Linux 3.8-rc7
[cris-mirror.git] / net / sctp / auth.c
blobd8420ae614dcaa2b12dfbe5cef78a39c7bfda8ca
1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
23 * Please send any bug reports or fixes you make to the
24 * email address(es):
25 * lksctp developers <lksctp-developers@lists.sourceforge.net>
27 * Or submit a bug report through the following website:
28 * http://www.sf.net/projects/lksctp
30 * Written or modified by:
31 * Vlad Yasevich <vladislav.yasevich@hp.com>
33 * Any bugs reported given to us we will try to fix... any fixes shared will
34 * be incorporated into the next SCTP release.
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/crypto.h>
40 #include <linux/scatterlist.h>
41 #include <net/sctp/sctp.h>
42 #include <net/sctp/auth.h>
44 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
46 /* id 0 is reserved. as all 0 */
47 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
50 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
51 .hmac_name="hmac(sha1)",
52 .hmac_len = SCTP_SHA1_SIG_SIZE,
55 /* id 2 is reserved as well */
56 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
58 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
60 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
61 .hmac_name="hmac(sha256)",
62 .hmac_len = SCTP_SHA256_SIG_SIZE,
64 #endif
68 void sctp_auth_key_put(struct sctp_auth_bytes *key)
70 if (!key)
71 return;
73 if (atomic_dec_and_test(&key->refcnt)) {
74 kzfree(key);
75 SCTP_DBG_OBJCNT_DEC(keys);
79 /* Create a new key structure of a given length */
80 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
82 struct sctp_auth_bytes *key;
84 /* Verify that we are not going to overflow INT_MAX */
85 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
86 return NULL;
88 /* Allocate the shared key */
89 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
90 if (!key)
91 return NULL;
93 key->len = key_len;
94 atomic_set(&key->refcnt, 1);
95 SCTP_DBG_OBJCNT_INC(keys);
97 return key;
100 /* Create a new shared key container with a give key id */
101 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
103 struct sctp_shared_key *new;
105 /* Allocate the shared key container */
106 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
107 if (!new)
108 return NULL;
110 INIT_LIST_HEAD(&new->key_list);
111 new->key_id = key_id;
113 return new;
116 /* Free the shared key structure */
117 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
119 BUG_ON(!list_empty(&sh_key->key_list));
120 sctp_auth_key_put(sh_key->key);
121 sh_key->key = NULL;
122 kfree(sh_key);
125 /* Destroy the entire key list. This is done during the
126 * associon and endpoint free process.
128 void sctp_auth_destroy_keys(struct list_head *keys)
130 struct sctp_shared_key *ep_key;
131 struct sctp_shared_key *tmp;
133 if (list_empty(keys))
134 return;
136 key_for_each_safe(ep_key, tmp, keys) {
137 list_del_init(&ep_key->key_list);
138 sctp_auth_shkey_free(ep_key);
142 /* Compare two byte vectors as numbers. Return values
143 * are:
144 * 0 - vectors are equal
145 * < 0 - vector 1 is smaller than vector2
146 * > 0 - vector 1 is greater than vector2
148 * Algorithm is:
149 * This is performed by selecting the numerically smaller key vector...
150 * If the key vectors are equal as numbers but differ in length ...
151 * the shorter vector is considered smaller
153 * Examples (with small values):
154 * 000123456789 > 123456789 (first number is longer)
155 * 000123456789 < 234567891 (second number is larger numerically)
156 * 123456789 > 2345678 (first number is both larger & longer)
158 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
159 struct sctp_auth_bytes *vector2)
161 int diff;
162 int i;
163 const __u8 *longer;
165 diff = vector1->len - vector2->len;
166 if (diff) {
167 longer = (diff > 0) ? vector1->data : vector2->data;
169 /* Check to see if the longer number is
170 * lead-zero padded. If it is not, it
171 * is automatically larger numerically.
173 for (i = 0; i < abs(diff); i++ ) {
174 if (longer[i] != 0)
175 return diff;
179 /* lengths are the same, compare numbers */
180 return memcmp(vector1->data, vector2->data, vector1->len);
184 * Create a key vector as described in SCTP-AUTH, Section 6.1
185 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
186 * parameter sent by each endpoint are concatenated as byte vectors.
187 * These parameters include the parameter type, parameter length, and
188 * the parameter value, but padding is omitted; all padding MUST be
189 * removed from this concatenation before proceeding with further
190 * computation of keys. Parameters which were not sent are simply
191 * omitted from the concatenation process. The resulting two vectors
192 * are called the two key vectors.
194 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
195 sctp_random_param_t *random,
196 sctp_chunks_param_t *chunks,
197 sctp_hmac_algo_param_t *hmacs,
198 gfp_t gfp)
200 struct sctp_auth_bytes *new;
201 __u32 len;
202 __u32 offset = 0;
204 len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
205 if (chunks)
206 len += ntohs(chunks->param_hdr.length);
208 new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
209 if (!new)
210 return NULL;
212 new->len = len;
214 memcpy(new->data, random, ntohs(random->param_hdr.length));
215 offset += ntohs(random->param_hdr.length);
217 if (chunks) {
218 memcpy(new->data + offset, chunks,
219 ntohs(chunks->param_hdr.length));
220 offset += ntohs(chunks->param_hdr.length);
223 memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
225 return new;
229 /* Make a key vector based on our local parameters */
230 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
231 const struct sctp_association *asoc,
232 gfp_t gfp)
234 return sctp_auth_make_key_vector(
235 (sctp_random_param_t*)asoc->c.auth_random,
236 (sctp_chunks_param_t*)asoc->c.auth_chunks,
237 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
238 gfp);
241 /* Make a key vector based on peer's parameters */
242 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
243 const struct sctp_association *asoc,
244 gfp_t gfp)
246 return sctp_auth_make_key_vector(asoc->peer.peer_random,
247 asoc->peer.peer_chunks,
248 asoc->peer.peer_hmacs,
249 gfp);
253 /* Set the value of the association shared key base on the parameters
254 * given. The algorithm is:
255 * From the endpoint pair shared keys and the key vectors the
256 * association shared keys are computed. This is performed by selecting
257 * the numerically smaller key vector and concatenating it to the
258 * endpoint pair shared key, and then concatenating the numerically
259 * larger key vector to that. The result of the concatenation is the
260 * association shared key.
262 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
263 struct sctp_shared_key *ep_key,
264 struct sctp_auth_bytes *first_vector,
265 struct sctp_auth_bytes *last_vector,
266 gfp_t gfp)
268 struct sctp_auth_bytes *secret;
269 __u32 offset = 0;
270 __u32 auth_len;
272 auth_len = first_vector->len + last_vector->len;
273 if (ep_key->key)
274 auth_len += ep_key->key->len;
276 secret = sctp_auth_create_key(auth_len, gfp);
277 if (!secret)
278 return NULL;
280 if (ep_key->key) {
281 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
282 offset += ep_key->key->len;
285 memcpy(secret->data + offset, first_vector->data, first_vector->len);
286 offset += first_vector->len;
288 memcpy(secret->data + offset, last_vector->data, last_vector->len);
290 return secret;
293 /* Create an association shared key. Follow the algorithm
294 * described in SCTP-AUTH, Section 6.1
296 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
297 const struct sctp_association *asoc,
298 struct sctp_shared_key *ep_key,
299 gfp_t gfp)
301 struct sctp_auth_bytes *local_key_vector;
302 struct sctp_auth_bytes *peer_key_vector;
303 struct sctp_auth_bytes *first_vector,
304 *last_vector;
305 struct sctp_auth_bytes *secret = NULL;
306 int cmp;
309 /* Now we need to build the key vectors
310 * SCTP-AUTH , Section 6.1
311 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
312 * parameter sent by each endpoint are concatenated as byte vectors.
313 * These parameters include the parameter type, parameter length, and
314 * the parameter value, but padding is omitted; all padding MUST be
315 * removed from this concatenation before proceeding with further
316 * computation of keys. Parameters which were not sent are simply
317 * omitted from the concatenation process. The resulting two vectors
318 * are called the two key vectors.
321 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
322 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
324 if (!peer_key_vector || !local_key_vector)
325 goto out;
327 /* Figure out the order in which the key_vectors will be
328 * added to the endpoint shared key.
329 * SCTP-AUTH, Section 6.1:
330 * This is performed by selecting the numerically smaller key
331 * vector and concatenating it to the endpoint pair shared
332 * key, and then concatenating the numerically larger key
333 * vector to that. If the key vectors are equal as numbers
334 * but differ in length, then the concatenation order is the
335 * endpoint shared key, followed by the shorter key vector,
336 * followed by the longer key vector. Otherwise, the key
337 * vectors are identical, and may be concatenated to the
338 * endpoint pair key in any order.
340 cmp = sctp_auth_compare_vectors(local_key_vector,
341 peer_key_vector);
342 if (cmp < 0) {
343 first_vector = local_key_vector;
344 last_vector = peer_key_vector;
345 } else {
346 first_vector = peer_key_vector;
347 last_vector = local_key_vector;
350 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
351 gfp);
352 out:
353 kfree(local_key_vector);
354 kfree(peer_key_vector);
356 return secret;
360 * Populate the association overlay list with the list
361 * from the endpoint.
363 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
364 struct sctp_association *asoc,
365 gfp_t gfp)
367 struct sctp_shared_key *sh_key;
368 struct sctp_shared_key *new;
370 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
372 key_for_each(sh_key, &ep->endpoint_shared_keys) {
373 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
374 if (!new)
375 goto nomem;
377 new->key = sh_key->key;
378 sctp_auth_key_hold(new->key);
379 list_add(&new->key_list, &asoc->endpoint_shared_keys);
382 return 0;
384 nomem:
385 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
386 return -ENOMEM;
390 /* Public interface to creat the association shared key.
391 * See code above for the algorithm.
393 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
395 struct net *net = sock_net(asoc->base.sk);
396 struct sctp_auth_bytes *secret;
397 struct sctp_shared_key *ep_key;
399 /* If we don't support AUTH, or peer is not capable
400 * we don't need to do anything.
402 if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
403 return 0;
405 /* If the key_id is non-zero and we couldn't find an
406 * endpoint pair shared key, we can't compute the
407 * secret.
408 * For key_id 0, endpoint pair shared key is a NULL key.
410 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
411 BUG_ON(!ep_key);
413 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
414 if (!secret)
415 return -ENOMEM;
417 sctp_auth_key_put(asoc->asoc_shared_key);
418 asoc->asoc_shared_key = secret;
420 return 0;
424 /* Find the endpoint pair shared key based on the key_id */
425 struct sctp_shared_key *sctp_auth_get_shkey(
426 const struct sctp_association *asoc,
427 __u16 key_id)
429 struct sctp_shared_key *key;
431 /* First search associations set of endpoint pair shared keys */
432 key_for_each(key, &asoc->endpoint_shared_keys) {
433 if (key->key_id == key_id)
434 return key;
437 return NULL;
441 * Initialize all the possible digest transforms that we can use. Right now
442 * now, the supported digests are SHA1 and SHA256. We do this here once
443 * because of the restrictiong that transforms may only be allocated in
444 * user context. This forces us to pre-allocated all possible transforms
445 * at the endpoint init time.
447 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
449 struct net *net = sock_net(ep->base.sk);
450 struct crypto_hash *tfm = NULL;
451 __u16 id;
453 /* if the transforms are already allocted, we are done */
454 if (!net->sctp.auth_enable) {
455 ep->auth_hmacs = NULL;
456 return 0;
459 if (ep->auth_hmacs)
460 return 0;
462 /* Allocated the array of pointers to transorms */
463 ep->auth_hmacs = kzalloc(
464 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
465 gfp);
466 if (!ep->auth_hmacs)
467 return -ENOMEM;
469 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
471 /* See is we support the id. Supported IDs have name and
472 * length fields set, so that we can allocated and use
473 * them. We can safely just check for name, for without the
474 * name, we can't allocate the TFM.
476 if (!sctp_hmac_list[id].hmac_name)
477 continue;
479 /* If this TFM has been allocated, we are all set */
480 if (ep->auth_hmacs[id])
481 continue;
483 /* Allocate the ID */
484 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
485 CRYPTO_ALG_ASYNC);
486 if (IS_ERR(tfm))
487 goto out_err;
489 ep->auth_hmacs[id] = tfm;
492 return 0;
494 out_err:
495 /* Clean up any successful allocations */
496 sctp_auth_destroy_hmacs(ep->auth_hmacs);
497 return -ENOMEM;
500 /* Destroy the hmac tfm array */
501 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
503 int i;
505 if (!auth_hmacs)
506 return;
508 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
510 if (auth_hmacs[i])
511 crypto_free_hash(auth_hmacs[i]);
513 kfree(auth_hmacs);
517 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
519 return &sctp_hmac_list[hmac_id];
522 /* Get an hmac description information that we can use to build
523 * the AUTH chunk
525 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
527 struct sctp_hmac_algo_param *hmacs;
528 __u16 n_elt;
529 __u16 id = 0;
530 int i;
532 /* If we have a default entry, use it */
533 if (asoc->default_hmac_id)
534 return &sctp_hmac_list[asoc->default_hmac_id];
536 /* Since we do not have a default entry, find the first entry
537 * we support and return that. Do not cache that id.
539 hmacs = asoc->peer.peer_hmacs;
540 if (!hmacs)
541 return NULL;
543 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
544 for (i = 0; i < n_elt; i++) {
545 id = ntohs(hmacs->hmac_ids[i]);
547 /* Check the id is in the supported range */
548 if (id > SCTP_AUTH_HMAC_ID_MAX) {
549 id = 0;
550 continue;
553 /* See is we support the id. Supported IDs have name and
554 * length fields set, so that we can allocated and use
555 * them. We can safely just check for name, for without the
556 * name, we can't allocate the TFM.
558 if (!sctp_hmac_list[id].hmac_name) {
559 id = 0;
560 continue;
563 break;
566 if (id == 0)
567 return NULL;
569 return &sctp_hmac_list[id];
572 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
574 int found = 0;
575 int i;
577 for (i = 0; i < n_elts; i++) {
578 if (hmac_id == hmacs[i]) {
579 found = 1;
580 break;
584 return found;
587 /* See if the HMAC_ID is one that we claim as supported */
588 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
589 __be16 hmac_id)
591 struct sctp_hmac_algo_param *hmacs;
592 __u16 n_elt;
594 if (!asoc)
595 return 0;
597 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
598 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
600 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
604 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
605 * Section 6.1:
606 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
607 * algorithm it supports.
609 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
610 struct sctp_hmac_algo_param *hmacs)
612 struct sctp_endpoint *ep;
613 __u16 id;
614 int i;
615 int n_params;
617 /* if the default id is already set, use it */
618 if (asoc->default_hmac_id)
619 return;
621 n_params = (ntohs(hmacs->param_hdr.length)
622 - sizeof(sctp_paramhdr_t)) >> 1;
623 ep = asoc->ep;
624 for (i = 0; i < n_params; i++) {
625 id = ntohs(hmacs->hmac_ids[i]);
627 /* Check the id is in the supported range */
628 if (id > SCTP_AUTH_HMAC_ID_MAX)
629 continue;
631 /* If this TFM has been allocated, use this id */
632 if (ep->auth_hmacs[id]) {
633 asoc->default_hmac_id = id;
634 break;
640 /* Check to see if the given chunk is supposed to be authenticated */
641 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
643 unsigned short len;
644 int found = 0;
645 int i;
647 if (!param || param->param_hdr.length == 0)
648 return 0;
650 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
652 /* SCTP-AUTH, Section 3.2
653 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
654 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
655 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
656 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
658 for (i = 0; !found && i < len; i++) {
659 switch (param->chunks[i]) {
660 case SCTP_CID_INIT:
661 case SCTP_CID_INIT_ACK:
662 case SCTP_CID_SHUTDOWN_COMPLETE:
663 case SCTP_CID_AUTH:
664 break;
666 default:
667 if (param->chunks[i] == chunk)
668 found = 1;
669 break;
673 return found;
676 /* Check if peer requested that this chunk is authenticated */
677 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
679 struct net *net;
680 if (!asoc)
681 return 0;
683 net = sock_net(asoc->base.sk);
684 if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
685 return 0;
687 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
690 /* Check if we requested that peer authenticate this chunk. */
691 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
693 struct net *net;
694 if (!asoc)
695 return 0;
697 net = sock_net(asoc->base.sk);
698 if (!net->sctp.auth_enable)
699 return 0;
701 return __sctp_auth_cid(chunk,
702 (struct sctp_chunks_param *)asoc->c.auth_chunks);
705 /* SCTP-AUTH: Section 6.2:
706 * The sender MUST calculate the MAC as described in RFC2104 [2] using
707 * the hash function H as described by the MAC Identifier and the shared
708 * association key K based on the endpoint pair shared key described by
709 * the shared key identifier. The 'data' used for the computation of
710 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
711 * zero (as shown in Figure 6) followed by all chunks that are placed
712 * after the AUTH chunk in the SCTP packet.
714 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
715 struct sk_buff *skb,
716 struct sctp_auth_chunk *auth,
717 gfp_t gfp)
719 struct scatterlist sg;
720 struct hash_desc desc;
721 struct sctp_auth_bytes *asoc_key;
722 __u16 key_id, hmac_id;
723 __u8 *digest;
724 unsigned char *end;
725 int free_key = 0;
727 /* Extract the info we need:
728 * - hmac id
729 * - key id
731 key_id = ntohs(auth->auth_hdr.shkey_id);
732 hmac_id = ntohs(auth->auth_hdr.hmac_id);
734 if (key_id == asoc->active_key_id)
735 asoc_key = asoc->asoc_shared_key;
736 else {
737 struct sctp_shared_key *ep_key;
739 ep_key = sctp_auth_get_shkey(asoc, key_id);
740 if (!ep_key)
741 return;
743 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
744 if (!asoc_key)
745 return;
747 free_key = 1;
750 /* set up scatter list */
751 end = skb_tail_pointer(skb);
752 sg_init_one(&sg, auth, end - (unsigned char *)auth);
754 desc.tfm = asoc->ep->auth_hmacs[hmac_id];
755 desc.flags = 0;
757 digest = auth->auth_hdr.hmac;
758 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
759 goto free;
761 crypto_hash_digest(&desc, &sg, sg.length, digest);
763 free:
764 if (free_key)
765 sctp_auth_key_put(asoc_key);
768 /* API Helpers */
770 /* Add a chunk to the endpoint authenticated chunk list */
771 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
773 struct sctp_chunks_param *p = ep->auth_chunk_list;
774 __u16 nchunks;
775 __u16 param_len;
777 /* If this chunk is already specified, we are done */
778 if (__sctp_auth_cid(chunk_id, p))
779 return 0;
781 /* Check if we can add this chunk to the array */
782 param_len = ntohs(p->param_hdr.length);
783 nchunks = param_len - sizeof(sctp_paramhdr_t);
784 if (nchunks == SCTP_NUM_CHUNK_TYPES)
785 return -EINVAL;
787 p->chunks[nchunks] = chunk_id;
788 p->param_hdr.length = htons(param_len + 1);
789 return 0;
792 /* Add hmac identifires to the endpoint list of supported hmac ids */
793 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
794 struct sctp_hmacalgo *hmacs)
796 int has_sha1 = 0;
797 __u16 id;
798 int i;
800 /* Scan the list looking for unsupported id. Also make sure that
801 * SHA1 is specified.
803 for (i = 0; i < hmacs->shmac_num_idents; i++) {
804 id = hmacs->shmac_idents[i];
806 if (id > SCTP_AUTH_HMAC_ID_MAX)
807 return -EOPNOTSUPP;
809 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
810 has_sha1 = 1;
812 if (!sctp_hmac_list[id].hmac_name)
813 return -EOPNOTSUPP;
816 if (!has_sha1)
817 return -EINVAL;
819 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
820 hmacs->shmac_num_idents * sizeof(__u16));
821 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
822 hmacs->shmac_num_idents * sizeof(__u16));
823 return 0;
826 /* Set a new shared key on either endpoint or association. If the
827 * the key with a same ID already exists, replace the key (remove the
828 * old key and add a new one).
830 int sctp_auth_set_key(struct sctp_endpoint *ep,
831 struct sctp_association *asoc,
832 struct sctp_authkey *auth_key)
834 struct sctp_shared_key *cur_key = NULL;
835 struct sctp_auth_bytes *key;
836 struct list_head *sh_keys;
837 int replace = 0;
839 /* Try to find the given key id to see if
840 * we are doing a replace, or adding a new key
842 if (asoc)
843 sh_keys = &asoc->endpoint_shared_keys;
844 else
845 sh_keys = &ep->endpoint_shared_keys;
847 key_for_each(cur_key, sh_keys) {
848 if (cur_key->key_id == auth_key->sca_keynumber) {
849 replace = 1;
850 break;
854 /* If we are not replacing a key id, we need to allocate
855 * a shared key.
857 if (!replace) {
858 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
859 GFP_KERNEL);
860 if (!cur_key)
861 return -ENOMEM;
864 /* Create a new key data based on the info passed in */
865 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
866 if (!key)
867 goto nomem;
869 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
871 /* If we are replacing, remove the old keys data from the
872 * key id. If we are adding new key id, add it to the
873 * list.
875 if (replace)
876 sctp_auth_key_put(cur_key->key);
877 else
878 list_add(&cur_key->key_list, sh_keys);
880 cur_key->key = key;
881 sctp_auth_key_hold(key);
883 return 0;
884 nomem:
885 if (!replace)
886 sctp_auth_shkey_free(cur_key);
888 return -ENOMEM;
891 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
892 struct sctp_association *asoc,
893 __u16 key_id)
895 struct sctp_shared_key *key;
896 struct list_head *sh_keys;
897 int found = 0;
899 /* The key identifier MUST correst to an existing key */
900 if (asoc)
901 sh_keys = &asoc->endpoint_shared_keys;
902 else
903 sh_keys = &ep->endpoint_shared_keys;
905 key_for_each(key, sh_keys) {
906 if (key->key_id == key_id) {
907 found = 1;
908 break;
912 if (!found)
913 return -EINVAL;
915 if (asoc) {
916 asoc->active_key_id = key_id;
917 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
918 } else
919 ep->active_key_id = key_id;
921 return 0;
924 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
925 struct sctp_association *asoc,
926 __u16 key_id)
928 struct sctp_shared_key *key;
929 struct list_head *sh_keys;
930 int found = 0;
932 /* The key identifier MUST NOT be the current active key
933 * The key identifier MUST correst to an existing key
935 if (asoc) {
936 if (asoc->active_key_id == key_id)
937 return -EINVAL;
939 sh_keys = &asoc->endpoint_shared_keys;
940 } else {
941 if (ep->active_key_id == key_id)
942 return -EINVAL;
944 sh_keys = &ep->endpoint_shared_keys;
947 key_for_each(key, sh_keys) {
948 if (key->key_id == key_id) {
949 found = 1;
950 break;
954 if (!found)
955 return -EINVAL;
957 /* Delete the shared key */
958 list_del_init(&key->key_list);
959 sctp_auth_shkey_free(key);
961 return 0;