Linux 3.8-rc7
[cris-mirror.git] / mm / filemap.c
blob83efee76a5c0b12c577903346eca32f7ca49be18
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 #include <asm/mman.h>
46 * Shared mappings implemented 30.11.1994. It's not fully working yet,
47 * though.
49 * Shared mappings now work. 15.8.1995 Bruno.
51 * finished 'unifying' the page and buffer cache and SMP-threaded the
52 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 * Lock ordering:
60 * ->i_mmap_mutex (truncate_pagecache)
61 * ->private_lock (__free_pte->__set_page_dirty_buffers)
62 * ->swap_lock (exclusive_swap_page, others)
63 * ->mapping->tree_lock
65 * ->i_mutex
66 * ->i_mmap_mutex (truncate->unmap_mapping_range)
68 * ->mmap_sem
69 * ->i_mmap_mutex
70 * ->page_table_lock or pte_lock (various, mainly in memory.c)
71 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 * ->mmap_sem
74 * ->lock_page (access_process_vm)
76 * ->i_mutex (generic_file_buffered_write)
77 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
79 * bdi->wb.list_lock
80 * sb_lock (fs/fs-writeback.c)
81 * ->mapping->tree_lock (__sync_single_inode)
83 * ->i_mmap_mutex
84 * ->anon_vma.lock (vma_adjust)
86 * ->anon_vma.lock
87 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
89 * ->page_table_lock or pte_lock
90 * ->swap_lock (try_to_unmap_one)
91 * ->private_lock (try_to_unmap_one)
92 * ->tree_lock (try_to_unmap_one)
93 * ->zone.lru_lock (follow_page->mark_page_accessed)
94 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
95 * ->private_lock (page_remove_rmap->set_page_dirty)
96 * ->tree_lock (page_remove_rmap->set_page_dirty)
97 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
98 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
99 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
100 * ->inode->i_lock (zap_pte_range->set_page_dirty)
101 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
103 * ->i_mmap_mutex
104 * ->tasklist_lock (memory_failure, collect_procs_ao)
108 * Delete a page from the page cache and free it. Caller has to make
109 * sure the page is locked and that nobody else uses it - or that usage
110 * is safe. The caller must hold the mapping's tree_lock.
112 void __delete_from_page_cache(struct page *page)
114 struct address_space *mapping = page->mapping;
117 * if we're uptodate, flush out into the cleancache, otherwise
118 * invalidate any existing cleancache entries. We can't leave
119 * stale data around in the cleancache once our page is gone
121 if (PageUptodate(page) && PageMappedToDisk(page))
122 cleancache_put_page(page);
123 else
124 cleancache_invalidate_page(mapping, page);
126 radix_tree_delete(&mapping->page_tree, page->index);
127 page->mapping = NULL;
128 /* Leave page->index set: truncation lookup relies upon it */
129 mapping->nrpages--;
130 __dec_zone_page_state(page, NR_FILE_PAGES);
131 if (PageSwapBacked(page))
132 __dec_zone_page_state(page, NR_SHMEM);
133 BUG_ON(page_mapped(page));
136 * Some filesystems seem to re-dirty the page even after
137 * the VM has canceled the dirty bit (eg ext3 journaling).
139 * Fix it up by doing a final dirty accounting check after
140 * having removed the page entirely.
142 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
143 dec_zone_page_state(page, NR_FILE_DIRTY);
144 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 * delete_from_page_cache - delete page from page cache
150 * @page: the page which the kernel is trying to remove from page cache
152 * This must be called only on pages that have been verified to be in the page
153 * cache and locked. It will never put the page into the free list, the caller
154 * has a reference on the page.
156 void delete_from_page_cache(struct page *page)
158 struct address_space *mapping = page->mapping;
159 void (*freepage)(struct page *);
161 BUG_ON(!PageLocked(page));
163 freepage = mapping->a_ops->freepage;
164 spin_lock_irq(&mapping->tree_lock);
165 __delete_from_page_cache(page);
166 spin_unlock_irq(&mapping->tree_lock);
167 mem_cgroup_uncharge_cache_page(page);
169 if (freepage)
170 freepage(page);
171 page_cache_release(page);
173 EXPORT_SYMBOL(delete_from_page_cache);
175 static int sleep_on_page(void *word)
177 io_schedule();
178 return 0;
181 static int sleep_on_page_killable(void *word)
183 sleep_on_page(word);
184 return fatal_signal_pending(current) ? -EINTR : 0;
188 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
189 * @mapping: address space structure to write
190 * @start: offset in bytes where the range starts
191 * @end: offset in bytes where the range ends (inclusive)
192 * @sync_mode: enable synchronous operation
194 * Start writeback against all of a mapping's dirty pages that lie
195 * within the byte offsets <start, end> inclusive.
197 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
198 * opposed to a regular memory cleansing writeback. The difference between
199 * these two operations is that if a dirty page/buffer is encountered, it must
200 * be waited upon, and not just skipped over.
202 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
203 loff_t end, int sync_mode)
205 int ret;
206 struct writeback_control wbc = {
207 .sync_mode = sync_mode,
208 .nr_to_write = LONG_MAX,
209 .range_start = start,
210 .range_end = end,
213 if (!mapping_cap_writeback_dirty(mapping))
214 return 0;
216 ret = do_writepages(mapping, &wbc);
217 return ret;
220 static inline int __filemap_fdatawrite(struct address_space *mapping,
221 int sync_mode)
223 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
226 int filemap_fdatawrite(struct address_space *mapping)
228 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
230 EXPORT_SYMBOL(filemap_fdatawrite);
232 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
233 loff_t end)
235 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
237 EXPORT_SYMBOL(filemap_fdatawrite_range);
240 * filemap_flush - mostly a non-blocking flush
241 * @mapping: target address_space
243 * This is a mostly non-blocking flush. Not suitable for data-integrity
244 * purposes - I/O may not be started against all dirty pages.
246 int filemap_flush(struct address_space *mapping)
248 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
250 EXPORT_SYMBOL(filemap_flush);
253 * filemap_fdatawait_range - wait for writeback to complete
254 * @mapping: address space structure to wait for
255 * @start_byte: offset in bytes where the range starts
256 * @end_byte: offset in bytes where the range ends (inclusive)
258 * Walk the list of under-writeback pages of the given address space
259 * in the given range and wait for all of them.
261 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
262 loff_t end_byte)
264 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
265 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
266 struct pagevec pvec;
267 int nr_pages;
268 int ret = 0;
270 if (end_byte < start_byte)
271 return 0;
273 pagevec_init(&pvec, 0);
274 while ((index <= end) &&
275 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
276 PAGECACHE_TAG_WRITEBACK,
277 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
278 unsigned i;
280 for (i = 0; i < nr_pages; i++) {
281 struct page *page = pvec.pages[i];
283 /* until radix tree lookup accepts end_index */
284 if (page->index > end)
285 continue;
287 wait_on_page_writeback(page);
288 if (TestClearPageError(page))
289 ret = -EIO;
291 pagevec_release(&pvec);
292 cond_resched();
295 /* Check for outstanding write errors */
296 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 ret = -ENOSPC;
298 if (test_and_clear_bit(AS_EIO, &mapping->flags))
299 ret = -EIO;
301 return ret;
303 EXPORT_SYMBOL(filemap_fdatawait_range);
306 * filemap_fdatawait - wait for all under-writeback pages to complete
307 * @mapping: address space structure to wait for
309 * Walk the list of under-writeback pages of the given address space
310 * and wait for all of them.
312 int filemap_fdatawait(struct address_space *mapping)
314 loff_t i_size = i_size_read(mapping->host);
316 if (i_size == 0)
317 return 0;
319 return filemap_fdatawait_range(mapping, 0, i_size - 1);
321 EXPORT_SYMBOL(filemap_fdatawait);
323 int filemap_write_and_wait(struct address_space *mapping)
325 int err = 0;
327 if (mapping->nrpages) {
328 err = filemap_fdatawrite(mapping);
330 * Even if the above returned error, the pages may be
331 * written partially (e.g. -ENOSPC), so we wait for it.
332 * But the -EIO is special case, it may indicate the worst
333 * thing (e.g. bug) happened, so we avoid waiting for it.
335 if (err != -EIO) {
336 int err2 = filemap_fdatawait(mapping);
337 if (!err)
338 err = err2;
341 return err;
343 EXPORT_SYMBOL(filemap_write_and_wait);
346 * filemap_write_and_wait_range - write out & wait on a file range
347 * @mapping: the address_space for the pages
348 * @lstart: offset in bytes where the range starts
349 * @lend: offset in bytes where the range ends (inclusive)
351 * Write out and wait upon file offsets lstart->lend, inclusive.
353 * Note that `lend' is inclusive (describes the last byte to be written) so
354 * that this function can be used to write to the very end-of-file (end = -1).
356 int filemap_write_and_wait_range(struct address_space *mapping,
357 loff_t lstart, loff_t lend)
359 int err = 0;
361 if (mapping->nrpages) {
362 err = __filemap_fdatawrite_range(mapping, lstart, lend,
363 WB_SYNC_ALL);
364 /* See comment of filemap_write_and_wait() */
365 if (err != -EIO) {
366 int err2 = filemap_fdatawait_range(mapping,
367 lstart, lend);
368 if (!err)
369 err = err2;
372 return err;
374 EXPORT_SYMBOL(filemap_write_and_wait_range);
377 * replace_page_cache_page - replace a pagecache page with a new one
378 * @old: page to be replaced
379 * @new: page to replace with
380 * @gfp_mask: allocation mode
382 * This function replaces a page in the pagecache with a new one. On
383 * success it acquires the pagecache reference for the new page and
384 * drops it for the old page. Both the old and new pages must be
385 * locked. This function does not add the new page to the LRU, the
386 * caller must do that.
388 * The remove + add is atomic. The only way this function can fail is
389 * memory allocation failure.
391 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
393 int error;
395 VM_BUG_ON(!PageLocked(old));
396 VM_BUG_ON(!PageLocked(new));
397 VM_BUG_ON(new->mapping);
399 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
400 if (!error) {
401 struct address_space *mapping = old->mapping;
402 void (*freepage)(struct page *);
404 pgoff_t offset = old->index;
405 freepage = mapping->a_ops->freepage;
407 page_cache_get(new);
408 new->mapping = mapping;
409 new->index = offset;
411 spin_lock_irq(&mapping->tree_lock);
412 __delete_from_page_cache(old);
413 error = radix_tree_insert(&mapping->page_tree, offset, new);
414 BUG_ON(error);
415 mapping->nrpages++;
416 __inc_zone_page_state(new, NR_FILE_PAGES);
417 if (PageSwapBacked(new))
418 __inc_zone_page_state(new, NR_SHMEM);
419 spin_unlock_irq(&mapping->tree_lock);
420 /* mem_cgroup codes must not be called under tree_lock */
421 mem_cgroup_replace_page_cache(old, new);
422 radix_tree_preload_end();
423 if (freepage)
424 freepage(old);
425 page_cache_release(old);
428 return error;
430 EXPORT_SYMBOL_GPL(replace_page_cache_page);
433 * add_to_page_cache_locked - add a locked page to the pagecache
434 * @page: page to add
435 * @mapping: the page's address_space
436 * @offset: page index
437 * @gfp_mask: page allocation mode
439 * This function is used to add a page to the pagecache. It must be locked.
440 * This function does not add the page to the LRU. The caller must do that.
442 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
443 pgoff_t offset, gfp_t gfp_mask)
445 int error;
447 VM_BUG_ON(!PageLocked(page));
448 VM_BUG_ON(PageSwapBacked(page));
450 error = mem_cgroup_cache_charge(page, current->mm,
451 gfp_mask & GFP_RECLAIM_MASK);
452 if (error)
453 goto out;
455 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
456 if (error == 0) {
457 page_cache_get(page);
458 page->mapping = mapping;
459 page->index = offset;
461 spin_lock_irq(&mapping->tree_lock);
462 error = radix_tree_insert(&mapping->page_tree, offset, page);
463 if (likely(!error)) {
464 mapping->nrpages++;
465 __inc_zone_page_state(page, NR_FILE_PAGES);
466 spin_unlock_irq(&mapping->tree_lock);
467 } else {
468 page->mapping = NULL;
469 /* Leave page->index set: truncation relies upon it */
470 spin_unlock_irq(&mapping->tree_lock);
471 mem_cgroup_uncharge_cache_page(page);
472 page_cache_release(page);
474 radix_tree_preload_end();
475 } else
476 mem_cgroup_uncharge_cache_page(page);
477 out:
478 return error;
480 EXPORT_SYMBOL(add_to_page_cache_locked);
482 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
483 pgoff_t offset, gfp_t gfp_mask)
485 int ret;
487 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
488 if (ret == 0)
489 lru_cache_add_file(page);
490 return ret;
492 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
494 #ifdef CONFIG_NUMA
495 struct page *__page_cache_alloc(gfp_t gfp)
497 int n;
498 struct page *page;
500 if (cpuset_do_page_mem_spread()) {
501 unsigned int cpuset_mems_cookie;
502 do {
503 cpuset_mems_cookie = get_mems_allowed();
504 n = cpuset_mem_spread_node();
505 page = alloc_pages_exact_node(n, gfp, 0);
506 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
508 return page;
510 return alloc_pages(gfp, 0);
512 EXPORT_SYMBOL(__page_cache_alloc);
513 #endif
516 * In order to wait for pages to become available there must be
517 * waitqueues associated with pages. By using a hash table of
518 * waitqueues where the bucket discipline is to maintain all
519 * waiters on the same queue and wake all when any of the pages
520 * become available, and for the woken contexts to check to be
521 * sure the appropriate page became available, this saves space
522 * at a cost of "thundering herd" phenomena during rare hash
523 * collisions.
525 static wait_queue_head_t *page_waitqueue(struct page *page)
527 const struct zone *zone = page_zone(page);
529 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
532 static inline void wake_up_page(struct page *page, int bit)
534 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
537 void wait_on_page_bit(struct page *page, int bit_nr)
539 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
541 if (test_bit(bit_nr, &page->flags))
542 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
543 TASK_UNINTERRUPTIBLE);
545 EXPORT_SYMBOL(wait_on_page_bit);
547 int wait_on_page_bit_killable(struct page *page, int bit_nr)
549 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
551 if (!test_bit(bit_nr, &page->flags))
552 return 0;
554 return __wait_on_bit(page_waitqueue(page), &wait,
555 sleep_on_page_killable, TASK_KILLABLE);
559 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
560 * @page: Page defining the wait queue of interest
561 * @waiter: Waiter to add to the queue
563 * Add an arbitrary @waiter to the wait queue for the nominated @page.
565 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
567 wait_queue_head_t *q = page_waitqueue(page);
568 unsigned long flags;
570 spin_lock_irqsave(&q->lock, flags);
571 __add_wait_queue(q, waiter);
572 spin_unlock_irqrestore(&q->lock, flags);
574 EXPORT_SYMBOL_GPL(add_page_wait_queue);
577 * unlock_page - unlock a locked page
578 * @page: the page
580 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
581 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
582 * mechananism between PageLocked pages and PageWriteback pages is shared.
583 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
585 * The mb is necessary to enforce ordering between the clear_bit and the read
586 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
588 void unlock_page(struct page *page)
590 VM_BUG_ON(!PageLocked(page));
591 clear_bit_unlock(PG_locked, &page->flags);
592 smp_mb__after_clear_bit();
593 wake_up_page(page, PG_locked);
595 EXPORT_SYMBOL(unlock_page);
598 * end_page_writeback - end writeback against a page
599 * @page: the page
601 void end_page_writeback(struct page *page)
603 if (TestClearPageReclaim(page))
604 rotate_reclaimable_page(page);
606 if (!test_clear_page_writeback(page))
607 BUG();
609 smp_mb__after_clear_bit();
610 wake_up_page(page, PG_writeback);
612 EXPORT_SYMBOL(end_page_writeback);
615 * __lock_page - get a lock on the page, assuming we need to sleep to get it
616 * @page: the page to lock
618 void __lock_page(struct page *page)
620 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
622 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
623 TASK_UNINTERRUPTIBLE);
625 EXPORT_SYMBOL(__lock_page);
627 int __lock_page_killable(struct page *page)
629 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
631 return __wait_on_bit_lock(page_waitqueue(page), &wait,
632 sleep_on_page_killable, TASK_KILLABLE);
634 EXPORT_SYMBOL_GPL(__lock_page_killable);
636 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
637 unsigned int flags)
639 if (flags & FAULT_FLAG_ALLOW_RETRY) {
641 * CAUTION! In this case, mmap_sem is not released
642 * even though return 0.
644 if (flags & FAULT_FLAG_RETRY_NOWAIT)
645 return 0;
647 up_read(&mm->mmap_sem);
648 if (flags & FAULT_FLAG_KILLABLE)
649 wait_on_page_locked_killable(page);
650 else
651 wait_on_page_locked(page);
652 return 0;
653 } else {
654 if (flags & FAULT_FLAG_KILLABLE) {
655 int ret;
657 ret = __lock_page_killable(page);
658 if (ret) {
659 up_read(&mm->mmap_sem);
660 return 0;
662 } else
663 __lock_page(page);
664 return 1;
669 * find_get_page - find and get a page reference
670 * @mapping: the address_space to search
671 * @offset: the page index
673 * Is there a pagecache struct page at the given (mapping, offset) tuple?
674 * If yes, increment its refcount and return it; if no, return NULL.
676 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
678 void **pagep;
679 struct page *page;
681 rcu_read_lock();
682 repeat:
683 page = NULL;
684 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
685 if (pagep) {
686 page = radix_tree_deref_slot(pagep);
687 if (unlikely(!page))
688 goto out;
689 if (radix_tree_exception(page)) {
690 if (radix_tree_deref_retry(page))
691 goto repeat;
693 * Otherwise, shmem/tmpfs must be storing a swap entry
694 * here as an exceptional entry: so return it without
695 * attempting to raise page count.
697 goto out;
699 if (!page_cache_get_speculative(page))
700 goto repeat;
703 * Has the page moved?
704 * This is part of the lockless pagecache protocol. See
705 * include/linux/pagemap.h for details.
707 if (unlikely(page != *pagep)) {
708 page_cache_release(page);
709 goto repeat;
712 out:
713 rcu_read_unlock();
715 return page;
717 EXPORT_SYMBOL(find_get_page);
720 * find_lock_page - locate, pin and lock a pagecache page
721 * @mapping: the address_space to search
722 * @offset: the page index
724 * Locates the desired pagecache page, locks it, increments its reference
725 * count and returns its address.
727 * Returns zero if the page was not present. find_lock_page() may sleep.
729 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
731 struct page *page;
733 repeat:
734 page = find_get_page(mapping, offset);
735 if (page && !radix_tree_exception(page)) {
736 lock_page(page);
737 /* Has the page been truncated? */
738 if (unlikely(page->mapping != mapping)) {
739 unlock_page(page);
740 page_cache_release(page);
741 goto repeat;
743 VM_BUG_ON(page->index != offset);
745 return page;
747 EXPORT_SYMBOL(find_lock_page);
750 * find_or_create_page - locate or add a pagecache page
751 * @mapping: the page's address_space
752 * @index: the page's index into the mapping
753 * @gfp_mask: page allocation mode
755 * Locates a page in the pagecache. If the page is not present, a new page
756 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
757 * LRU list. The returned page is locked and has its reference count
758 * incremented.
760 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
761 * allocation!
763 * find_or_create_page() returns the desired page's address, or zero on
764 * memory exhaustion.
766 struct page *find_or_create_page(struct address_space *mapping,
767 pgoff_t index, gfp_t gfp_mask)
769 struct page *page;
770 int err;
771 repeat:
772 page = find_lock_page(mapping, index);
773 if (!page) {
774 page = __page_cache_alloc(gfp_mask);
775 if (!page)
776 return NULL;
778 * We want a regular kernel memory (not highmem or DMA etc)
779 * allocation for the radix tree nodes, but we need to honour
780 * the context-specific requirements the caller has asked for.
781 * GFP_RECLAIM_MASK collects those requirements.
783 err = add_to_page_cache_lru(page, mapping, index,
784 (gfp_mask & GFP_RECLAIM_MASK));
785 if (unlikely(err)) {
786 page_cache_release(page);
787 page = NULL;
788 if (err == -EEXIST)
789 goto repeat;
792 return page;
794 EXPORT_SYMBOL(find_or_create_page);
797 * find_get_pages - gang pagecache lookup
798 * @mapping: The address_space to search
799 * @start: The starting page index
800 * @nr_pages: The maximum number of pages
801 * @pages: Where the resulting pages are placed
803 * find_get_pages() will search for and return a group of up to
804 * @nr_pages pages in the mapping. The pages are placed at @pages.
805 * find_get_pages() takes a reference against the returned pages.
807 * The search returns a group of mapping-contiguous pages with ascending
808 * indexes. There may be holes in the indices due to not-present pages.
810 * find_get_pages() returns the number of pages which were found.
812 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
813 unsigned int nr_pages, struct page **pages)
815 struct radix_tree_iter iter;
816 void **slot;
817 unsigned ret = 0;
819 if (unlikely(!nr_pages))
820 return 0;
822 rcu_read_lock();
823 restart:
824 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
825 struct page *page;
826 repeat:
827 page = radix_tree_deref_slot(slot);
828 if (unlikely(!page))
829 continue;
831 if (radix_tree_exception(page)) {
832 if (radix_tree_deref_retry(page)) {
834 * Transient condition which can only trigger
835 * when entry at index 0 moves out of or back
836 * to root: none yet gotten, safe to restart.
838 WARN_ON(iter.index);
839 goto restart;
842 * Otherwise, shmem/tmpfs must be storing a swap entry
843 * here as an exceptional entry: so skip over it -
844 * we only reach this from invalidate_mapping_pages().
846 continue;
849 if (!page_cache_get_speculative(page))
850 goto repeat;
852 /* Has the page moved? */
853 if (unlikely(page != *slot)) {
854 page_cache_release(page);
855 goto repeat;
858 pages[ret] = page;
859 if (++ret == nr_pages)
860 break;
863 rcu_read_unlock();
864 return ret;
868 * find_get_pages_contig - gang contiguous pagecache lookup
869 * @mapping: The address_space to search
870 * @index: The starting page index
871 * @nr_pages: The maximum number of pages
872 * @pages: Where the resulting pages are placed
874 * find_get_pages_contig() works exactly like find_get_pages(), except
875 * that the returned number of pages are guaranteed to be contiguous.
877 * find_get_pages_contig() returns the number of pages which were found.
879 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
880 unsigned int nr_pages, struct page **pages)
882 struct radix_tree_iter iter;
883 void **slot;
884 unsigned int ret = 0;
886 if (unlikely(!nr_pages))
887 return 0;
889 rcu_read_lock();
890 restart:
891 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
892 struct page *page;
893 repeat:
894 page = radix_tree_deref_slot(slot);
895 /* The hole, there no reason to continue */
896 if (unlikely(!page))
897 break;
899 if (radix_tree_exception(page)) {
900 if (radix_tree_deref_retry(page)) {
902 * Transient condition which can only trigger
903 * when entry at index 0 moves out of or back
904 * to root: none yet gotten, safe to restart.
906 goto restart;
909 * Otherwise, shmem/tmpfs must be storing a swap entry
910 * here as an exceptional entry: so stop looking for
911 * contiguous pages.
913 break;
916 if (!page_cache_get_speculative(page))
917 goto repeat;
919 /* Has the page moved? */
920 if (unlikely(page != *slot)) {
921 page_cache_release(page);
922 goto repeat;
926 * must check mapping and index after taking the ref.
927 * otherwise we can get both false positives and false
928 * negatives, which is just confusing to the caller.
930 if (page->mapping == NULL || page->index != iter.index) {
931 page_cache_release(page);
932 break;
935 pages[ret] = page;
936 if (++ret == nr_pages)
937 break;
939 rcu_read_unlock();
940 return ret;
942 EXPORT_SYMBOL(find_get_pages_contig);
945 * find_get_pages_tag - find and return pages that match @tag
946 * @mapping: the address_space to search
947 * @index: the starting page index
948 * @tag: the tag index
949 * @nr_pages: the maximum number of pages
950 * @pages: where the resulting pages are placed
952 * Like find_get_pages, except we only return pages which are tagged with
953 * @tag. We update @index to index the next page for the traversal.
955 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
956 int tag, unsigned int nr_pages, struct page **pages)
958 struct radix_tree_iter iter;
959 void **slot;
960 unsigned ret = 0;
962 if (unlikely(!nr_pages))
963 return 0;
965 rcu_read_lock();
966 restart:
967 radix_tree_for_each_tagged(slot, &mapping->page_tree,
968 &iter, *index, tag) {
969 struct page *page;
970 repeat:
971 page = radix_tree_deref_slot(slot);
972 if (unlikely(!page))
973 continue;
975 if (radix_tree_exception(page)) {
976 if (radix_tree_deref_retry(page)) {
978 * Transient condition which can only trigger
979 * when entry at index 0 moves out of or back
980 * to root: none yet gotten, safe to restart.
982 goto restart;
985 * This function is never used on a shmem/tmpfs
986 * mapping, so a swap entry won't be found here.
988 BUG();
991 if (!page_cache_get_speculative(page))
992 goto repeat;
994 /* Has the page moved? */
995 if (unlikely(page != *slot)) {
996 page_cache_release(page);
997 goto repeat;
1000 pages[ret] = page;
1001 if (++ret == nr_pages)
1002 break;
1005 rcu_read_unlock();
1007 if (ret)
1008 *index = pages[ret - 1]->index + 1;
1010 return ret;
1012 EXPORT_SYMBOL(find_get_pages_tag);
1015 * grab_cache_page_nowait - returns locked page at given index in given cache
1016 * @mapping: target address_space
1017 * @index: the page index
1019 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1020 * This is intended for speculative data generators, where the data can
1021 * be regenerated if the page couldn't be grabbed. This routine should
1022 * be safe to call while holding the lock for another page.
1024 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1025 * and deadlock against the caller's locked page.
1027 struct page *
1028 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1030 struct page *page = find_get_page(mapping, index);
1032 if (page) {
1033 if (trylock_page(page))
1034 return page;
1035 page_cache_release(page);
1036 return NULL;
1038 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1039 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1040 page_cache_release(page);
1041 page = NULL;
1043 return page;
1045 EXPORT_SYMBOL(grab_cache_page_nowait);
1048 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1049 * a _large_ part of the i/o request. Imagine the worst scenario:
1051 * ---R__________________________________________B__________
1052 * ^ reading here ^ bad block(assume 4k)
1054 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1055 * => failing the whole request => read(R) => read(R+1) =>
1056 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1057 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1058 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1060 * It is going insane. Fix it by quickly scaling down the readahead size.
1062 static void shrink_readahead_size_eio(struct file *filp,
1063 struct file_ra_state *ra)
1065 ra->ra_pages /= 4;
1069 * do_generic_file_read - generic file read routine
1070 * @filp: the file to read
1071 * @ppos: current file position
1072 * @desc: read_descriptor
1073 * @actor: read method
1075 * This is a generic file read routine, and uses the
1076 * mapping->a_ops->readpage() function for the actual low-level stuff.
1078 * This is really ugly. But the goto's actually try to clarify some
1079 * of the logic when it comes to error handling etc.
1081 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1082 read_descriptor_t *desc, read_actor_t actor)
1084 struct address_space *mapping = filp->f_mapping;
1085 struct inode *inode = mapping->host;
1086 struct file_ra_state *ra = &filp->f_ra;
1087 pgoff_t index;
1088 pgoff_t last_index;
1089 pgoff_t prev_index;
1090 unsigned long offset; /* offset into pagecache page */
1091 unsigned int prev_offset;
1092 int error;
1094 index = *ppos >> PAGE_CACHE_SHIFT;
1095 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1096 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1097 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1098 offset = *ppos & ~PAGE_CACHE_MASK;
1100 for (;;) {
1101 struct page *page;
1102 pgoff_t end_index;
1103 loff_t isize;
1104 unsigned long nr, ret;
1106 cond_resched();
1107 find_page:
1108 page = find_get_page(mapping, index);
1109 if (!page) {
1110 page_cache_sync_readahead(mapping,
1111 ra, filp,
1112 index, last_index - index);
1113 page = find_get_page(mapping, index);
1114 if (unlikely(page == NULL))
1115 goto no_cached_page;
1117 if (PageReadahead(page)) {
1118 page_cache_async_readahead(mapping,
1119 ra, filp, page,
1120 index, last_index - index);
1122 if (!PageUptodate(page)) {
1123 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1124 !mapping->a_ops->is_partially_uptodate)
1125 goto page_not_up_to_date;
1126 if (!trylock_page(page))
1127 goto page_not_up_to_date;
1128 /* Did it get truncated before we got the lock? */
1129 if (!page->mapping)
1130 goto page_not_up_to_date_locked;
1131 if (!mapping->a_ops->is_partially_uptodate(page,
1132 desc, offset))
1133 goto page_not_up_to_date_locked;
1134 unlock_page(page);
1136 page_ok:
1138 * i_size must be checked after we know the page is Uptodate.
1140 * Checking i_size after the check allows us to calculate
1141 * the correct value for "nr", which means the zero-filled
1142 * part of the page is not copied back to userspace (unless
1143 * another truncate extends the file - this is desired though).
1146 isize = i_size_read(inode);
1147 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1148 if (unlikely(!isize || index > end_index)) {
1149 page_cache_release(page);
1150 goto out;
1153 /* nr is the maximum number of bytes to copy from this page */
1154 nr = PAGE_CACHE_SIZE;
1155 if (index == end_index) {
1156 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1157 if (nr <= offset) {
1158 page_cache_release(page);
1159 goto out;
1162 nr = nr - offset;
1164 /* If users can be writing to this page using arbitrary
1165 * virtual addresses, take care about potential aliasing
1166 * before reading the page on the kernel side.
1168 if (mapping_writably_mapped(mapping))
1169 flush_dcache_page(page);
1172 * When a sequential read accesses a page several times,
1173 * only mark it as accessed the first time.
1175 if (prev_index != index || offset != prev_offset)
1176 mark_page_accessed(page);
1177 prev_index = index;
1180 * Ok, we have the page, and it's up-to-date, so
1181 * now we can copy it to user space...
1183 * The actor routine returns how many bytes were actually used..
1184 * NOTE! This may not be the same as how much of a user buffer
1185 * we filled up (we may be padding etc), so we can only update
1186 * "pos" here (the actor routine has to update the user buffer
1187 * pointers and the remaining count).
1189 ret = actor(desc, page, offset, nr);
1190 offset += ret;
1191 index += offset >> PAGE_CACHE_SHIFT;
1192 offset &= ~PAGE_CACHE_MASK;
1193 prev_offset = offset;
1195 page_cache_release(page);
1196 if (ret == nr && desc->count)
1197 continue;
1198 goto out;
1200 page_not_up_to_date:
1201 /* Get exclusive access to the page ... */
1202 error = lock_page_killable(page);
1203 if (unlikely(error))
1204 goto readpage_error;
1206 page_not_up_to_date_locked:
1207 /* Did it get truncated before we got the lock? */
1208 if (!page->mapping) {
1209 unlock_page(page);
1210 page_cache_release(page);
1211 continue;
1214 /* Did somebody else fill it already? */
1215 if (PageUptodate(page)) {
1216 unlock_page(page);
1217 goto page_ok;
1220 readpage:
1222 * A previous I/O error may have been due to temporary
1223 * failures, eg. multipath errors.
1224 * PG_error will be set again if readpage fails.
1226 ClearPageError(page);
1227 /* Start the actual read. The read will unlock the page. */
1228 error = mapping->a_ops->readpage(filp, page);
1230 if (unlikely(error)) {
1231 if (error == AOP_TRUNCATED_PAGE) {
1232 page_cache_release(page);
1233 goto find_page;
1235 goto readpage_error;
1238 if (!PageUptodate(page)) {
1239 error = lock_page_killable(page);
1240 if (unlikely(error))
1241 goto readpage_error;
1242 if (!PageUptodate(page)) {
1243 if (page->mapping == NULL) {
1245 * invalidate_mapping_pages got it
1247 unlock_page(page);
1248 page_cache_release(page);
1249 goto find_page;
1251 unlock_page(page);
1252 shrink_readahead_size_eio(filp, ra);
1253 error = -EIO;
1254 goto readpage_error;
1256 unlock_page(page);
1259 goto page_ok;
1261 readpage_error:
1262 /* UHHUH! A synchronous read error occurred. Report it */
1263 desc->error = error;
1264 page_cache_release(page);
1265 goto out;
1267 no_cached_page:
1269 * Ok, it wasn't cached, so we need to create a new
1270 * page..
1272 page = page_cache_alloc_cold(mapping);
1273 if (!page) {
1274 desc->error = -ENOMEM;
1275 goto out;
1277 error = add_to_page_cache_lru(page, mapping,
1278 index, GFP_KERNEL);
1279 if (error) {
1280 page_cache_release(page);
1281 if (error == -EEXIST)
1282 goto find_page;
1283 desc->error = error;
1284 goto out;
1286 goto readpage;
1289 out:
1290 ra->prev_pos = prev_index;
1291 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1292 ra->prev_pos |= prev_offset;
1294 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1295 file_accessed(filp);
1298 int file_read_actor(read_descriptor_t *desc, struct page *page,
1299 unsigned long offset, unsigned long size)
1301 char *kaddr;
1302 unsigned long left, count = desc->count;
1304 if (size > count)
1305 size = count;
1308 * Faults on the destination of a read are common, so do it before
1309 * taking the kmap.
1311 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1312 kaddr = kmap_atomic(page);
1313 left = __copy_to_user_inatomic(desc->arg.buf,
1314 kaddr + offset, size);
1315 kunmap_atomic(kaddr);
1316 if (left == 0)
1317 goto success;
1320 /* Do it the slow way */
1321 kaddr = kmap(page);
1322 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1323 kunmap(page);
1325 if (left) {
1326 size -= left;
1327 desc->error = -EFAULT;
1329 success:
1330 desc->count = count - size;
1331 desc->written += size;
1332 desc->arg.buf += size;
1333 return size;
1337 * Performs necessary checks before doing a write
1338 * @iov: io vector request
1339 * @nr_segs: number of segments in the iovec
1340 * @count: number of bytes to write
1341 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1343 * Adjust number of segments and amount of bytes to write (nr_segs should be
1344 * properly initialized first). Returns appropriate error code that caller
1345 * should return or zero in case that write should be allowed.
1347 int generic_segment_checks(const struct iovec *iov,
1348 unsigned long *nr_segs, size_t *count, int access_flags)
1350 unsigned long seg;
1351 size_t cnt = 0;
1352 for (seg = 0; seg < *nr_segs; seg++) {
1353 const struct iovec *iv = &iov[seg];
1356 * If any segment has a negative length, or the cumulative
1357 * length ever wraps negative then return -EINVAL.
1359 cnt += iv->iov_len;
1360 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1361 return -EINVAL;
1362 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1363 continue;
1364 if (seg == 0)
1365 return -EFAULT;
1366 *nr_segs = seg;
1367 cnt -= iv->iov_len; /* This segment is no good */
1368 break;
1370 *count = cnt;
1371 return 0;
1373 EXPORT_SYMBOL(generic_segment_checks);
1376 * generic_file_aio_read - generic filesystem read routine
1377 * @iocb: kernel I/O control block
1378 * @iov: io vector request
1379 * @nr_segs: number of segments in the iovec
1380 * @pos: current file position
1382 * This is the "read()" routine for all filesystems
1383 * that can use the page cache directly.
1385 ssize_t
1386 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1387 unsigned long nr_segs, loff_t pos)
1389 struct file *filp = iocb->ki_filp;
1390 ssize_t retval;
1391 unsigned long seg = 0;
1392 size_t count;
1393 loff_t *ppos = &iocb->ki_pos;
1395 count = 0;
1396 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1397 if (retval)
1398 return retval;
1400 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1401 if (filp->f_flags & O_DIRECT) {
1402 loff_t size;
1403 struct address_space *mapping;
1404 struct inode *inode;
1406 mapping = filp->f_mapping;
1407 inode = mapping->host;
1408 if (!count)
1409 goto out; /* skip atime */
1410 size = i_size_read(inode);
1411 if (pos < size) {
1412 retval = filemap_write_and_wait_range(mapping, pos,
1413 pos + iov_length(iov, nr_segs) - 1);
1414 if (!retval) {
1415 retval = mapping->a_ops->direct_IO(READ, iocb,
1416 iov, pos, nr_segs);
1418 if (retval > 0) {
1419 *ppos = pos + retval;
1420 count -= retval;
1424 * Btrfs can have a short DIO read if we encounter
1425 * compressed extents, so if there was an error, or if
1426 * we've already read everything we wanted to, or if
1427 * there was a short read because we hit EOF, go ahead
1428 * and return. Otherwise fallthrough to buffered io for
1429 * the rest of the read.
1431 if (retval < 0 || !count || *ppos >= size) {
1432 file_accessed(filp);
1433 goto out;
1438 count = retval;
1439 for (seg = 0; seg < nr_segs; seg++) {
1440 read_descriptor_t desc;
1441 loff_t offset = 0;
1444 * If we did a short DIO read we need to skip the section of the
1445 * iov that we've already read data into.
1447 if (count) {
1448 if (count > iov[seg].iov_len) {
1449 count -= iov[seg].iov_len;
1450 continue;
1452 offset = count;
1453 count = 0;
1456 desc.written = 0;
1457 desc.arg.buf = iov[seg].iov_base + offset;
1458 desc.count = iov[seg].iov_len - offset;
1459 if (desc.count == 0)
1460 continue;
1461 desc.error = 0;
1462 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1463 retval += desc.written;
1464 if (desc.error) {
1465 retval = retval ?: desc.error;
1466 break;
1468 if (desc.count > 0)
1469 break;
1471 out:
1472 return retval;
1474 EXPORT_SYMBOL(generic_file_aio_read);
1476 #ifdef CONFIG_MMU
1478 * page_cache_read - adds requested page to the page cache if not already there
1479 * @file: file to read
1480 * @offset: page index
1482 * This adds the requested page to the page cache if it isn't already there,
1483 * and schedules an I/O to read in its contents from disk.
1485 static int page_cache_read(struct file *file, pgoff_t offset)
1487 struct address_space *mapping = file->f_mapping;
1488 struct page *page;
1489 int ret;
1491 do {
1492 page = page_cache_alloc_cold(mapping);
1493 if (!page)
1494 return -ENOMEM;
1496 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1497 if (ret == 0)
1498 ret = mapping->a_ops->readpage(file, page);
1499 else if (ret == -EEXIST)
1500 ret = 0; /* losing race to add is OK */
1502 page_cache_release(page);
1504 } while (ret == AOP_TRUNCATED_PAGE);
1506 return ret;
1509 #define MMAP_LOTSAMISS (100)
1512 * Synchronous readahead happens when we don't even find
1513 * a page in the page cache at all.
1515 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1516 struct file_ra_state *ra,
1517 struct file *file,
1518 pgoff_t offset)
1520 unsigned long ra_pages;
1521 struct address_space *mapping = file->f_mapping;
1523 /* If we don't want any read-ahead, don't bother */
1524 if (VM_RandomReadHint(vma))
1525 return;
1526 if (!ra->ra_pages)
1527 return;
1529 if (VM_SequentialReadHint(vma)) {
1530 page_cache_sync_readahead(mapping, ra, file, offset,
1531 ra->ra_pages);
1532 return;
1535 /* Avoid banging the cache line if not needed */
1536 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1537 ra->mmap_miss++;
1540 * Do we miss much more than hit in this file? If so,
1541 * stop bothering with read-ahead. It will only hurt.
1543 if (ra->mmap_miss > MMAP_LOTSAMISS)
1544 return;
1547 * mmap read-around
1549 ra_pages = max_sane_readahead(ra->ra_pages);
1550 ra->start = max_t(long, 0, offset - ra_pages / 2);
1551 ra->size = ra_pages;
1552 ra->async_size = ra_pages / 4;
1553 ra_submit(ra, mapping, file);
1557 * Asynchronous readahead happens when we find the page and PG_readahead,
1558 * so we want to possibly extend the readahead further..
1560 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1561 struct file_ra_state *ra,
1562 struct file *file,
1563 struct page *page,
1564 pgoff_t offset)
1566 struct address_space *mapping = file->f_mapping;
1568 /* If we don't want any read-ahead, don't bother */
1569 if (VM_RandomReadHint(vma))
1570 return;
1571 if (ra->mmap_miss > 0)
1572 ra->mmap_miss--;
1573 if (PageReadahead(page))
1574 page_cache_async_readahead(mapping, ra, file,
1575 page, offset, ra->ra_pages);
1579 * filemap_fault - read in file data for page fault handling
1580 * @vma: vma in which the fault was taken
1581 * @vmf: struct vm_fault containing details of the fault
1583 * filemap_fault() is invoked via the vma operations vector for a
1584 * mapped memory region to read in file data during a page fault.
1586 * The goto's are kind of ugly, but this streamlines the normal case of having
1587 * it in the page cache, and handles the special cases reasonably without
1588 * having a lot of duplicated code.
1590 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1592 int error;
1593 struct file *file = vma->vm_file;
1594 struct address_space *mapping = file->f_mapping;
1595 struct file_ra_state *ra = &file->f_ra;
1596 struct inode *inode = mapping->host;
1597 pgoff_t offset = vmf->pgoff;
1598 struct page *page;
1599 pgoff_t size;
1600 int ret = 0;
1602 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1603 if (offset >= size)
1604 return VM_FAULT_SIGBUS;
1607 * Do we have something in the page cache already?
1609 page = find_get_page(mapping, offset);
1610 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1612 * We found the page, so try async readahead before
1613 * waiting for the lock.
1615 do_async_mmap_readahead(vma, ra, file, page, offset);
1616 } else if (!page) {
1617 /* No page in the page cache at all */
1618 do_sync_mmap_readahead(vma, ra, file, offset);
1619 count_vm_event(PGMAJFAULT);
1620 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1621 ret = VM_FAULT_MAJOR;
1622 retry_find:
1623 page = find_get_page(mapping, offset);
1624 if (!page)
1625 goto no_cached_page;
1628 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1629 page_cache_release(page);
1630 return ret | VM_FAULT_RETRY;
1633 /* Did it get truncated? */
1634 if (unlikely(page->mapping != mapping)) {
1635 unlock_page(page);
1636 put_page(page);
1637 goto retry_find;
1639 VM_BUG_ON(page->index != offset);
1642 * We have a locked page in the page cache, now we need to check
1643 * that it's up-to-date. If not, it is going to be due to an error.
1645 if (unlikely(!PageUptodate(page)))
1646 goto page_not_uptodate;
1649 * Found the page and have a reference on it.
1650 * We must recheck i_size under page lock.
1652 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1653 if (unlikely(offset >= size)) {
1654 unlock_page(page);
1655 page_cache_release(page);
1656 return VM_FAULT_SIGBUS;
1659 vmf->page = page;
1660 return ret | VM_FAULT_LOCKED;
1662 no_cached_page:
1664 * We're only likely to ever get here if MADV_RANDOM is in
1665 * effect.
1667 error = page_cache_read(file, offset);
1670 * The page we want has now been added to the page cache.
1671 * In the unlikely event that someone removed it in the
1672 * meantime, we'll just come back here and read it again.
1674 if (error >= 0)
1675 goto retry_find;
1678 * An error return from page_cache_read can result if the
1679 * system is low on memory, or a problem occurs while trying
1680 * to schedule I/O.
1682 if (error == -ENOMEM)
1683 return VM_FAULT_OOM;
1684 return VM_FAULT_SIGBUS;
1686 page_not_uptodate:
1688 * Umm, take care of errors if the page isn't up-to-date.
1689 * Try to re-read it _once_. We do this synchronously,
1690 * because there really aren't any performance issues here
1691 * and we need to check for errors.
1693 ClearPageError(page);
1694 error = mapping->a_ops->readpage(file, page);
1695 if (!error) {
1696 wait_on_page_locked(page);
1697 if (!PageUptodate(page))
1698 error = -EIO;
1700 page_cache_release(page);
1702 if (!error || error == AOP_TRUNCATED_PAGE)
1703 goto retry_find;
1705 /* Things didn't work out. Return zero to tell the mm layer so. */
1706 shrink_readahead_size_eio(file, ra);
1707 return VM_FAULT_SIGBUS;
1709 EXPORT_SYMBOL(filemap_fault);
1711 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1713 struct page *page = vmf->page;
1714 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1715 int ret = VM_FAULT_LOCKED;
1717 sb_start_pagefault(inode->i_sb);
1718 file_update_time(vma->vm_file);
1719 lock_page(page);
1720 if (page->mapping != inode->i_mapping) {
1721 unlock_page(page);
1722 ret = VM_FAULT_NOPAGE;
1723 goto out;
1726 * We mark the page dirty already here so that when freeze is in
1727 * progress, we are guaranteed that writeback during freezing will
1728 * see the dirty page and writeprotect it again.
1730 set_page_dirty(page);
1731 out:
1732 sb_end_pagefault(inode->i_sb);
1733 return ret;
1735 EXPORT_SYMBOL(filemap_page_mkwrite);
1737 const struct vm_operations_struct generic_file_vm_ops = {
1738 .fault = filemap_fault,
1739 .page_mkwrite = filemap_page_mkwrite,
1740 .remap_pages = generic_file_remap_pages,
1743 /* This is used for a general mmap of a disk file */
1745 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1747 struct address_space *mapping = file->f_mapping;
1749 if (!mapping->a_ops->readpage)
1750 return -ENOEXEC;
1751 file_accessed(file);
1752 vma->vm_ops = &generic_file_vm_ops;
1753 return 0;
1757 * This is for filesystems which do not implement ->writepage.
1759 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1761 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1762 return -EINVAL;
1763 return generic_file_mmap(file, vma);
1765 #else
1766 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1768 return -ENOSYS;
1770 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1772 return -ENOSYS;
1774 #endif /* CONFIG_MMU */
1776 EXPORT_SYMBOL(generic_file_mmap);
1777 EXPORT_SYMBOL(generic_file_readonly_mmap);
1779 static struct page *__read_cache_page(struct address_space *mapping,
1780 pgoff_t index,
1781 int (*filler)(void *, struct page *),
1782 void *data,
1783 gfp_t gfp)
1785 struct page *page;
1786 int err;
1787 repeat:
1788 page = find_get_page(mapping, index);
1789 if (!page) {
1790 page = __page_cache_alloc(gfp | __GFP_COLD);
1791 if (!page)
1792 return ERR_PTR(-ENOMEM);
1793 err = add_to_page_cache_lru(page, mapping, index, gfp);
1794 if (unlikely(err)) {
1795 page_cache_release(page);
1796 if (err == -EEXIST)
1797 goto repeat;
1798 /* Presumably ENOMEM for radix tree node */
1799 return ERR_PTR(err);
1801 err = filler(data, page);
1802 if (err < 0) {
1803 page_cache_release(page);
1804 page = ERR_PTR(err);
1807 return page;
1810 static struct page *do_read_cache_page(struct address_space *mapping,
1811 pgoff_t index,
1812 int (*filler)(void *, struct page *),
1813 void *data,
1814 gfp_t gfp)
1817 struct page *page;
1818 int err;
1820 retry:
1821 page = __read_cache_page(mapping, index, filler, data, gfp);
1822 if (IS_ERR(page))
1823 return page;
1824 if (PageUptodate(page))
1825 goto out;
1827 lock_page(page);
1828 if (!page->mapping) {
1829 unlock_page(page);
1830 page_cache_release(page);
1831 goto retry;
1833 if (PageUptodate(page)) {
1834 unlock_page(page);
1835 goto out;
1837 err = filler(data, page);
1838 if (err < 0) {
1839 page_cache_release(page);
1840 return ERR_PTR(err);
1842 out:
1843 mark_page_accessed(page);
1844 return page;
1848 * read_cache_page_async - read into page cache, fill it if needed
1849 * @mapping: the page's address_space
1850 * @index: the page index
1851 * @filler: function to perform the read
1852 * @data: first arg to filler(data, page) function, often left as NULL
1854 * Same as read_cache_page, but don't wait for page to become unlocked
1855 * after submitting it to the filler.
1857 * Read into the page cache. If a page already exists, and PageUptodate() is
1858 * not set, try to fill the page but don't wait for it to become unlocked.
1860 * If the page does not get brought uptodate, return -EIO.
1862 struct page *read_cache_page_async(struct address_space *mapping,
1863 pgoff_t index,
1864 int (*filler)(void *, struct page *),
1865 void *data)
1867 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1869 EXPORT_SYMBOL(read_cache_page_async);
1871 static struct page *wait_on_page_read(struct page *page)
1873 if (!IS_ERR(page)) {
1874 wait_on_page_locked(page);
1875 if (!PageUptodate(page)) {
1876 page_cache_release(page);
1877 page = ERR_PTR(-EIO);
1880 return page;
1884 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1885 * @mapping: the page's address_space
1886 * @index: the page index
1887 * @gfp: the page allocator flags to use if allocating
1889 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1890 * any new page allocations done using the specified allocation flags.
1892 * If the page does not get brought uptodate, return -EIO.
1894 struct page *read_cache_page_gfp(struct address_space *mapping,
1895 pgoff_t index,
1896 gfp_t gfp)
1898 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1900 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1902 EXPORT_SYMBOL(read_cache_page_gfp);
1905 * read_cache_page - read into page cache, fill it if needed
1906 * @mapping: the page's address_space
1907 * @index: the page index
1908 * @filler: function to perform the read
1909 * @data: first arg to filler(data, page) function, often left as NULL
1911 * Read into the page cache. If a page already exists, and PageUptodate() is
1912 * not set, try to fill the page then wait for it to become unlocked.
1914 * If the page does not get brought uptodate, return -EIO.
1916 struct page *read_cache_page(struct address_space *mapping,
1917 pgoff_t index,
1918 int (*filler)(void *, struct page *),
1919 void *data)
1921 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1923 EXPORT_SYMBOL(read_cache_page);
1925 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1926 const struct iovec *iov, size_t base, size_t bytes)
1928 size_t copied = 0, left = 0;
1930 while (bytes) {
1931 char __user *buf = iov->iov_base + base;
1932 int copy = min(bytes, iov->iov_len - base);
1934 base = 0;
1935 left = __copy_from_user_inatomic(vaddr, buf, copy);
1936 copied += copy;
1937 bytes -= copy;
1938 vaddr += copy;
1939 iov++;
1941 if (unlikely(left))
1942 break;
1944 return copied - left;
1948 * Copy as much as we can into the page and return the number of bytes which
1949 * were successfully copied. If a fault is encountered then return the number of
1950 * bytes which were copied.
1952 size_t iov_iter_copy_from_user_atomic(struct page *page,
1953 struct iov_iter *i, unsigned long offset, size_t bytes)
1955 char *kaddr;
1956 size_t copied;
1958 BUG_ON(!in_atomic());
1959 kaddr = kmap_atomic(page);
1960 if (likely(i->nr_segs == 1)) {
1961 int left;
1962 char __user *buf = i->iov->iov_base + i->iov_offset;
1963 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1964 copied = bytes - left;
1965 } else {
1966 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1967 i->iov, i->iov_offset, bytes);
1969 kunmap_atomic(kaddr);
1971 return copied;
1973 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1976 * This has the same sideeffects and return value as
1977 * iov_iter_copy_from_user_atomic().
1978 * The difference is that it attempts to resolve faults.
1979 * Page must not be locked.
1981 size_t iov_iter_copy_from_user(struct page *page,
1982 struct iov_iter *i, unsigned long offset, size_t bytes)
1984 char *kaddr;
1985 size_t copied;
1987 kaddr = kmap(page);
1988 if (likely(i->nr_segs == 1)) {
1989 int left;
1990 char __user *buf = i->iov->iov_base + i->iov_offset;
1991 left = __copy_from_user(kaddr + offset, buf, bytes);
1992 copied = bytes - left;
1993 } else {
1994 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1995 i->iov, i->iov_offset, bytes);
1997 kunmap(page);
1998 return copied;
2000 EXPORT_SYMBOL(iov_iter_copy_from_user);
2002 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2004 BUG_ON(i->count < bytes);
2006 if (likely(i->nr_segs == 1)) {
2007 i->iov_offset += bytes;
2008 i->count -= bytes;
2009 } else {
2010 const struct iovec *iov = i->iov;
2011 size_t base = i->iov_offset;
2012 unsigned long nr_segs = i->nr_segs;
2015 * The !iov->iov_len check ensures we skip over unlikely
2016 * zero-length segments (without overruning the iovec).
2018 while (bytes || unlikely(i->count && !iov->iov_len)) {
2019 int copy;
2021 copy = min(bytes, iov->iov_len - base);
2022 BUG_ON(!i->count || i->count < copy);
2023 i->count -= copy;
2024 bytes -= copy;
2025 base += copy;
2026 if (iov->iov_len == base) {
2027 iov++;
2028 nr_segs--;
2029 base = 0;
2032 i->iov = iov;
2033 i->iov_offset = base;
2034 i->nr_segs = nr_segs;
2037 EXPORT_SYMBOL(iov_iter_advance);
2040 * Fault in the first iovec of the given iov_iter, to a maximum length
2041 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2042 * accessed (ie. because it is an invalid address).
2044 * writev-intensive code may want this to prefault several iovecs -- that
2045 * would be possible (callers must not rely on the fact that _only_ the
2046 * first iovec will be faulted with the current implementation).
2048 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2050 char __user *buf = i->iov->iov_base + i->iov_offset;
2051 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2052 return fault_in_pages_readable(buf, bytes);
2054 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2057 * Return the count of just the current iov_iter segment.
2059 size_t iov_iter_single_seg_count(struct iov_iter *i)
2061 const struct iovec *iov = i->iov;
2062 if (i->nr_segs == 1)
2063 return i->count;
2064 else
2065 return min(i->count, iov->iov_len - i->iov_offset);
2067 EXPORT_SYMBOL(iov_iter_single_seg_count);
2070 * Performs necessary checks before doing a write
2072 * Can adjust writing position or amount of bytes to write.
2073 * Returns appropriate error code that caller should return or
2074 * zero in case that write should be allowed.
2076 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2078 struct inode *inode = file->f_mapping->host;
2079 unsigned long limit = rlimit(RLIMIT_FSIZE);
2081 if (unlikely(*pos < 0))
2082 return -EINVAL;
2084 if (!isblk) {
2085 /* FIXME: this is for backwards compatibility with 2.4 */
2086 if (file->f_flags & O_APPEND)
2087 *pos = i_size_read(inode);
2089 if (limit != RLIM_INFINITY) {
2090 if (*pos >= limit) {
2091 send_sig(SIGXFSZ, current, 0);
2092 return -EFBIG;
2094 if (*count > limit - (typeof(limit))*pos) {
2095 *count = limit - (typeof(limit))*pos;
2101 * LFS rule
2103 if (unlikely(*pos + *count > MAX_NON_LFS &&
2104 !(file->f_flags & O_LARGEFILE))) {
2105 if (*pos >= MAX_NON_LFS) {
2106 return -EFBIG;
2108 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2109 *count = MAX_NON_LFS - (unsigned long)*pos;
2114 * Are we about to exceed the fs block limit ?
2116 * If we have written data it becomes a short write. If we have
2117 * exceeded without writing data we send a signal and return EFBIG.
2118 * Linus frestrict idea will clean these up nicely..
2120 if (likely(!isblk)) {
2121 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2122 if (*count || *pos > inode->i_sb->s_maxbytes) {
2123 return -EFBIG;
2125 /* zero-length writes at ->s_maxbytes are OK */
2128 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2129 *count = inode->i_sb->s_maxbytes - *pos;
2130 } else {
2131 #ifdef CONFIG_BLOCK
2132 loff_t isize;
2133 if (bdev_read_only(I_BDEV(inode)))
2134 return -EPERM;
2135 isize = i_size_read(inode);
2136 if (*pos >= isize) {
2137 if (*count || *pos > isize)
2138 return -ENOSPC;
2141 if (*pos + *count > isize)
2142 *count = isize - *pos;
2143 #else
2144 return -EPERM;
2145 #endif
2147 return 0;
2149 EXPORT_SYMBOL(generic_write_checks);
2151 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2152 loff_t pos, unsigned len, unsigned flags,
2153 struct page **pagep, void **fsdata)
2155 const struct address_space_operations *aops = mapping->a_ops;
2157 return aops->write_begin(file, mapping, pos, len, flags,
2158 pagep, fsdata);
2160 EXPORT_SYMBOL(pagecache_write_begin);
2162 int pagecache_write_end(struct file *file, struct address_space *mapping,
2163 loff_t pos, unsigned len, unsigned copied,
2164 struct page *page, void *fsdata)
2166 const struct address_space_operations *aops = mapping->a_ops;
2168 mark_page_accessed(page);
2169 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2171 EXPORT_SYMBOL(pagecache_write_end);
2173 ssize_t
2174 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2175 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2176 size_t count, size_t ocount)
2178 struct file *file = iocb->ki_filp;
2179 struct address_space *mapping = file->f_mapping;
2180 struct inode *inode = mapping->host;
2181 ssize_t written;
2182 size_t write_len;
2183 pgoff_t end;
2185 if (count != ocount)
2186 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2188 write_len = iov_length(iov, *nr_segs);
2189 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2191 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2192 if (written)
2193 goto out;
2196 * After a write we want buffered reads to be sure to go to disk to get
2197 * the new data. We invalidate clean cached page from the region we're
2198 * about to write. We do this *before* the write so that we can return
2199 * without clobbering -EIOCBQUEUED from ->direct_IO().
2201 if (mapping->nrpages) {
2202 written = invalidate_inode_pages2_range(mapping,
2203 pos >> PAGE_CACHE_SHIFT, end);
2205 * If a page can not be invalidated, return 0 to fall back
2206 * to buffered write.
2208 if (written) {
2209 if (written == -EBUSY)
2210 return 0;
2211 goto out;
2215 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2218 * Finally, try again to invalidate clean pages which might have been
2219 * cached by non-direct readahead, or faulted in by get_user_pages()
2220 * if the source of the write was an mmap'ed region of the file
2221 * we're writing. Either one is a pretty crazy thing to do,
2222 * so we don't support it 100%. If this invalidation
2223 * fails, tough, the write still worked...
2225 if (mapping->nrpages) {
2226 invalidate_inode_pages2_range(mapping,
2227 pos >> PAGE_CACHE_SHIFT, end);
2230 if (written > 0) {
2231 pos += written;
2232 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2233 i_size_write(inode, pos);
2234 mark_inode_dirty(inode);
2236 *ppos = pos;
2238 out:
2239 return written;
2241 EXPORT_SYMBOL(generic_file_direct_write);
2244 * Find or create a page at the given pagecache position. Return the locked
2245 * page. This function is specifically for buffered writes.
2247 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2248 pgoff_t index, unsigned flags)
2250 int status;
2251 gfp_t gfp_mask;
2252 struct page *page;
2253 gfp_t gfp_notmask = 0;
2255 gfp_mask = mapping_gfp_mask(mapping);
2256 if (mapping_cap_account_dirty(mapping))
2257 gfp_mask |= __GFP_WRITE;
2258 if (flags & AOP_FLAG_NOFS)
2259 gfp_notmask = __GFP_FS;
2260 repeat:
2261 page = find_lock_page(mapping, index);
2262 if (page)
2263 goto found;
2265 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2266 if (!page)
2267 return NULL;
2268 status = add_to_page_cache_lru(page, mapping, index,
2269 GFP_KERNEL & ~gfp_notmask);
2270 if (unlikely(status)) {
2271 page_cache_release(page);
2272 if (status == -EEXIST)
2273 goto repeat;
2274 return NULL;
2276 found:
2277 wait_on_page_writeback(page);
2278 return page;
2280 EXPORT_SYMBOL(grab_cache_page_write_begin);
2282 static ssize_t generic_perform_write(struct file *file,
2283 struct iov_iter *i, loff_t pos)
2285 struct address_space *mapping = file->f_mapping;
2286 const struct address_space_operations *a_ops = mapping->a_ops;
2287 long status = 0;
2288 ssize_t written = 0;
2289 unsigned int flags = 0;
2292 * Copies from kernel address space cannot fail (NFSD is a big user).
2294 if (segment_eq(get_fs(), KERNEL_DS))
2295 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2297 do {
2298 struct page *page;
2299 unsigned long offset; /* Offset into pagecache page */
2300 unsigned long bytes; /* Bytes to write to page */
2301 size_t copied; /* Bytes copied from user */
2302 void *fsdata;
2304 offset = (pos & (PAGE_CACHE_SIZE - 1));
2305 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2306 iov_iter_count(i));
2308 again:
2310 * Bring in the user page that we will copy from _first_.
2311 * Otherwise there's a nasty deadlock on copying from the
2312 * same page as we're writing to, without it being marked
2313 * up-to-date.
2315 * Not only is this an optimisation, but it is also required
2316 * to check that the address is actually valid, when atomic
2317 * usercopies are used, below.
2319 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2320 status = -EFAULT;
2321 break;
2324 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2325 &page, &fsdata);
2326 if (unlikely(status))
2327 break;
2329 if (mapping_writably_mapped(mapping))
2330 flush_dcache_page(page);
2332 pagefault_disable();
2333 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2334 pagefault_enable();
2335 flush_dcache_page(page);
2337 mark_page_accessed(page);
2338 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2339 page, fsdata);
2340 if (unlikely(status < 0))
2341 break;
2342 copied = status;
2344 cond_resched();
2346 iov_iter_advance(i, copied);
2347 if (unlikely(copied == 0)) {
2349 * If we were unable to copy any data at all, we must
2350 * fall back to a single segment length write.
2352 * If we didn't fallback here, we could livelock
2353 * because not all segments in the iov can be copied at
2354 * once without a pagefault.
2356 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2357 iov_iter_single_seg_count(i));
2358 goto again;
2360 pos += copied;
2361 written += copied;
2363 balance_dirty_pages_ratelimited(mapping);
2364 if (fatal_signal_pending(current)) {
2365 status = -EINTR;
2366 break;
2368 } while (iov_iter_count(i));
2370 return written ? written : status;
2373 ssize_t
2374 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2375 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2376 size_t count, ssize_t written)
2378 struct file *file = iocb->ki_filp;
2379 ssize_t status;
2380 struct iov_iter i;
2382 iov_iter_init(&i, iov, nr_segs, count, written);
2383 status = generic_perform_write(file, &i, pos);
2385 if (likely(status >= 0)) {
2386 written += status;
2387 *ppos = pos + status;
2390 return written ? written : status;
2392 EXPORT_SYMBOL(generic_file_buffered_write);
2395 * __generic_file_aio_write - write data to a file
2396 * @iocb: IO state structure (file, offset, etc.)
2397 * @iov: vector with data to write
2398 * @nr_segs: number of segments in the vector
2399 * @ppos: position where to write
2401 * This function does all the work needed for actually writing data to a
2402 * file. It does all basic checks, removes SUID from the file, updates
2403 * modification times and calls proper subroutines depending on whether we
2404 * do direct IO or a standard buffered write.
2406 * It expects i_mutex to be grabbed unless we work on a block device or similar
2407 * object which does not need locking at all.
2409 * This function does *not* take care of syncing data in case of O_SYNC write.
2410 * A caller has to handle it. This is mainly due to the fact that we want to
2411 * avoid syncing under i_mutex.
2413 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2414 unsigned long nr_segs, loff_t *ppos)
2416 struct file *file = iocb->ki_filp;
2417 struct address_space * mapping = file->f_mapping;
2418 size_t ocount; /* original count */
2419 size_t count; /* after file limit checks */
2420 struct inode *inode = mapping->host;
2421 loff_t pos;
2422 ssize_t written;
2423 ssize_t err;
2425 ocount = 0;
2426 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2427 if (err)
2428 return err;
2430 count = ocount;
2431 pos = *ppos;
2433 /* We can write back this queue in page reclaim */
2434 current->backing_dev_info = mapping->backing_dev_info;
2435 written = 0;
2437 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2438 if (err)
2439 goto out;
2441 if (count == 0)
2442 goto out;
2444 err = file_remove_suid(file);
2445 if (err)
2446 goto out;
2448 err = file_update_time(file);
2449 if (err)
2450 goto out;
2452 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2453 if (unlikely(file->f_flags & O_DIRECT)) {
2454 loff_t endbyte;
2455 ssize_t written_buffered;
2457 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2458 ppos, count, ocount);
2459 if (written < 0 || written == count)
2460 goto out;
2462 * direct-io write to a hole: fall through to buffered I/O
2463 * for completing the rest of the request.
2465 pos += written;
2466 count -= written;
2467 written_buffered = generic_file_buffered_write(iocb, iov,
2468 nr_segs, pos, ppos, count,
2469 written);
2471 * If generic_file_buffered_write() retuned a synchronous error
2472 * then we want to return the number of bytes which were
2473 * direct-written, or the error code if that was zero. Note
2474 * that this differs from normal direct-io semantics, which
2475 * will return -EFOO even if some bytes were written.
2477 if (written_buffered < 0) {
2478 err = written_buffered;
2479 goto out;
2483 * We need to ensure that the page cache pages are written to
2484 * disk and invalidated to preserve the expected O_DIRECT
2485 * semantics.
2487 endbyte = pos + written_buffered - written - 1;
2488 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2489 if (err == 0) {
2490 written = written_buffered;
2491 invalidate_mapping_pages(mapping,
2492 pos >> PAGE_CACHE_SHIFT,
2493 endbyte >> PAGE_CACHE_SHIFT);
2494 } else {
2496 * We don't know how much we wrote, so just return
2497 * the number of bytes which were direct-written
2500 } else {
2501 written = generic_file_buffered_write(iocb, iov, nr_segs,
2502 pos, ppos, count, written);
2504 out:
2505 current->backing_dev_info = NULL;
2506 return written ? written : err;
2508 EXPORT_SYMBOL(__generic_file_aio_write);
2511 * generic_file_aio_write - write data to a file
2512 * @iocb: IO state structure
2513 * @iov: vector with data to write
2514 * @nr_segs: number of segments in the vector
2515 * @pos: position in file where to write
2517 * This is a wrapper around __generic_file_aio_write() to be used by most
2518 * filesystems. It takes care of syncing the file in case of O_SYNC file
2519 * and acquires i_mutex as needed.
2521 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2522 unsigned long nr_segs, loff_t pos)
2524 struct file *file = iocb->ki_filp;
2525 struct inode *inode = file->f_mapping->host;
2526 ssize_t ret;
2528 BUG_ON(iocb->ki_pos != pos);
2530 sb_start_write(inode->i_sb);
2531 mutex_lock(&inode->i_mutex);
2532 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2533 mutex_unlock(&inode->i_mutex);
2535 if (ret > 0 || ret == -EIOCBQUEUED) {
2536 ssize_t err;
2538 err = generic_write_sync(file, pos, ret);
2539 if (err < 0 && ret > 0)
2540 ret = err;
2542 sb_end_write(inode->i_sb);
2543 return ret;
2545 EXPORT_SYMBOL(generic_file_aio_write);
2548 * try_to_release_page() - release old fs-specific metadata on a page
2550 * @page: the page which the kernel is trying to free
2551 * @gfp_mask: memory allocation flags (and I/O mode)
2553 * The address_space is to try to release any data against the page
2554 * (presumably at page->private). If the release was successful, return `1'.
2555 * Otherwise return zero.
2557 * This may also be called if PG_fscache is set on a page, indicating that the
2558 * page is known to the local caching routines.
2560 * The @gfp_mask argument specifies whether I/O may be performed to release
2561 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2564 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2566 struct address_space * const mapping = page->mapping;
2568 BUG_ON(!PageLocked(page));
2569 if (PageWriteback(page))
2570 return 0;
2572 if (mapping && mapping->a_ops->releasepage)
2573 return mapping->a_ops->releasepage(page, gfp_mask);
2574 return try_to_free_buffers(page);
2577 EXPORT_SYMBOL(try_to_release_page);