1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
29 * Please send any bug reports or fixes you make to the
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Perry Melange <pmelange@null.cc.uic.edu>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Jon Grimm <jgrimm@us.ibm.com>
45 * Any bugs reported given to us we will try to fix... any fixes shared will
46 * be incorporated into the next SCTP release.
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
55 #include <linux/slab.h>
56 #include <net/sock.h> /* For skb_set_owner_w */
58 #include <net/sctp/sctp.h>
59 #include <net/sctp/sm.h>
61 /* Declare internal functions here. */
62 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
);
63 static void sctp_check_transmitted(struct sctp_outq
*q
,
64 struct list_head
*transmitted_queue
,
65 struct sctp_transport
*transport
,
66 union sctp_addr
*saddr
,
67 struct sctp_sackhdr
*sack
,
68 __u32
*highest_new_tsn
);
70 static void sctp_mark_missing(struct sctp_outq
*q
,
71 struct list_head
*transmitted_queue
,
72 struct sctp_transport
*transport
,
73 __u32 highest_new_tsn
,
74 int count_of_newacks
);
76 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 sack_ctsn
);
78 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
);
80 /* Add data to the front of the queue. */
81 static inline void sctp_outq_head_data(struct sctp_outq
*q
,
82 struct sctp_chunk
*ch
)
84 list_add(&ch
->list
, &q
->out_chunk_list
);
85 q
->out_qlen
+= ch
->skb
->len
;
88 /* Take data from the front of the queue. */
89 static inline struct sctp_chunk
*sctp_outq_dequeue_data(struct sctp_outq
*q
)
91 struct sctp_chunk
*ch
= NULL
;
93 if (!list_empty(&q
->out_chunk_list
)) {
94 struct list_head
*entry
= q
->out_chunk_list
.next
;
96 ch
= list_entry(entry
, struct sctp_chunk
, list
);
98 q
->out_qlen
-= ch
->skb
->len
;
102 /* Add data chunk to the end of the queue. */
103 static inline void sctp_outq_tail_data(struct sctp_outq
*q
,
104 struct sctp_chunk
*ch
)
106 list_add_tail(&ch
->list
, &q
->out_chunk_list
);
107 q
->out_qlen
+= ch
->skb
->len
;
111 * SFR-CACC algorithm:
112 * D) If count_of_newacks is greater than or equal to 2
113 * and t was not sent to the current primary then the
114 * sender MUST NOT increment missing report count for t.
116 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport
*primary
,
117 struct sctp_transport
*transport
,
118 int count_of_newacks
)
120 if (count_of_newacks
>=2 && transport
!= primary
)
126 * SFR-CACC algorithm:
127 * F) If count_of_newacks is less than 2, let d be the
128 * destination to which t was sent. If cacc_saw_newack
129 * is 0 for destination d, then the sender MUST NOT
130 * increment missing report count for t.
132 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport
*transport
,
133 int count_of_newacks
)
135 if (count_of_newacks
< 2 &&
136 (transport
&& !transport
->cacc
.cacc_saw_newack
))
142 * SFR-CACC algorithm:
143 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
144 * execute steps C, D, F.
146 * C has been implemented in sctp_outq_sack
148 static inline int sctp_cacc_skip_3_1(struct sctp_transport
*primary
,
149 struct sctp_transport
*transport
,
150 int count_of_newacks
)
152 if (!primary
->cacc
.cycling_changeover
) {
153 if (sctp_cacc_skip_3_1_d(primary
, transport
, count_of_newacks
))
155 if (sctp_cacc_skip_3_1_f(transport
, count_of_newacks
))
163 * SFR-CACC algorithm:
164 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
165 * than next_tsn_at_change of the current primary, then
166 * the sender MUST NOT increment missing report count
169 static inline int sctp_cacc_skip_3_2(struct sctp_transport
*primary
, __u32 tsn
)
171 if (primary
->cacc
.cycling_changeover
&&
172 TSN_lt(tsn
, primary
->cacc
.next_tsn_at_change
))
178 * SFR-CACC algorithm:
179 * 3) If the missing report count for TSN t is to be
180 * incremented according to [RFC2960] and
181 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
182 * then the sender MUST further execute steps 3.1 and
183 * 3.2 to determine if the missing report count for
184 * TSN t SHOULD NOT be incremented.
186 * 3.3) If 3.1 and 3.2 do not dictate that the missing
187 * report count for t should not be incremented, then
188 * the sender SHOULD increment missing report count for
189 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
191 static inline int sctp_cacc_skip(struct sctp_transport
*primary
,
192 struct sctp_transport
*transport
,
193 int count_of_newacks
,
196 if (primary
->cacc
.changeover_active
&&
197 (sctp_cacc_skip_3_1(primary
, transport
, count_of_newacks
) ||
198 sctp_cacc_skip_3_2(primary
, tsn
)))
203 /* Initialize an existing sctp_outq. This does the boring stuff.
204 * You still need to define handlers if you really want to DO
205 * something with this structure...
207 void sctp_outq_init(struct sctp_association
*asoc
, struct sctp_outq
*q
)
210 INIT_LIST_HEAD(&q
->out_chunk_list
);
211 INIT_LIST_HEAD(&q
->control_chunk_list
);
212 INIT_LIST_HEAD(&q
->retransmit
);
213 INIT_LIST_HEAD(&q
->sacked
);
214 INIT_LIST_HEAD(&q
->abandoned
);
217 q
->outstanding_bytes
= 0;
225 /* Free the outqueue structure and any related pending chunks.
227 static void __sctp_outq_teardown(struct sctp_outq
*q
)
229 struct sctp_transport
*transport
;
230 struct list_head
*lchunk
, *temp
;
231 struct sctp_chunk
*chunk
, *tmp
;
233 /* Throw away unacknowledged chunks. */
234 list_for_each_entry(transport
, &q
->asoc
->peer
.transport_addr_list
,
236 while ((lchunk
= sctp_list_dequeue(&transport
->transmitted
)) != NULL
) {
237 chunk
= list_entry(lchunk
, struct sctp_chunk
,
239 /* Mark as part of a failed message. */
240 sctp_chunk_fail(chunk
, q
->error
);
241 sctp_chunk_free(chunk
);
245 /* Throw away chunks that have been gap ACKed. */
246 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
247 list_del_init(lchunk
);
248 chunk
= list_entry(lchunk
, struct sctp_chunk
,
250 sctp_chunk_fail(chunk
, q
->error
);
251 sctp_chunk_free(chunk
);
254 /* Throw away any chunks in the retransmit queue. */
255 list_for_each_safe(lchunk
, temp
, &q
->retransmit
) {
256 list_del_init(lchunk
);
257 chunk
= list_entry(lchunk
, struct sctp_chunk
,
259 sctp_chunk_fail(chunk
, q
->error
);
260 sctp_chunk_free(chunk
);
263 /* Throw away any chunks that are in the abandoned queue. */
264 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
265 list_del_init(lchunk
);
266 chunk
= list_entry(lchunk
, struct sctp_chunk
,
268 sctp_chunk_fail(chunk
, q
->error
);
269 sctp_chunk_free(chunk
);
272 /* Throw away any leftover data chunks. */
273 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
275 /* Mark as send failure. */
276 sctp_chunk_fail(chunk
, q
->error
);
277 sctp_chunk_free(chunk
);
280 /* Throw away any leftover control chunks. */
281 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
282 list_del_init(&chunk
->list
);
283 sctp_chunk_free(chunk
);
287 void sctp_outq_teardown(struct sctp_outq
*q
)
289 __sctp_outq_teardown(q
);
290 sctp_outq_init(q
->asoc
, q
);
293 /* Free the outqueue structure and any related pending chunks. */
294 void sctp_outq_free(struct sctp_outq
*q
)
296 /* Throw away leftover chunks. */
297 __sctp_outq_teardown(q
);
299 /* If we were kmalloc()'d, free the memory. */
304 /* Put a new chunk in an sctp_outq. */
305 int sctp_outq_tail(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
307 struct net
*net
= sock_net(q
->asoc
->base
.sk
);
310 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
311 q
, chunk
, chunk
&& chunk
->chunk_hdr
?
312 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
))
315 /* If it is data, queue it up, otherwise, send it
318 if (sctp_chunk_is_data(chunk
)) {
319 /* Is it OK to queue data chunks? */
320 /* From 9. Termination of Association
322 * When either endpoint performs a shutdown, the
323 * association on each peer will stop accepting new
324 * data from its user and only deliver data in queue
325 * at the time of sending or receiving the SHUTDOWN
328 switch (q
->asoc
->state
) {
329 case SCTP_STATE_CLOSED
:
330 case SCTP_STATE_SHUTDOWN_PENDING
:
331 case SCTP_STATE_SHUTDOWN_SENT
:
332 case SCTP_STATE_SHUTDOWN_RECEIVED
:
333 case SCTP_STATE_SHUTDOWN_ACK_SENT
:
334 /* Cannot send after transport endpoint shutdown */
339 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
340 q
, chunk
, chunk
&& chunk
->chunk_hdr
?
341 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
))
344 sctp_outq_tail_data(q
, chunk
);
345 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
346 SCTP_INC_STATS(net
, SCTP_MIB_OUTUNORDERCHUNKS
);
348 SCTP_INC_STATS(net
, SCTP_MIB_OUTORDERCHUNKS
);
353 list_add_tail(&chunk
->list
, &q
->control_chunk_list
);
354 SCTP_INC_STATS(net
, SCTP_MIB_OUTCTRLCHUNKS
);
361 error
= sctp_outq_flush(q
, 0);
366 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
367 * and the abandoned list are in ascending order.
369 static void sctp_insert_list(struct list_head
*head
, struct list_head
*new)
371 struct list_head
*pos
;
372 struct sctp_chunk
*nchunk
, *lchunk
;
376 nchunk
= list_entry(new, struct sctp_chunk
, transmitted_list
);
377 ntsn
= ntohl(nchunk
->subh
.data_hdr
->tsn
);
379 list_for_each(pos
, head
) {
380 lchunk
= list_entry(pos
, struct sctp_chunk
, transmitted_list
);
381 ltsn
= ntohl(lchunk
->subh
.data_hdr
->tsn
);
382 if (TSN_lt(ntsn
, ltsn
)) {
383 list_add(new, pos
->prev
);
389 list_add_tail(new, head
);
392 /* Mark all the eligible packets on a transport for retransmission. */
393 void sctp_retransmit_mark(struct sctp_outq
*q
,
394 struct sctp_transport
*transport
,
397 struct list_head
*lchunk
, *ltemp
;
398 struct sctp_chunk
*chunk
;
400 /* Walk through the specified transmitted queue. */
401 list_for_each_safe(lchunk
, ltemp
, &transport
->transmitted
) {
402 chunk
= list_entry(lchunk
, struct sctp_chunk
,
405 /* If the chunk is abandoned, move it to abandoned list. */
406 if (sctp_chunk_abandoned(chunk
)) {
407 list_del_init(lchunk
);
408 sctp_insert_list(&q
->abandoned
, lchunk
);
410 /* If this chunk has not been previousely acked,
411 * stop considering it 'outstanding'. Our peer
412 * will most likely never see it since it will
413 * not be retransmitted
415 if (!chunk
->tsn_gap_acked
) {
416 if (chunk
->transport
)
417 chunk
->transport
->flight_size
-=
418 sctp_data_size(chunk
);
419 q
->outstanding_bytes
-= sctp_data_size(chunk
);
420 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
425 /* If we are doing retransmission due to a timeout or pmtu
426 * discovery, only the chunks that are not yet acked should
427 * be added to the retransmit queue.
429 if ((reason
== SCTP_RTXR_FAST_RTX
&&
430 (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)) ||
431 (reason
!= SCTP_RTXR_FAST_RTX
&& !chunk
->tsn_gap_acked
)) {
432 /* RFC 2960 6.2.1 Processing a Received SACK
434 * C) Any time a DATA chunk is marked for
435 * retransmission (via either T3-rtx timer expiration
436 * (Section 6.3.3) or via fast retransmit
437 * (Section 7.2.4)), add the data size of those
438 * chunks to the rwnd.
440 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
441 q
->outstanding_bytes
-= sctp_data_size(chunk
);
442 if (chunk
->transport
)
443 transport
->flight_size
-= sctp_data_size(chunk
);
445 /* sctpimpguide-05 Section 2.8.2
446 * M5) If a T3-rtx timer expires, the
447 * 'TSN.Missing.Report' of all affected TSNs is set
450 chunk
->tsn_missing_report
= 0;
452 /* If a chunk that is being used for RTT measurement
453 * has to be retransmitted, we cannot use this chunk
454 * anymore for RTT measurements. Reset rto_pending so
455 * that a new RTT measurement is started when a new
456 * data chunk is sent.
458 if (chunk
->rtt_in_progress
) {
459 chunk
->rtt_in_progress
= 0;
460 transport
->rto_pending
= 0;
463 /* Move the chunk to the retransmit queue. The chunks
464 * on the retransmit queue are always kept in order.
466 list_del_init(lchunk
);
467 sctp_insert_list(&q
->retransmit
, lchunk
);
471 SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
472 "cwnd: %d, ssthresh: %d, flight_size: %d, "
473 "pba: %d\n", __func__
,
475 transport
->cwnd
, transport
->ssthresh
,
476 transport
->flight_size
,
477 transport
->partial_bytes_acked
);
481 /* Mark all the eligible packets on a transport for retransmission and force
484 void sctp_retransmit(struct sctp_outq
*q
, struct sctp_transport
*transport
,
485 sctp_retransmit_reason_t reason
)
487 struct net
*net
= sock_net(q
->asoc
->base
.sk
);
491 case SCTP_RTXR_T3_RTX
:
492 SCTP_INC_STATS(net
, SCTP_MIB_T3_RETRANSMITS
);
493 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_T3_RTX
);
494 /* Update the retran path if the T3-rtx timer has expired for
495 * the current retran path.
497 if (transport
== transport
->asoc
->peer
.retran_path
)
498 sctp_assoc_update_retran_path(transport
->asoc
);
499 transport
->asoc
->rtx_data_chunks
+=
500 transport
->asoc
->unack_data
;
502 case SCTP_RTXR_FAST_RTX
:
503 SCTP_INC_STATS(net
, SCTP_MIB_FAST_RETRANSMITS
);
504 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_FAST_RTX
);
507 case SCTP_RTXR_PMTUD
:
508 SCTP_INC_STATS(net
, SCTP_MIB_PMTUD_RETRANSMITS
);
510 case SCTP_RTXR_T1_RTX
:
511 SCTP_INC_STATS(net
, SCTP_MIB_T1_RETRANSMITS
);
512 transport
->asoc
->init_retries
++;
518 sctp_retransmit_mark(q
, transport
, reason
);
520 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
521 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
522 * following the procedures outlined in C1 - C5.
524 if (reason
== SCTP_RTXR_T3_RTX
)
525 sctp_generate_fwdtsn(q
, q
->asoc
->ctsn_ack_point
);
527 /* Flush the queues only on timeout, since fast_rtx is only
528 * triggered during sack processing and the queue
529 * will be flushed at the end.
531 if (reason
!= SCTP_RTXR_FAST_RTX
)
532 error
= sctp_outq_flush(q
, /* rtx_timeout */ 1);
535 q
->asoc
->base
.sk
->sk_err
= -error
;
539 * Transmit DATA chunks on the retransmit queue. Upon return from
540 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
541 * need to be transmitted by the caller.
542 * We assume that pkt->transport has already been set.
544 * The return value is a normal kernel error return value.
546 static int sctp_outq_flush_rtx(struct sctp_outq
*q
, struct sctp_packet
*pkt
,
547 int rtx_timeout
, int *start_timer
)
549 struct list_head
*lqueue
;
550 struct sctp_transport
*transport
= pkt
->transport
;
552 struct sctp_chunk
*chunk
, *chunk1
;
558 lqueue
= &q
->retransmit
;
559 fast_rtx
= q
->fast_rtx
;
561 /* This loop handles time-out retransmissions, fast retransmissions,
562 * and retransmissions due to opening of whindow.
564 * RFC 2960 6.3.3 Handle T3-rtx Expiration
566 * E3) Determine how many of the earliest (i.e., lowest TSN)
567 * outstanding DATA chunks for the address for which the
568 * T3-rtx has expired will fit into a single packet, subject
569 * to the MTU constraint for the path corresponding to the
570 * destination transport address to which the retransmission
571 * is being sent (this may be different from the address for
572 * which the timer expires [see Section 6.4]). Call this value
573 * K. Bundle and retransmit those K DATA chunks in a single
574 * packet to the destination endpoint.
576 * [Just to be painfully clear, if we are retransmitting
577 * because a timeout just happened, we should send only ONE
578 * packet of retransmitted data.]
580 * For fast retransmissions we also send only ONE packet. However,
581 * if we are just flushing the queue due to open window, we'll
582 * try to send as much as possible.
584 list_for_each_entry_safe(chunk
, chunk1
, lqueue
, transmitted_list
) {
585 /* If the chunk is abandoned, move it to abandoned list. */
586 if (sctp_chunk_abandoned(chunk
)) {
587 list_del_init(&chunk
->transmitted_list
);
588 sctp_insert_list(&q
->abandoned
,
589 &chunk
->transmitted_list
);
593 /* Make sure that Gap Acked TSNs are not retransmitted. A
594 * simple approach is just to move such TSNs out of the
595 * way and into a 'transmitted' queue and skip to the
598 if (chunk
->tsn_gap_acked
) {
599 list_move_tail(&chunk
->transmitted_list
,
600 &transport
->transmitted
);
604 /* If we are doing fast retransmit, ignore non-fast_rtransmit
607 if (fast_rtx
&& !chunk
->fast_retransmit
)
611 /* Attempt to append this chunk to the packet. */
612 status
= sctp_packet_append_chunk(pkt
, chunk
);
615 case SCTP_XMIT_PMTU_FULL
:
616 if (!pkt
->has_data
&& !pkt
->has_cookie_echo
) {
617 /* If this packet did not contain DATA then
618 * retransmission did not happen, so do it
619 * again. We'll ignore the error here since
620 * control chunks are already freed so there
621 * is nothing we can do.
623 sctp_packet_transmit(pkt
);
627 /* Send this packet. */
628 error
= sctp_packet_transmit(pkt
);
630 /* If we are retransmitting, we should only
631 * send a single packet.
632 * Otherwise, try appending this chunk again.
634 if (rtx_timeout
|| fast_rtx
)
639 /* Bundle next chunk in the next round. */
642 case SCTP_XMIT_RWND_FULL
:
643 /* Send this packet. */
644 error
= sctp_packet_transmit(pkt
);
646 /* Stop sending DATA as there is no more room
652 case SCTP_XMIT_NAGLE_DELAY
:
653 /* Send this packet. */
654 error
= sctp_packet_transmit(pkt
);
656 /* Stop sending DATA because of nagle delay. */
661 /* The append was successful, so add this chunk to
662 * the transmitted list.
664 list_move_tail(&chunk
->transmitted_list
,
665 &transport
->transmitted
);
667 /* Mark the chunk as ineligible for fast retransmit
668 * after it is retransmitted.
670 if (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)
671 chunk
->fast_retransmit
= SCTP_DONT_FRTX
;
674 q
->asoc
->stats
.rtxchunks
++;
678 /* Set the timer if there were no errors */
679 if (!error
&& !timer
)
686 /* If we are here due to a retransmit timeout or a fast
687 * retransmit and if there are any chunks left in the retransmit
688 * queue that could not fit in the PMTU sized packet, they need
689 * to be marked as ineligible for a subsequent fast retransmit.
691 if (rtx_timeout
|| fast_rtx
) {
692 list_for_each_entry(chunk1
, lqueue
, transmitted_list
) {
693 if (chunk1
->fast_retransmit
== SCTP_NEED_FRTX
)
694 chunk1
->fast_retransmit
= SCTP_DONT_FRTX
;
698 *start_timer
= timer
;
700 /* Clear fast retransmit hint */
707 /* Cork the outqueue so queued chunks are really queued. */
708 int sctp_outq_uncork(struct sctp_outq
*q
)
713 error
= sctp_outq_flush(q
, 0);
719 * Try to flush an outqueue.
721 * Description: Send everything in q which we legally can, subject to
722 * congestion limitations.
723 * * Note: This function can be called from multiple contexts so appropriate
724 * locking concerns must be made. Today we use the sock lock to protect
727 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
)
729 struct sctp_packet
*packet
;
730 struct sctp_packet singleton
;
731 struct sctp_association
*asoc
= q
->asoc
;
732 __u16 sport
= asoc
->base
.bind_addr
.port
;
733 __u16 dport
= asoc
->peer
.port
;
734 __u32 vtag
= asoc
->peer
.i
.init_tag
;
735 struct sctp_transport
*transport
= NULL
;
736 struct sctp_transport
*new_transport
;
737 struct sctp_chunk
*chunk
, *tmp
;
743 /* These transports have chunks to send. */
744 struct list_head transport_list
;
745 struct list_head
*ltransport
;
747 INIT_LIST_HEAD(&transport_list
);
753 * When bundling control chunks with DATA chunks, an
754 * endpoint MUST place control chunks first in the outbound
755 * SCTP packet. The transmitter MUST transmit DATA chunks
756 * within a SCTP packet in increasing order of TSN.
760 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
762 * F1) This means that until such time as the ASCONF
763 * containing the add is acknowledged, the sender MUST
764 * NOT use the new IP address as a source for ANY SCTP
765 * packet except on carrying an ASCONF Chunk.
767 if (asoc
->src_out_of_asoc_ok
&&
768 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF
)
771 list_del_init(&chunk
->list
);
773 /* Pick the right transport to use. */
774 new_transport
= chunk
->transport
;
776 if (!new_transport
) {
778 * If we have a prior transport pointer, see if
779 * the destination address of the chunk
780 * matches the destination address of the
781 * current transport. If not a match, then
782 * try to look up the transport with a given
783 * destination address. We do this because
784 * after processing ASCONFs, we may have new
785 * transports created.
788 sctp_cmp_addr_exact(&chunk
->dest
,
790 new_transport
= transport
;
792 new_transport
= sctp_assoc_lookup_paddr(asoc
,
795 /* if we still don't have a new transport, then
796 * use the current active path.
799 new_transport
= asoc
->peer
.active_path
;
800 } else if ((new_transport
->state
== SCTP_INACTIVE
) ||
801 (new_transport
->state
== SCTP_UNCONFIRMED
) ||
802 (new_transport
->state
== SCTP_PF
)) {
803 /* If the chunk is Heartbeat or Heartbeat Ack,
804 * send it to chunk->transport, even if it's
807 * 3.3.6 Heartbeat Acknowledgement:
809 * A HEARTBEAT ACK is always sent to the source IP
810 * address of the IP datagram containing the
811 * HEARTBEAT chunk to which this ack is responding.
814 * ASCONF_ACKs also must be sent to the source.
816 if (chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT
&&
817 chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT_ACK
&&
818 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF_ACK
)
819 new_transport
= asoc
->peer
.active_path
;
822 /* Are we switching transports?
823 * Take care of transport locks.
825 if (new_transport
!= transport
) {
826 transport
= new_transport
;
827 if (list_empty(&transport
->send_ready
)) {
828 list_add_tail(&transport
->send_ready
,
831 packet
= &transport
->packet
;
832 sctp_packet_config(packet
, vtag
,
833 asoc
->peer
.ecn_capable
);
836 switch (chunk
->chunk_hdr
->type
) {
840 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
841 * COMPLETE with any other chunks. [Send them immediately.]
844 case SCTP_CID_INIT_ACK
:
845 case SCTP_CID_SHUTDOWN_COMPLETE
:
846 sctp_packet_init(&singleton
, transport
, sport
, dport
);
847 sctp_packet_config(&singleton
, vtag
, 0);
848 sctp_packet_append_chunk(&singleton
, chunk
);
849 error
= sctp_packet_transmit(&singleton
);
855 if (sctp_test_T_bit(chunk
)) {
856 packet
->vtag
= asoc
->c
.my_vtag
;
858 /* The following chunks are "response" chunks, i.e.
859 * they are generated in response to something we
860 * received. If we are sending these, then we can
861 * send only 1 packet containing these chunks.
863 case SCTP_CID_HEARTBEAT_ACK
:
864 case SCTP_CID_SHUTDOWN_ACK
:
865 case SCTP_CID_COOKIE_ACK
:
866 case SCTP_CID_COOKIE_ECHO
:
868 case SCTP_CID_ECN_CWR
:
869 case SCTP_CID_ASCONF_ACK
:
874 case SCTP_CID_HEARTBEAT
:
875 case SCTP_CID_SHUTDOWN
:
876 case SCTP_CID_ECN_ECNE
:
877 case SCTP_CID_ASCONF
:
878 case SCTP_CID_FWD_TSN
:
879 status
= sctp_packet_transmit_chunk(packet
, chunk
,
881 if (status
!= SCTP_XMIT_OK
) {
882 /* put the chunk back */
883 list_add(&chunk
->list
, &q
->control_chunk_list
);
885 asoc
->stats
.octrlchunks
++;
886 /* PR-SCTP C5) If a FORWARD TSN is sent, the
887 * sender MUST assure that at least one T3-rtx
890 if (chunk
->chunk_hdr
->type
== SCTP_CID_FWD_TSN
)
891 sctp_transport_reset_timers(transport
);
896 /* We built a chunk with an illegal type! */
901 if (q
->asoc
->src_out_of_asoc_ok
)
904 /* Is it OK to send data chunks? */
905 switch (asoc
->state
) {
906 case SCTP_STATE_COOKIE_ECHOED
:
907 /* Only allow bundling when this packet has a COOKIE-ECHO
910 if (!packet
|| !packet
->has_cookie_echo
)
914 case SCTP_STATE_ESTABLISHED
:
915 case SCTP_STATE_SHUTDOWN_PENDING
:
916 case SCTP_STATE_SHUTDOWN_RECEIVED
:
918 * RFC 2960 6.1 Transmission of DATA Chunks
920 * C) When the time comes for the sender to transmit,
921 * before sending new DATA chunks, the sender MUST
922 * first transmit any outstanding DATA chunks which
923 * are marked for retransmission (limited by the
926 if (!list_empty(&q
->retransmit
)) {
927 if (asoc
->peer
.retran_path
->state
== SCTP_UNCONFIRMED
)
929 if (transport
== asoc
->peer
.retran_path
)
932 /* Switch transports & prepare the packet. */
934 transport
= asoc
->peer
.retran_path
;
936 if (list_empty(&transport
->send_ready
)) {
937 list_add_tail(&transport
->send_ready
,
941 packet
= &transport
->packet
;
942 sctp_packet_config(packet
, vtag
,
943 asoc
->peer
.ecn_capable
);
945 error
= sctp_outq_flush_rtx(q
, packet
,
946 rtx_timeout
, &start_timer
);
949 sctp_transport_reset_timers(transport
);
951 /* This can happen on COOKIE-ECHO resend. Only
952 * one chunk can get bundled with a COOKIE-ECHO.
954 if (packet
->has_cookie_echo
)
957 /* Don't send new data if there is still data
958 * waiting to retransmit.
960 if (!list_empty(&q
->retransmit
))
964 /* Apply Max.Burst limitation to the current transport in
965 * case it will be used for new data. We are going to
966 * rest it before we return, but we want to apply the limit
967 * to the currently queued data.
970 sctp_transport_burst_limited(transport
);
972 /* Finally, transmit new packets. */
973 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
974 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
977 if (chunk
->sinfo
.sinfo_stream
>=
978 asoc
->c
.sinit_num_ostreams
) {
980 /* Mark as failed send. */
981 sctp_chunk_fail(chunk
, SCTP_ERROR_INV_STRM
);
982 sctp_chunk_free(chunk
);
986 /* Has this chunk expired? */
987 if (sctp_chunk_abandoned(chunk
)) {
988 sctp_chunk_fail(chunk
, 0);
989 sctp_chunk_free(chunk
);
993 /* If there is a specified transport, use it.
994 * Otherwise, we want to use the active path.
996 new_transport
= chunk
->transport
;
997 if (!new_transport
||
998 ((new_transport
->state
== SCTP_INACTIVE
) ||
999 (new_transport
->state
== SCTP_UNCONFIRMED
) ||
1000 (new_transport
->state
== SCTP_PF
)))
1001 new_transport
= asoc
->peer
.active_path
;
1002 if (new_transport
->state
== SCTP_UNCONFIRMED
)
1005 /* Change packets if necessary. */
1006 if (new_transport
!= transport
) {
1007 transport
= new_transport
;
1009 /* Schedule to have this transport's
1012 if (list_empty(&transport
->send_ready
)) {
1013 list_add_tail(&transport
->send_ready
,
1017 packet
= &transport
->packet
;
1018 sctp_packet_config(packet
, vtag
,
1019 asoc
->peer
.ecn_capable
);
1020 /* We've switched transports, so apply the
1021 * Burst limit to the new transport.
1023 sctp_transport_burst_limited(transport
);
1026 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
1028 chunk
&& chunk
->chunk_hdr
?
1029 sctp_cname(SCTP_ST_CHUNK(
1030 chunk
->chunk_hdr
->type
))
1033 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
1034 "%p skb->users %d.\n",
1035 ntohl(chunk
->subh
.data_hdr
->tsn
),
1036 chunk
->skb
?chunk
->skb
->head
: NULL
,
1038 atomic_read(&chunk
->skb
->users
) : -1);
1040 /* Add the chunk to the packet. */
1041 status
= sctp_packet_transmit_chunk(packet
, chunk
, 0);
1044 case SCTP_XMIT_PMTU_FULL
:
1045 case SCTP_XMIT_RWND_FULL
:
1046 case SCTP_XMIT_NAGLE_DELAY
:
1047 /* We could not append this chunk, so put
1048 * the chunk back on the output queue.
1050 SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
1051 "not transmit TSN: 0x%x, status: %d\n",
1052 ntohl(chunk
->subh
.data_hdr
->tsn
),
1054 sctp_outq_head_data(q
, chunk
);
1055 goto sctp_flush_out
;
1059 /* The sender is in the SHUTDOWN-PENDING state,
1060 * The sender MAY set the I-bit in the DATA
1063 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
)
1064 chunk
->chunk_hdr
->flags
|= SCTP_DATA_SACK_IMM
;
1065 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
1066 asoc
->stats
.ouodchunks
++;
1068 asoc
->stats
.oodchunks
++;
1076 /* BUG: We assume that the sctp_packet_transmit()
1077 * call below will succeed all the time and add the
1078 * chunk to the transmitted list and restart the
1080 * It is possible that the call can fail under OOM
1083 * Is this really a problem? Won't this behave
1086 list_add_tail(&chunk
->transmitted_list
,
1087 &transport
->transmitted
);
1089 sctp_transport_reset_timers(transport
);
1093 /* Only let one DATA chunk get bundled with a
1094 * COOKIE-ECHO chunk.
1096 if (packet
->has_cookie_echo
)
1097 goto sctp_flush_out
;
1108 /* Before returning, examine all the transports touched in
1109 * this call. Right now, we bluntly force clear all the
1110 * transports. Things might change after we implement Nagle.
1111 * But such an examination is still required.
1115 while ((ltransport
= sctp_list_dequeue(&transport_list
)) != NULL
) {
1116 struct sctp_transport
*t
= list_entry(ltransport
,
1117 struct sctp_transport
,
1119 packet
= &t
->packet
;
1120 if (!sctp_packet_empty(packet
))
1121 error
= sctp_packet_transmit(packet
);
1123 /* Clear the burst limited state, if any */
1124 sctp_transport_burst_reset(t
);
1130 /* Update unack_data based on the incoming SACK chunk */
1131 static void sctp_sack_update_unack_data(struct sctp_association
*assoc
,
1132 struct sctp_sackhdr
*sack
)
1134 sctp_sack_variable_t
*frags
;
1138 unack_data
= assoc
->next_tsn
- assoc
->ctsn_ack_point
- 1;
1140 frags
= sack
->variable
;
1141 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); i
++) {
1142 unack_data
-= ((ntohs(frags
[i
].gab
.end
) -
1143 ntohs(frags
[i
].gab
.start
) + 1));
1146 assoc
->unack_data
= unack_data
;
1149 /* This is where we REALLY process a SACK.
1151 * Process the SACK against the outqueue. Mostly, this just frees
1152 * things off the transmitted queue.
1154 int sctp_outq_sack(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
1156 struct sctp_association
*asoc
= q
->asoc
;
1157 struct sctp_sackhdr
*sack
= chunk
->subh
.sack_hdr
;
1158 struct sctp_transport
*transport
;
1159 struct sctp_chunk
*tchunk
= NULL
;
1160 struct list_head
*lchunk
, *transport_list
, *temp
;
1161 sctp_sack_variable_t
*frags
= sack
->variable
;
1162 __u32 sack_ctsn
, ctsn
, tsn
;
1163 __u32 highest_tsn
, highest_new_tsn
;
1165 unsigned int outstanding
;
1166 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1167 int count_of_newacks
= 0;
1171 /* Grab the association's destination address list. */
1172 transport_list
= &asoc
->peer
.transport_addr_list
;
1174 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1175 gap_ack_blocks
= ntohs(sack
->num_gap_ack_blocks
);
1176 asoc
->stats
.gapcnt
+= gap_ack_blocks
;
1178 * SFR-CACC algorithm:
1179 * On receipt of a SACK the sender SHOULD execute the
1180 * following statements.
1182 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1183 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1184 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1186 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1187 * is set the receiver of the SACK MUST take the following actions:
1189 * A) Initialize the cacc_saw_newack to 0 for all destination
1192 * Only bother if changeover_active is set. Otherwise, this is
1193 * totally suboptimal to do on every SACK.
1195 if (primary
->cacc
.changeover_active
) {
1196 u8 clear_cycling
= 0;
1198 if (TSN_lte(primary
->cacc
.next_tsn_at_change
, sack_ctsn
)) {
1199 primary
->cacc
.changeover_active
= 0;
1203 if (clear_cycling
|| gap_ack_blocks
) {
1204 list_for_each_entry(transport
, transport_list
,
1207 transport
->cacc
.cycling_changeover
= 0;
1209 transport
->cacc
.cacc_saw_newack
= 0;
1214 /* Get the highest TSN in the sack. */
1215 highest_tsn
= sack_ctsn
;
1217 highest_tsn
+= ntohs(frags
[gap_ack_blocks
- 1].gab
.end
);
1219 if (TSN_lt(asoc
->highest_sacked
, highest_tsn
))
1220 asoc
->highest_sacked
= highest_tsn
;
1222 highest_new_tsn
= sack_ctsn
;
1224 /* Run through the retransmit queue. Credit bytes received
1225 * and free those chunks that we can.
1227 sctp_check_transmitted(q
, &q
->retransmit
, NULL
, NULL
, sack
, &highest_new_tsn
);
1229 /* Run through the transmitted queue.
1230 * Credit bytes received and free those chunks which we can.
1232 * This is a MASSIVE candidate for optimization.
1234 list_for_each_entry(transport
, transport_list
, transports
) {
1235 sctp_check_transmitted(q
, &transport
->transmitted
,
1236 transport
, &chunk
->source
, sack
,
1239 * SFR-CACC algorithm:
1240 * C) Let count_of_newacks be the number of
1241 * destinations for which cacc_saw_newack is set.
1243 if (transport
->cacc
.cacc_saw_newack
)
1244 count_of_newacks
++;
1247 /* Move the Cumulative TSN Ack Point if appropriate. */
1248 if (TSN_lt(asoc
->ctsn_ack_point
, sack_ctsn
)) {
1249 asoc
->ctsn_ack_point
= sack_ctsn
;
1253 if (gap_ack_blocks
) {
1255 if (asoc
->fast_recovery
&& accum_moved
)
1256 highest_new_tsn
= highest_tsn
;
1258 list_for_each_entry(transport
, transport_list
, transports
)
1259 sctp_mark_missing(q
, &transport
->transmitted
, transport
,
1260 highest_new_tsn
, count_of_newacks
);
1263 /* Update unack_data field in the assoc. */
1264 sctp_sack_update_unack_data(asoc
, sack
);
1266 ctsn
= asoc
->ctsn_ack_point
;
1268 /* Throw away stuff rotting on the sack queue. */
1269 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
1270 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1272 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1273 if (TSN_lte(tsn
, ctsn
)) {
1274 list_del_init(&tchunk
->transmitted_list
);
1275 sctp_chunk_free(tchunk
);
1279 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1280 * number of bytes still outstanding after processing the
1281 * Cumulative TSN Ack and the Gap Ack Blocks.
1284 sack_a_rwnd
= ntohl(sack
->a_rwnd
);
1285 outstanding
= q
->outstanding_bytes
;
1287 if (outstanding
< sack_a_rwnd
)
1288 sack_a_rwnd
-= outstanding
;
1292 asoc
->peer
.rwnd
= sack_a_rwnd
;
1294 sctp_generate_fwdtsn(q
, sack_ctsn
);
1296 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1297 __func__
, sack_ctsn
);
1298 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1299 "%p is 0x%x. Adv peer ack point: 0x%x\n",
1300 __func__
, asoc
, ctsn
, asoc
->adv_peer_ack_point
);
1302 /* See if all chunks are acked.
1303 * Make sure the empty queue handler will get run later.
1305 q
->empty
= (list_empty(&q
->out_chunk_list
) &&
1306 list_empty(&q
->retransmit
));
1310 list_for_each_entry(transport
, transport_list
, transports
) {
1311 q
->empty
= q
->empty
&& list_empty(&transport
->transmitted
);
1316 SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1321 /* Is the outqueue empty? */
1322 int sctp_outq_is_empty(const struct sctp_outq
*q
)
1327 /********************************************************************
1328 * 2nd Level Abstractions
1329 ********************************************************************/
1331 /* Go through a transport's transmitted list or the association's retransmit
1332 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1333 * The retransmit list will not have an associated transport.
1335 * I added coherent debug information output. --xguo
1337 * Instead of printing 'sacked' or 'kept' for each TSN on the
1338 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1339 * KEPT TSN6-TSN7, etc.
1341 static void sctp_check_transmitted(struct sctp_outq
*q
,
1342 struct list_head
*transmitted_queue
,
1343 struct sctp_transport
*transport
,
1344 union sctp_addr
*saddr
,
1345 struct sctp_sackhdr
*sack
,
1346 __u32
*highest_new_tsn_in_sack
)
1348 struct list_head
*lchunk
;
1349 struct sctp_chunk
*tchunk
;
1350 struct list_head tlist
;
1354 __u8 restart_timer
= 0;
1355 int bytes_acked
= 0;
1356 int migrate_bytes
= 0;
1358 /* These state variables are for coherent debug output. --xguo */
1361 __u32 dbg_ack_tsn
= 0; /* An ACKed TSN range starts here... */
1362 __u32 dbg_last_ack_tsn
= 0; /* ...and finishes here. */
1363 __u32 dbg_kept_tsn
= 0; /* An un-ACKed range starts here... */
1364 __u32 dbg_last_kept_tsn
= 0; /* ...and finishes here. */
1366 /* 0 : The last TSN was ACKed.
1367 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1368 * -1: We need to initialize.
1370 int dbg_prt_state
= -1;
1371 #endif /* SCTP_DEBUG */
1373 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1375 INIT_LIST_HEAD(&tlist
);
1377 /* The while loop will skip empty transmitted queues. */
1378 while (NULL
!= (lchunk
= sctp_list_dequeue(transmitted_queue
))) {
1379 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1382 if (sctp_chunk_abandoned(tchunk
)) {
1383 /* Move the chunk to abandoned list. */
1384 sctp_insert_list(&q
->abandoned
, lchunk
);
1386 /* If this chunk has not been acked, stop
1387 * considering it as 'outstanding'.
1389 if (!tchunk
->tsn_gap_acked
) {
1390 if (tchunk
->transport
)
1391 tchunk
->transport
->flight_size
-=
1392 sctp_data_size(tchunk
);
1393 q
->outstanding_bytes
-= sctp_data_size(tchunk
);
1398 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1399 if (sctp_acked(sack
, tsn
)) {
1400 /* If this queue is the retransmit queue, the
1401 * retransmit timer has already reclaimed
1402 * the outstanding bytes for this chunk, so only
1403 * count bytes associated with a transport.
1406 /* If this chunk is being used for RTT
1407 * measurement, calculate the RTT and update
1408 * the RTO using this value.
1410 * 6.3.1 C5) Karn's algorithm: RTT measurements
1411 * MUST NOT be made using packets that were
1412 * retransmitted (and thus for which it is
1413 * ambiguous whether the reply was for the
1414 * first instance of the packet or a later
1417 if (!tchunk
->tsn_gap_acked
&&
1418 tchunk
->rtt_in_progress
) {
1419 tchunk
->rtt_in_progress
= 0;
1420 rtt
= jiffies
- tchunk
->sent_at
;
1421 sctp_transport_update_rto(transport
,
1426 /* If the chunk hasn't been marked as ACKED,
1427 * mark it and account bytes_acked if the
1428 * chunk had a valid transport (it will not
1429 * have a transport if ASCONF had deleted it
1430 * while DATA was outstanding).
1432 if (!tchunk
->tsn_gap_acked
) {
1433 tchunk
->tsn_gap_acked
= 1;
1434 *highest_new_tsn_in_sack
= tsn
;
1435 bytes_acked
+= sctp_data_size(tchunk
);
1436 if (!tchunk
->transport
)
1437 migrate_bytes
+= sctp_data_size(tchunk
);
1440 if (TSN_lte(tsn
, sack_ctsn
)) {
1441 /* RFC 2960 6.3.2 Retransmission Timer Rules
1443 * R3) Whenever a SACK is received
1444 * that acknowledges the DATA chunk
1445 * with the earliest outstanding TSN
1446 * for that address, restart T3-rtx
1447 * timer for that address with its
1452 if (!tchunk
->tsn_gap_acked
) {
1454 * SFR-CACC algorithm:
1455 * 2) If the SACK contains gap acks
1456 * and the flag CHANGEOVER_ACTIVE is
1457 * set the receiver of the SACK MUST
1458 * take the following action:
1460 * B) For each TSN t being acked that
1461 * has not been acked in any SACK so
1462 * far, set cacc_saw_newack to 1 for
1463 * the destination that the TSN was
1467 sack
->num_gap_ack_blocks
&&
1468 q
->asoc
->peer
.primary_path
->cacc
.
1470 transport
->cacc
.cacc_saw_newack
1474 list_add_tail(&tchunk
->transmitted_list
,
1477 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1478 * M2) Each time a SACK arrives reporting
1479 * 'Stray DATA chunk(s)' record the highest TSN
1480 * reported as newly acknowledged, call this
1481 * value 'HighestTSNinSack'. A newly
1482 * acknowledged DATA chunk is one not
1483 * previously acknowledged in a SACK.
1485 * When the SCTP sender of data receives a SACK
1486 * chunk that acknowledges, for the first time,
1487 * the receipt of a DATA chunk, all the still
1488 * unacknowledged DATA chunks whose TSN is
1489 * older than that newly acknowledged DATA
1490 * chunk, are qualified as 'Stray DATA chunks'.
1492 list_add_tail(lchunk
, &tlist
);
1496 switch (dbg_prt_state
) {
1497 case 0: /* last TSN was ACKed */
1498 if (dbg_last_ack_tsn
+ 1 == tsn
) {
1499 /* This TSN belongs to the
1500 * current ACK range.
1505 if (dbg_last_ack_tsn
!= dbg_ack_tsn
) {
1506 /* Display the end of the
1509 SCTP_DEBUG_PRINTK_CONT("-%08x",
1513 /* Start a new range. */
1514 SCTP_DEBUG_PRINTK_CONT(",%08x", tsn
);
1518 case 1: /* The last TSN was NOT ACKed. */
1519 if (dbg_last_kept_tsn
!= dbg_kept_tsn
) {
1520 /* Display the end of current range. */
1521 SCTP_DEBUG_PRINTK_CONT("-%08x",
1525 SCTP_DEBUG_PRINTK_CONT("\n");
1527 /* FALL THROUGH... */
1529 /* This is the first-ever TSN we examined. */
1530 /* Start a new range of ACK-ed TSNs. */
1531 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn
);
1536 dbg_last_ack_tsn
= tsn
;
1537 #endif /* SCTP_DEBUG */
1540 if (tchunk
->tsn_gap_acked
) {
1541 SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1545 tchunk
->tsn_gap_acked
= 0;
1547 if (tchunk
->transport
)
1548 bytes_acked
-= sctp_data_size(tchunk
);
1550 /* RFC 2960 6.3.2 Retransmission Timer Rules
1552 * R4) Whenever a SACK is received missing a
1553 * TSN that was previously acknowledged via a
1554 * Gap Ack Block, start T3-rtx for the
1555 * destination address to which the DATA
1556 * chunk was originally
1557 * transmitted if it is not already running.
1562 list_add_tail(lchunk
, &tlist
);
1565 /* See the above comments on ACK-ed TSNs. */
1566 switch (dbg_prt_state
) {
1568 if (dbg_last_kept_tsn
+ 1 == tsn
)
1571 if (dbg_last_kept_tsn
!= dbg_kept_tsn
)
1572 SCTP_DEBUG_PRINTK_CONT("-%08x",
1575 SCTP_DEBUG_PRINTK_CONT(",%08x", tsn
);
1580 if (dbg_last_ack_tsn
!= dbg_ack_tsn
)
1581 SCTP_DEBUG_PRINTK_CONT("-%08x",
1583 SCTP_DEBUG_PRINTK_CONT("\n");
1585 /* FALL THROUGH... */
1587 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn
);
1592 dbg_last_kept_tsn
= tsn
;
1593 #endif /* SCTP_DEBUG */
1598 /* Finish off the last range, displaying its ending TSN. */
1599 switch (dbg_prt_state
) {
1601 if (dbg_last_ack_tsn
!= dbg_ack_tsn
) {
1602 SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_ack_tsn
);
1604 SCTP_DEBUG_PRINTK_CONT("\n");
1609 if (dbg_last_kept_tsn
!= dbg_kept_tsn
) {
1610 SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_kept_tsn
);
1612 SCTP_DEBUG_PRINTK_CONT("\n");
1615 #endif /* SCTP_DEBUG */
1618 struct sctp_association
*asoc
= transport
->asoc
;
1620 /* We may have counted DATA that was migrated
1621 * to this transport due to DEL-IP operation.
1622 * Subtract those bytes, since the were never
1623 * send on this transport and shouldn't be
1624 * credited to this transport.
1626 bytes_acked
-= migrate_bytes
;
1628 /* 8.2. When an outstanding TSN is acknowledged,
1629 * the endpoint shall clear the error counter of
1630 * the destination transport address to which the
1631 * DATA chunk was last sent.
1632 * The association's overall error counter is
1635 transport
->error_count
= 0;
1636 transport
->asoc
->overall_error_count
= 0;
1639 * While in SHUTDOWN PENDING, we may have started
1640 * the T5 shutdown guard timer after reaching the
1641 * retransmission limit. Stop that timer as soon
1642 * as the receiver acknowledged any data.
1644 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
&&
1645 del_timer(&asoc
->timers
1646 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD
]))
1647 sctp_association_put(asoc
);
1649 /* Mark the destination transport address as
1650 * active if it is not so marked.
1652 if ((transport
->state
== SCTP_INACTIVE
||
1653 transport
->state
== SCTP_UNCONFIRMED
) &&
1654 sctp_cmp_addr_exact(&transport
->ipaddr
, saddr
)) {
1655 sctp_assoc_control_transport(
1659 SCTP_RECEIVED_SACK
);
1662 sctp_transport_raise_cwnd(transport
, sack_ctsn
,
1665 transport
->flight_size
-= bytes_acked
;
1666 if (transport
->flight_size
== 0)
1667 transport
->partial_bytes_acked
= 0;
1668 q
->outstanding_bytes
-= bytes_acked
+ migrate_bytes
;
1670 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1671 * When a sender is doing zero window probing, it
1672 * should not timeout the association if it continues
1673 * to receive new packets from the receiver. The
1674 * reason is that the receiver MAY keep its window
1675 * closed for an indefinite time.
1676 * A sender is doing zero window probing when the
1677 * receiver's advertised window is zero, and there is
1678 * only one data chunk in flight to the receiver.
1680 * Allow the association to timeout while in SHUTDOWN
1681 * PENDING or SHUTDOWN RECEIVED in case the receiver
1682 * stays in zero window mode forever.
1684 if (!q
->asoc
->peer
.rwnd
&&
1685 !list_empty(&tlist
) &&
1686 (sack_ctsn
+2 == q
->asoc
->next_tsn
) &&
1687 q
->asoc
->state
< SCTP_STATE_SHUTDOWN_PENDING
) {
1688 SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1689 "window probe: %u\n",
1690 __func__
, sack_ctsn
);
1691 q
->asoc
->overall_error_count
= 0;
1692 transport
->error_count
= 0;
1696 /* RFC 2960 6.3.2 Retransmission Timer Rules
1698 * R2) Whenever all outstanding data sent to an address have
1699 * been acknowledged, turn off the T3-rtx timer of that
1702 if (!transport
->flight_size
) {
1703 if (timer_pending(&transport
->T3_rtx_timer
) &&
1704 del_timer(&transport
->T3_rtx_timer
)) {
1705 sctp_transport_put(transport
);
1707 } else if (restart_timer
) {
1708 if (!mod_timer(&transport
->T3_rtx_timer
,
1709 jiffies
+ transport
->rto
))
1710 sctp_transport_hold(transport
);
1714 list_splice(&tlist
, transmitted_queue
);
1717 /* Mark chunks as missing and consequently may get retransmitted. */
1718 static void sctp_mark_missing(struct sctp_outq
*q
,
1719 struct list_head
*transmitted_queue
,
1720 struct sctp_transport
*transport
,
1721 __u32 highest_new_tsn_in_sack
,
1722 int count_of_newacks
)
1724 struct sctp_chunk
*chunk
;
1726 char do_fast_retransmit
= 0;
1727 struct sctp_association
*asoc
= q
->asoc
;
1728 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1730 list_for_each_entry(chunk
, transmitted_queue
, transmitted_list
) {
1732 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1734 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1735 * 'Unacknowledged TSN's', if the TSN number of an
1736 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1737 * value, increment the 'TSN.Missing.Report' count on that
1738 * chunk if it has NOT been fast retransmitted or marked for
1739 * fast retransmit already.
1741 if (chunk
->fast_retransmit
== SCTP_CAN_FRTX
&&
1742 !chunk
->tsn_gap_acked
&&
1743 TSN_lt(tsn
, highest_new_tsn_in_sack
)) {
1745 /* SFR-CACC may require us to skip marking
1746 * this chunk as missing.
1748 if (!transport
|| !sctp_cacc_skip(primary
,
1750 count_of_newacks
, tsn
)) {
1751 chunk
->tsn_missing_report
++;
1754 "%s: TSN 0x%x missing counter: %d\n",
1756 chunk
->tsn_missing_report
);
1760 * M4) If any DATA chunk is found to have a
1761 * 'TSN.Missing.Report'
1762 * value larger than or equal to 3, mark that chunk for
1763 * retransmission and start the fast retransmit procedure.
1766 if (chunk
->tsn_missing_report
>= 3) {
1767 chunk
->fast_retransmit
= SCTP_NEED_FRTX
;
1768 do_fast_retransmit
= 1;
1773 if (do_fast_retransmit
)
1774 sctp_retransmit(q
, transport
, SCTP_RTXR_FAST_RTX
);
1776 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1777 "ssthresh: %d, flight_size: %d, pba: %d\n",
1778 __func__
, transport
, transport
->cwnd
,
1779 transport
->ssthresh
, transport
->flight_size
,
1780 transport
->partial_bytes_acked
);
1784 /* Is the given TSN acked by this packet? */
1785 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
)
1788 sctp_sack_variable_t
*frags
;
1790 __u32 ctsn
= ntohl(sack
->cum_tsn_ack
);
1792 if (TSN_lte(tsn
, ctsn
))
1795 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1798 * These fields contain the Gap Ack Blocks. They are repeated
1799 * for each Gap Ack Block up to the number of Gap Ack Blocks
1800 * defined in the Number of Gap Ack Blocks field. All DATA
1801 * chunks with TSNs greater than or equal to (Cumulative TSN
1802 * Ack + Gap Ack Block Start) and less than or equal to
1803 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1804 * Block are assumed to have been received correctly.
1807 frags
= sack
->variable
;
1809 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); ++i
) {
1810 if (TSN_lte(ntohs(frags
[i
].gab
.start
), gap
) &&
1811 TSN_lte(gap
, ntohs(frags
[i
].gab
.end
)))
1820 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip
*skiplist
,
1821 int nskips
, __be16 stream
)
1825 for (i
= 0; i
< nskips
; i
++) {
1826 if (skiplist
[i
].stream
== stream
)
1832 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1833 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 ctsn
)
1835 struct sctp_association
*asoc
= q
->asoc
;
1836 struct sctp_chunk
*ftsn_chunk
= NULL
;
1837 struct sctp_fwdtsn_skip ftsn_skip_arr
[10];
1841 struct sctp_chunk
*chunk
;
1842 struct list_head
*lchunk
, *temp
;
1844 if (!asoc
->peer
.prsctp_capable
)
1847 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1850 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1851 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1853 if (TSN_lt(asoc
->adv_peer_ack_point
, ctsn
))
1854 asoc
->adv_peer_ack_point
= ctsn
;
1856 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1857 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1858 * the chunk next in the out-queue space is marked as "abandoned" as
1859 * shown in the following example:
1861 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1862 * and the Advanced.Peer.Ack.Point is updated to this value:
1864 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1865 * normal SACK processing local advancement
1867 * Adv.Ack.Pt-> 102 acked 102 acked
1868 * 103 abandoned 103 abandoned
1869 * 104 abandoned Adv.Ack.P-> 104 abandoned
1871 * 106 acked 106 acked
1874 * In this example, the data sender successfully advanced the
1875 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1877 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
1878 chunk
= list_entry(lchunk
, struct sctp_chunk
,
1880 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1882 /* Remove any chunks in the abandoned queue that are acked by
1885 if (TSN_lte(tsn
, ctsn
)) {
1886 list_del_init(lchunk
);
1887 sctp_chunk_free(chunk
);
1889 if (TSN_lte(tsn
, asoc
->adv_peer_ack_point
+1)) {
1890 asoc
->adv_peer_ack_point
= tsn
;
1891 if (chunk
->chunk_hdr
->flags
&
1892 SCTP_DATA_UNORDERED
)
1894 skip_pos
= sctp_get_skip_pos(&ftsn_skip_arr
[0],
1896 chunk
->subh
.data_hdr
->stream
);
1897 ftsn_skip_arr
[skip_pos
].stream
=
1898 chunk
->subh
.data_hdr
->stream
;
1899 ftsn_skip_arr
[skip_pos
].ssn
=
1900 chunk
->subh
.data_hdr
->ssn
;
1901 if (skip_pos
== nskips
)
1910 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1911 * is greater than the Cumulative TSN ACK carried in the received
1912 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1913 * chunk containing the latest value of the
1914 * "Advanced.Peer.Ack.Point".
1916 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1917 * list each stream and sequence number in the forwarded TSN. This
1918 * information will enable the receiver to easily find any
1919 * stranded TSN's waiting on stream reorder queues. Each stream
1920 * SHOULD only be reported once; this means that if multiple
1921 * abandoned messages occur in the same stream then only the
1922 * highest abandoned stream sequence number is reported. If the
1923 * total size of the FORWARD TSN does NOT fit in a single MTU then
1924 * the sender of the FORWARD TSN SHOULD lower the
1925 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1928 if (asoc
->adv_peer_ack_point
> ctsn
)
1929 ftsn_chunk
= sctp_make_fwdtsn(asoc
, asoc
->adv_peer_ack_point
,
1930 nskips
, &ftsn_skip_arr
[0]);
1933 list_add_tail(&ftsn_chunk
->list
, &q
->control_chunk_list
);
1934 SCTP_INC_STATS(sock_net(asoc
->base
.sk
), SCTP_MIB_OUTCTRLCHUNKS
);