Linux 3.8-rc7
[cris-mirror.git] / kernel / time / ntp.c
blob24174b4d669b1280c632d4ed0126dc2f1bb297ef
1 /*
2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
19 #include "tick-internal.h"
22 * NTP timekeeping variables:
25 DEFINE_SPINLOCK(ntp_lock);
28 /* USER_HZ period (usecs): */
29 unsigned long tick_usec = TICK_USEC;
31 /* SHIFTED_HZ period (nsecs): */
32 unsigned long tick_nsec;
34 static u64 tick_length;
35 static u64 tick_length_base;
37 #define MAX_TICKADJ 500LL /* usecs */
38 #define MAX_TICKADJ_SCALED \
39 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42 * phase-lock loop variables
46 * clock synchronization status
48 * (TIME_ERROR prevents overwriting the CMOS clock)
50 static int time_state = TIME_OK;
52 /* clock status bits: */
53 static int time_status = STA_UNSYNC;
55 /* TAI offset (secs): */
56 static long time_tai;
58 /* time adjustment (nsecs): */
59 static s64 time_offset;
61 /* pll time constant: */
62 static long time_constant = 2;
64 /* maximum error (usecs): */
65 static long time_maxerror = NTP_PHASE_LIMIT;
67 /* estimated error (usecs): */
68 static long time_esterror = NTP_PHASE_LIMIT;
70 /* frequency offset (scaled nsecs/secs): */
71 static s64 time_freq;
73 /* time at last adjustment (secs): */
74 static long time_reftime;
76 static long time_adjust;
78 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
79 static s64 ntp_tick_adj;
81 #ifdef CONFIG_NTP_PPS
84 * The following variables are used when a pulse-per-second (PPS) signal
85 * is available. They establish the engineering parameters of the clock
86 * discipline loop when controlled by the PPS signal.
88 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
89 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
90 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
91 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
92 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
93 increase pps_shift or consecutive bad
94 intervals to decrease it */
95 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
97 static int pps_valid; /* signal watchdog counter */
98 static long pps_tf[3]; /* phase median filter */
99 static long pps_jitter; /* current jitter (ns) */
100 static struct timespec pps_fbase; /* beginning of the last freq interval */
101 static int pps_shift; /* current interval duration (s) (shift) */
102 static int pps_intcnt; /* interval counter */
103 static s64 pps_freq; /* frequency offset (scaled ns/s) */
104 static long pps_stabil; /* current stability (scaled ns/s) */
107 * PPS signal quality monitors
109 static long pps_calcnt; /* calibration intervals */
110 static long pps_jitcnt; /* jitter limit exceeded */
111 static long pps_stbcnt; /* stability limit exceeded */
112 static long pps_errcnt; /* calibration errors */
115 /* PPS kernel consumer compensates the whole phase error immediately.
116 * Otherwise, reduce the offset by a fixed factor times the time constant.
118 static inline s64 ntp_offset_chunk(s64 offset)
120 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
121 return offset;
122 else
123 return shift_right(offset, SHIFT_PLL + time_constant);
126 static inline void pps_reset_freq_interval(void)
128 /* the PPS calibration interval may end
129 surprisingly early */
130 pps_shift = PPS_INTMIN;
131 pps_intcnt = 0;
135 * pps_clear - Clears the PPS state variables
137 * Must be called while holding a write on the ntp_lock
139 static inline void pps_clear(void)
141 pps_reset_freq_interval();
142 pps_tf[0] = 0;
143 pps_tf[1] = 0;
144 pps_tf[2] = 0;
145 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 pps_freq = 0;
149 /* Decrease pps_valid to indicate that another second has passed since
150 * the last PPS signal. When it reaches 0, indicate that PPS signal is
151 * missing.
153 * Must be called while holding a write on the ntp_lock
155 static inline void pps_dec_valid(void)
157 if (pps_valid > 0)
158 pps_valid--;
159 else {
160 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
161 STA_PPSWANDER | STA_PPSERROR);
162 pps_clear();
166 static inline void pps_set_freq(s64 freq)
168 pps_freq = freq;
171 static inline int is_error_status(int status)
173 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
174 /* PPS signal lost when either PPS time or
175 * PPS frequency synchronization requested
177 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
178 && !(time_status & STA_PPSSIGNAL))
179 /* PPS jitter exceeded when
180 * PPS time synchronization requested */
181 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
182 == (STA_PPSTIME|STA_PPSJITTER))
183 /* PPS wander exceeded or calibration error when
184 * PPS frequency synchronization requested
186 || ((time_status & STA_PPSFREQ)
187 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
190 static inline void pps_fill_timex(struct timex *txc)
192 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
193 PPM_SCALE_INV, NTP_SCALE_SHIFT);
194 txc->jitter = pps_jitter;
195 if (!(time_status & STA_NANO))
196 txc->jitter /= NSEC_PER_USEC;
197 txc->shift = pps_shift;
198 txc->stabil = pps_stabil;
199 txc->jitcnt = pps_jitcnt;
200 txc->calcnt = pps_calcnt;
201 txc->errcnt = pps_errcnt;
202 txc->stbcnt = pps_stbcnt;
205 #else /* !CONFIG_NTP_PPS */
207 static inline s64 ntp_offset_chunk(s64 offset)
209 return shift_right(offset, SHIFT_PLL + time_constant);
212 static inline void pps_reset_freq_interval(void) {}
213 static inline void pps_clear(void) {}
214 static inline void pps_dec_valid(void) {}
215 static inline void pps_set_freq(s64 freq) {}
217 static inline int is_error_status(int status)
219 return status & (STA_UNSYNC|STA_CLOCKERR);
222 static inline void pps_fill_timex(struct timex *txc)
224 /* PPS is not implemented, so these are zero */
225 txc->ppsfreq = 0;
226 txc->jitter = 0;
227 txc->shift = 0;
228 txc->stabil = 0;
229 txc->jitcnt = 0;
230 txc->calcnt = 0;
231 txc->errcnt = 0;
232 txc->stbcnt = 0;
235 #endif /* CONFIG_NTP_PPS */
239 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
242 static inline int ntp_synced(void)
244 return !(time_status & STA_UNSYNC);
249 * NTP methods:
253 * Update (tick_length, tick_length_base, tick_nsec), based
254 * on (tick_usec, ntp_tick_adj, time_freq):
256 static void ntp_update_frequency(void)
258 u64 second_length;
259 u64 new_base;
261 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
262 << NTP_SCALE_SHIFT;
264 second_length += ntp_tick_adj;
265 second_length += time_freq;
267 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
268 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
271 * Don't wait for the next second_overflow, apply
272 * the change to the tick length immediately:
274 tick_length += new_base - tick_length_base;
275 tick_length_base = new_base;
278 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
280 time_status &= ~STA_MODE;
282 if (secs < MINSEC)
283 return 0;
285 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
286 return 0;
288 time_status |= STA_MODE;
290 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
293 static void ntp_update_offset(long offset)
295 s64 freq_adj;
296 s64 offset64;
297 long secs;
299 if (!(time_status & STA_PLL))
300 return;
302 if (!(time_status & STA_NANO))
303 offset *= NSEC_PER_USEC;
306 * Scale the phase adjustment and
307 * clamp to the operating range.
309 offset = min(offset, MAXPHASE);
310 offset = max(offset, -MAXPHASE);
313 * Select how the frequency is to be controlled
314 * and in which mode (PLL or FLL).
316 secs = get_seconds() - time_reftime;
317 if (unlikely(time_status & STA_FREQHOLD))
318 secs = 0;
320 time_reftime = get_seconds();
322 offset64 = offset;
323 freq_adj = ntp_update_offset_fll(offset64, secs);
326 * Clamp update interval to reduce PLL gain with low
327 * sampling rate (e.g. intermittent network connection)
328 * to avoid instability.
330 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
331 secs = 1 << (SHIFT_PLL + 1 + time_constant);
333 freq_adj += (offset64 * secs) <<
334 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
336 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
338 time_freq = max(freq_adj, -MAXFREQ_SCALED);
340 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
344 * ntp_clear - Clears the NTP state variables
346 void ntp_clear(void)
348 unsigned long flags;
350 spin_lock_irqsave(&ntp_lock, flags);
352 time_adjust = 0; /* stop active adjtime() */
353 time_status |= STA_UNSYNC;
354 time_maxerror = NTP_PHASE_LIMIT;
355 time_esterror = NTP_PHASE_LIMIT;
357 ntp_update_frequency();
359 tick_length = tick_length_base;
360 time_offset = 0;
362 /* Clear PPS state variables */
363 pps_clear();
364 spin_unlock_irqrestore(&ntp_lock, flags);
369 u64 ntp_tick_length(void)
371 unsigned long flags;
372 s64 ret;
374 spin_lock_irqsave(&ntp_lock, flags);
375 ret = tick_length;
376 spin_unlock_irqrestore(&ntp_lock, flags);
377 return ret;
382 * this routine handles the overflow of the microsecond field
384 * The tricky bits of code to handle the accurate clock support
385 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
386 * They were originally developed for SUN and DEC kernels.
387 * All the kudos should go to Dave for this stuff.
389 * Also handles leap second processing, and returns leap offset
391 int second_overflow(unsigned long secs)
393 s64 delta;
394 int leap = 0;
395 unsigned long flags;
397 spin_lock_irqsave(&ntp_lock, flags);
400 * Leap second processing. If in leap-insert state at the end of the
401 * day, the system clock is set back one second; if in leap-delete
402 * state, the system clock is set ahead one second.
404 switch (time_state) {
405 case TIME_OK:
406 if (time_status & STA_INS)
407 time_state = TIME_INS;
408 else if (time_status & STA_DEL)
409 time_state = TIME_DEL;
410 break;
411 case TIME_INS:
412 if (!(time_status & STA_INS))
413 time_state = TIME_OK;
414 else if (secs % 86400 == 0) {
415 leap = -1;
416 time_state = TIME_OOP;
417 time_tai++;
418 printk(KERN_NOTICE
419 "Clock: inserting leap second 23:59:60 UTC\n");
421 break;
422 case TIME_DEL:
423 if (!(time_status & STA_DEL))
424 time_state = TIME_OK;
425 else if ((secs + 1) % 86400 == 0) {
426 leap = 1;
427 time_tai--;
428 time_state = TIME_WAIT;
429 printk(KERN_NOTICE
430 "Clock: deleting leap second 23:59:59 UTC\n");
432 break;
433 case TIME_OOP:
434 time_state = TIME_WAIT;
435 break;
437 case TIME_WAIT:
438 if (!(time_status & (STA_INS | STA_DEL)))
439 time_state = TIME_OK;
440 break;
444 /* Bump the maxerror field */
445 time_maxerror += MAXFREQ / NSEC_PER_USEC;
446 if (time_maxerror > NTP_PHASE_LIMIT) {
447 time_maxerror = NTP_PHASE_LIMIT;
448 time_status |= STA_UNSYNC;
451 /* Compute the phase adjustment for the next second */
452 tick_length = tick_length_base;
454 delta = ntp_offset_chunk(time_offset);
455 time_offset -= delta;
456 tick_length += delta;
458 /* Check PPS signal */
459 pps_dec_valid();
461 if (!time_adjust)
462 goto out;
464 if (time_adjust > MAX_TICKADJ) {
465 time_adjust -= MAX_TICKADJ;
466 tick_length += MAX_TICKADJ_SCALED;
467 goto out;
470 if (time_adjust < -MAX_TICKADJ) {
471 time_adjust += MAX_TICKADJ;
472 tick_length -= MAX_TICKADJ_SCALED;
473 goto out;
476 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
477 << NTP_SCALE_SHIFT;
478 time_adjust = 0;
480 out:
481 spin_unlock_irqrestore(&ntp_lock, flags);
483 return leap;
486 #ifdef CONFIG_GENERIC_CMOS_UPDATE
488 static void sync_cmos_clock(struct work_struct *work);
490 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
492 static void sync_cmos_clock(struct work_struct *work)
494 struct timespec now, next;
495 int fail = 1;
498 * If we have an externally synchronized Linux clock, then update
499 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
500 * called as close as possible to 500 ms before the new second starts.
501 * This code is run on a timer. If the clock is set, that timer
502 * may not expire at the correct time. Thus, we adjust...
504 if (!ntp_synced()) {
506 * Not synced, exit, do not restart a timer (if one is
507 * running, let it run out).
509 return;
512 getnstimeofday(&now);
513 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
514 fail = update_persistent_clock(now);
516 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
517 if (next.tv_nsec <= 0)
518 next.tv_nsec += NSEC_PER_SEC;
520 if (!fail)
521 next.tv_sec = 659;
522 else
523 next.tv_sec = 0;
525 if (next.tv_nsec >= NSEC_PER_SEC) {
526 next.tv_sec++;
527 next.tv_nsec -= NSEC_PER_SEC;
529 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
532 static void notify_cmos_timer(void)
534 schedule_delayed_work(&sync_cmos_work, 0);
537 #else
538 static inline void notify_cmos_timer(void) { }
539 #endif
543 * Propagate a new txc->status value into the NTP state:
545 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
547 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
548 time_state = TIME_OK;
549 time_status = STA_UNSYNC;
550 /* restart PPS frequency calibration */
551 pps_reset_freq_interval();
555 * If we turn on PLL adjustments then reset the
556 * reference time to current time.
558 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
559 time_reftime = get_seconds();
561 /* only set allowed bits */
562 time_status &= STA_RONLY;
563 time_status |= txc->status & ~STA_RONLY;
567 * Called with ntp_lock held, so we can access and modify
568 * all the global NTP state:
570 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
572 if (txc->modes & ADJ_STATUS)
573 process_adj_status(txc, ts);
575 if (txc->modes & ADJ_NANO)
576 time_status |= STA_NANO;
578 if (txc->modes & ADJ_MICRO)
579 time_status &= ~STA_NANO;
581 if (txc->modes & ADJ_FREQUENCY) {
582 time_freq = txc->freq * PPM_SCALE;
583 time_freq = min(time_freq, MAXFREQ_SCALED);
584 time_freq = max(time_freq, -MAXFREQ_SCALED);
585 /* update pps_freq */
586 pps_set_freq(time_freq);
589 if (txc->modes & ADJ_MAXERROR)
590 time_maxerror = txc->maxerror;
592 if (txc->modes & ADJ_ESTERROR)
593 time_esterror = txc->esterror;
595 if (txc->modes & ADJ_TIMECONST) {
596 time_constant = txc->constant;
597 if (!(time_status & STA_NANO))
598 time_constant += 4;
599 time_constant = min(time_constant, (long)MAXTC);
600 time_constant = max(time_constant, 0l);
603 if (txc->modes & ADJ_TAI && txc->constant > 0)
604 time_tai = txc->constant;
606 if (txc->modes & ADJ_OFFSET)
607 ntp_update_offset(txc->offset);
609 if (txc->modes & ADJ_TICK)
610 tick_usec = txc->tick;
612 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
613 ntp_update_frequency();
617 * adjtimex mainly allows reading (and writing, if superuser) of
618 * kernel time-keeping variables. used by xntpd.
620 int do_adjtimex(struct timex *txc)
622 struct timespec ts;
623 int result;
625 /* Validate the data before disabling interrupts */
626 if (txc->modes & ADJ_ADJTIME) {
627 /* singleshot must not be used with any other mode bits */
628 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
629 return -EINVAL;
630 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
631 !capable(CAP_SYS_TIME))
632 return -EPERM;
633 } else {
634 /* In order to modify anything, you gotta be super-user! */
635 if (txc->modes && !capable(CAP_SYS_TIME))
636 return -EPERM;
639 * if the quartz is off by more than 10% then
640 * something is VERY wrong!
642 if (txc->modes & ADJ_TICK &&
643 (txc->tick < 900000/USER_HZ ||
644 txc->tick > 1100000/USER_HZ))
645 return -EINVAL;
648 if (txc->modes & ADJ_SETOFFSET) {
649 struct timespec delta;
650 delta.tv_sec = txc->time.tv_sec;
651 delta.tv_nsec = txc->time.tv_usec;
652 if (!capable(CAP_SYS_TIME))
653 return -EPERM;
654 if (!(txc->modes & ADJ_NANO))
655 delta.tv_nsec *= 1000;
656 result = timekeeping_inject_offset(&delta);
657 if (result)
658 return result;
661 getnstimeofday(&ts);
663 spin_lock_irq(&ntp_lock);
665 if (txc->modes & ADJ_ADJTIME) {
666 long save_adjust = time_adjust;
668 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
669 /* adjtime() is independent from ntp_adjtime() */
670 time_adjust = txc->offset;
671 ntp_update_frequency();
673 txc->offset = save_adjust;
674 } else {
676 /* If there are input parameters, then process them: */
677 if (txc->modes)
678 process_adjtimex_modes(txc, &ts);
680 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
681 NTP_SCALE_SHIFT);
682 if (!(time_status & STA_NANO))
683 txc->offset /= NSEC_PER_USEC;
686 result = time_state; /* mostly `TIME_OK' */
687 /* check for errors */
688 if (is_error_status(time_status))
689 result = TIME_ERROR;
691 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
692 PPM_SCALE_INV, NTP_SCALE_SHIFT);
693 txc->maxerror = time_maxerror;
694 txc->esterror = time_esterror;
695 txc->status = time_status;
696 txc->constant = time_constant;
697 txc->precision = 1;
698 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
699 txc->tick = tick_usec;
700 txc->tai = time_tai;
702 /* fill PPS status fields */
703 pps_fill_timex(txc);
705 spin_unlock_irq(&ntp_lock);
707 txc->time.tv_sec = ts.tv_sec;
708 txc->time.tv_usec = ts.tv_nsec;
709 if (!(time_status & STA_NANO))
710 txc->time.tv_usec /= NSEC_PER_USEC;
712 notify_cmos_timer();
714 return result;
717 #ifdef CONFIG_NTP_PPS
719 /* actually struct pps_normtime is good old struct timespec, but it is
720 * semantically different (and it is the reason why it was invented):
721 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
722 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
723 struct pps_normtime {
724 __kernel_time_t sec; /* seconds */
725 long nsec; /* nanoseconds */
728 /* normalize the timestamp so that nsec is in the
729 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
730 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
732 struct pps_normtime norm = {
733 .sec = ts.tv_sec,
734 .nsec = ts.tv_nsec
737 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
738 norm.nsec -= NSEC_PER_SEC;
739 norm.sec++;
742 return norm;
745 /* get current phase correction and jitter */
746 static inline long pps_phase_filter_get(long *jitter)
748 *jitter = pps_tf[0] - pps_tf[1];
749 if (*jitter < 0)
750 *jitter = -*jitter;
752 /* TODO: test various filters */
753 return pps_tf[0];
756 /* add the sample to the phase filter */
757 static inline void pps_phase_filter_add(long err)
759 pps_tf[2] = pps_tf[1];
760 pps_tf[1] = pps_tf[0];
761 pps_tf[0] = err;
764 /* decrease frequency calibration interval length.
765 * It is halved after four consecutive unstable intervals.
767 static inline void pps_dec_freq_interval(void)
769 if (--pps_intcnt <= -PPS_INTCOUNT) {
770 pps_intcnt = -PPS_INTCOUNT;
771 if (pps_shift > PPS_INTMIN) {
772 pps_shift--;
773 pps_intcnt = 0;
778 /* increase frequency calibration interval length.
779 * It is doubled after four consecutive stable intervals.
781 static inline void pps_inc_freq_interval(void)
783 if (++pps_intcnt >= PPS_INTCOUNT) {
784 pps_intcnt = PPS_INTCOUNT;
785 if (pps_shift < PPS_INTMAX) {
786 pps_shift++;
787 pps_intcnt = 0;
792 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
793 * timestamps
795 * At the end of the calibration interval the difference between the
796 * first and last MONOTONIC_RAW clock timestamps divided by the length
797 * of the interval becomes the frequency update. If the interval was
798 * too long, the data are discarded.
799 * Returns the difference between old and new frequency values.
801 static long hardpps_update_freq(struct pps_normtime freq_norm)
803 long delta, delta_mod;
804 s64 ftemp;
806 /* check if the frequency interval was too long */
807 if (freq_norm.sec > (2 << pps_shift)) {
808 time_status |= STA_PPSERROR;
809 pps_errcnt++;
810 pps_dec_freq_interval();
811 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
812 freq_norm.sec);
813 return 0;
816 /* here the raw frequency offset and wander (stability) is
817 * calculated. If the wander is less than the wander threshold
818 * the interval is increased; otherwise it is decreased.
820 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
821 freq_norm.sec);
822 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
823 pps_freq = ftemp;
824 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
825 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
826 time_status |= STA_PPSWANDER;
827 pps_stbcnt++;
828 pps_dec_freq_interval();
829 } else { /* good sample */
830 pps_inc_freq_interval();
833 /* the stability metric is calculated as the average of recent
834 * frequency changes, but is used only for performance
835 * monitoring
837 delta_mod = delta;
838 if (delta_mod < 0)
839 delta_mod = -delta_mod;
840 pps_stabil += (div_s64(((s64)delta_mod) <<
841 (NTP_SCALE_SHIFT - SHIFT_USEC),
842 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
844 /* if enabled, the system clock frequency is updated */
845 if ((time_status & STA_PPSFREQ) != 0 &&
846 (time_status & STA_FREQHOLD) == 0) {
847 time_freq = pps_freq;
848 ntp_update_frequency();
851 return delta;
854 /* correct REALTIME clock phase error against PPS signal */
855 static void hardpps_update_phase(long error)
857 long correction = -error;
858 long jitter;
860 /* add the sample to the median filter */
861 pps_phase_filter_add(correction);
862 correction = pps_phase_filter_get(&jitter);
864 /* Nominal jitter is due to PPS signal noise. If it exceeds the
865 * threshold, the sample is discarded; otherwise, if so enabled,
866 * the time offset is updated.
868 if (jitter > (pps_jitter << PPS_POPCORN)) {
869 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
870 jitter, (pps_jitter << PPS_POPCORN));
871 time_status |= STA_PPSJITTER;
872 pps_jitcnt++;
873 } else if (time_status & STA_PPSTIME) {
874 /* correct the time using the phase offset */
875 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
876 NTP_INTERVAL_FREQ);
877 /* cancel running adjtime() */
878 time_adjust = 0;
880 /* update jitter */
881 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
885 * hardpps() - discipline CPU clock oscillator to external PPS signal
887 * This routine is called at each PPS signal arrival in order to
888 * discipline the CPU clock oscillator to the PPS signal. It takes two
889 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
890 * is used to correct clock phase error and the latter is used to
891 * correct the frequency.
893 * This code is based on David Mills's reference nanokernel
894 * implementation. It was mostly rewritten but keeps the same idea.
896 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
898 struct pps_normtime pts_norm, freq_norm;
899 unsigned long flags;
901 pts_norm = pps_normalize_ts(*phase_ts);
903 spin_lock_irqsave(&ntp_lock, flags);
905 /* clear the error bits, they will be set again if needed */
906 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
908 /* indicate signal presence */
909 time_status |= STA_PPSSIGNAL;
910 pps_valid = PPS_VALID;
912 /* when called for the first time,
913 * just start the frequency interval */
914 if (unlikely(pps_fbase.tv_sec == 0)) {
915 pps_fbase = *raw_ts;
916 spin_unlock_irqrestore(&ntp_lock, flags);
917 return;
920 /* ok, now we have a base for frequency calculation */
921 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
923 /* check that the signal is in the range
924 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
925 if ((freq_norm.sec == 0) ||
926 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
927 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
928 time_status |= STA_PPSJITTER;
929 /* restart the frequency calibration interval */
930 pps_fbase = *raw_ts;
931 spin_unlock_irqrestore(&ntp_lock, flags);
932 pr_err("hardpps: PPSJITTER: bad pulse\n");
933 return;
936 /* signal is ok */
938 /* check if the current frequency interval is finished */
939 if (freq_norm.sec >= (1 << pps_shift)) {
940 pps_calcnt++;
941 /* restart the frequency calibration interval */
942 pps_fbase = *raw_ts;
943 hardpps_update_freq(freq_norm);
946 hardpps_update_phase(pts_norm.nsec);
948 spin_unlock_irqrestore(&ntp_lock, flags);
950 EXPORT_SYMBOL(hardpps);
952 #endif /* CONFIG_NTP_PPS */
954 static int __init ntp_tick_adj_setup(char *str)
956 ntp_tick_adj = simple_strtol(str, NULL, 0);
957 ntp_tick_adj <<= NTP_SCALE_SHIFT;
959 return 1;
962 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
964 void __init ntp_init(void)
966 ntp_clear();