Linux 3.8-rc7
[cris-mirror.git] / mm / memblock.c
blob88adc8afb6103d6c1ba2eb7e20c1ed226cf2b1d3
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 static int memblock_memory_in_slab __initdata_memblock = 0;
41 static int memblock_reserved_in_slab __initdata_memblock = 0;
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static __init_memblock const char *
45 memblock_type_name(struct memblock_type *type)
47 if (type == &memblock.memory)
48 return "memory";
49 else if (type == &memblock.reserved)
50 return "reserved";
51 else
52 return "unknown";
55 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
56 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
58 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
62 * Address comparison utilities
64 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
65 phys_addr_t base2, phys_addr_t size2)
67 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
70 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
71 phys_addr_t base, phys_addr_t size)
73 unsigned long i;
75 for (i = 0; i < type->cnt; i++) {
76 phys_addr_t rgnbase = type->regions[i].base;
77 phys_addr_t rgnsize = type->regions[i].size;
78 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
79 break;
82 return (i < type->cnt) ? i : -1;
85 /**
86 * memblock_find_in_range_node - find free area in given range and node
87 * @start: start of candidate range
88 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
89 * @size: size of free area to find
90 * @align: alignment of free area to find
91 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
93 * Find @size free area aligned to @align in the specified range and node.
95 * RETURNS:
96 * Found address on success, %0 on failure.
98 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
99 phys_addr_t end, phys_addr_t size,
100 phys_addr_t align, int nid)
102 phys_addr_t this_start, this_end, cand;
103 u64 i;
105 /* pump up @end */
106 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
107 end = memblock.current_limit;
109 /* avoid allocating the first page */
110 start = max_t(phys_addr_t, start, PAGE_SIZE);
111 end = max(start, end);
113 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
114 this_start = clamp(this_start, start, end);
115 this_end = clamp(this_end, start, end);
117 if (this_end < size)
118 continue;
120 cand = round_down(this_end - size, align);
121 if (cand >= this_start)
122 return cand;
124 return 0;
128 * memblock_find_in_range - find free area in given range
129 * @start: start of candidate range
130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
131 * @size: size of free area to find
132 * @align: alignment of free area to find
134 * Find @size free area aligned to @align in the specified range.
136 * RETURNS:
137 * Found address on success, %0 on failure.
139 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
140 phys_addr_t end, phys_addr_t size,
141 phys_addr_t align)
143 return memblock_find_in_range_node(start, end, size, align,
144 MAX_NUMNODES);
147 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
149 type->total_size -= type->regions[r].size;
150 memmove(&type->regions[r], &type->regions[r + 1],
151 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
152 type->cnt--;
154 /* Special case for empty arrays */
155 if (type->cnt == 0) {
156 WARN_ON(type->total_size != 0);
157 type->cnt = 1;
158 type->regions[0].base = 0;
159 type->regions[0].size = 0;
160 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
164 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
165 phys_addr_t *addr)
167 if (memblock.reserved.regions == memblock_reserved_init_regions)
168 return 0;
170 *addr = __pa(memblock.reserved.regions);
172 return PAGE_ALIGN(sizeof(struct memblock_region) *
173 memblock.reserved.max);
177 * memblock_double_array - double the size of the memblock regions array
178 * @type: memblock type of the regions array being doubled
179 * @new_area_start: starting address of memory range to avoid overlap with
180 * @new_area_size: size of memory range to avoid overlap with
182 * Double the size of the @type regions array. If memblock is being used to
183 * allocate memory for a new reserved regions array and there is a previously
184 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
185 * waiting to be reserved, ensure the memory used by the new array does
186 * not overlap.
188 * RETURNS:
189 * 0 on success, -1 on failure.
191 static int __init_memblock memblock_double_array(struct memblock_type *type,
192 phys_addr_t new_area_start,
193 phys_addr_t new_area_size)
195 struct memblock_region *new_array, *old_array;
196 phys_addr_t old_alloc_size, new_alloc_size;
197 phys_addr_t old_size, new_size, addr;
198 int use_slab = slab_is_available();
199 int *in_slab;
201 /* We don't allow resizing until we know about the reserved regions
202 * of memory that aren't suitable for allocation
204 if (!memblock_can_resize)
205 return -1;
207 /* Calculate new doubled size */
208 old_size = type->max * sizeof(struct memblock_region);
209 new_size = old_size << 1;
211 * We need to allocated new one align to PAGE_SIZE,
212 * so we can free them completely later.
214 old_alloc_size = PAGE_ALIGN(old_size);
215 new_alloc_size = PAGE_ALIGN(new_size);
217 /* Retrieve the slab flag */
218 if (type == &memblock.memory)
219 in_slab = &memblock_memory_in_slab;
220 else
221 in_slab = &memblock_reserved_in_slab;
223 /* Try to find some space for it.
225 * WARNING: We assume that either slab_is_available() and we use it or
226 * we use MEMBLOCK for allocations. That means that this is unsafe to
227 * use when bootmem is currently active (unless bootmem itself is
228 * implemented on top of MEMBLOCK which isn't the case yet)
230 * This should however not be an issue for now, as we currently only
231 * call into MEMBLOCK while it's still active, or much later when slab
232 * is active for memory hotplug operations
234 if (use_slab) {
235 new_array = kmalloc(new_size, GFP_KERNEL);
236 addr = new_array ? __pa(new_array) : 0;
237 } else {
238 /* only exclude range when trying to double reserved.regions */
239 if (type != &memblock.reserved)
240 new_area_start = new_area_size = 0;
242 addr = memblock_find_in_range(new_area_start + new_area_size,
243 memblock.current_limit,
244 new_alloc_size, PAGE_SIZE);
245 if (!addr && new_area_size)
246 addr = memblock_find_in_range(0,
247 min(new_area_start, memblock.current_limit),
248 new_alloc_size, PAGE_SIZE);
250 new_array = addr ? __va(addr) : NULL;
252 if (!addr) {
253 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
254 memblock_type_name(type), type->max, type->max * 2);
255 return -1;
258 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
259 memblock_type_name(type), type->max * 2, (u64)addr,
260 (u64)addr + new_size - 1);
263 * Found space, we now need to move the array over before we add the
264 * reserved region since it may be our reserved array itself that is
265 * full.
267 memcpy(new_array, type->regions, old_size);
268 memset(new_array + type->max, 0, old_size);
269 old_array = type->regions;
270 type->regions = new_array;
271 type->max <<= 1;
273 /* Free old array. We needn't free it if the array is the static one */
274 if (*in_slab)
275 kfree(old_array);
276 else if (old_array != memblock_memory_init_regions &&
277 old_array != memblock_reserved_init_regions)
278 memblock_free(__pa(old_array), old_alloc_size);
281 * Reserve the new array if that comes from the memblock. Otherwise, we
282 * needn't do it
284 if (!use_slab)
285 BUG_ON(memblock_reserve(addr, new_alloc_size));
287 /* Update slab flag */
288 *in_slab = use_slab;
290 return 0;
294 * memblock_merge_regions - merge neighboring compatible regions
295 * @type: memblock type to scan
297 * Scan @type and merge neighboring compatible regions.
299 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
301 int i = 0;
303 /* cnt never goes below 1 */
304 while (i < type->cnt - 1) {
305 struct memblock_region *this = &type->regions[i];
306 struct memblock_region *next = &type->regions[i + 1];
308 if (this->base + this->size != next->base ||
309 memblock_get_region_node(this) !=
310 memblock_get_region_node(next)) {
311 BUG_ON(this->base + this->size > next->base);
312 i++;
313 continue;
316 this->size += next->size;
317 /* move forward from next + 1, index of which is i + 2 */
318 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
319 type->cnt--;
324 * memblock_insert_region - insert new memblock region
325 * @type: memblock type to insert into
326 * @idx: index for the insertion point
327 * @base: base address of the new region
328 * @size: size of the new region
330 * Insert new memblock region [@base,@base+@size) into @type at @idx.
331 * @type must already have extra room to accomodate the new region.
333 static void __init_memblock memblock_insert_region(struct memblock_type *type,
334 int idx, phys_addr_t base,
335 phys_addr_t size, int nid)
337 struct memblock_region *rgn = &type->regions[idx];
339 BUG_ON(type->cnt >= type->max);
340 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
341 rgn->base = base;
342 rgn->size = size;
343 memblock_set_region_node(rgn, nid);
344 type->cnt++;
345 type->total_size += size;
349 * memblock_add_region - add new memblock region
350 * @type: memblock type to add new region into
351 * @base: base address of the new region
352 * @size: size of the new region
353 * @nid: nid of the new region
355 * Add new memblock region [@base,@base+@size) into @type. The new region
356 * is allowed to overlap with existing ones - overlaps don't affect already
357 * existing regions. @type is guaranteed to be minimal (all neighbouring
358 * compatible regions are merged) after the addition.
360 * RETURNS:
361 * 0 on success, -errno on failure.
363 static int __init_memblock memblock_add_region(struct memblock_type *type,
364 phys_addr_t base, phys_addr_t size, int nid)
366 bool insert = false;
367 phys_addr_t obase = base;
368 phys_addr_t end = base + memblock_cap_size(base, &size);
369 int i, nr_new;
371 if (!size)
372 return 0;
374 /* special case for empty array */
375 if (type->regions[0].size == 0) {
376 WARN_ON(type->cnt != 1 || type->total_size);
377 type->regions[0].base = base;
378 type->regions[0].size = size;
379 memblock_set_region_node(&type->regions[0], nid);
380 type->total_size = size;
381 return 0;
383 repeat:
385 * The following is executed twice. Once with %false @insert and
386 * then with %true. The first counts the number of regions needed
387 * to accomodate the new area. The second actually inserts them.
389 base = obase;
390 nr_new = 0;
392 for (i = 0; i < type->cnt; i++) {
393 struct memblock_region *rgn = &type->regions[i];
394 phys_addr_t rbase = rgn->base;
395 phys_addr_t rend = rbase + rgn->size;
397 if (rbase >= end)
398 break;
399 if (rend <= base)
400 continue;
402 * @rgn overlaps. If it separates the lower part of new
403 * area, insert that portion.
405 if (rbase > base) {
406 nr_new++;
407 if (insert)
408 memblock_insert_region(type, i++, base,
409 rbase - base, nid);
411 /* area below @rend is dealt with, forget about it */
412 base = min(rend, end);
415 /* insert the remaining portion */
416 if (base < end) {
417 nr_new++;
418 if (insert)
419 memblock_insert_region(type, i, base, end - base, nid);
423 * If this was the first round, resize array and repeat for actual
424 * insertions; otherwise, merge and return.
426 if (!insert) {
427 while (type->cnt + nr_new > type->max)
428 if (memblock_double_array(type, obase, size) < 0)
429 return -ENOMEM;
430 insert = true;
431 goto repeat;
432 } else {
433 memblock_merge_regions(type);
434 return 0;
438 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
439 int nid)
441 return memblock_add_region(&memblock.memory, base, size, nid);
444 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
446 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
450 * memblock_isolate_range - isolate given range into disjoint memblocks
451 * @type: memblock type to isolate range for
452 * @base: base of range to isolate
453 * @size: size of range to isolate
454 * @start_rgn: out parameter for the start of isolated region
455 * @end_rgn: out parameter for the end of isolated region
457 * Walk @type and ensure that regions don't cross the boundaries defined by
458 * [@base,@base+@size). Crossing regions are split at the boundaries,
459 * which may create at most two more regions. The index of the first
460 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
462 * RETURNS:
463 * 0 on success, -errno on failure.
465 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
466 phys_addr_t base, phys_addr_t size,
467 int *start_rgn, int *end_rgn)
469 phys_addr_t end = base + memblock_cap_size(base, &size);
470 int i;
472 *start_rgn = *end_rgn = 0;
474 if (!size)
475 return 0;
477 /* we'll create at most two more regions */
478 while (type->cnt + 2 > type->max)
479 if (memblock_double_array(type, base, size) < 0)
480 return -ENOMEM;
482 for (i = 0; i < type->cnt; i++) {
483 struct memblock_region *rgn = &type->regions[i];
484 phys_addr_t rbase = rgn->base;
485 phys_addr_t rend = rbase + rgn->size;
487 if (rbase >= end)
488 break;
489 if (rend <= base)
490 continue;
492 if (rbase < base) {
494 * @rgn intersects from below. Split and continue
495 * to process the next region - the new top half.
497 rgn->base = base;
498 rgn->size -= base - rbase;
499 type->total_size -= base - rbase;
500 memblock_insert_region(type, i, rbase, base - rbase,
501 memblock_get_region_node(rgn));
502 } else if (rend > end) {
504 * @rgn intersects from above. Split and redo the
505 * current region - the new bottom half.
507 rgn->base = end;
508 rgn->size -= end - rbase;
509 type->total_size -= end - rbase;
510 memblock_insert_region(type, i--, rbase, end - rbase,
511 memblock_get_region_node(rgn));
512 } else {
513 /* @rgn is fully contained, record it */
514 if (!*end_rgn)
515 *start_rgn = i;
516 *end_rgn = i + 1;
520 return 0;
523 static int __init_memblock __memblock_remove(struct memblock_type *type,
524 phys_addr_t base, phys_addr_t size)
526 int start_rgn, end_rgn;
527 int i, ret;
529 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
530 if (ret)
531 return ret;
533 for (i = end_rgn - 1; i >= start_rgn; i--)
534 memblock_remove_region(type, i);
535 return 0;
538 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
540 return __memblock_remove(&memblock.memory, base, size);
543 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
545 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
546 (unsigned long long)base,
547 (unsigned long long)base + size,
548 (void *)_RET_IP_);
550 return __memblock_remove(&memblock.reserved, base, size);
553 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
555 struct memblock_type *_rgn = &memblock.reserved;
557 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
558 (unsigned long long)base,
559 (unsigned long long)base + size,
560 (void *)_RET_IP_);
562 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
566 * __next_free_mem_range - next function for for_each_free_mem_range()
567 * @idx: pointer to u64 loop variable
568 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
569 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
570 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
571 * @out_nid: ptr to int for nid of the range, can be %NULL
573 * Find the first free area from *@idx which matches @nid, fill the out
574 * parameters, and update *@idx for the next iteration. The lower 32bit of
575 * *@idx contains index into memory region and the upper 32bit indexes the
576 * areas before each reserved region. For example, if reserved regions
577 * look like the following,
579 * 0:[0-16), 1:[32-48), 2:[128-130)
581 * The upper 32bit indexes the following regions.
583 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
585 * As both region arrays are sorted, the function advances the two indices
586 * in lockstep and returns each intersection.
588 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
589 phys_addr_t *out_start,
590 phys_addr_t *out_end, int *out_nid)
592 struct memblock_type *mem = &memblock.memory;
593 struct memblock_type *rsv = &memblock.reserved;
594 int mi = *idx & 0xffffffff;
595 int ri = *idx >> 32;
597 for ( ; mi < mem->cnt; mi++) {
598 struct memblock_region *m = &mem->regions[mi];
599 phys_addr_t m_start = m->base;
600 phys_addr_t m_end = m->base + m->size;
602 /* only memory regions are associated with nodes, check it */
603 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
604 continue;
606 /* scan areas before each reservation for intersection */
607 for ( ; ri < rsv->cnt + 1; ri++) {
608 struct memblock_region *r = &rsv->regions[ri];
609 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
610 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
612 /* if ri advanced past mi, break out to advance mi */
613 if (r_start >= m_end)
614 break;
615 /* if the two regions intersect, we're done */
616 if (m_start < r_end) {
617 if (out_start)
618 *out_start = max(m_start, r_start);
619 if (out_end)
620 *out_end = min(m_end, r_end);
621 if (out_nid)
622 *out_nid = memblock_get_region_node(m);
624 * The region which ends first is advanced
625 * for the next iteration.
627 if (m_end <= r_end)
628 mi++;
629 else
630 ri++;
631 *idx = (u32)mi | (u64)ri << 32;
632 return;
637 /* signal end of iteration */
638 *idx = ULLONG_MAX;
642 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
643 * @idx: pointer to u64 loop variable
644 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
645 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
646 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
647 * @out_nid: ptr to int for nid of the range, can be %NULL
649 * Reverse of __next_free_mem_range().
651 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
652 phys_addr_t *out_start,
653 phys_addr_t *out_end, int *out_nid)
655 struct memblock_type *mem = &memblock.memory;
656 struct memblock_type *rsv = &memblock.reserved;
657 int mi = *idx & 0xffffffff;
658 int ri = *idx >> 32;
660 if (*idx == (u64)ULLONG_MAX) {
661 mi = mem->cnt - 1;
662 ri = rsv->cnt;
665 for ( ; mi >= 0; mi--) {
666 struct memblock_region *m = &mem->regions[mi];
667 phys_addr_t m_start = m->base;
668 phys_addr_t m_end = m->base + m->size;
670 /* only memory regions are associated with nodes, check it */
671 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
672 continue;
674 /* scan areas before each reservation for intersection */
675 for ( ; ri >= 0; ri--) {
676 struct memblock_region *r = &rsv->regions[ri];
677 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
678 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
680 /* if ri advanced past mi, break out to advance mi */
681 if (r_end <= m_start)
682 break;
683 /* if the two regions intersect, we're done */
684 if (m_end > r_start) {
685 if (out_start)
686 *out_start = max(m_start, r_start);
687 if (out_end)
688 *out_end = min(m_end, r_end);
689 if (out_nid)
690 *out_nid = memblock_get_region_node(m);
692 if (m_start >= r_start)
693 mi--;
694 else
695 ri--;
696 *idx = (u32)mi | (u64)ri << 32;
697 return;
702 *idx = ULLONG_MAX;
705 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
707 * Common iterator interface used to define for_each_mem_range().
709 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
710 unsigned long *out_start_pfn,
711 unsigned long *out_end_pfn, int *out_nid)
713 struct memblock_type *type = &memblock.memory;
714 struct memblock_region *r;
716 while (++*idx < type->cnt) {
717 r = &type->regions[*idx];
719 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
720 continue;
721 if (nid == MAX_NUMNODES || nid == r->nid)
722 break;
724 if (*idx >= type->cnt) {
725 *idx = -1;
726 return;
729 if (out_start_pfn)
730 *out_start_pfn = PFN_UP(r->base);
731 if (out_end_pfn)
732 *out_end_pfn = PFN_DOWN(r->base + r->size);
733 if (out_nid)
734 *out_nid = r->nid;
738 * memblock_set_node - set node ID on memblock regions
739 * @base: base of area to set node ID for
740 * @size: size of area to set node ID for
741 * @nid: node ID to set
743 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
744 * Regions which cross the area boundaries are split as necessary.
746 * RETURNS:
747 * 0 on success, -errno on failure.
749 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
750 int nid)
752 struct memblock_type *type = &memblock.memory;
753 int start_rgn, end_rgn;
754 int i, ret;
756 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
757 if (ret)
758 return ret;
760 for (i = start_rgn; i < end_rgn; i++)
761 memblock_set_region_node(&type->regions[i], nid);
763 memblock_merge_regions(type);
764 return 0;
766 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
768 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
769 phys_addr_t align, phys_addr_t max_addr,
770 int nid)
772 phys_addr_t found;
774 /* align @size to avoid excessive fragmentation on reserved array */
775 size = round_up(size, align);
777 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
778 if (found && !memblock_reserve(found, size))
779 return found;
781 return 0;
784 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
786 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
789 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
791 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
794 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
796 phys_addr_t alloc;
798 alloc = __memblock_alloc_base(size, align, max_addr);
800 if (alloc == 0)
801 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
802 (unsigned long long) size, (unsigned long long) max_addr);
804 return alloc;
807 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
809 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
812 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
814 phys_addr_t res = memblock_alloc_nid(size, align, nid);
816 if (res)
817 return res;
818 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
823 * Remaining API functions
826 phys_addr_t __init memblock_phys_mem_size(void)
828 return memblock.memory.total_size;
831 /* lowest address */
832 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
834 return memblock.memory.regions[0].base;
837 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
839 int idx = memblock.memory.cnt - 1;
841 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
844 void __init memblock_enforce_memory_limit(phys_addr_t limit)
846 unsigned long i;
847 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
849 if (!limit)
850 return;
852 /* find out max address */
853 for (i = 0; i < memblock.memory.cnt; i++) {
854 struct memblock_region *r = &memblock.memory.regions[i];
856 if (limit <= r->size) {
857 max_addr = r->base + limit;
858 break;
860 limit -= r->size;
863 /* truncate both memory and reserved regions */
864 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
865 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
868 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
870 unsigned int left = 0, right = type->cnt;
872 do {
873 unsigned int mid = (right + left) / 2;
875 if (addr < type->regions[mid].base)
876 right = mid;
877 else if (addr >= (type->regions[mid].base +
878 type->regions[mid].size))
879 left = mid + 1;
880 else
881 return mid;
882 } while (left < right);
883 return -1;
886 int __init memblock_is_reserved(phys_addr_t addr)
888 return memblock_search(&memblock.reserved, addr) != -1;
891 int __init_memblock memblock_is_memory(phys_addr_t addr)
893 return memblock_search(&memblock.memory, addr) != -1;
897 * memblock_is_region_memory - check if a region is a subset of memory
898 * @base: base of region to check
899 * @size: size of region to check
901 * Check if the region [@base, @base+@size) is a subset of a memory block.
903 * RETURNS:
904 * 0 if false, non-zero if true
906 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
908 int idx = memblock_search(&memblock.memory, base);
909 phys_addr_t end = base + memblock_cap_size(base, &size);
911 if (idx == -1)
912 return 0;
913 return memblock.memory.regions[idx].base <= base &&
914 (memblock.memory.regions[idx].base +
915 memblock.memory.regions[idx].size) >= end;
919 * memblock_is_region_reserved - check if a region intersects reserved memory
920 * @base: base of region to check
921 * @size: size of region to check
923 * Check if the region [@base, @base+@size) intersects a reserved memory block.
925 * RETURNS:
926 * 0 if false, non-zero if true
928 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
930 memblock_cap_size(base, &size);
931 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
934 void __init_memblock memblock_trim_memory(phys_addr_t align)
936 int i;
937 phys_addr_t start, end, orig_start, orig_end;
938 struct memblock_type *mem = &memblock.memory;
940 for (i = 0; i < mem->cnt; i++) {
941 orig_start = mem->regions[i].base;
942 orig_end = mem->regions[i].base + mem->regions[i].size;
943 start = round_up(orig_start, align);
944 end = round_down(orig_end, align);
946 if (start == orig_start && end == orig_end)
947 continue;
949 if (start < end) {
950 mem->regions[i].base = start;
951 mem->regions[i].size = end - start;
952 } else {
953 memblock_remove_region(mem, i);
954 i--;
959 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
961 memblock.current_limit = limit;
964 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
966 unsigned long long base, size;
967 int i;
969 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
971 for (i = 0; i < type->cnt; i++) {
972 struct memblock_region *rgn = &type->regions[i];
973 char nid_buf[32] = "";
975 base = rgn->base;
976 size = rgn->size;
977 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
978 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
979 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
980 memblock_get_region_node(rgn));
981 #endif
982 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
983 name, i, base, base + size - 1, size, nid_buf);
987 void __init_memblock __memblock_dump_all(void)
989 pr_info("MEMBLOCK configuration:\n");
990 pr_info(" memory size = %#llx reserved size = %#llx\n",
991 (unsigned long long)memblock.memory.total_size,
992 (unsigned long long)memblock.reserved.total_size);
994 memblock_dump(&memblock.memory, "memory");
995 memblock_dump(&memblock.reserved, "reserved");
998 void __init memblock_allow_resize(void)
1000 memblock_can_resize = 1;
1003 static int __init early_memblock(char *p)
1005 if (p && strstr(p, "debug"))
1006 memblock_debug = 1;
1007 return 0;
1009 early_param("memblock", early_memblock);
1011 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1013 static int memblock_debug_show(struct seq_file *m, void *private)
1015 struct memblock_type *type = m->private;
1016 struct memblock_region *reg;
1017 int i;
1019 for (i = 0; i < type->cnt; i++) {
1020 reg = &type->regions[i];
1021 seq_printf(m, "%4d: ", i);
1022 if (sizeof(phys_addr_t) == 4)
1023 seq_printf(m, "0x%08lx..0x%08lx\n",
1024 (unsigned long)reg->base,
1025 (unsigned long)(reg->base + reg->size - 1));
1026 else
1027 seq_printf(m, "0x%016llx..0x%016llx\n",
1028 (unsigned long long)reg->base,
1029 (unsigned long long)(reg->base + reg->size - 1));
1032 return 0;
1035 static int memblock_debug_open(struct inode *inode, struct file *file)
1037 return single_open(file, memblock_debug_show, inode->i_private);
1040 static const struct file_operations memblock_debug_fops = {
1041 .open = memblock_debug_open,
1042 .read = seq_read,
1043 .llseek = seq_lseek,
1044 .release = single_release,
1047 static int __init memblock_init_debugfs(void)
1049 struct dentry *root = debugfs_create_dir("memblock", NULL);
1050 if (!root)
1051 return -ENXIO;
1052 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1053 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1055 return 0;
1057 __initcall(memblock_init_debugfs);
1059 #endif /* CONFIG_DEBUG_FS */