Linux 3.8-rc7
[cris-mirror.git] / mm / vmscan.c
blob196709f5ee5862753f5f3731bdeab58c2c45c323
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
49 #include <linux/swapops.h>
51 #include "internal.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
56 struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
66 unsigned long hibernation_mode;
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
71 int may_writepage;
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
79 int order;
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
88 struct mem_cgroup *target_mem_cgroup;
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
94 nodemask_t *nodemask;
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
139 return !sc->target_mem_cgroup;
141 #else
142 static bool global_reclaim(struct scan_control *sc)
144 return true;
146 #endif
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 if (!mem_cgroup_disabled())
151 return mem_cgroup_get_lru_size(lruvec, lru);
153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
157 * Add a shrinker callback to be called from the vm
159 void register_shrinker(struct shrinker *shrinker)
161 atomic_long_set(&shrinker->nr_in_batch, 0);
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
166 EXPORT_SYMBOL(register_shrinker);
169 * Remove one
171 void unregister_shrinker(struct shrinker *shrinker)
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
177 EXPORT_SYMBOL(unregister_shrinker);
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
187 #define SHRINK_BATCH 128
189 * Call the shrink functions to age shrinkable caches
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
196 * If the vm encountered mapped pages on the LRU it increase the pressure on
197 * slab to avoid swapping.
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
205 * Returns the number of slab objects which we shrunk.
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 unsigned long nr_pages_scanned,
209 unsigned long lru_pages)
211 struct shrinker *shrinker;
212 unsigned long ret = 0;
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
225 long total_scan;
226 long max_pass;
227 int shrink_ret = 0;
228 long nr;
229 long new_nr;
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 total_scan = nr;
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 total_scan += delta;
249 if (total_scan < 0) {
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
283 while (total_scan >= batch_size) {
284 int nr_before;
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 batch_size);
289 if (shrink_ret == -1)
290 break;
291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
296 cond_resched();
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 up_read(&shrinker_rwsem);
313 out:
314 cond_resched();
315 return ret;
318 static inline int is_page_cache_freeable(struct page *page)
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
325 return page_count(page) - page_has_private(page) == 2;
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
331 if (current->flags & PF_SWAPWRITE)
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
352 static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
355 lock_page(page);
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
358 unlock_page(page);
361 /* possible outcome of pageout() */
362 typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371 } pageout_t;
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 struct scan_control *sc)
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
387 * If this process is currently in __generic_file_aio_write() against
388 * this page's queue, we can perform writeback even if that
389 * will block.
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
403 if (page_has_private(page)) {
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
406 printk("%s: orphaned page\n", __func__);
407 return PAGE_CLEAN;
410 return PAGE_KEEP;
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 return PAGE_KEEP;
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
422 .range_start = 0,
423 .range_end = LLONG_MAX,
424 .for_reclaim = 1,
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
431 if (res == AOP_WRITEPAGE_ACTIVATE) {
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 return PAGE_SUCCESS;
445 return PAGE_CLEAN;
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
457 spin_lock_irq(&mapping->tree_lock);
459 * The non racy check for a busy page.
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
474 * [oops, our write_to data is lost]
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
483 if (!page_freeze_refs(page, 2))
484 goto cannot_free;
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
488 goto cannot_free;
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
494 spin_unlock_irq(&mapping->tree_lock);
495 swapcache_free(swap, page);
496 } else {
497 void (*freepage)(struct page *);
499 freepage = mapping->a_ops->freepage;
501 __delete_from_page_cache(page);
502 spin_unlock_irq(&mapping->tree_lock);
503 mem_cgroup_uncharge_cache_page(page);
505 if (freepage != NULL)
506 freepage(page);
509 return 1;
511 cannot_free:
512 spin_unlock_irq(&mapping->tree_lock);
513 return 0;
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
522 int remove_mapping(struct address_space *mapping, struct page *page)
524 if (__remove_mapping(mapping, page)) {
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
530 page_unfreeze_refs(page, 1);
531 return 1;
533 return 0;
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
543 * lru_lock must not be held, interrupts must be enabled.
545 void putback_lru_page(struct page *page)
547 int lru;
548 int active = !!TestClearPageActive(page);
549 int was_unevictable = PageUnevictable(page);
551 VM_BUG_ON(PageLRU(page));
553 redo:
554 ClearPageUnevictable(page);
556 if (page_evictable(page)) {
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
563 lru = active + page_lru_base_type(page);
564 lru_cache_add_lru(page, lru);
565 } else {
567 * Put unevictable pages directly on zone's unevictable
568 * list.
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
580 * The other side is TestClearPageMlocked() or shmem_lock().
582 smp_mb();
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
606 put_page(page); /* drop ref from isolate */
609 enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
612 PAGEREF_KEEP,
613 PAGEREF_ACTIVATE,
616 static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
624 referenced_page = TestClearPageReferenced(page);
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
650 SetPageReferenced(page);
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
656 * Activate file-backed executable pages after first usage.
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
661 return PAGEREF_KEEP;
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
668 return PAGEREF_RECLAIM;
672 * shrink_page_list() returns the number of reclaimed pages
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 struct zone *zone,
676 struct scan_control *sc,
677 enum ttu_flags ttu_flags,
678 unsigned long *ret_nr_dirty,
679 unsigned long *ret_nr_writeback,
680 bool force_reclaim)
682 LIST_HEAD(ret_pages);
683 LIST_HEAD(free_pages);
684 int pgactivate = 0;
685 unsigned long nr_dirty = 0;
686 unsigned long nr_congested = 0;
687 unsigned long nr_reclaimed = 0;
688 unsigned long nr_writeback = 0;
690 cond_resched();
692 mem_cgroup_uncharge_start();
693 while (!list_empty(page_list)) {
694 struct address_space *mapping;
695 struct page *page;
696 int may_enter_fs;
697 enum page_references references = PAGEREF_RECLAIM_CLEAN;
699 cond_resched();
701 page = lru_to_page(page_list);
702 list_del(&page->lru);
704 if (!trylock_page(page))
705 goto keep;
707 VM_BUG_ON(PageActive(page));
708 VM_BUG_ON(page_zone(page) != zone);
710 sc->nr_scanned++;
712 if (unlikely(!page_evictable(page)))
713 goto cull_mlocked;
715 if (!sc->may_unmap && page_mapped(page))
716 goto keep_locked;
718 /* Double the slab pressure for mapped and swapcache pages */
719 if (page_mapped(page) || PageSwapCache(page))
720 sc->nr_scanned++;
722 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
723 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
725 if (PageWriteback(page)) {
727 * memcg doesn't have any dirty pages throttling so we
728 * could easily OOM just because too many pages are in
729 * writeback and there is nothing else to reclaim.
731 * Check __GFP_IO, certainly because a loop driver
732 * thread might enter reclaim, and deadlock if it waits
733 * on a page for which it is needed to do the write
734 * (loop masks off __GFP_IO|__GFP_FS for this reason);
735 * but more thought would probably show more reasons.
737 * Don't require __GFP_FS, since we're not going into
738 * the FS, just waiting on its writeback completion.
739 * Worryingly, ext4 gfs2 and xfs allocate pages with
740 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
741 * testing may_enter_fs here is liable to OOM on them.
743 if (global_reclaim(sc) ||
744 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
746 * This is slightly racy - end_page_writeback()
747 * might have just cleared PageReclaim, then
748 * setting PageReclaim here end up interpreted
749 * as PageReadahead - but that does not matter
750 * enough to care. What we do want is for this
751 * page to have PageReclaim set next time memcg
752 * reclaim reaches the tests above, so it will
753 * then wait_on_page_writeback() to avoid OOM;
754 * and it's also appropriate in global reclaim.
756 SetPageReclaim(page);
757 nr_writeback++;
758 goto keep_locked;
760 wait_on_page_writeback(page);
763 if (!force_reclaim)
764 references = page_check_references(page, sc);
766 switch (references) {
767 case PAGEREF_ACTIVATE:
768 goto activate_locked;
769 case PAGEREF_KEEP:
770 goto keep_locked;
771 case PAGEREF_RECLAIM:
772 case PAGEREF_RECLAIM_CLEAN:
773 ; /* try to reclaim the page below */
777 * Anonymous process memory has backing store?
778 * Try to allocate it some swap space here.
780 if (PageAnon(page) && !PageSwapCache(page)) {
781 if (!(sc->gfp_mask & __GFP_IO))
782 goto keep_locked;
783 if (!add_to_swap(page))
784 goto activate_locked;
785 may_enter_fs = 1;
788 mapping = page_mapping(page);
791 * The page is mapped into the page tables of one or more
792 * processes. Try to unmap it here.
794 if (page_mapped(page) && mapping) {
795 switch (try_to_unmap(page, ttu_flags)) {
796 case SWAP_FAIL:
797 goto activate_locked;
798 case SWAP_AGAIN:
799 goto keep_locked;
800 case SWAP_MLOCK:
801 goto cull_mlocked;
802 case SWAP_SUCCESS:
803 ; /* try to free the page below */
807 if (PageDirty(page)) {
808 nr_dirty++;
811 * Only kswapd can writeback filesystem pages to
812 * avoid risk of stack overflow but do not writeback
813 * unless under significant pressure.
815 if (page_is_file_cache(page) &&
816 (!current_is_kswapd() ||
817 sc->priority >= DEF_PRIORITY - 2)) {
819 * Immediately reclaim when written back.
820 * Similar in principal to deactivate_page()
821 * except we already have the page isolated
822 * and know it's dirty
824 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
825 SetPageReclaim(page);
827 goto keep_locked;
830 if (references == PAGEREF_RECLAIM_CLEAN)
831 goto keep_locked;
832 if (!may_enter_fs)
833 goto keep_locked;
834 if (!sc->may_writepage)
835 goto keep_locked;
837 /* Page is dirty, try to write it out here */
838 switch (pageout(page, mapping, sc)) {
839 case PAGE_KEEP:
840 nr_congested++;
841 goto keep_locked;
842 case PAGE_ACTIVATE:
843 goto activate_locked;
844 case PAGE_SUCCESS:
845 if (PageWriteback(page))
846 goto keep;
847 if (PageDirty(page))
848 goto keep;
851 * A synchronous write - probably a ramdisk. Go
852 * ahead and try to reclaim the page.
854 if (!trylock_page(page))
855 goto keep;
856 if (PageDirty(page) || PageWriteback(page))
857 goto keep_locked;
858 mapping = page_mapping(page);
859 case PAGE_CLEAN:
860 ; /* try to free the page below */
865 * If the page has buffers, try to free the buffer mappings
866 * associated with this page. If we succeed we try to free
867 * the page as well.
869 * We do this even if the page is PageDirty().
870 * try_to_release_page() does not perform I/O, but it is
871 * possible for a page to have PageDirty set, but it is actually
872 * clean (all its buffers are clean). This happens if the
873 * buffers were written out directly, with submit_bh(). ext3
874 * will do this, as well as the blockdev mapping.
875 * try_to_release_page() will discover that cleanness and will
876 * drop the buffers and mark the page clean - it can be freed.
878 * Rarely, pages can have buffers and no ->mapping. These are
879 * the pages which were not successfully invalidated in
880 * truncate_complete_page(). We try to drop those buffers here
881 * and if that worked, and the page is no longer mapped into
882 * process address space (page_count == 1) it can be freed.
883 * Otherwise, leave the page on the LRU so it is swappable.
885 if (page_has_private(page)) {
886 if (!try_to_release_page(page, sc->gfp_mask))
887 goto activate_locked;
888 if (!mapping && page_count(page) == 1) {
889 unlock_page(page);
890 if (put_page_testzero(page))
891 goto free_it;
892 else {
894 * rare race with speculative reference.
895 * the speculative reference will free
896 * this page shortly, so we may
897 * increment nr_reclaimed here (and
898 * leave it off the LRU).
900 nr_reclaimed++;
901 continue;
906 if (!mapping || !__remove_mapping(mapping, page))
907 goto keep_locked;
910 * At this point, we have no other references and there is
911 * no way to pick any more up (removed from LRU, removed
912 * from pagecache). Can use non-atomic bitops now (and
913 * we obviously don't have to worry about waking up a process
914 * waiting on the page lock, because there are no references.
916 __clear_page_locked(page);
917 free_it:
918 nr_reclaimed++;
921 * Is there need to periodically free_page_list? It would
922 * appear not as the counts should be low
924 list_add(&page->lru, &free_pages);
925 continue;
927 cull_mlocked:
928 if (PageSwapCache(page))
929 try_to_free_swap(page);
930 unlock_page(page);
931 putback_lru_page(page);
932 continue;
934 activate_locked:
935 /* Not a candidate for swapping, so reclaim swap space. */
936 if (PageSwapCache(page) && vm_swap_full())
937 try_to_free_swap(page);
938 VM_BUG_ON(PageActive(page));
939 SetPageActive(page);
940 pgactivate++;
941 keep_locked:
942 unlock_page(page);
943 keep:
944 list_add(&page->lru, &ret_pages);
945 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
949 * Tag a zone as congested if all the dirty pages encountered were
950 * backed by a congested BDI. In this case, reclaimers should just
951 * back off and wait for congestion to clear because further reclaim
952 * will encounter the same problem
954 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
955 zone_set_flag(zone, ZONE_CONGESTED);
957 free_hot_cold_page_list(&free_pages, 1);
959 list_splice(&ret_pages, page_list);
960 count_vm_events(PGACTIVATE, pgactivate);
961 mem_cgroup_uncharge_end();
962 *ret_nr_dirty += nr_dirty;
963 *ret_nr_writeback += nr_writeback;
964 return nr_reclaimed;
967 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
968 struct list_head *page_list)
970 struct scan_control sc = {
971 .gfp_mask = GFP_KERNEL,
972 .priority = DEF_PRIORITY,
973 .may_unmap = 1,
975 unsigned long ret, dummy1, dummy2;
976 struct page *page, *next;
977 LIST_HEAD(clean_pages);
979 list_for_each_entry_safe(page, next, page_list, lru) {
980 if (page_is_file_cache(page) && !PageDirty(page)) {
981 ClearPageActive(page);
982 list_move(&page->lru, &clean_pages);
986 ret = shrink_page_list(&clean_pages, zone, &sc,
987 TTU_UNMAP|TTU_IGNORE_ACCESS,
988 &dummy1, &dummy2, true);
989 list_splice(&clean_pages, page_list);
990 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
991 return ret;
995 * Attempt to remove the specified page from its LRU. Only take this page
996 * if it is of the appropriate PageActive status. Pages which are being
997 * freed elsewhere are also ignored.
999 * page: page to consider
1000 * mode: one of the LRU isolation modes defined above
1002 * returns 0 on success, -ve errno on failure.
1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1006 int ret = -EINVAL;
1008 /* Only take pages on the LRU. */
1009 if (!PageLRU(page))
1010 return ret;
1012 /* Compaction should not handle unevictable pages but CMA can do so */
1013 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1014 return ret;
1016 ret = -EBUSY;
1019 * To minimise LRU disruption, the caller can indicate that it only
1020 * wants to isolate pages it will be able to operate on without
1021 * blocking - clean pages for the most part.
1023 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1024 * is used by reclaim when it is cannot write to backing storage
1026 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1027 * that it is possible to migrate without blocking
1029 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1030 /* All the caller can do on PageWriteback is block */
1031 if (PageWriteback(page))
1032 return ret;
1034 if (PageDirty(page)) {
1035 struct address_space *mapping;
1037 /* ISOLATE_CLEAN means only clean pages */
1038 if (mode & ISOLATE_CLEAN)
1039 return ret;
1042 * Only pages without mappings or that have a
1043 * ->migratepage callback are possible to migrate
1044 * without blocking
1046 mapping = page_mapping(page);
1047 if (mapping && !mapping->a_ops->migratepage)
1048 return ret;
1052 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 return ret;
1055 if (likely(get_page_unless_zero(page))) {
1057 * Be careful not to clear PageLRU until after we're
1058 * sure the page is not being freed elsewhere -- the
1059 * page release code relies on it.
1061 ClearPageLRU(page);
1062 ret = 0;
1065 return ret;
1069 * zone->lru_lock is heavily contended. Some of the functions that
1070 * shrink the lists perform better by taking out a batch of pages
1071 * and working on them outside the LRU lock.
1073 * For pagecache intensive workloads, this function is the hottest
1074 * spot in the kernel (apart from copy_*_user functions).
1076 * Appropriate locks must be held before calling this function.
1078 * @nr_to_scan: The number of pages to look through on the list.
1079 * @lruvec: The LRU vector to pull pages from.
1080 * @dst: The temp list to put pages on to.
1081 * @nr_scanned: The number of pages that were scanned.
1082 * @sc: The scan_control struct for this reclaim session
1083 * @mode: One of the LRU isolation modes
1084 * @lru: LRU list id for isolating
1086 * returns how many pages were moved onto *@dst.
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089 struct lruvec *lruvec, struct list_head *dst,
1090 unsigned long *nr_scanned, struct scan_control *sc,
1091 isolate_mode_t mode, enum lru_list lru)
1093 struct list_head *src = &lruvec->lists[lru];
1094 unsigned long nr_taken = 0;
1095 unsigned long scan;
1097 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1098 struct page *page;
1099 int nr_pages;
1101 page = lru_to_page(src);
1102 prefetchw_prev_lru_page(page, src, flags);
1104 VM_BUG_ON(!PageLRU(page));
1106 switch (__isolate_lru_page(page, mode)) {
1107 case 0:
1108 nr_pages = hpage_nr_pages(page);
1109 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1110 list_move(&page->lru, dst);
1111 nr_taken += nr_pages;
1112 break;
1114 case -EBUSY:
1115 /* else it is being freed elsewhere */
1116 list_move(&page->lru, src);
1117 continue;
1119 default:
1120 BUG();
1124 *nr_scanned = scan;
1125 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1126 nr_taken, mode, is_file_lru(lru));
1127 return nr_taken;
1131 * isolate_lru_page - tries to isolate a page from its LRU list
1132 * @page: page to isolate from its LRU list
1134 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1135 * vmstat statistic corresponding to whatever LRU list the page was on.
1137 * Returns 0 if the page was removed from an LRU list.
1138 * Returns -EBUSY if the page was not on an LRU list.
1140 * The returned page will have PageLRU() cleared. If it was found on
1141 * the active list, it will have PageActive set. If it was found on
1142 * the unevictable list, it will have the PageUnevictable bit set. That flag
1143 * may need to be cleared by the caller before letting the page go.
1145 * The vmstat statistic corresponding to the list on which the page was
1146 * found will be decremented.
1148 * Restrictions:
1149 * (1) Must be called with an elevated refcount on the page. This is a
1150 * fundamentnal difference from isolate_lru_pages (which is called
1151 * without a stable reference).
1152 * (2) the lru_lock must not be held.
1153 * (3) interrupts must be enabled.
1155 int isolate_lru_page(struct page *page)
1157 int ret = -EBUSY;
1159 VM_BUG_ON(!page_count(page));
1161 if (PageLRU(page)) {
1162 struct zone *zone = page_zone(page);
1163 struct lruvec *lruvec;
1165 spin_lock_irq(&zone->lru_lock);
1166 lruvec = mem_cgroup_page_lruvec(page, zone);
1167 if (PageLRU(page)) {
1168 int lru = page_lru(page);
1169 get_page(page);
1170 ClearPageLRU(page);
1171 del_page_from_lru_list(page, lruvec, lru);
1172 ret = 0;
1174 spin_unlock_irq(&zone->lru_lock);
1176 return ret;
1180 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1181 * then get resheduled. When there are massive number of tasks doing page
1182 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1183 * the LRU list will go small and be scanned faster than necessary, leading to
1184 * unnecessary swapping, thrashing and OOM.
1186 static int too_many_isolated(struct zone *zone, int file,
1187 struct scan_control *sc)
1189 unsigned long inactive, isolated;
1191 if (current_is_kswapd())
1192 return 0;
1194 if (!global_reclaim(sc))
1195 return 0;
1197 if (file) {
1198 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1199 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1200 } else {
1201 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1202 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1206 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1207 * won't get blocked by normal direct-reclaimers, forming a circular
1208 * deadlock.
1210 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1211 inactive >>= 3;
1213 return isolated > inactive;
1216 static noinline_for_stack void
1217 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1219 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1220 struct zone *zone = lruvec_zone(lruvec);
1221 LIST_HEAD(pages_to_free);
1224 * Put back any unfreeable pages.
1226 while (!list_empty(page_list)) {
1227 struct page *page = lru_to_page(page_list);
1228 int lru;
1230 VM_BUG_ON(PageLRU(page));
1231 list_del(&page->lru);
1232 if (unlikely(!page_evictable(page))) {
1233 spin_unlock_irq(&zone->lru_lock);
1234 putback_lru_page(page);
1235 spin_lock_irq(&zone->lru_lock);
1236 continue;
1239 lruvec = mem_cgroup_page_lruvec(page, zone);
1241 SetPageLRU(page);
1242 lru = page_lru(page);
1243 add_page_to_lru_list(page, lruvec, lru);
1245 if (is_active_lru(lru)) {
1246 int file = is_file_lru(lru);
1247 int numpages = hpage_nr_pages(page);
1248 reclaim_stat->recent_rotated[file] += numpages;
1250 if (put_page_testzero(page)) {
1251 __ClearPageLRU(page);
1252 __ClearPageActive(page);
1253 del_page_from_lru_list(page, lruvec, lru);
1255 if (unlikely(PageCompound(page))) {
1256 spin_unlock_irq(&zone->lru_lock);
1257 (*get_compound_page_dtor(page))(page);
1258 spin_lock_irq(&zone->lru_lock);
1259 } else
1260 list_add(&page->lru, &pages_to_free);
1265 * To save our caller's stack, now use input list for pages to free.
1267 list_splice(&pages_to_free, page_list);
1271 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1272 * of reclaimed pages
1274 static noinline_for_stack unsigned long
1275 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1276 struct scan_control *sc, enum lru_list lru)
1278 LIST_HEAD(page_list);
1279 unsigned long nr_scanned;
1280 unsigned long nr_reclaimed = 0;
1281 unsigned long nr_taken;
1282 unsigned long nr_dirty = 0;
1283 unsigned long nr_writeback = 0;
1284 isolate_mode_t isolate_mode = 0;
1285 int file = is_file_lru(lru);
1286 struct zone *zone = lruvec_zone(lruvec);
1287 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1289 while (unlikely(too_many_isolated(zone, file, sc))) {
1290 congestion_wait(BLK_RW_ASYNC, HZ/10);
1292 /* We are about to die and free our memory. Return now. */
1293 if (fatal_signal_pending(current))
1294 return SWAP_CLUSTER_MAX;
1297 lru_add_drain();
1299 if (!sc->may_unmap)
1300 isolate_mode |= ISOLATE_UNMAPPED;
1301 if (!sc->may_writepage)
1302 isolate_mode |= ISOLATE_CLEAN;
1304 spin_lock_irq(&zone->lru_lock);
1306 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1307 &nr_scanned, sc, isolate_mode, lru);
1309 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1310 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1312 if (global_reclaim(sc)) {
1313 zone->pages_scanned += nr_scanned;
1314 if (current_is_kswapd())
1315 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1316 else
1317 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1319 spin_unlock_irq(&zone->lru_lock);
1321 if (nr_taken == 0)
1322 return 0;
1324 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1325 &nr_dirty, &nr_writeback, false);
1327 spin_lock_irq(&zone->lru_lock);
1329 reclaim_stat->recent_scanned[file] += nr_taken;
1331 if (global_reclaim(sc)) {
1332 if (current_is_kswapd())
1333 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1334 nr_reclaimed);
1335 else
1336 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1337 nr_reclaimed);
1340 putback_inactive_pages(lruvec, &page_list);
1342 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1344 spin_unlock_irq(&zone->lru_lock);
1346 free_hot_cold_page_list(&page_list, 1);
1349 * If reclaim is isolating dirty pages under writeback, it implies
1350 * that the long-lived page allocation rate is exceeding the page
1351 * laundering rate. Either the global limits are not being effective
1352 * at throttling processes due to the page distribution throughout
1353 * zones or there is heavy usage of a slow backing device. The
1354 * only option is to throttle from reclaim context which is not ideal
1355 * as there is no guarantee the dirtying process is throttled in the
1356 * same way balance_dirty_pages() manages.
1358 * This scales the number of dirty pages that must be under writeback
1359 * before throttling depending on priority. It is a simple backoff
1360 * function that has the most effect in the range DEF_PRIORITY to
1361 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1362 * in trouble and reclaim is considered to be in trouble.
1364 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1365 * DEF_PRIORITY-1 50% must be PageWriteback
1366 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1367 * ...
1368 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1369 * isolated page is PageWriteback
1371 if (nr_writeback && nr_writeback >=
1372 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1373 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1375 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1376 zone_idx(zone),
1377 nr_scanned, nr_reclaimed,
1378 sc->priority,
1379 trace_shrink_flags(file));
1380 return nr_reclaimed;
1384 * This moves pages from the active list to the inactive list.
1386 * We move them the other way if the page is referenced by one or more
1387 * processes, from rmap.
1389 * If the pages are mostly unmapped, the processing is fast and it is
1390 * appropriate to hold zone->lru_lock across the whole operation. But if
1391 * the pages are mapped, the processing is slow (page_referenced()) so we
1392 * should drop zone->lru_lock around each page. It's impossible to balance
1393 * this, so instead we remove the pages from the LRU while processing them.
1394 * It is safe to rely on PG_active against the non-LRU pages in here because
1395 * nobody will play with that bit on a non-LRU page.
1397 * The downside is that we have to touch page->_count against each page.
1398 * But we had to alter page->flags anyway.
1401 static void move_active_pages_to_lru(struct lruvec *lruvec,
1402 struct list_head *list,
1403 struct list_head *pages_to_free,
1404 enum lru_list lru)
1406 struct zone *zone = lruvec_zone(lruvec);
1407 unsigned long pgmoved = 0;
1408 struct page *page;
1409 int nr_pages;
1411 while (!list_empty(list)) {
1412 page = lru_to_page(list);
1413 lruvec = mem_cgroup_page_lruvec(page, zone);
1415 VM_BUG_ON(PageLRU(page));
1416 SetPageLRU(page);
1418 nr_pages = hpage_nr_pages(page);
1419 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1420 list_move(&page->lru, &lruvec->lists[lru]);
1421 pgmoved += nr_pages;
1423 if (put_page_testzero(page)) {
1424 __ClearPageLRU(page);
1425 __ClearPageActive(page);
1426 del_page_from_lru_list(page, lruvec, lru);
1428 if (unlikely(PageCompound(page))) {
1429 spin_unlock_irq(&zone->lru_lock);
1430 (*get_compound_page_dtor(page))(page);
1431 spin_lock_irq(&zone->lru_lock);
1432 } else
1433 list_add(&page->lru, pages_to_free);
1436 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1437 if (!is_active_lru(lru))
1438 __count_vm_events(PGDEACTIVATE, pgmoved);
1441 static void shrink_active_list(unsigned long nr_to_scan,
1442 struct lruvec *lruvec,
1443 struct scan_control *sc,
1444 enum lru_list lru)
1446 unsigned long nr_taken;
1447 unsigned long nr_scanned;
1448 unsigned long vm_flags;
1449 LIST_HEAD(l_hold); /* The pages which were snipped off */
1450 LIST_HEAD(l_active);
1451 LIST_HEAD(l_inactive);
1452 struct page *page;
1453 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1454 unsigned long nr_rotated = 0;
1455 isolate_mode_t isolate_mode = 0;
1456 int file = is_file_lru(lru);
1457 struct zone *zone = lruvec_zone(lruvec);
1459 lru_add_drain();
1461 if (!sc->may_unmap)
1462 isolate_mode |= ISOLATE_UNMAPPED;
1463 if (!sc->may_writepage)
1464 isolate_mode |= ISOLATE_CLEAN;
1466 spin_lock_irq(&zone->lru_lock);
1468 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1469 &nr_scanned, sc, isolate_mode, lru);
1470 if (global_reclaim(sc))
1471 zone->pages_scanned += nr_scanned;
1473 reclaim_stat->recent_scanned[file] += nr_taken;
1475 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1476 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1477 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1478 spin_unlock_irq(&zone->lru_lock);
1480 while (!list_empty(&l_hold)) {
1481 cond_resched();
1482 page = lru_to_page(&l_hold);
1483 list_del(&page->lru);
1485 if (unlikely(!page_evictable(page))) {
1486 putback_lru_page(page);
1487 continue;
1490 if (unlikely(buffer_heads_over_limit)) {
1491 if (page_has_private(page) && trylock_page(page)) {
1492 if (page_has_private(page))
1493 try_to_release_page(page, 0);
1494 unlock_page(page);
1498 if (page_referenced(page, 0, sc->target_mem_cgroup,
1499 &vm_flags)) {
1500 nr_rotated += hpage_nr_pages(page);
1502 * Identify referenced, file-backed active pages and
1503 * give them one more trip around the active list. So
1504 * that executable code get better chances to stay in
1505 * memory under moderate memory pressure. Anon pages
1506 * are not likely to be evicted by use-once streaming
1507 * IO, plus JVM can create lots of anon VM_EXEC pages,
1508 * so we ignore them here.
1510 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1511 list_add(&page->lru, &l_active);
1512 continue;
1516 ClearPageActive(page); /* we are de-activating */
1517 list_add(&page->lru, &l_inactive);
1521 * Move pages back to the lru list.
1523 spin_lock_irq(&zone->lru_lock);
1525 * Count referenced pages from currently used mappings as rotated,
1526 * even though only some of them are actually re-activated. This
1527 * helps balance scan pressure between file and anonymous pages in
1528 * get_scan_ratio.
1530 reclaim_stat->recent_rotated[file] += nr_rotated;
1532 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1533 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1534 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1535 spin_unlock_irq(&zone->lru_lock);
1537 free_hot_cold_page_list(&l_hold, 1);
1540 #ifdef CONFIG_SWAP
1541 static int inactive_anon_is_low_global(struct zone *zone)
1543 unsigned long active, inactive;
1545 active = zone_page_state(zone, NR_ACTIVE_ANON);
1546 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1548 if (inactive * zone->inactive_ratio < active)
1549 return 1;
1551 return 0;
1555 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1556 * @lruvec: LRU vector to check
1558 * Returns true if the zone does not have enough inactive anon pages,
1559 * meaning some active anon pages need to be deactivated.
1561 static int inactive_anon_is_low(struct lruvec *lruvec)
1564 * If we don't have swap space, anonymous page deactivation
1565 * is pointless.
1567 if (!total_swap_pages)
1568 return 0;
1570 if (!mem_cgroup_disabled())
1571 return mem_cgroup_inactive_anon_is_low(lruvec);
1573 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1575 #else
1576 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1578 return 0;
1580 #endif
1582 static int inactive_file_is_low_global(struct zone *zone)
1584 unsigned long active, inactive;
1586 active = zone_page_state(zone, NR_ACTIVE_FILE);
1587 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1589 return (active > inactive);
1593 * inactive_file_is_low - check if file pages need to be deactivated
1594 * @lruvec: LRU vector to check
1596 * When the system is doing streaming IO, memory pressure here
1597 * ensures that active file pages get deactivated, until more
1598 * than half of the file pages are on the inactive list.
1600 * Once we get to that situation, protect the system's working
1601 * set from being evicted by disabling active file page aging.
1603 * This uses a different ratio than the anonymous pages, because
1604 * the page cache uses a use-once replacement algorithm.
1606 static int inactive_file_is_low(struct lruvec *lruvec)
1608 if (!mem_cgroup_disabled())
1609 return mem_cgroup_inactive_file_is_low(lruvec);
1611 return inactive_file_is_low_global(lruvec_zone(lruvec));
1614 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1616 if (is_file_lru(lru))
1617 return inactive_file_is_low(lruvec);
1618 else
1619 return inactive_anon_is_low(lruvec);
1622 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1623 struct lruvec *lruvec, struct scan_control *sc)
1625 if (is_active_lru(lru)) {
1626 if (inactive_list_is_low(lruvec, lru))
1627 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1628 return 0;
1631 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1634 static int vmscan_swappiness(struct scan_control *sc)
1636 if (global_reclaim(sc))
1637 return vm_swappiness;
1638 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1642 * Determine how aggressively the anon and file LRU lists should be
1643 * scanned. The relative value of each set of LRU lists is determined
1644 * by looking at the fraction of the pages scanned we did rotate back
1645 * onto the active list instead of evict.
1647 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1648 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1650 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1651 unsigned long *nr)
1653 unsigned long anon, file, free;
1654 unsigned long anon_prio, file_prio;
1655 unsigned long ap, fp;
1656 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1657 u64 fraction[2], denominator;
1658 enum lru_list lru;
1659 int noswap = 0;
1660 bool force_scan = false;
1661 struct zone *zone = lruvec_zone(lruvec);
1664 * If the zone or memcg is small, nr[l] can be 0. This
1665 * results in no scanning on this priority and a potential
1666 * priority drop. Global direct reclaim can go to the next
1667 * zone and tends to have no problems. Global kswapd is for
1668 * zone balancing and it needs to scan a minimum amount. When
1669 * reclaiming for a memcg, a priority drop can cause high
1670 * latencies, so it's better to scan a minimum amount there as
1671 * well.
1673 if (current_is_kswapd() && zone->all_unreclaimable)
1674 force_scan = true;
1675 if (!global_reclaim(sc))
1676 force_scan = true;
1678 /* If we have no swap space, do not bother scanning anon pages. */
1679 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1680 noswap = 1;
1681 fraction[0] = 0;
1682 fraction[1] = 1;
1683 denominator = 1;
1684 goto out;
1687 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1688 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1689 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1690 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1692 if (global_reclaim(sc)) {
1693 free = zone_page_state(zone, NR_FREE_PAGES);
1694 if (unlikely(file + free <= high_wmark_pages(zone))) {
1696 * If we have very few page cache pages, force-scan
1697 * anon pages.
1699 fraction[0] = 1;
1700 fraction[1] = 0;
1701 denominator = 1;
1702 goto out;
1703 } else if (!inactive_file_is_low_global(zone)) {
1705 * There is enough inactive page cache, do not
1706 * reclaim anything from the working set right now.
1708 fraction[0] = 0;
1709 fraction[1] = 1;
1710 denominator = 1;
1711 goto out;
1716 * With swappiness at 100, anonymous and file have the same priority.
1717 * This scanning priority is essentially the inverse of IO cost.
1719 anon_prio = vmscan_swappiness(sc);
1720 file_prio = 200 - anon_prio;
1723 * OK, so we have swap space and a fair amount of page cache
1724 * pages. We use the recently rotated / recently scanned
1725 * ratios to determine how valuable each cache is.
1727 * Because workloads change over time (and to avoid overflow)
1728 * we keep these statistics as a floating average, which ends
1729 * up weighing recent references more than old ones.
1731 * anon in [0], file in [1]
1733 spin_lock_irq(&zone->lru_lock);
1734 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1735 reclaim_stat->recent_scanned[0] /= 2;
1736 reclaim_stat->recent_rotated[0] /= 2;
1739 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1740 reclaim_stat->recent_scanned[1] /= 2;
1741 reclaim_stat->recent_rotated[1] /= 2;
1745 * The amount of pressure on anon vs file pages is inversely
1746 * proportional to the fraction of recently scanned pages on
1747 * each list that were recently referenced and in active use.
1749 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1750 ap /= reclaim_stat->recent_rotated[0] + 1;
1752 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1753 fp /= reclaim_stat->recent_rotated[1] + 1;
1754 spin_unlock_irq(&zone->lru_lock);
1756 fraction[0] = ap;
1757 fraction[1] = fp;
1758 denominator = ap + fp + 1;
1759 out:
1760 for_each_evictable_lru(lru) {
1761 int file = is_file_lru(lru);
1762 unsigned long scan;
1764 scan = get_lru_size(lruvec, lru);
1765 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1766 scan >>= sc->priority;
1767 if (!scan && force_scan)
1768 scan = SWAP_CLUSTER_MAX;
1769 scan = div64_u64(scan * fraction[file], denominator);
1771 nr[lru] = scan;
1775 /* Use reclaim/compaction for costly allocs or under memory pressure */
1776 static bool in_reclaim_compaction(struct scan_control *sc)
1778 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1779 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1780 sc->priority < DEF_PRIORITY - 2))
1781 return true;
1783 return false;
1787 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1788 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1789 * true if more pages should be reclaimed such that when the page allocator
1790 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1791 * It will give up earlier than that if there is difficulty reclaiming pages.
1793 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1794 unsigned long nr_reclaimed,
1795 unsigned long nr_scanned,
1796 struct scan_control *sc)
1798 unsigned long pages_for_compaction;
1799 unsigned long inactive_lru_pages;
1801 /* If not in reclaim/compaction mode, stop */
1802 if (!in_reclaim_compaction(sc))
1803 return false;
1805 /* Consider stopping depending on scan and reclaim activity */
1806 if (sc->gfp_mask & __GFP_REPEAT) {
1808 * For __GFP_REPEAT allocations, stop reclaiming if the
1809 * full LRU list has been scanned and we are still failing
1810 * to reclaim pages. This full LRU scan is potentially
1811 * expensive but a __GFP_REPEAT caller really wants to succeed
1813 if (!nr_reclaimed && !nr_scanned)
1814 return false;
1815 } else {
1817 * For non-__GFP_REPEAT allocations which can presumably
1818 * fail without consequence, stop if we failed to reclaim
1819 * any pages from the last SWAP_CLUSTER_MAX number of
1820 * pages that were scanned. This will return to the
1821 * caller faster at the risk reclaim/compaction and
1822 * the resulting allocation attempt fails
1824 if (!nr_reclaimed)
1825 return false;
1829 * If we have not reclaimed enough pages for compaction and the
1830 * inactive lists are large enough, continue reclaiming
1832 pages_for_compaction = (2UL << sc->order);
1833 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1834 if (nr_swap_pages > 0)
1835 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1836 if (sc->nr_reclaimed < pages_for_compaction &&
1837 inactive_lru_pages > pages_for_compaction)
1838 return true;
1840 /* If compaction would go ahead or the allocation would succeed, stop */
1841 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1842 case COMPACT_PARTIAL:
1843 case COMPACT_CONTINUE:
1844 return false;
1845 default:
1846 return true;
1851 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1853 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1855 unsigned long nr[NR_LRU_LISTS];
1856 unsigned long nr_to_scan;
1857 enum lru_list lru;
1858 unsigned long nr_reclaimed, nr_scanned;
1859 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1860 struct blk_plug plug;
1862 restart:
1863 nr_reclaimed = 0;
1864 nr_scanned = sc->nr_scanned;
1865 get_scan_count(lruvec, sc, nr);
1867 blk_start_plug(&plug);
1868 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1869 nr[LRU_INACTIVE_FILE]) {
1870 for_each_evictable_lru(lru) {
1871 if (nr[lru]) {
1872 nr_to_scan = min_t(unsigned long,
1873 nr[lru], SWAP_CLUSTER_MAX);
1874 nr[lru] -= nr_to_scan;
1876 nr_reclaimed += shrink_list(lru, nr_to_scan,
1877 lruvec, sc);
1881 * On large memory systems, scan >> priority can become
1882 * really large. This is fine for the starting priority;
1883 * we want to put equal scanning pressure on each zone.
1884 * However, if the VM has a harder time of freeing pages,
1885 * with multiple processes reclaiming pages, the total
1886 * freeing target can get unreasonably large.
1888 if (nr_reclaimed >= nr_to_reclaim &&
1889 sc->priority < DEF_PRIORITY)
1890 break;
1892 blk_finish_plug(&plug);
1893 sc->nr_reclaimed += nr_reclaimed;
1896 * Even if we did not try to evict anon pages at all, we want to
1897 * rebalance the anon lru active/inactive ratio.
1899 if (inactive_anon_is_low(lruvec))
1900 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1901 sc, LRU_ACTIVE_ANON);
1903 /* reclaim/compaction might need reclaim to continue */
1904 if (should_continue_reclaim(lruvec, nr_reclaimed,
1905 sc->nr_scanned - nr_scanned, sc))
1906 goto restart;
1908 throttle_vm_writeout(sc->gfp_mask);
1911 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1913 struct mem_cgroup *root = sc->target_mem_cgroup;
1914 struct mem_cgroup_reclaim_cookie reclaim = {
1915 .zone = zone,
1916 .priority = sc->priority,
1918 struct mem_cgroup *memcg;
1920 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1921 do {
1922 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1924 shrink_lruvec(lruvec, sc);
1927 * Limit reclaim has historically picked one memcg and
1928 * scanned it with decreasing priority levels until
1929 * nr_to_reclaim had been reclaimed. This priority
1930 * cycle is thus over after a single memcg.
1932 * Direct reclaim and kswapd, on the other hand, have
1933 * to scan all memory cgroups to fulfill the overall
1934 * scan target for the zone.
1936 if (!global_reclaim(sc)) {
1937 mem_cgroup_iter_break(root, memcg);
1938 break;
1940 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1941 } while (memcg);
1944 /* Returns true if compaction should go ahead for a high-order request */
1945 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1947 unsigned long balance_gap, watermark;
1948 bool watermark_ok;
1950 /* Do not consider compaction for orders reclaim is meant to satisfy */
1951 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1952 return false;
1955 * Compaction takes time to run and there are potentially other
1956 * callers using the pages just freed. Continue reclaiming until
1957 * there is a buffer of free pages available to give compaction
1958 * a reasonable chance of completing and allocating the page
1960 balance_gap = min(low_wmark_pages(zone),
1961 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1962 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1963 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1964 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1967 * If compaction is deferred, reclaim up to a point where
1968 * compaction will have a chance of success when re-enabled
1970 if (compaction_deferred(zone, sc->order))
1971 return watermark_ok;
1973 /* If compaction is not ready to start, keep reclaiming */
1974 if (!compaction_suitable(zone, sc->order))
1975 return false;
1977 return watermark_ok;
1981 * This is the direct reclaim path, for page-allocating processes. We only
1982 * try to reclaim pages from zones which will satisfy the caller's allocation
1983 * request.
1985 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1986 * Because:
1987 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1988 * allocation or
1989 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1990 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1991 * zone defense algorithm.
1993 * If a zone is deemed to be full of pinned pages then just give it a light
1994 * scan then give up on it.
1996 * This function returns true if a zone is being reclaimed for a costly
1997 * high-order allocation and compaction is ready to begin. This indicates to
1998 * the caller that it should consider retrying the allocation instead of
1999 * further reclaim.
2001 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2003 struct zoneref *z;
2004 struct zone *zone;
2005 unsigned long nr_soft_reclaimed;
2006 unsigned long nr_soft_scanned;
2007 bool aborted_reclaim = false;
2010 * If the number of buffer_heads in the machine exceeds the maximum
2011 * allowed level, force direct reclaim to scan the highmem zone as
2012 * highmem pages could be pinning lowmem pages storing buffer_heads
2014 if (buffer_heads_over_limit)
2015 sc->gfp_mask |= __GFP_HIGHMEM;
2017 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2018 gfp_zone(sc->gfp_mask), sc->nodemask) {
2019 if (!populated_zone(zone))
2020 continue;
2022 * Take care memory controller reclaiming has small influence
2023 * to global LRU.
2025 if (global_reclaim(sc)) {
2026 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2027 continue;
2028 if (zone->all_unreclaimable &&
2029 sc->priority != DEF_PRIORITY)
2030 continue; /* Let kswapd poll it */
2031 if (IS_ENABLED(CONFIG_COMPACTION)) {
2033 * If we already have plenty of memory free for
2034 * compaction in this zone, don't free any more.
2035 * Even though compaction is invoked for any
2036 * non-zero order, only frequent costly order
2037 * reclamation is disruptive enough to become a
2038 * noticeable problem, like transparent huge
2039 * page allocations.
2041 if (compaction_ready(zone, sc)) {
2042 aborted_reclaim = true;
2043 continue;
2047 * This steals pages from memory cgroups over softlimit
2048 * and returns the number of reclaimed pages and
2049 * scanned pages. This works for global memory pressure
2050 * and balancing, not for a memcg's limit.
2052 nr_soft_scanned = 0;
2053 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2054 sc->order, sc->gfp_mask,
2055 &nr_soft_scanned);
2056 sc->nr_reclaimed += nr_soft_reclaimed;
2057 sc->nr_scanned += nr_soft_scanned;
2058 /* need some check for avoid more shrink_zone() */
2061 shrink_zone(zone, sc);
2064 return aborted_reclaim;
2067 static bool zone_reclaimable(struct zone *zone)
2069 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2072 /* All zones in zonelist are unreclaimable? */
2073 static bool all_unreclaimable(struct zonelist *zonelist,
2074 struct scan_control *sc)
2076 struct zoneref *z;
2077 struct zone *zone;
2079 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2080 gfp_zone(sc->gfp_mask), sc->nodemask) {
2081 if (!populated_zone(zone))
2082 continue;
2083 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2084 continue;
2085 if (!zone->all_unreclaimable)
2086 return false;
2089 return true;
2093 * This is the main entry point to direct page reclaim.
2095 * If a full scan of the inactive list fails to free enough memory then we
2096 * are "out of memory" and something needs to be killed.
2098 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2099 * high - the zone may be full of dirty or under-writeback pages, which this
2100 * caller can't do much about. We kick the writeback threads and take explicit
2101 * naps in the hope that some of these pages can be written. But if the
2102 * allocating task holds filesystem locks which prevent writeout this might not
2103 * work, and the allocation attempt will fail.
2105 * returns: 0, if no pages reclaimed
2106 * else, the number of pages reclaimed
2108 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2109 struct scan_control *sc,
2110 struct shrink_control *shrink)
2112 unsigned long total_scanned = 0;
2113 struct reclaim_state *reclaim_state = current->reclaim_state;
2114 struct zoneref *z;
2115 struct zone *zone;
2116 unsigned long writeback_threshold;
2117 bool aborted_reclaim;
2119 delayacct_freepages_start();
2121 if (global_reclaim(sc))
2122 count_vm_event(ALLOCSTALL);
2124 do {
2125 sc->nr_scanned = 0;
2126 aborted_reclaim = shrink_zones(zonelist, sc);
2129 * Don't shrink slabs when reclaiming memory from
2130 * over limit cgroups
2132 if (global_reclaim(sc)) {
2133 unsigned long lru_pages = 0;
2134 for_each_zone_zonelist(zone, z, zonelist,
2135 gfp_zone(sc->gfp_mask)) {
2136 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2137 continue;
2139 lru_pages += zone_reclaimable_pages(zone);
2142 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2143 if (reclaim_state) {
2144 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2145 reclaim_state->reclaimed_slab = 0;
2148 total_scanned += sc->nr_scanned;
2149 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2150 goto out;
2153 * Try to write back as many pages as we just scanned. This
2154 * tends to cause slow streaming writers to write data to the
2155 * disk smoothly, at the dirtying rate, which is nice. But
2156 * that's undesirable in laptop mode, where we *want* lumpy
2157 * writeout. So in laptop mode, write out the whole world.
2159 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2160 if (total_scanned > writeback_threshold) {
2161 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2162 WB_REASON_TRY_TO_FREE_PAGES);
2163 sc->may_writepage = 1;
2166 /* Take a nap, wait for some writeback to complete */
2167 if (!sc->hibernation_mode && sc->nr_scanned &&
2168 sc->priority < DEF_PRIORITY - 2) {
2169 struct zone *preferred_zone;
2171 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2172 &cpuset_current_mems_allowed,
2173 &preferred_zone);
2174 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2176 } while (--sc->priority >= 0);
2178 out:
2179 delayacct_freepages_end();
2181 if (sc->nr_reclaimed)
2182 return sc->nr_reclaimed;
2185 * As hibernation is going on, kswapd is freezed so that it can't mark
2186 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2187 * check.
2189 if (oom_killer_disabled)
2190 return 0;
2192 /* Aborted reclaim to try compaction? don't OOM, then */
2193 if (aborted_reclaim)
2194 return 1;
2196 /* top priority shrink_zones still had more to do? don't OOM, then */
2197 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2198 return 1;
2200 return 0;
2203 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2205 struct zone *zone;
2206 unsigned long pfmemalloc_reserve = 0;
2207 unsigned long free_pages = 0;
2208 int i;
2209 bool wmark_ok;
2211 for (i = 0; i <= ZONE_NORMAL; i++) {
2212 zone = &pgdat->node_zones[i];
2213 pfmemalloc_reserve += min_wmark_pages(zone);
2214 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2217 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2219 /* kswapd must be awake if processes are being throttled */
2220 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2221 pgdat->classzone_idx = min(pgdat->classzone_idx,
2222 (enum zone_type)ZONE_NORMAL);
2223 wake_up_interruptible(&pgdat->kswapd_wait);
2226 return wmark_ok;
2230 * Throttle direct reclaimers if backing storage is backed by the network
2231 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2232 * depleted. kswapd will continue to make progress and wake the processes
2233 * when the low watermark is reached.
2235 * Returns true if a fatal signal was delivered during throttling. If this
2236 * happens, the page allocator should not consider triggering the OOM killer.
2238 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2239 nodemask_t *nodemask)
2241 struct zone *zone;
2242 int high_zoneidx = gfp_zone(gfp_mask);
2243 pg_data_t *pgdat;
2246 * Kernel threads should not be throttled as they may be indirectly
2247 * responsible for cleaning pages necessary for reclaim to make forward
2248 * progress. kjournald for example may enter direct reclaim while
2249 * committing a transaction where throttling it could forcing other
2250 * processes to block on log_wait_commit().
2252 if (current->flags & PF_KTHREAD)
2253 goto out;
2256 * If a fatal signal is pending, this process should not throttle.
2257 * It should return quickly so it can exit and free its memory
2259 if (fatal_signal_pending(current))
2260 goto out;
2262 /* Check if the pfmemalloc reserves are ok */
2263 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2264 pgdat = zone->zone_pgdat;
2265 if (pfmemalloc_watermark_ok(pgdat))
2266 goto out;
2268 /* Account for the throttling */
2269 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2272 * If the caller cannot enter the filesystem, it's possible that it
2273 * is due to the caller holding an FS lock or performing a journal
2274 * transaction in the case of a filesystem like ext[3|4]. In this case,
2275 * it is not safe to block on pfmemalloc_wait as kswapd could be
2276 * blocked waiting on the same lock. Instead, throttle for up to a
2277 * second before continuing.
2279 if (!(gfp_mask & __GFP_FS)) {
2280 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2281 pfmemalloc_watermark_ok(pgdat), HZ);
2283 goto check_pending;
2286 /* Throttle until kswapd wakes the process */
2287 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2288 pfmemalloc_watermark_ok(pgdat));
2290 check_pending:
2291 if (fatal_signal_pending(current))
2292 return true;
2294 out:
2295 return false;
2298 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2299 gfp_t gfp_mask, nodemask_t *nodemask)
2301 unsigned long nr_reclaimed;
2302 struct scan_control sc = {
2303 .gfp_mask = gfp_mask,
2304 .may_writepage = !laptop_mode,
2305 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2306 .may_unmap = 1,
2307 .may_swap = 1,
2308 .order = order,
2309 .priority = DEF_PRIORITY,
2310 .target_mem_cgroup = NULL,
2311 .nodemask = nodemask,
2313 struct shrink_control shrink = {
2314 .gfp_mask = sc.gfp_mask,
2318 * Do not enter reclaim if fatal signal was delivered while throttled.
2319 * 1 is returned so that the page allocator does not OOM kill at this
2320 * point.
2322 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2323 return 1;
2325 trace_mm_vmscan_direct_reclaim_begin(order,
2326 sc.may_writepage,
2327 gfp_mask);
2329 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2331 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2333 return nr_reclaimed;
2336 #ifdef CONFIG_MEMCG
2338 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2339 gfp_t gfp_mask, bool noswap,
2340 struct zone *zone,
2341 unsigned long *nr_scanned)
2343 struct scan_control sc = {
2344 .nr_scanned = 0,
2345 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2346 .may_writepage = !laptop_mode,
2347 .may_unmap = 1,
2348 .may_swap = !noswap,
2349 .order = 0,
2350 .priority = 0,
2351 .target_mem_cgroup = memcg,
2353 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2355 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2356 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2358 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2359 sc.may_writepage,
2360 sc.gfp_mask);
2363 * NOTE: Although we can get the priority field, using it
2364 * here is not a good idea, since it limits the pages we can scan.
2365 * if we don't reclaim here, the shrink_zone from balance_pgdat
2366 * will pick up pages from other mem cgroup's as well. We hack
2367 * the priority and make it zero.
2369 shrink_lruvec(lruvec, &sc);
2371 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2373 *nr_scanned = sc.nr_scanned;
2374 return sc.nr_reclaimed;
2377 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2378 gfp_t gfp_mask,
2379 bool noswap)
2381 struct zonelist *zonelist;
2382 unsigned long nr_reclaimed;
2383 int nid;
2384 struct scan_control sc = {
2385 .may_writepage = !laptop_mode,
2386 .may_unmap = 1,
2387 .may_swap = !noswap,
2388 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2389 .order = 0,
2390 .priority = DEF_PRIORITY,
2391 .target_mem_cgroup = memcg,
2392 .nodemask = NULL, /* we don't care the placement */
2393 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2394 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2396 struct shrink_control shrink = {
2397 .gfp_mask = sc.gfp_mask,
2401 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2402 * take care of from where we get pages. So the node where we start the
2403 * scan does not need to be the current node.
2405 nid = mem_cgroup_select_victim_node(memcg);
2407 zonelist = NODE_DATA(nid)->node_zonelists;
2409 trace_mm_vmscan_memcg_reclaim_begin(0,
2410 sc.may_writepage,
2411 sc.gfp_mask);
2413 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2415 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2417 return nr_reclaimed;
2419 #endif
2421 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2423 struct mem_cgroup *memcg;
2425 if (!total_swap_pages)
2426 return;
2428 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2429 do {
2430 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2432 if (inactive_anon_is_low(lruvec))
2433 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2434 sc, LRU_ACTIVE_ANON);
2436 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2437 } while (memcg);
2440 static bool zone_balanced(struct zone *zone, int order,
2441 unsigned long balance_gap, int classzone_idx)
2443 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2444 balance_gap, classzone_idx, 0))
2445 return false;
2447 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2448 !compaction_suitable(zone, order))
2449 return false;
2451 return true;
2455 * pgdat_balanced() is used when checking if a node is balanced.
2457 * For order-0, all zones must be balanced!
2459 * For high-order allocations only zones that meet watermarks and are in a
2460 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2461 * total of balanced pages must be at least 25% of the zones allowed by
2462 * classzone_idx for the node to be considered balanced. Forcing all zones to
2463 * be balanced for high orders can cause excessive reclaim when there are
2464 * imbalanced zones.
2465 * The choice of 25% is due to
2466 * o a 16M DMA zone that is balanced will not balance a zone on any
2467 * reasonable sized machine
2468 * o On all other machines, the top zone must be at least a reasonable
2469 * percentage of the middle zones. For example, on 32-bit x86, highmem
2470 * would need to be at least 256M for it to be balance a whole node.
2471 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2472 * to balance a node on its own. These seemed like reasonable ratios.
2474 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2476 unsigned long present_pages = 0;
2477 unsigned long balanced_pages = 0;
2478 int i;
2480 /* Check the watermark levels */
2481 for (i = 0; i <= classzone_idx; i++) {
2482 struct zone *zone = pgdat->node_zones + i;
2484 if (!populated_zone(zone))
2485 continue;
2487 present_pages += zone->present_pages;
2490 * A special case here:
2492 * balance_pgdat() skips over all_unreclaimable after
2493 * DEF_PRIORITY. Effectively, it considers them balanced so
2494 * they must be considered balanced here as well!
2496 if (zone->all_unreclaimable) {
2497 balanced_pages += zone->present_pages;
2498 continue;
2501 if (zone_balanced(zone, order, 0, i))
2502 balanced_pages += zone->present_pages;
2503 else if (!order)
2504 return false;
2507 if (order)
2508 return balanced_pages >= (present_pages >> 2);
2509 else
2510 return true;
2514 * Prepare kswapd for sleeping. This verifies that there are no processes
2515 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2517 * Returns true if kswapd is ready to sleep
2519 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2520 int classzone_idx)
2522 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2523 if (remaining)
2524 return false;
2527 * There is a potential race between when kswapd checks its watermarks
2528 * and a process gets throttled. There is also a potential race if
2529 * processes get throttled, kswapd wakes, a large process exits therby
2530 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2531 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2532 * so wake them now if necessary. If necessary, processes will wake
2533 * kswapd and get throttled again
2535 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2536 wake_up(&pgdat->pfmemalloc_wait);
2537 return false;
2540 return pgdat_balanced(pgdat, order, classzone_idx);
2544 * For kswapd, balance_pgdat() will work across all this node's zones until
2545 * they are all at high_wmark_pages(zone).
2547 * Returns the final order kswapd was reclaiming at
2549 * There is special handling here for zones which are full of pinned pages.
2550 * This can happen if the pages are all mlocked, or if they are all used by
2551 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2552 * What we do is to detect the case where all pages in the zone have been
2553 * scanned twice and there has been zero successful reclaim. Mark the zone as
2554 * dead and from now on, only perform a short scan. Basically we're polling
2555 * the zone for when the problem goes away.
2557 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2558 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2559 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2560 * lower zones regardless of the number of free pages in the lower zones. This
2561 * interoperates with the page allocator fallback scheme to ensure that aging
2562 * of pages is balanced across the zones.
2564 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2565 int *classzone_idx)
2567 struct zone *unbalanced_zone;
2568 int i;
2569 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2570 unsigned long total_scanned;
2571 struct reclaim_state *reclaim_state = current->reclaim_state;
2572 unsigned long nr_soft_reclaimed;
2573 unsigned long nr_soft_scanned;
2574 struct scan_control sc = {
2575 .gfp_mask = GFP_KERNEL,
2576 .may_unmap = 1,
2577 .may_swap = 1,
2579 * kswapd doesn't want to be bailed out while reclaim. because
2580 * we want to put equal scanning pressure on each zone.
2582 .nr_to_reclaim = ULONG_MAX,
2583 .order = order,
2584 .target_mem_cgroup = NULL,
2586 struct shrink_control shrink = {
2587 .gfp_mask = sc.gfp_mask,
2589 loop_again:
2590 total_scanned = 0;
2591 sc.priority = DEF_PRIORITY;
2592 sc.nr_reclaimed = 0;
2593 sc.may_writepage = !laptop_mode;
2594 count_vm_event(PAGEOUTRUN);
2596 do {
2597 unsigned long lru_pages = 0;
2598 int has_under_min_watermark_zone = 0;
2600 unbalanced_zone = NULL;
2603 * Scan in the highmem->dma direction for the highest
2604 * zone which needs scanning
2606 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2607 struct zone *zone = pgdat->node_zones + i;
2609 if (!populated_zone(zone))
2610 continue;
2612 if (zone->all_unreclaimable &&
2613 sc.priority != DEF_PRIORITY)
2614 continue;
2617 * Do some background aging of the anon list, to give
2618 * pages a chance to be referenced before reclaiming.
2620 age_active_anon(zone, &sc);
2623 * If the number of buffer_heads in the machine
2624 * exceeds the maximum allowed level and this node
2625 * has a highmem zone, force kswapd to reclaim from
2626 * it to relieve lowmem pressure.
2628 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2629 end_zone = i;
2630 break;
2633 if (!zone_balanced(zone, order, 0, 0)) {
2634 end_zone = i;
2635 break;
2636 } else {
2637 /* If balanced, clear the congested flag */
2638 zone_clear_flag(zone, ZONE_CONGESTED);
2641 if (i < 0)
2642 goto out;
2644 for (i = 0; i <= end_zone; i++) {
2645 struct zone *zone = pgdat->node_zones + i;
2647 lru_pages += zone_reclaimable_pages(zone);
2651 * Now scan the zone in the dma->highmem direction, stopping
2652 * at the last zone which needs scanning.
2654 * We do this because the page allocator works in the opposite
2655 * direction. This prevents the page allocator from allocating
2656 * pages behind kswapd's direction of progress, which would
2657 * cause too much scanning of the lower zones.
2659 for (i = 0; i <= end_zone; i++) {
2660 struct zone *zone = pgdat->node_zones + i;
2661 int nr_slab, testorder;
2662 unsigned long balance_gap;
2664 if (!populated_zone(zone))
2665 continue;
2667 if (zone->all_unreclaimable &&
2668 sc.priority != DEF_PRIORITY)
2669 continue;
2671 sc.nr_scanned = 0;
2673 nr_soft_scanned = 0;
2675 * Call soft limit reclaim before calling shrink_zone.
2677 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2678 order, sc.gfp_mask,
2679 &nr_soft_scanned);
2680 sc.nr_reclaimed += nr_soft_reclaimed;
2681 total_scanned += nr_soft_scanned;
2684 * We put equal pressure on every zone, unless
2685 * one zone has way too many pages free
2686 * already. The "too many pages" is defined
2687 * as the high wmark plus a "gap" where the
2688 * gap is either the low watermark or 1%
2689 * of the zone, whichever is smaller.
2691 balance_gap = min(low_wmark_pages(zone),
2692 (zone->present_pages +
2693 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2694 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2696 * Kswapd reclaims only single pages with compaction
2697 * enabled. Trying too hard to reclaim until contiguous
2698 * free pages have become available can hurt performance
2699 * by evicting too much useful data from memory.
2700 * Do not reclaim more than needed for compaction.
2702 testorder = order;
2703 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2704 compaction_suitable(zone, order) !=
2705 COMPACT_SKIPPED)
2706 testorder = 0;
2708 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2709 !zone_balanced(zone, testorder,
2710 balance_gap, end_zone)) {
2711 shrink_zone(zone, &sc);
2713 reclaim_state->reclaimed_slab = 0;
2714 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2715 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2716 total_scanned += sc.nr_scanned;
2718 if (nr_slab == 0 && !zone_reclaimable(zone))
2719 zone->all_unreclaimable = 1;
2723 * If we've done a decent amount of scanning and
2724 * the reclaim ratio is low, start doing writepage
2725 * even in laptop mode
2727 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2728 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2729 sc.may_writepage = 1;
2731 if (zone->all_unreclaimable) {
2732 if (end_zone && end_zone == i)
2733 end_zone--;
2734 continue;
2737 if (!zone_balanced(zone, testorder, 0, end_zone)) {
2738 unbalanced_zone = zone;
2740 * We are still under min water mark. This
2741 * means that we have a GFP_ATOMIC allocation
2742 * failure risk. Hurry up!
2744 if (!zone_watermark_ok_safe(zone, order,
2745 min_wmark_pages(zone), end_zone, 0))
2746 has_under_min_watermark_zone = 1;
2747 } else {
2749 * If a zone reaches its high watermark,
2750 * consider it to be no longer congested. It's
2751 * possible there are dirty pages backed by
2752 * congested BDIs but as pressure is relieved,
2753 * speculatively avoid congestion waits
2755 zone_clear_flag(zone, ZONE_CONGESTED);
2761 * If the low watermark is met there is no need for processes
2762 * to be throttled on pfmemalloc_wait as they should not be
2763 * able to safely make forward progress. Wake them
2765 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2766 pfmemalloc_watermark_ok(pgdat))
2767 wake_up(&pgdat->pfmemalloc_wait);
2769 if (pgdat_balanced(pgdat, order, *classzone_idx))
2770 break; /* kswapd: all done */
2772 * OK, kswapd is getting into trouble. Take a nap, then take
2773 * another pass across the zones.
2775 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2776 if (has_under_min_watermark_zone)
2777 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2778 else if (unbalanced_zone)
2779 wait_iff_congested(unbalanced_zone, BLK_RW_ASYNC, HZ/10);
2783 * We do this so kswapd doesn't build up large priorities for
2784 * example when it is freeing in parallel with allocators. It
2785 * matches the direct reclaim path behaviour in terms of impact
2786 * on zone->*_priority.
2788 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2789 break;
2790 } while (--sc.priority >= 0);
2791 out:
2793 if (!pgdat_balanced(pgdat, order, *classzone_idx)) {
2794 cond_resched();
2796 try_to_freeze();
2799 * Fragmentation may mean that the system cannot be
2800 * rebalanced for high-order allocations in all zones.
2801 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2802 * it means the zones have been fully scanned and are still
2803 * not balanced. For high-order allocations, there is
2804 * little point trying all over again as kswapd may
2805 * infinite loop.
2807 * Instead, recheck all watermarks at order-0 as they
2808 * are the most important. If watermarks are ok, kswapd will go
2809 * back to sleep. High-order users can still perform direct
2810 * reclaim if they wish.
2812 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2813 order = sc.order = 0;
2815 goto loop_again;
2819 * If kswapd was reclaiming at a higher order, it has the option of
2820 * sleeping without all zones being balanced. Before it does, it must
2821 * ensure that the watermarks for order-0 on *all* zones are met and
2822 * that the congestion flags are cleared. The congestion flag must
2823 * be cleared as kswapd is the only mechanism that clears the flag
2824 * and it is potentially going to sleep here.
2826 if (order) {
2827 int zones_need_compaction = 1;
2829 for (i = 0; i <= end_zone; i++) {
2830 struct zone *zone = pgdat->node_zones + i;
2832 if (!populated_zone(zone))
2833 continue;
2835 /* Check if the memory needs to be defragmented. */
2836 if (zone_watermark_ok(zone, order,
2837 low_wmark_pages(zone), *classzone_idx, 0))
2838 zones_need_compaction = 0;
2841 if (zones_need_compaction)
2842 compact_pgdat(pgdat, order);
2846 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2847 * makes a decision on the order we were last reclaiming at. However,
2848 * if another caller entered the allocator slow path while kswapd
2849 * was awake, order will remain at the higher level
2851 *classzone_idx = end_zone;
2852 return order;
2855 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2857 long remaining = 0;
2858 DEFINE_WAIT(wait);
2860 if (freezing(current) || kthread_should_stop())
2861 return;
2863 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2865 /* Try to sleep for a short interval */
2866 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2867 remaining = schedule_timeout(HZ/10);
2868 finish_wait(&pgdat->kswapd_wait, &wait);
2869 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2873 * After a short sleep, check if it was a premature sleep. If not, then
2874 * go fully to sleep until explicitly woken up.
2876 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2877 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2880 * vmstat counters are not perfectly accurate and the estimated
2881 * value for counters such as NR_FREE_PAGES can deviate from the
2882 * true value by nr_online_cpus * threshold. To avoid the zone
2883 * watermarks being breached while under pressure, we reduce the
2884 * per-cpu vmstat threshold while kswapd is awake and restore
2885 * them before going back to sleep.
2887 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2890 * Compaction records what page blocks it recently failed to
2891 * isolate pages from and skips them in the future scanning.
2892 * When kswapd is going to sleep, it is reasonable to assume
2893 * that pages and compaction may succeed so reset the cache.
2895 reset_isolation_suitable(pgdat);
2897 if (!kthread_should_stop())
2898 schedule();
2900 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2901 } else {
2902 if (remaining)
2903 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2904 else
2905 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2907 finish_wait(&pgdat->kswapd_wait, &wait);
2911 * The background pageout daemon, started as a kernel thread
2912 * from the init process.
2914 * This basically trickles out pages so that we have _some_
2915 * free memory available even if there is no other activity
2916 * that frees anything up. This is needed for things like routing
2917 * etc, where we otherwise might have all activity going on in
2918 * asynchronous contexts that cannot page things out.
2920 * If there are applications that are active memory-allocators
2921 * (most normal use), this basically shouldn't matter.
2923 static int kswapd(void *p)
2925 unsigned long order, new_order;
2926 unsigned balanced_order;
2927 int classzone_idx, new_classzone_idx;
2928 int balanced_classzone_idx;
2929 pg_data_t *pgdat = (pg_data_t*)p;
2930 struct task_struct *tsk = current;
2932 struct reclaim_state reclaim_state = {
2933 .reclaimed_slab = 0,
2935 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2937 lockdep_set_current_reclaim_state(GFP_KERNEL);
2939 if (!cpumask_empty(cpumask))
2940 set_cpus_allowed_ptr(tsk, cpumask);
2941 current->reclaim_state = &reclaim_state;
2944 * Tell the memory management that we're a "memory allocator",
2945 * and that if we need more memory we should get access to it
2946 * regardless (see "__alloc_pages()"). "kswapd" should
2947 * never get caught in the normal page freeing logic.
2949 * (Kswapd normally doesn't need memory anyway, but sometimes
2950 * you need a small amount of memory in order to be able to
2951 * page out something else, and this flag essentially protects
2952 * us from recursively trying to free more memory as we're
2953 * trying to free the first piece of memory in the first place).
2955 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2956 set_freezable();
2958 order = new_order = 0;
2959 balanced_order = 0;
2960 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2961 balanced_classzone_idx = classzone_idx;
2962 for ( ; ; ) {
2963 bool ret;
2966 * If the last balance_pgdat was unsuccessful it's unlikely a
2967 * new request of a similar or harder type will succeed soon
2968 * so consider going to sleep on the basis we reclaimed at
2970 if (balanced_classzone_idx >= new_classzone_idx &&
2971 balanced_order == new_order) {
2972 new_order = pgdat->kswapd_max_order;
2973 new_classzone_idx = pgdat->classzone_idx;
2974 pgdat->kswapd_max_order = 0;
2975 pgdat->classzone_idx = pgdat->nr_zones - 1;
2978 if (order < new_order || classzone_idx > new_classzone_idx) {
2980 * Don't sleep if someone wants a larger 'order'
2981 * allocation or has tigher zone constraints
2983 order = new_order;
2984 classzone_idx = new_classzone_idx;
2985 } else {
2986 kswapd_try_to_sleep(pgdat, balanced_order,
2987 balanced_classzone_idx);
2988 order = pgdat->kswapd_max_order;
2989 classzone_idx = pgdat->classzone_idx;
2990 new_order = order;
2991 new_classzone_idx = classzone_idx;
2992 pgdat->kswapd_max_order = 0;
2993 pgdat->classzone_idx = pgdat->nr_zones - 1;
2996 ret = try_to_freeze();
2997 if (kthread_should_stop())
2998 break;
3001 * We can speed up thawing tasks if we don't call balance_pgdat
3002 * after returning from the refrigerator
3004 if (!ret) {
3005 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3006 balanced_classzone_idx = classzone_idx;
3007 balanced_order = balance_pgdat(pgdat, order,
3008 &balanced_classzone_idx);
3012 current->reclaim_state = NULL;
3013 return 0;
3017 * A zone is low on free memory, so wake its kswapd task to service it.
3019 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3021 pg_data_t *pgdat;
3023 if (!populated_zone(zone))
3024 return;
3026 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3027 return;
3028 pgdat = zone->zone_pgdat;
3029 if (pgdat->kswapd_max_order < order) {
3030 pgdat->kswapd_max_order = order;
3031 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3033 if (!waitqueue_active(&pgdat->kswapd_wait))
3034 return;
3035 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3036 return;
3038 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3039 wake_up_interruptible(&pgdat->kswapd_wait);
3043 * The reclaimable count would be mostly accurate.
3044 * The less reclaimable pages may be
3045 * - mlocked pages, which will be moved to unevictable list when encountered
3046 * - mapped pages, which may require several travels to be reclaimed
3047 * - dirty pages, which is not "instantly" reclaimable
3049 unsigned long global_reclaimable_pages(void)
3051 int nr;
3053 nr = global_page_state(NR_ACTIVE_FILE) +
3054 global_page_state(NR_INACTIVE_FILE);
3056 if (nr_swap_pages > 0)
3057 nr += global_page_state(NR_ACTIVE_ANON) +
3058 global_page_state(NR_INACTIVE_ANON);
3060 return nr;
3063 unsigned long zone_reclaimable_pages(struct zone *zone)
3065 int nr;
3067 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3068 zone_page_state(zone, NR_INACTIVE_FILE);
3070 if (nr_swap_pages > 0)
3071 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3072 zone_page_state(zone, NR_INACTIVE_ANON);
3074 return nr;
3077 #ifdef CONFIG_HIBERNATION
3079 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3080 * freed pages.
3082 * Rather than trying to age LRUs the aim is to preserve the overall
3083 * LRU order by reclaiming preferentially
3084 * inactive > active > active referenced > active mapped
3086 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3088 struct reclaim_state reclaim_state;
3089 struct scan_control sc = {
3090 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3091 .may_swap = 1,
3092 .may_unmap = 1,
3093 .may_writepage = 1,
3094 .nr_to_reclaim = nr_to_reclaim,
3095 .hibernation_mode = 1,
3096 .order = 0,
3097 .priority = DEF_PRIORITY,
3099 struct shrink_control shrink = {
3100 .gfp_mask = sc.gfp_mask,
3102 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3103 struct task_struct *p = current;
3104 unsigned long nr_reclaimed;
3106 p->flags |= PF_MEMALLOC;
3107 lockdep_set_current_reclaim_state(sc.gfp_mask);
3108 reclaim_state.reclaimed_slab = 0;
3109 p->reclaim_state = &reclaim_state;
3111 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3113 p->reclaim_state = NULL;
3114 lockdep_clear_current_reclaim_state();
3115 p->flags &= ~PF_MEMALLOC;
3117 return nr_reclaimed;
3119 #endif /* CONFIG_HIBERNATION */
3121 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3122 not required for correctness. So if the last cpu in a node goes
3123 away, we get changed to run anywhere: as the first one comes back,
3124 restore their cpu bindings. */
3125 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3126 void *hcpu)
3128 int nid;
3130 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3131 for_each_node_state(nid, N_MEMORY) {
3132 pg_data_t *pgdat = NODE_DATA(nid);
3133 const struct cpumask *mask;
3135 mask = cpumask_of_node(pgdat->node_id);
3137 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3138 /* One of our CPUs online: restore mask */
3139 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3142 return NOTIFY_OK;
3146 * This kswapd start function will be called by init and node-hot-add.
3147 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3149 int kswapd_run(int nid)
3151 pg_data_t *pgdat = NODE_DATA(nid);
3152 int ret = 0;
3154 if (pgdat->kswapd)
3155 return 0;
3157 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3158 if (IS_ERR(pgdat->kswapd)) {
3159 /* failure at boot is fatal */
3160 BUG_ON(system_state == SYSTEM_BOOTING);
3161 pgdat->kswapd = NULL;
3162 pr_err("Failed to start kswapd on node %d\n", nid);
3163 ret = PTR_ERR(pgdat->kswapd);
3165 return ret;
3169 * Called by memory hotplug when all memory in a node is offlined. Caller must
3170 * hold lock_memory_hotplug().
3172 void kswapd_stop(int nid)
3174 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3176 if (kswapd) {
3177 kthread_stop(kswapd);
3178 NODE_DATA(nid)->kswapd = NULL;
3182 static int __init kswapd_init(void)
3184 int nid;
3186 swap_setup();
3187 for_each_node_state(nid, N_MEMORY)
3188 kswapd_run(nid);
3189 hotcpu_notifier(cpu_callback, 0);
3190 return 0;
3193 module_init(kswapd_init)
3195 #ifdef CONFIG_NUMA
3197 * Zone reclaim mode
3199 * If non-zero call zone_reclaim when the number of free pages falls below
3200 * the watermarks.
3202 int zone_reclaim_mode __read_mostly;
3204 #define RECLAIM_OFF 0
3205 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3206 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3207 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3210 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3211 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3212 * a zone.
3214 #define ZONE_RECLAIM_PRIORITY 4
3217 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3218 * occur.
3220 int sysctl_min_unmapped_ratio = 1;
3223 * If the number of slab pages in a zone grows beyond this percentage then
3224 * slab reclaim needs to occur.
3226 int sysctl_min_slab_ratio = 5;
3228 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3230 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3231 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3232 zone_page_state(zone, NR_ACTIVE_FILE);
3235 * It's possible for there to be more file mapped pages than
3236 * accounted for by the pages on the file LRU lists because
3237 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3239 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3242 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3243 static long zone_pagecache_reclaimable(struct zone *zone)
3245 long nr_pagecache_reclaimable;
3246 long delta = 0;
3249 * If RECLAIM_SWAP is set, then all file pages are considered
3250 * potentially reclaimable. Otherwise, we have to worry about
3251 * pages like swapcache and zone_unmapped_file_pages() provides
3252 * a better estimate
3254 if (zone_reclaim_mode & RECLAIM_SWAP)
3255 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3256 else
3257 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3259 /* If we can't clean pages, remove dirty pages from consideration */
3260 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3261 delta += zone_page_state(zone, NR_FILE_DIRTY);
3263 /* Watch for any possible underflows due to delta */
3264 if (unlikely(delta > nr_pagecache_reclaimable))
3265 delta = nr_pagecache_reclaimable;
3267 return nr_pagecache_reclaimable - delta;
3271 * Try to free up some pages from this zone through reclaim.
3273 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3275 /* Minimum pages needed in order to stay on node */
3276 const unsigned long nr_pages = 1 << order;
3277 struct task_struct *p = current;
3278 struct reclaim_state reclaim_state;
3279 struct scan_control sc = {
3280 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3281 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3282 .may_swap = 1,
3283 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3284 SWAP_CLUSTER_MAX),
3285 .gfp_mask = gfp_mask,
3286 .order = order,
3287 .priority = ZONE_RECLAIM_PRIORITY,
3289 struct shrink_control shrink = {
3290 .gfp_mask = sc.gfp_mask,
3292 unsigned long nr_slab_pages0, nr_slab_pages1;
3294 cond_resched();
3296 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3297 * and we also need to be able to write out pages for RECLAIM_WRITE
3298 * and RECLAIM_SWAP.
3300 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3301 lockdep_set_current_reclaim_state(gfp_mask);
3302 reclaim_state.reclaimed_slab = 0;
3303 p->reclaim_state = &reclaim_state;
3305 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3307 * Free memory by calling shrink zone with increasing
3308 * priorities until we have enough memory freed.
3310 do {
3311 shrink_zone(zone, &sc);
3312 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3315 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3316 if (nr_slab_pages0 > zone->min_slab_pages) {
3318 * shrink_slab() does not currently allow us to determine how
3319 * many pages were freed in this zone. So we take the current
3320 * number of slab pages and shake the slab until it is reduced
3321 * by the same nr_pages that we used for reclaiming unmapped
3322 * pages.
3324 * Note that shrink_slab will free memory on all zones and may
3325 * take a long time.
3327 for (;;) {
3328 unsigned long lru_pages = zone_reclaimable_pages(zone);
3330 /* No reclaimable slab or very low memory pressure */
3331 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3332 break;
3334 /* Freed enough memory */
3335 nr_slab_pages1 = zone_page_state(zone,
3336 NR_SLAB_RECLAIMABLE);
3337 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3338 break;
3342 * Update nr_reclaimed by the number of slab pages we
3343 * reclaimed from this zone.
3345 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3346 if (nr_slab_pages1 < nr_slab_pages0)
3347 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3350 p->reclaim_state = NULL;
3351 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3352 lockdep_clear_current_reclaim_state();
3353 return sc.nr_reclaimed >= nr_pages;
3356 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3358 int node_id;
3359 int ret;
3362 * Zone reclaim reclaims unmapped file backed pages and
3363 * slab pages if we are over the defined limits.
3365 * A small portion of unmapped file backed pages is needed for
3366 * file I/O otherwise pages read by file I/O will be immediately
3367 * thrown out if the zone is overallocated. So we do not reclaim
3368 * if less than a specified percentage of the zone is used by
3369 * unmapped file backed pages.
3371 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3372 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3373 return ZONE_RECLAIM_FULL;
3375 if (zone->all_unreclaimable)
3376 return ZONE_RECLAIM_FULL;
3379 * Do not scan if the allocation should not be delayed.
3381 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3382 return ZONE_RECLAIM_NOSCAN;
3385 * Only run zone reclaim on the local zone or on zones that do not
3386 * have associated processors. This will favor the local processor
3387 * over remote processors and spread off node memory allocations
3388 * as wide as possible.
3390 node_id = zone_to_nid(zone);
3391 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3392 return ZONE_RECLAIM_NOSCAN;
3394 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3395 return ZONE_RECLAIM_NOSCAN;
3397 ret = __zone_reclaim(zone, gfp_mask, order);
3398 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3400 if (!ret)
3401 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3403 return ret;
3405 #endif
3408 * page_evictable - test whether a page is evictable
3409 * @page: the page to test
3411 * Test whether page is evictable--i.e., should be placed on active/inactive
3412 * lists vs unevictable list.
3414 * Reasons page might not be evictable:
3415 * (1) page's mapping marked unevictable
3416 * (2) page is part of an mlocked VMA
3419 int page_evictable(struct page *page)
3421 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3424 #ifdef CONFIG_SHMEM
3426 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3427 * @pages: array of pages to check
3428 * @nr_pages: number of pages to check
3430 * Checks pages for evictability and moves them to the appropriate lru list.
3432 * This function is only used for SysV IPC SHM_UNLOCK.
3434 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3436 struct lruvec *lruvec;
3437 struct zone *zone = NULL;
3438 int pgscanned = 0;
3439 int pgrescued = 0;
3440 int i;
3442 for (i = 0; i < nr_pages; i++) {
3443 struct page *page = pages[i];
3444 struct zone *pagezone;
3446 pgscanned++;
3447 pagezone = page_zone(page);
3448 if (pagezone != zone) {
3449 if (zone)
3450 spin_unlock_irq(&zone->lru_lock);
3451 zone = pagezone;
3452 spin_lock_irq(&zone->lru_lock);
3454 lruvec = mem_cgroup_page_lruvec(page, zone);
3456 if (!PageLRU(page) || !PageUnevictable(page))
3457 continue;
3459 if (page_evictable(page)) {
3460 enum lru_list lru = page_lru_base_type(page);
3462 VM_BUG_ON(PageActive(page));
3463 ClearPageUnevictable(page);
3464 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3465 add_page_to_lru_list(page, lruvec, lru);
3466 pgrescued++;
3470 if (zone) {
3471 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3472 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3473 spin_unlock_irq(&zone->lru_lock);
3476 #endif /* CONFIG_SHMEM */
3478 static void warn_scan_unevictable_pages(void)
3480 printk_once(KERN_WARNING
3481 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3482 "disabled for lack of a legitimate use case. If you have "
3483 "one, please send an email to linux-mm@kvack.org.\n",
3484 current->comm);
3488 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3489 * all nodes' unevictable lists for evictable pages
3491 unsigned long scan_unevictable_pages;
3493 int scan_unevictable_handler(struct ctl_table *table, int write,
3494 void __user *buffer,
3495 size_t *length, loff_t *ppos)
3497 warn_scan_unevictable_pages();
3498 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3499 scan_unevictable_pages = 0;
3500 return 0;
3503 #ifdef CONFIG_NUMA
3505 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3506 * a specified node's per zone unevictable lists for evictable pages.
3509 static ssize_t read_scan_unevictable_node(struct device *dev,
3510 struct device_attribute *attr,
3511 char *buf)
3513 warn_scan_unevictable_pages();
3514 return sprintf(buf, "0\n"); /* always zero; should fit... */
3517 static ssize_t write_scan_unevictable_node(struct device *dev,
3518 struct device_attribute *attr,
3519 const char *buf, size_t count)
3521 warn_scan_unevictable_pages();
3522 return 1;
3526 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3527 read_scan_unevictable_node,
3528 write_scan_unevictable_node);
3530 int scan_unevictable_register_node(struct node *node)
3532 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3535 void scan_unevictable_unregister_node(struct node *node)
3537 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3539 #endif