdi->name);
1208 * If this is the first dirty inode for this
1209 * bdi, we have to wake-up the corresponding
1210 * bdi thread to make sure background
1211 * write-back happens later.
1213 if (!wb_has_dirty_io(&bdi->wb))
1214 wakeup_bdi = true;
1217 spin_unlock(&inode->i_lock);
1218 spin_lock(&bdi->wb.list_lock);
1219 inode->dirtied_when = jiffies;
1220 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1221 spin_unlock(&bdi->wb.list_lock);
1223 if (wakeup_bdi)
1224 bdi_wakeup_thread_delayed(bdi);
1225 return;
1228 out_unlock_inode:
1229 spin_unlock(&inode->i_lock);
1232 EXPORT_SYMBOL(__mark_inode_dirty);
1234 static void wait_sb_inodes(struct super_block *sb)
1236 struct inode *inode, *old_inode = NULL;
1239 * We need to be protected against the filesystem going from
1240 * r/o to r/w or vice versa.
1242 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1244 spin_lock(&inode_sb_list_lock);
1247 * Data integrity sync. Must wait for all pages under writeback,
1248 * because there may have been pages dirtied before our sync
1249 * call, but which had writeout started before we write it out.
1250 * In which case, the inode may not be on the dirty list, but
1251 * we still have to wait for that writeout.
1253 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1254 struct address_space *mapping = inode->i_mapping;
1256 spin_lock(&inode->i_lock);
1257 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1258 (mapping->nrpages == 0)) {
1259 spin_unlock(&inode->i_lock);
1260 continue;
1262 __iget(inode);
1263 spin_unlock(&inode->i_lock);
1264 spin_unlock(&inode_sb_list_lock);
1267 * We hold a reference to 'inode' so it couldn't have been
1268 * removed from s_inodes list while we dropped the
1269 * inode_sb_list_lock. We cannot iput the inode now as we can
1270 * be holding the last reference and we cannot iput it under
1271 * inode_sb_list_lock. So we keep the reference and iput it
1272 * later.
1274 iput(old_inode);
1275 old_inode = inode;
1277 filemap_fdatawait(mapping);
1279 cond_resched();
1281 spin_lock(&inode_sb_list_lock);
1283 spin_unlock(&inode_sb_list_lock);
1284 iput(old_inode);
1288 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1289 * @sb: the superblock
1290 * @nr: the number of pages to write
1291 * @reason: reason why some writeback work initiated
1293 * Start writeback on some inodes on this super_block. No guarantees are made
1294 * on how many (if any) will be written, and this function does not wait
1295 * for IO completion of submitted IO.
1297 void writeback_inodes_sb_nr(struct super_block *sb,
1298 unsigned long nr,
1299 enum wb_reason reason)
1301 DECLARE_COMPLETION_ONSTACK(done);
1302 struct wb_writeback_work work = {
1303 .sb = sb,
1304 .sync_mode = WB_SYNC_NONE,
1305 .tagged_writepages = 1,
1306 .done = &done,
1307 .nr_pages = nr,
1308 .reason = reason,
1311 if (sb->s_bdi == &noop_backing_dev_info)
1312 return;
1313 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1314 bdi_queue_work(sb->s_bdi, &work);
1315 wait_for_completion(&done);
1317 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1320 * writeback_inodes_sb - writeback dirty inodes from given super_block
1321 * @sb: the superblock
1322 * @reason: reason why some writeback work was initiated
1324 * Start writeback on some inodes on this super_block. No guarantees are made
1325 * on how many (if any) will be written, and this function does not wait
1326 * for IO completion of submitted IO.
1328 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1330 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1332 EXPORT_SYMBOL(writeback_inodes_sb);
1335 * writeback_inodes_sb_if_idle - start writeback if none underway
1336 * @sb: the superblock
1337 * @reason: reason why some writeback work was initiated
1339 * Invoke writeback_inodes_sb if no writeback is currently underway.
1340 * Returns 1 if writeback was started, 0 if not.
1342 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1344 if (!writeback_in_progress(sb->s_bdi)) {
1345 down_read(&sb->s_umount);
1346 writeback_inodes_sb(sb, reason);
1347 up_read(&sb->s_umount);
1348 return 1;
1349 } else
1350 return 0;
1352 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1355 * writeback_inodes_sb_nr_if_idle - start writeback if none underway
1356 * @sb: the superblock
1357 * @nr: the number of pages to write
1358 * @reason: reason why some writeback work was initiated
1360 * Invoke writeback_inodes_sb if no writeback is currently underway.
1361 * Returns 1 if writeback was started, 0 if not.
1363 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1364 unsigned long nr,
1365 enum wb_reason reason)
1367 if (!writeback_in_progress(sb->s_bdi)) {
1368 down_read(&sb->s_umount);
1369 writeback_inodes_sb_nr(sb, nr, reason);
1370 up_read(&sb->s_umount);
1371 return 1;
1372 } else
1373 return 0;
1375 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1378 * sync_inodes_sb - sync sb inode pages
1379 * @sb: the superblock
1381 * This function writes and waits on any dirty inode belonging to this
1382 * super_block.
1384 void sync_inodes_sb(struct super_block *sb)
1386 DECLARE_COMPLETION_ONSTACK(done);
1387 struct wb_writeback_work work = {
1388 .sb = sb,
1389 .sync_mode = WB_SYNC_ALL,
1390 .nr_pages = LONG_MAX,
1391 .range_cyclic = 0,
1392 .done = &done,
1393 .reason = WB_REASON_SYNC,
1396 /* Nothing to do? */
1397 if (sb->s_bdi == &noop_backing_dev_info)
1398 return;
1399 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1401 bdi_queue_work(sb->s_bdi, &work);
1402 wait_for_completion(&done);
1404 wait_sb_inodes(sb);
1406 EXPORT_SYMBOL(sync_inodes_sb);
1409 * write_inode_now - write an inode to disk
1410 * @inode: inode to write to disk
1411 * @sync: whether the write should be synchronous or not
1413 * This function commits an inode to disk immediately if it is dirty. This is
1414 * primarily needed by knfsd.
1416 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1418 int write_inode_now(struct inode *inode, int sync)
1420 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1421 struct writeback_control wbc = {
1422 .nr_to_write = LONG_MAX,
1423 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1424 .range_start = 0,
1425 .range_end = LLONG_MAX,
1428 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1429 wbc.nr_to_write = 0;
1431 might_sleep();
1432 return writeback_single_inode(inode, wb, &wbc);
1434 EXPORT_SYMBOL(write_inode_now);
1437 * sync_inode - write an inode and its pages to disk.
1438 * @inode: the inode to sync
1439 * @wbc: controls the writeback mode
1441 * sync_inode() will write an inode and its pages to disk. It will also
1442 * correctly update the inode on its superblock's dirty inode lists and will
1443 * update inode->i_state.
1445 * The caller must have a ref on the inode.
1447 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1449 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1451 EXPORT_SYMBOL(sync_inode);
1454 * sync_inode_metadata - write an inode to disk
1455 * @inode: the inode to sync
1456 * @wait: wait for I/O to complete.
1458 * Write an inode to disk and adjust its dirty state after completion.
1460 * Note: only writes the actual inode, no associated data or other metadata.
1462 int sync_inode_metadata(struct inode *inode, int wait)
1464 struct writeback_control wbc = {
1465 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1466 .nr_to_write = 0, /* metadata-only */
1469 return sync_inode(inode, &wbc);
1471 EXPORT_SYMBOL(sync_inode_metadata);