Linux 3.8-rc7
[cris-mirror.git] / net / socket.c
blob2ca51c719ef984cdadef749008456cf7bd5e1ae4
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
109 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
110 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
111 unsigned long nr_segs, loff_t pos);
112 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
113 unsigned long nr_segs, loff_t pos);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 static int sock_close(struct inode *inode, struct file *file);
117 static unsigned int sock_poll(struct file *file,
118 struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 struct pipe_inode_info *pipe, size_t len,
129 unsigned int flags);
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
136 static const struct file_operations socket_file_ops = {
137 .owner = THIS_MODULE,
138 .llseek = no_llseek,
139 .aio_read = sock_aio_read,
140 .aio_write = sock_aio_write,
141 .poll = sock_poll,
142 .unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 .compat_ioctl = compat_sock_ioctl,
145 #endif
146 .mmap = sock_mmap,
147 .open = sock_no_open, /* special open code to disallow open via /proc */
148 .release = sock_close,
149 .fasync = sock_fasync,
150 .sendpage = sock_sendpage,
151 .splice_write = generic_splice_sendpage,
152 .splice_read = sock_splice_read,
156 * The protocol list. Each protocol is registered in here.
159 static DEFINE_SPINLOCK(net_family_lock);
160 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
163 * Statistics counters of the socket lists
166 static DEFINE_PER_CPU(int, sockets_in_use);
169 * Support routines.
170 * Move socket addresses back and forth across the kernel/user
171 * divide and look after the messy bits.
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 void __user *uaddr, int __user *ulen)
216 int err;
217 int len;
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0 || len > sizeof(struct sockaddr_storage))
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
236 return __put_user(klen, ulen);
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
241 static struct inode *sock_alloc_inode(struct super_block *sb)
243 struct socket_alloc *ei;
244 struct socket_wq *wq;
246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 if (!ei)
248 return NULL;
249 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
250 if (!wq) {
251 kmem_cache_free(sock_inode_cachep, ei);
252 return NULL;
254 init_waitqueue_head(&wq->wait);
255 wq->fasync_list = NULL;
256 RCU_INIT_POINTER(ei->socket.wq, wq);
258 ei->socket.state = SS_UNCONNECTED;
259 ei->socket.flags = 0;
260 ei->socket.ops = NULL;
261 ei->socket.sk = NULL;
262 ei->socket.file = NULL;
264 return &ei->vfs_inode;
267 static void sock_destroy_inode(struct inode *inode)
269 struct socket_alloc *ei;
270 struct socket_wq *wq;
272 ei = container_of(inode, struct socket_alloc, vfs_inode);
273 wq = rcu_dereference_protected(ei->socket.wq, 1);
274 kfree_rcu(wq, rcu);
275 kmem_cache_free(sock_inode_cachep, ei);
278 static void init_once(void *foo)
280 struct socket_alloc *ei = (struct socket_alloc *)foo;
282 inode_init_once(&ei->vfs_inode);
285 static int init_inodecache(void)
287 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
288 sizeof(struct socket_alloc),
290 (SLAB_HWCACHE_ALIGN |
291 SLAB_RECLAIM_ACCOUNT |
292 SLAB_MEM_SPREAD),
293 init_once);
294 if (sock_inode_cachep == NULL)
295 return -ENOMEM;
296 return 0;
299 static const struct super_operations sockfs_ops = {
300 .alloc_inode = sock_alloc_inode,
301 .destroy_inode = sock_destroy_inode,
302 .statfs = simple_statfs,
306 * sockfs_dname() is called from d_path().
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 dentry->d_inode->i_ino);
314 static const struct dentry_operations sockfs_dentry_operations = {
315 .d_dname = sockfs_dname,
318 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
319 int flags, const char *dev_name, void *data)
321 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
322 &sockfs_dentry_operations, SOCKFS_MAGIC);
325 static struct vfsmount *sock_mnt __read_mostly;
327 static struct file_system_type sock_fs_type = {
328 .name = "sockfs",
329 .mount = sockfs_mount,
330 .kill_sb = kill_anon_super,
334 * Obtains the first available file descriptor and sets it up for use.
336 * These functions create file structures and maps them to fd space
337 * of the current process. On success it returns file descriptor
338 * and file struct implicitly stored in sock->file.
339 * Note that another thread may close file descriptor before we return
340 * from this function. We use the fact that now we do not refer
341 * to socket after mapping. If one day we will need it, this
342 * function will increment ref. count on file by 1.
344 * In any case returned fd MAY BE not valid!
345 * This race condition is unavoidable
346 * with shared fd spaces, we cannot solve it inside kernel,
347 * but we take care of internal coherence yet.
350 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
352 struct qstr name = { .name = "" };
353 struct path path;
354 struct file *file;
356 if (dname) {
357 name.name = dname;
358 name.len = strlen(name.name);
359 } else if (sock->sk) {
360 name.name = sock->sk->sk_prot_creator->name;
361 name.len = strlen(name.name);
363 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
364 if (unlikely(!path.dentry))
365 return ERR_PTR(-ENOMEM);
366 path.mnt = mntget(sock_mnt);
368 d_instantiate(path.dentry, SOCK_INODE(sock));
369 SOCK_INODE(sock)->i_fop = &socket_file_ops;
371 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
372 &socket_file_ops);
373 if (unlikely(!file)) {
374 /* drop dentry, keep inode */
375 ihold(path.dentry->d_inode);
376 path_put(&path);
377 return ERR_PTR(-ENFILE);
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
384 return file;
386 EXPORT_SYMBOL(sock_alloc_file);
388 static int sock_map_fd(struct socket *sock, int flags)
390 struct file *newfile;
391 int fd = get_unused_fd_flags(flags);
392 if (unlikely(fd < 0))
393 return fd;
395 newfile = sock_alloc_file(sock, flags, NULL);
396 if (likely(!IS_ERR(newfile))) {
397 fd_install(fd, newfile);
398 return fd;
401 put_unused_fd(fd);
402 return PTR_ERR(newfile);
405 struct socket *sock_from_file(struct file *file, int *err)
407 if (file->f_op == &socket_file_ops)
408 return file->private_data; /* set in sock_map_fd */
410 *err = -ENOTSOCK;
411 return NULL;
413 EXPORT_SYMBOL(sock_from_file);
416 * sockfd_lookup - Go from a file number to its socket slot
417 * @fd: file handle
418 * @err: pointer to an error code return
420 * The file handle passed in is locked and the socket it is bound
421 * too is returned. If an error occurs the err pointer is overwritten
422 * with a negative errno code and NULL is returned. The function checks
423 * for both invalid handles and passing a handle which is not a socket.
425 * On a success the socket object pointer is returned.
428 struct socket *sockfd_lookup(int fd, int *err)
430 struct file *file;
431 struct socket *sock;
433 file = fget(fd);
434 if (!file) {
435 *err = -EBADF;
436 return NULL;
439 sock = sock_from_file(file, err);
440 if (!sock)
441 fput(file);
442 return sock;
444 EXPORT_SYMBOL(sockfd_lookup);
446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448 struct file *file;
449 struct socket *sock;
451 *err = -EBADF;
452 file = fget_light(fd, fput_needed);
453 if (file) {
454 sock = sock_from_file(file, err);
455 if (sock)
456 return sock;
457 fput_light(file, *fput_needed);
459 return NULL;
462 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
463 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
464 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
465 static ssize_t sockfs_getxattr(struct dentry *dentry,
466 const char *name, void *value, size_t size)
468 const char *proto_name;
469 size_t proto_size;
470 int error;
472 error = -ENODATA;
473 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
474 proto_name = dentry->d_name.name;
475 proto_size = strlen(proto_name);
477 if (value) {
478 error = -ERANGE;
479 if (proto_size + 1 > size)
480 goto out;
482 strncpy(value, proto_name, proto_size + 1);
484 error = proto_size + 1;
487 out:
488 return error;
491 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
492 size_t size)
494 ssize_t len;
495 ssize_t used = 0;
497 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
498 if (len < 0)
499 return len;
500 used += len;
501 if (buffer) {
502 if (size < used)
503 return -ERANGE;
504 buffer += len;
507 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
513 buffer += len;
516 return used;
519 static const struct inode_operations sockfs_inode_ops = {
520 .getxattr = sockfs_getxattr,
521 .listxattr = sockfs_listxattr,
525 * sock_alloc - allocate a socket
527 * Allocate a new inode and socket object. The two are bound together
528 * and initialised. The socket is then returned. If we are out of inodes
529 * NULL is returned.
532 static struct socket *sock_alloc(void)
534 struct inode *inode;
535 struct socket *sock;
537 inode = new_inode_pseudo(sock_mnt->mnt_sb);
538 if (!inode)
539 return NULL;
541 sock = SOCKET_I(inode);
543 kmemcheck_annotate_bitfield(sock, type);
544 inode->i_ino = get_next_ino();
545 inode->i_mode = S_IFSOCK | S_IRWXUGO;
546 inode->i_uid = current_fsuid();
547 inode->i_gid = current_fsgid();
548 inode->i_op = &sockfs_inode_ops;
550 this_cpu_add(sockets_in_use, 1);
551 return sock;
555 * In theory you can't get an open on this inode, but /proc provides
556 * a back door. Remember to keep it shut otherwise you'll let the
557 * creepy crawlies in.
560 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
562 return -ENXIO;
565 const struct file_operations bad_sock_fops = {
566 .owner = THIS_MODULE,
567 .open = sock_no_open,
568 .llseek = noop_llseek,
572 * sock_release - close a socket
573 * @sock: socket to close
575 * The socket is released from the protocol stack if it has a release
576 * callback, and the inode is then released if the socket is bound to
577 * an inode not a file.
580 void sock_release(struct socket *sock)
582 if (sock->ops) {
583 struct module *owner = sock->ops->owner;
585 sock->ops->release(sock);
586 sock->ops = NULL;
587 module_put(owner);
590 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
591 printk(KERN_ERR "sock_release: fasync list not empty!\n");
593 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
594 return;
596 this_cpu_sub(sockets_in_use, 1);
597 if (!sock->file) {
598 iput(SOCK_INODE(sock));
599 return;
601 sock->file = NULL;
603 EXPORT_SYMBOL(sock_release);
605 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
607 *tx_flags = 0;
608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
609 *tx_flags |= SKBTX_HW_TSTAMP;
610 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
611 *tx_flags |= SKBTX_SW_TSTAMP;
612 if (sock_flag(sk, SOCK_WIFI_STATUS))
613 *tx_flags |= SKBTX_WIFI_STATUS;
614 return 0;
616 EXPORT_SYMBOL(sock_tx_timestamp);
618 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
619 struct msghdr *msg, size_t size)
621 struct sock_iocb *si = kiocb_to_siocb(iocb);
623 si->sock = sock;
624 si->scm = NULL;
625 si->msg = msg;
626 si->size = size;
628 return sock->ops->sendmsg(iocb, sock, msg, size);
631 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
632 struct msghdr *msg, size_t size)
634 int err = security_socket_sendmsg(sock, msg, size);
636 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
639 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
641 struct kiocb iocb;
642 struct sock_iocb siocb;
643 int ret;
645 init_sync_kiocb(&iocb, NULL);
646 iocb.private = &siocb;
647 ret = __sock_sendmsg(&iocb, sock, msg, size);
648 if (-EIOCBQUEUED == ret)
649 ret = wait_on_sync_kiocb(&iocb);
650 return ret;
652 EXPORT_SYMBOL(sock_sendmsg);
654 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
656 struct kiocb iocb;
657 struct sock_iocb siocb;
658 int ret;
660 init_sync_kiocb(&iocb, NULL);
661 iocb.private = &siocb;
662 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
663 if (-EIOCBQUEUED == ret)
664 ret = wait_on_sync_kiocb(&iocb);
665 return ret;
668 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
669 struct kvec *vec, size_t num, size_t size)
671 mm_segment_t oldfs = get_fs();
672 int result;
674 set_fs(KERNEL_DS);
676 * the following is safe, since for compiler definitions of kvec and
677 * iovec are identical, yielding the same in-core layout and alignment
679 msg->msg_iov = (struct iovec *)vec;
680 msg->msg_iovlen = num;
681 result = sock_sendmsg(sock, msg, size);
682 set_fs(oldfs);
683 return result;
685 EXPORT_SYMBOL(kernel_sendmsg);
687 static int ktime2ts(ktime_t kt, struct timespec *ts)
689 if (kt.tv64) {
690 *ts = ktime_to_timespec(kt);
691 return 1;
692 } else {
693 return 0;
698 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
700 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
701 struct sk_buff *skb)
703 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
704 struct timespec ts[3];
705 int empty = 1;
706 struct skb_shared_hwtstamps *shhwtstamps =
707 skb_hwtstamps(skb);
709 /* Race occurred between timestamp enabling and packet
710 receiving. Fill in the current time for now. */
711 if (need_software_tstamp && skb->tstamp.tv64 == 0)
712 __net_timestamp(skb);
714 if (need_software_tstamp) {
715 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
716 struct timeval tv;
717 skb_get_timestamp(skb, &tv);
718 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
719 sizeof(tv), &tv);
720 } else {
721 skb_get_timestampns(skb, &ts[0]);
722 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
723 sizeof(ts[0]), &ts[0]);
728 memset(ts, 0, sizeof(ts));
729 if (skb->tstamp.tv64 &&
730 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
731 skb_get_timestampns(skb, ts + 0);
732 empty = 0;
734 if (shhwtstamps) {
735 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
736 ktime2ts(shhwtstamps->syststamp, ts + 1))
737 empty = 0;
738 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
739 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
740 empty = 0;
742 if (!empty)
743 put_cmsg(msg, SOL_SOCKET,
744 SCM_TIMESTAMPING, sizeof(ts), &ts);
746 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
748 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
749 struct sk_buff *skb)
751 int ack;
753 if (!sock_flag(sk, SOCK_WIFI_STATUS))
754 return;
755 if (!skb->wifi_acked_valid)
756 return;
758 ack = skb->wifi_acked;
760 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
762 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
764 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
765 struct sk_buff *skb)
767 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
768 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
769 sizeof(__u32), &skb->dropcount);
772 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
773 struct sk_buff *skb)
775 sock_recv_timestamp(msg, sk, skb);
776 sock_recv_drops(msg, sk, skb);
778 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
780 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
781 struct msghdr *msg, size_t size, int flags)
783 struct sock_iocb *si = kiocb_to_siocb(iocb);
785 si->sock = sock;
786 si->scm = NULL;
787 si->msg = msg;
788 si->size = size;
789 si->flags = flags;
791 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
794 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
795 struct msghdr *msg, size_t size, int flags)
797 int err = security_socket_recvmsg(sock, msg, size, flags);
799 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
802 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
803 size_t size, int flags)
805 struct kiocb iocb;
806 struct sock_iocb siocb;
807 int ret;
809 init_sync_kiocb(&iocb, NULL);
810 iocb.private = &siocb;
811 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
812 if (-EIOCBQUEUED == ret)
813 ret = wait_on_sync_kiocb(&iocb);
814 return ret;
816 EXPORT_SYMBOL(sock_recvmsg);
818 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
819 size_t size, int flags)
821 struct kiocb iocb;
822 struct sock_iocb siocb;
823 int ret;
825 init_sync_kiocb(&iocb, NULL);
826 iocb.private = &siocb;
827 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
828 if (-EIOCBQUEUED == ret)
829 ret = wait_on_sync_kiocb(&iocb);
830 return ret;
834 * kernel_recvmsg - Receive a message from a socket (kernel space)
835 * @sock: The socket to receive the message from
836 * @msg: Received message
837 * @vec: Input s/g array for message data
838 * @num: Size of input s/g array
839 * @size: Number of bytes to read
840 * @flags: Message flags (MSG_DONTWAIT, etc...)
842 * On return the msg structure contains the scatter/gather array passed in the
843 * vec argument. The array is modified so that it consists of the unfilled
844 * portion of the original array.
846 * The returned value is the total number of bytes received, or an error.
848 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
849 struct kvec *vec, size_t num, size_t size, int flags)
851 mm_segment_t oldfs = get_fs();
852 int result;
854 set_fs(KERNEL_DS);
856 * the following is safe, since for compiler definitions of kvec and
857 * iovec are identical, yielding the same in-core layout and alignment
859 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
860 result = sock_recvmsg(sock, msg, size, flags);
861 set_fs(oldfs);
862 return result;
864 EXPORT_SYMBOL(kernel_recvmsg);
866 static void sock_aio_dtor(struct kiocb *iocb)
868 kfree(iocb->private);
871 static ssize_t sock_sendpage(struct file *file, struct page *page,
872 int offset, size_t size, loff_t *ppos, int more)
874 struct socket *sock;
875 int flags;
877 sock = file->private_data;
879 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
880 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
881 flags |= more;
883 return kernel_sendpage(sock, page, offset, size, flags);
886 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
887 struct pipe_inode_info *pipe, size_t len,
888 unsigned int flags)
890 struct socket *sock = file->private_data;
892 if (unlikely(!sock->ops->splice_read))
893 return -EINVAL;
895 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
898 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
899 struct sock_iocb *siocb)
901 if (!is_sync_kiocb(iocb)) {
902 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
903 if (!siocb)
904 return NULL;
905 iocb->ki_dtor = sock_aio_dtor;
908 siocb->kiocb = iocb;
909 iocb->private = siocb;
910 return siocb;
913 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
914 struct file *file, const struct iovec *iov,
915 unsigned long nr_segs)
917 struct socket *sock = file->private_data;
918 size_t size = 0;
919 int i;
921 for (i = 0; i < nr_segs; i++)
922 size += iov[i].iov_len;
924 msg->msg_name = NULL;
925 msg->msg_namelen = 0;
926 msg->msg_control = NULL;
927 msg->msg_controllen = 0;
928 msg->msg_iov = (struct iovec *)iov;
929 msg->msg_iovlen = nr_segs;
930 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
932 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
935 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
936 unsigned long nr_segs, loff_t pos)
938 struct sock_iocb siocb, *x;
940 if (pos != 0)
941 return -ESPIPE;
943 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
944 return 0;
947 x = alloc_sock_iocb(iocb, &siocb);
948 if (!x)
949 return -ENOMEM;
950 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
953 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
954 struct file *file, const struct iovec *iov,
955 unsigned long nr_segs)
957 struct socket *sock = file->private_data;
958 size_t size = 0;
959 int i;
961 for (i = 0; i < nr_segs; i++)
962 size += iov[i].iov_len;
964 msg->msg_name = NULL;
965 msg->msg_namelen = 0;
966 msg->msg_control = NULL;
967 msg->msg_controllen = 0;
968 msg->msg_iov = (struct iovec *)iov;
969 msg->msg_iovlen = nr_segs;
970 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
971 if (sock->type == SOCK_SEQPACKET)
972 msg->msg_flags |= MSG_EOR;
974 return __sock_sendmsg(iocb, sock, msg, size);
977 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
978 unsigned long nr_segs, loff_t pos)
980 struct sock_iocb siocb, *x;
982 if (pos != 0)
983 return -ESPIPE;
985 x = alloc_sock_iocb(iocb, &siocb);
986 if (!x)
987 return -ENOMEM;
989 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
993 * Atomic setting of ioctl hooks to avoid race
994 * with module unload.
997 static DEFINE_MUTEX(br_ioctl_mutex);
998 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1000 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1002 mutex_lock(&br_ioctl_mutex);
1003 br_ioctl_hook = hook;
1004 mutex_unlock(&br_ioctl_mutex);
1006 EXPORT_SYMBOL(brioctl_set);
1008 static DEFINE_MUTEX(vlan_ioctl_mutex);
1009 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1011 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1013 mutex_lock(&vlan_ioctl_mutex);
1014 vlan_ioctl_hook = hook;
1015 mutex_unlock(&vlan_ioctl_mutex);
1017 EXPORT_SYMBOL(vlan_ioctl_set);
1019 static DEFINE_MUTEX(dlci_ioctl_mutex);
1020 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1022 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1024 mutex_lock(&dlci_ioctl_mutex);
1025 dlci_ioctl_hook = hook;
1026 mutex_unlock(&dlci_ioctl_mutex);
1028 EXPORT_SYMBOL(dlci_ioctl_set);
1030 static long sock_do_ioctl(struct net *net, struct socket *sock,
1031 unsigned int cmd, unsigned long arg)
1033 int err;
1034 void __user *argp = (void __user *)arg;
1036 err = sock->ops->ioctl(sock, cmd, arg);
1039 * If this ioctl is unknown try to hand it down
1040 * to the NIC driver.
1042 if (err == -ENOIOCTLCMD)
1043 err = dev_ioctl(net, cmd, argp);
1045 return err;
1049 * With an ioctl, arg may well be a user mode pointer, but we don't know
1050 * what to do with it - that's up to the protocol still.
1053 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1055 struct socket *sock;
1056 struct sock *sk;
1057 void __user *argp = (void __user *)arg;
1058 int pid, err;
1059 struct net *net;
1061 sock = file->private_data;
1062 sk = sock->sk;
1063 net = sock_net(sk);
1064 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1065 err = dev_ioctl(net, cmd, argp);
1066 } else
1067 #ifdef CONFIG_WEXT_CORE
1068 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1069 err = dev_ioctl(net, cmd, argp);
1070 } else
1071 #endif
1072 switch (cmd) {
1073 case FIOSETOWN:
1074 case SIOCSPGRP:
1075 err = -EFAULT;
1076 if (get_user(pid, (int __user *)argp))
1077 break;
1078 err = f_setown(sock->file, pid, 1);
1079 break;
1080 case FIOGETOWN:
1081 case SIOCGPGRP:
1082 err = put_user(f_getown(sock->file),
1083 (int __user *)argp);
1084 break;
1085 case SIOCGIFBR:
1086 case SIOCSIFBR:
1087 case SIOCBRADDBR:
1088 case SIOCBRDELBR:
1089 err = -ENOPKG;
1090 if (!br_ioctl_hook)
1091 request_module("bridge");
1093 mutex_lock(&br_ioctl_mutex);
1094 if (br_ioctl_hook)
1095 err = br_ioctl_hook(net, cmd, argp);
1096 mutex_unlock(&br_ioctl_mutex);
1097 break;
1098 case SIOCGIFVLAN:
1099 case SIOCSIFVLAN:
1100 err = -ENOPKG;
1101 if (!vlan_ioctl_hook)
1102 request_module("8021q");
1104 mutex_lock(&vlan_ioctl_mutex);
1105 if (vlan_ioctl_hook)
1106 err = vlan_ioctl_hook(net, argp);
1107 mutex_unlock(&vlan_ioctl_mutex);
1108 break;
1109 case SIOCADDDLCI:
1110 case SIOCDELDLCI:
1111 err = -ENOPKG;
1112 if (!dlci_ioctl_hook)
1113 request_module("dlci");
1115 mutex_lock(&dlci_ioctl_mutex);
1116 if (dlci_ioctl_hook)
1117 err = dlci_ioctl_hook(cmd, argp);
1118 mutex_unlock(&dlci_ioctl_mutex);
1119 break;
1120 default:
1121 err = sock_do_ioctl(net, sock, cmd, arg);
1122 break;
1124 return err;
1127 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1129 int err;
1130 struct socket *sock = NULL;
1132 err = security_socket_create(family, type, protocol, 1);
1133 if (err)
1134 goto out;
1136 sock = sock_alloc();
1137 if (!sock) {
1138 err = -ENOMEM;
1139 goto out;
1142 sock->type = type;
1143 err = security_socket_post_create(sock, family, type, protocol, 1);
1144 if (err)
1145 goto out_release;
1147 out:
1148 *res = sock;
1149 return err;
1150 out_release:
1151 sock_release(sock);
1152 sock = NULL;
1153 goto out;
1155 EXPORT_SYMBOL(sock_create_lite);
1157 /* No kernel lock held - perfect */
1158 static unsigned int sock_poll(struct file *file, poll_table *wait)
1160 struct socket *sock;
1163 * We can't return errors to poll, so it's either yes or no.
1165 sock = file->private_data;
1166 return sock->ops->poll(file, sock, wait);
1169 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1171 struct socket *sock = file->private_data;
1173 return sock->ops->mmap(file, sock, vma);
1176 static int sock_close(struct inode *inode, struct file *filp)
1179 * It was possible the inode is NULL we were
1180 * closing an unfinished socket.
1183 if (!inode) {
1184 printk(KERN_DEBUG "sock_close: NULL inode\n");
1185 return 0;
1187 sock_release(SOCKET_I(inode));
1188 return 0;
1192 * Update the socket async list
1194 * Fasync_list locking strategy.
1196 * 1. fasync_list is modified only under process context socket lock
1197 * i.e. under semaphore.
1198 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1199 * or under socket lock
1202 static int sock_fasync(int fd, struct file *filp, int on)
1204 struct socket *sock = filp->private_data;
1205 struct sock *sk = sock->sk;
1206 struct socket_wq *wq;
1208 if (sk == NULL)
1209 return -EINVAL;
1211 lock_sock(sk);
1212 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1213 fasync_helper(fd, filp, on, &wq->fasync_list);
1215 if (!wq->fasync_list)
1216 sock_reset_flag(sk, SOCK_FASYNC);
1217 else
1218 sock_set_flag(sk, SOCK_FASYNC);
1220 release_sock(sk);
1221 return 0;
1224 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1226 int sock_wake_async(struct socket *sock, int how, int band)
1228 struct socket_wq *wq;
1230 if (!sock)
1231 return -1;
1232 rcu_read_lock();
1233 wq = rcu_dereference(sock->wq);
1234 if (!wq || !wq->fasync_list) {
1235 rcu_read_unlock();
1236 return -1;
1238 switch (how) {
1239 case SOCK_WAKE_WAITD:
1240 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1241 break;
1242 goto call_kill;
1243 case SOCK_WAKE_SPACE:
1244 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1245 break;
1246 /* fall through */
1247 case SOCK_WAKE_IO:
1248 call_kill:
1249 kill_fasync(&wq->fasync_list, SIGIO, band);
1250 break;
1251 case SOCK_WAKE_URG:
1252 kill_fasync(&wq->fasync_list, SIGURG, band);
1254 rcu_read_unlock();
1255 return 0;
1257 EXPORT_SYMBOL(sock_wake_async);
1259 int __sock_create(struct net *net, int family, int type, int protocol,
1260 struct socket **res, int kern)
1262 int err;
1263 struct socket *sock;
1264 const struct net_proto_family *pf;
1267 * Check protocol is in range
1269 if (family < 0 || family >= NPROTO)
1270 return -EAFNOSUPPORT;
1271 if (type < 0 || type >= SOCK_MAX)
1272 return -EINVAL;
1274 /* Compatibility.
1276 This uglymoron is moved from INET layer to here to avoid
1277 deadlock in module load.
1279 if (family == PF_INET && type == SOCK_PACKET) {
1280 static int warned;
1281 if (!warned) {
1282 warned = 1;
1283 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1284 current->comm);
1286 family = PF_PACKET;
1289 err = security_socket_create(family, type, protocol, kern);
1290 if (err)
1291 return err;
1294 * Allocate the socket and allow the family to set things up. if
1295 * the protocol is 0, the family is instructed to select an appropriate
1296 * default.
1298 sock = sock_alloc();
1299 if (!sock) {
1300 net_warn_ratelimited("socket: no more sockets\n");
1301 return -ENFILE; /* Not exactly a match, but its the
1302 closest posix thing */
1305 sock->type = type;
1307 #ifdef CONFIG_MODULES
1308 /* Attempt to load a protocol module if the find failed.
1310 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1311 * requested real, full-featured networking support upon configuration.
1312 * Otherwise module support will break!
1314 if (rcu_access_pointer(net_families[family]) == NULL)
1315 request_module("net-pf-%d", family);
1316 #endif
1318 rcu_read_lock();
1319 pf = rcu_dereference(net_families[family]);
1320 err = -EAFNOSUPPORT;
1321 if (!pf)
1322 goto out_release;
1325 * We will call the ->create function, that possibly is in a loadable
1326 * module, so we have to bump that loadable module refcnt first.
1328 if (!try_module_get(pf->owner))
1329 goto out_release;
1331 /* Now protected by module ref count */
1332 rcu_read_unlock();
1334 err = pf->create(net, sock, protocol, kern);
1335 if (err < 0)
1336 goto out_module_put;
1339 * Now to bump the refcnt of the [loadable] module that owns this
1340 * socket at sock_release time we decrement its refcnt.
1342 if (!try_module_get(sock->ops->owner))
1343 goto out_module_busy;
1346 * Now that we're done with the ->create function, the [loadable]
1347 * module can have its refcnt decremented
1349 module_put(pf->owner);
1350 err = security_socket_post_create(sock, family, type, protocol, kern);
1351 if (err)
1352 goto out_sock_release;
1353 *res = sock;
1355 return 0;
1357 out_module_busy:
1358 err = -EAFNOSUPPORT;
1359 out_module_put:
1360 sock->ops = NULL;
1361 module_put(pf->owner);
1362 out_sock_release:
1363 sock_release(sock);
1364 return err;
1366 out_release:
1367 rcu_read_unlock();
1368 goto out_sock_release;
1370 EXPORT_SYMBOL(__sock_create);
1372 int sock_create(int family, int type, int protocol, struct socket **res)
1374 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1376 EXPORT_SYMBOL(sock_create);
1378 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1380 return __sock_create(&init_net, family, type, protocol, res, 1);
1382 EXPORT_SYMBOL(sock_create_kern);
1384 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1386 int retval;
1387 struct socket *sock;
1388 int flags;
1390 /* Check the SOCK_* constants for consistency. */
1391 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1392 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1393 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1394 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1396 flags = type & ~SOCK_TYPE_MASK;
1397 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1398 return -EINVAL;
1399 type &= SOCK_TYPE_MASK;
1401 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1402 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1404 retval = sock_create(family, type, protocol, &sock);
1405 if (retval < 0)
1406 goto out;
1408 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1409 if (retval < 0)
1410 goto out_release;
1412 out:
1413 /* It may be already another descriptor 8) Not kernel problem. */
1414 return retval;
1416 out_release:
1417 sock_release(sock);
1418 return retval;
1422 * Create a pair of connected sockets.
1425 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1426 int __user *, usockvec)
1428 struct socket *sock1, *sock2;
1429 int fd1, fd2, err;
1430 struct file *newfile1, *newfile2;
1431 int flags;
1433 flags = type & ~SOCK_TYPE_MASK;
1434 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1435 return -EINVAL;
1436 type &= SOCK_TYPE_MASK;
1438 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1439 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1442 * Obtain the first socket and check if the underlying protocol
1443 * supports the socketpair call.
1446 err = sock_create(family, type, protocol, &sock1);
1447 if (err < 0)
1448 goto out;
1450 err = sock_create(family, type, protocol, &sock2);
1451 if (err < 0)
1452 goto out_release_1;
1454 err = sock1->ops->socketpair(sock1, sock2);
1455 if (err < 0)
1456 goto out_release_both;
1458 fd1 = get_unused_fd_flags(flags);
1459 if (unlikely(fd1 < 0)) {
1460 err = fd1;
1461 goto out_release_both;
1463 fd2 = get_unused_fd_flags(flags);
1464 if (unlikely(fd2 < 0)) {
1465 err = fd2;
1466 put_unused_fd(fd1);
1467 goto out_release_both;
1470 newfile1 = sock_alloc_file(sock1, flags, NULL);
1471 if (unlikely(IS_ERR(newfile1))) {
1472 err = PTR_ERR(newfile1);
1473 put_unused_fd(fd1);
1474 put_unused_fd(fd2);
1475 goto out_release_both;
1478 newfile2 = sock_alloc_file(sock2, flags, NULL);
1479 if (IS_ERR(newfile2)) {
1480 err = PTR_ERR(newfile2);
1481 fput(newfile1);
1482 put_unused_fd(fd1);
1483 put_unused_fd(fd2);
1484 sock_release(sock2);
1485 goto out;
1488 audit_fd_pair(fd1, fd2);
1489 fd_install(fd1, newfile1);
1490 fd_install(fd2, newfile2);
1491 /* fd1 and fd2 may be already another descriptors.
1492 * Not kernel problem.
1495 err = put_user(fd1, &usockvec[0]);
1496 if (!err)
1497 err = put_user(fd2, &usockvec[1]);
1498 if (!err)
1499 return 0;
1501 sys_close(fd2);
1502 sys_close(fd1);
1503 return err;
1505 out_release_both:
1506 sock_release(sock2);
1507 out_release_1:
1508 sock_release(sock1);
1509 out:
1510 return err;
1514 * Bind a name to a socket. Nothing much to do here since it's
1515 * the protocol's responsibility to handle the local address.
1517 * We move the socket address to kernel space before we call
1518 * the protocol layer (having also checked the address is ok).
1521 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1523 struct socket *sock;
1524 struct sockaddr_storage address;
1525 int err, fput_needed;
1527 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528 if (sock) {
1529 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1530 if (err >= 0) {
1531 err = security_socket_bind(sock,
1532 (struct sockaddr *)&address,
1533 addrlen);
1534 if (!err)
1535 err = sock->ops->bind(sock,
1536 (struct sockaddr *)
1537 &address, addrlen);
1539 fput_light(sock->file, fput_needed);
1541 return err;
1545 * Perform a listen. Basically, we allow the protocol to do anything
1546 * necessary for a listen, and if that works, we mark the socket as
1547 * ready for listening.
1550 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1552 struct socket *sock;
1553 int err, fput_needed;
1554 int somaxconn;
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (sock) {
1558 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1559 if ((unsigned int)backlog > somaxconn)
1560 backlog = somaxconn;
1562 err = security_socket_listen(sock, backlog);
1563 if (!err)
1564 err = sock->ops->listen(sock, backlog);
1566 fput_light(sock->file, fput_needed);
1568 return err;
1572 * For accept, we attempt to create a new socket, set up the link
1573 * with the client, wake up the client, then return the new
1574 * connected fd. We collect the address of the connector in kernel
1575 * space and move it to user at the very end. This is unclean because
1576 * we open the socket then return an error.
1578 * 1003.1g adds the ability to recvmsg() to query connection pending
1579 * status to recvmsg. We need to add that support in a way thats
1580 * clean when we restucture accept also.
1583 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1584 int __user *, upeer_addrlen, int, flags)
1586 struct socket *sock, *newsock;
1587 struct file *newfile;
1588 int err, len, newfd, fput_needed;
1589 struct sockaddr_storage address;
1591 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1592 return -EINVAL;
1594 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1597 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598 if (!sock)
1599 goto out;
1601 err = -ENFILE;
1602 newsock = sock_alloc();
1603 if (!newsock)
1604 goto out_put;
1606 newsock->type = sock->type;
1607 newsock->ops = sock->ops;
1610 * We don't need try_module_get here, as the listening socket (sock)
1611 * has the protocol module (sock->ops->owner) held.
1613 __module_get(newsock->ops->owner);
1615 newfd = get_unused_fd_flags(flags);
1616 if (unlikely(newfd < 0)) {
1617 err = newfd;
1618 sock_release(newsock);
1619 goto out_put;
1621 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1622 if (unlikely(IS_ERR(newfile))) {
1623 err = PTR_ERR(newfile);
1624 put_unused_fd(newfd);
1625 sock_release(newsock);
1626 goto out_put;
1629 err = security_socket_accept(sock, newsock);
1630 if (err)
1631 goto out_fd;
1633 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1634 if (err < 0)
1635 goto out_fd;
1637 if (upeer_sockaddr) {
1638 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1639 &len, 2) < 0) {
1640 err = -ECONNABORTED;
1641 goto out_fd;
1643 err = move_addr_to_user(&address,
1644 len, upeer_sockaddr, upeer_addrlen);
1645 if (err < 0)
1646 goto out_fd;
1649 /* File flags are not inherited via accept() unlike another OSes. */
1651 fd_install(newfd, newfile);
1652 err = newfd;
1654 out_put:
1655 fput_light(sock->file, fput_needed);
1656 out:
1657 return err;
1658 out_fd:
1659 fput(newfile);
1660 put_unused_fd(newfd);
1661 goto out_put;
1664 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1665 int __user *, upeer_addrlen)
1667 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1671 * Attempt to connect to a socket with the server address. The address
1672 * is in user space so we verify it is OK and move it to kernel space.
1674 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1675 * break bindings
1677 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678 * other SEQPACKET protocols that take time to connect() as it doesn't
1679 * include the -EINPROGRESS status for such sockets.
1682 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683 int, addrlen)
1685 struct socket *sock;
1686 struct sockaddr_storage address;
1687 int err, fput_needed;
1689 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 if (!sock)
1691 goto out;
1692 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1693 if (err < 0)
1694 goto out_put;
1696 err =
1697 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1698 if (err)
1699 goto out_put;
1701 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1702 sock->file->f_flags);
1703 out_put:
1704 fput_light(sock->file, fput_needed);
1705 out:
1706 return err;
1710 * Get the local address ('name') of a socket object. Move the obtained
1711 * name to user space.
1714 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1715 int __user *, usockaddr_len)
1717 struct socket *sock;
1718 struct sockaddr_storage address;
1719 int len, err, fput_needed;
1721 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722 if (!sock)
1723 goto out;
1725 err = security_socket_getsockname(sock);
1726 if (err)
1727 goto out_put;
1729 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1730 if (err)
1731 goto out_put;
1732 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1734 out_put:
1735 fput_light(sock->file, fput_needed);
1736 out:
1737 return err;
1741 * Get the remote address ('name') of a socket object. Move the obtained
1742 * name to user space.
1745 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746 int __user *, usockaddr_len)
1748 struct socket *sock;
1749 struct sockaddr_storage address;
1750 int len, err, fput_needed;
1752 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753 if (sock != NULL) {
1754 err = security_socket_getpeername(sock);
1755 if (err) {
1756 fput_light(sock->file, fput_needed);
1757 return err;
1760 err =
1761 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1763 if (!err)
1764 err = move_addr_to_user(&address, len, usockaddr,
1765 usockaddr_len);
1766 fput_light(sock->file, fput_needed);
1768 return err;
1772 * Send a datagram to a given address. We move the address into kernel
1773 * space and check the user space data area is readable before invoking
1774 * the protocol.
1777 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1778 unsigned int, flags, struct sockaddr __user *, addr,
1779 int, addr_len)
1781 struct socket *sock;
1782 struct sockaddr_storage address;
1783 int err;
1784 struct msghdr msg;
1785 struct iovec iov;
1786 int fput_needed;
1788 if (len > INT_MAX)
1789 len = INT_MAX;
1790 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791 if (!sock)
1792 goto out;
1794 iov.iov_base = buff;
1795 iov.iov_len = len;
1796 msg.msg_name = NULL;
1797 msg.msg_iov = &iov;
1798 msg.msg_iovlen = 1;
1799 msg.msg_control = NULL;
1800 msg.msg_controllen = 0;
1801 msg.msg_namelen = 0;
1802 if (addr) {
1803 err = move_addr_to_kernel(addr, addr_len, &address);
1804 if (err < 0)
1805 goto out_put;
1806 msg.msg_name = (struct sockaddr *)&address;
1807 msg.msg_namelen = addr_len;
1809 if (sock->file->f_flags & O_NONBLOCK)
1810 flags |= MSG_DONTWAIT;
1811 msg.msg_flags = flags;
1812 err = sock_sendmsg(sock, &msg, len);
1814 out_put:
1815 fput_light(sock->file, fput_needed);
1816 out:
1817 return err;
1821 * Send a datagram down a socket.
1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825 unsigned int, flags)
1827 return sys_sendto(fd, buff, len, flags, NULL, 0);
1831 * Receive a frame from the socket and optionally record the address of the
1832 * sender. We verify the buffers are writable and if needed move the
1833 * sender address from kernel to user space.
1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837 unsigned int, flags, struct sockaddr __user *, addr,
1838 int __user *, addr_len)
1840 struct socket *sock;
1841 struct iovec iov;
1842 struct msghdr msg;
1843 struct sockaddr_storage address;
1844 int err, err2;
1845 int fput_needed;
1847 if (size > INT_MAX)
1848 size = INT_MAX;
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 if (!sock)
1851 goto out;
1853 msg.msg_control = NULL;
1854 msg.msg_controllen = 0;
1855 msg.msg_iovlen = 1;
1856 msg.msg_iov = &iov;
1857 iov.iov_len = size;
1858 iov.iov_base = ubuf;
1859 msg.msg_name = (struct sockaddr *)&address;
1860 msg.msg_namelen = sizeof(address);
1861 if (sock->file->f_flags & O_NONBLOCK)
1862 flags |= MSG_DONTWAIT;
1863 err = sock_recvmsg(sock, &msg, size, flags);
1865 if (err >= 0 && addr != NULL) {
1866 err2 = move_addr_to_user(&address,
1867 msg.msg_namelen, addr, addr_len);
1868 if (err2 < 0)
1869 err = err2;
1872 fput_light(sock->file, fput_needed);
1873 out:
1874 return err;
1878 * Receive a datagram from a socket.
1881 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1882 unsigned int flags)
1884 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1888 * Set a socket option. Because we don't know the option lengths we have
1889 * to pass the user mode parameter for the protocols to sort out.
1892 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1893 char __user *, optval, int, optlen)
1895 int err, fput_needed;
1896 struct socket *sock;
1898 if (optlen < 0)
1899 return -EINVAL;
1901 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1902 if (sock != NULL) {
1903 err = security_socket_setsockopt(sock, level, optname);
1904 if (err)
1905 goto out_put;
1907 if (level == SOL_SOCKET)
1908 err =
1909 sock_setsockopt(sock, level, optname, optval,
1910 optlen);
1911 else
1912 err =
1913 sock->ops->setsockopt(sock, level, optname, optval,
1914 optlen);
1915 out_put:
1916 fput_light(sock->file, fput_needed);
1918 return err;
1922 * Get a socket option. Because we don't know the option lengths we have
1923 * to pass a user mode parameter for the protocols to sort out.
1926 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1927 char __user *, optval, int __user *, optlen)
1929 int err, fput_needed;
1930 struct socket *sock;
1932 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1933 if (sock != NULL) {
1934 err = security_socket_getsockopt(sock, level, optname);
1935 if (err)
1936 goto out_put;
1938 if (level == SOL_SOCKET)
1939 err =
1940 sock_getsockopt(sock, level, optname, optval,
1941 optlen);
1942 else
1943 err =
1944 sock->ops->getsockopt(sock, level, optname, optval,
1945 optlen);
1946 out_put:
1947 fput_light(sock->file, fput_needed);
1949 return err;
1953 * Shutdown a socket.
1956 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1958 int err, fput_needed;
1959 struct socket *sock;
1961 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962 if (sock != NULL) {
1963 err = security_socket_shutdown(sock, how);
1964 if (!err)
1965 err = sock->ops->shutdown(sock, how);
1966 fput_light(sock->file, fput_needed);
1968 return err;
1971 /* A couple of helpful macros for getting the address of the 32/64 bit
1972 * fields which are the same type (int / unsigned) on our platforms.
1974 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1975 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1976 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1978 struct used_address {
1979 struct sockaddr_storage name;
1980 unsigned int name_len;
1983 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1984 struct msghdr *msg_sys, unsigned int flags,
1985 struct used_address *used_address)
1987 struct compat_msghdr __user *msg_compat =
1988 (struct compat_msghdr __user *)msg;
1989 struct sockaddr_storage address;
1990 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1991 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1992 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1993 /* 20 is size of ipv6_pktinfo */
1994 unsigned char *ctl_buf = ctl;
1995 int err, ctl_len, total_len;
1997 err = -EFAULT;
1998 if (MSG_CMSG_COMPAT & flags) {
1999 if (get_compat_msghdr(msg_sys, msg_compat))
2000 return -EFAULT;
2001 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2002 return -EFAULT;
2004 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2005 err = -EMSGSIZE;
2006 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2007 goto out;
2008 err = -ENOMEM;
2009 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2010 GFP_KERNEL);
2011 if (!iov)
2012 goto out;
2015 /* This will also move the address data into kernel space */
2016 if (MSG_CMSG_COMPAT & flags) {
2017 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2018 } else
2019 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2020 if (err < 0)
2021 goto out_freeiov;
2022 total_len = err;
2024 err = -ENOBUFS;
2026 if (msg_sys->msg_controllen > INT_MAX)
2027 goto out_freeiov;
2028 ctl_len = msg_sys->msg_controllen;
2029 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2030 err =
2031 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2032 sizeof(ctl));
2033 if (err)
2034 goto out_freeiov;
2035 ctl_buf = msg_sys->msg_control;
2036 ctl_len = msg_sys->msg_controllen;
2037 } else if (ctl_len) {
2038 if (ctl_len > sizeof(ctl)) {
2039 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2040 if (ctl_buf == NULL)
2041 goto out_freeiov;
2043 err = -EFAULT;
2045 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2046 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2047 * checking falls down on this.
2049 if (copy_from_user(ctl_buf,
2050 (void __user __force *)msg_sys->msg_control,
2051 ctl_len))
2052 goto out_freectl;
2053 msg_sys->msg_control = ctl_buf;
2055 msg_sys->msg_flags = flags;
2057 if (sock->file->f_flags & O_NONBLOCK)
2058 msg_sys->msg_flags |= MSG_DONTWAIT;
2060 * If this is sendmmsg() and current destination address is same as
2061 * previously succeeded address, omit asking LSM's decision.
2062 * used_address->name_len is initialized to UINT_MAX so that the first
2063 * destination address never matches.
2065 if (used_address && msg_sys->msg_name &&
2066 used_address->name_len == msg_sys->msg_namelen &&
2067 !memcmp(&used_address->name, msg_sys->msg_name,
2068 used_address->name_len)) {
2069 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2070 goto out_freectl;
2072 err = sock_sendmsg(sock, msg_sys, total_len);
2074 * If this is sendmmsg() and sending to current destination address was
2075 * successful, remember it.
2077 if (used_address && err >= 0) {
2078 used_address->name_len = msg_sys->msg_namelen;
2079 if (msg_sys->msg_name)
2080 memcpy(&used_address->name, msg_sys->msg_name,
2081 used_address->name_len);
2084 out_freectl:
2085 if (ctl_buf != ctl)
2086 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2087 out_freeiov:
2088 if (iov != iovstack)
2089 kfree(iov);
2090 out:
2091 return err;
2095 * BSD sendmsg interface
2098 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2100 int fput_needed, err;
2101 struct msghdr msg_sys;
2102 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2104 if (!sock)
2105 goto out;
2107 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2109 fput_light(sock->file, fput_needed);
2110 out:
2111 return err;
2115 * Linux sendmmsg interface
2118 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2119 unsigned int flags)
2121 int fput_needed, err, datagrams;
2122 struct socket *sock;
2123 struct mmsghdr __user *entry;
2124 struct compat_mmsghdr __user *compat_entry;
2125 struct msghdr msg_sys;
2126 struct used_address used_address;
2128 if (vlen > UIO_MAXIOV)
2129 vlen = UIO_MAXIOV;
2131 datagrams = 0;
2133 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2134 if (!sock)
2135 return err;
2137 used_address.name_len = UINT_MAX;
2138 entry = mmsg;
2139 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2140 err = 0;
2142 while (datagrams < vlen) {
2143 if (MSG_CMSG_COMPAT & flags) {
2144 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2145 &msg_sys, flags, &used_address);
2146 if (err < 0)
2147 break;
2148 err = __put_user(err, &compat_entry->msg_len);
2149 ++compat_entry;
2150 } else {
2151 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2152 &msg_sys, flags, &used_address);
2153 if (err < 0)
2154 break;
2155 err = put_user(err, &entry->msg_len);
2156 ++entry;
2159 if (err)
2160 break;
2161 ++datagrams;
2164 fput_light(sock->file, fput_needed);
2166 /* We only return an error if no datagrams were able to be sent */
2167 if (datagrams != 0)
2168 return datagrams;
2170 return err;
2173 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2174 unsigned int, vlen, unsigned int, flags)
2176 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2179 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2180 struct msghdr *msg_sys, unsigned int flags, int nosec)
2182 struct compat_msghdr __user *msg_compat =
2183 (struct compat_msghdr __user *)msg;
2184 struct iovec iovstack[UIO_FASTIOV];
2185 struct iovec *iov = iovstack;
2186 unsigned long cmsg_ptr;
2187 int err, total_len, len;
2189 /* kernel mode address */
2190 struct sockaddr_storage addr;
2192 /* user mode address pointers */
2193 struct sockaddr __user *uaddr;
2194 int __user *uaddr_len;
2196 if (MSG_CMSG_COMPAT & flags) {
2197 if (get_compat_msghdr(msg_sys, msg_compat))
2198 return -EFAULT;
2199 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2200 return -EFAULT;
2202 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2203 err = -EMSGSIZE;
2204 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2205 goto out;
2206 err = -ENOMEM;
2207 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2208 GFP_KERNEL);
2209 if (!iov)
2210 goto out;
2214 * Save the user-mode address (verify_iovec will change the
2215 * kernel msghdr to use the kernel address space)
2218 uaddr = (__force void __user *)msg_sys->msg_name;
2219 uaddr_len = COMPAT_NAMELEN(msg);
2220 if (MSG_CMSG_COMPAT & flags) {
2221 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2222 } else
2223 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2224 if (err < 0)
2225 goto out_freeiov;
2226 total_len = err;
2228 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2229 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2231 if (sock->file->f_flags & O_NONBLOCK)
2232 flags |= MSG_DONTWAIT;
2233 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2234 total_len, flags);
2235 if (err < 0)
2236 goto out_freeiov;
2237 len = err;
2239 if (uaddr != NULL) {
2240 err = move_addr_to_user(&addr,
2241 msg_sys->msg_namelen, uaddr,
2242 uaddr_len);
2243 if (err < 0)
2244 goto out_freeiov;
2246 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2247 COMPAT_FLAGS(msg));
2248 if (err)
2249 goto out_freeiov;
2250 if (MSG_CMSG_COMPAT & flags)
2251 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2252 &msg_compat->msg_controllen);
2253 else
2254 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2255 &msg->msg_controllen);
2256 if (err)
2257 goto out_freeiov;
2258 err = len;
2260 out_freeiov:
2261 if (iov != iovstack)
2262 kfree(iov);
2263 out:
2264 return err;
2268 * BSD recvmsg interface
2271 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2272 unsigned int, flags)
2274 int fput_needed, err;
2275 struct msghdr msg_sys;
2276 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2278 if (!sock)
2279 goto out;
2281 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2283 fput_light(sock->file, fput_needed);
2284 out:
2285 return err;
2289 * Linux recvmmsg interface
2292 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2293 unsigned int flags, struct timespec *timeout)
2295 int fput_needed, err, datagrams;
2296 struct socket *sock;
2297 struct mmsghdr __user *entry;
2298 struct compat_mmsghdr __user *compat_entry;
2299 struct msghdr msg_sys;
2300 struct timespec end_time;
2302 if (timeout &&
2303 poll_select_set_timeout(&end_time, timeout->tv_sec,
2304 timeout->tv_nsec))
2305 return -EINVAL;
2307 datagrams = 0;
2309 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2310 if (!sock)
2311 return err;
2313 err = sock_error(sock->sk);
2314 if (err)
2315 goto out_put;
2317 entry = mmsg;
2318 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2320 while (datagrams < vlen) {
2322 * No need to ask LSM for more than the first datagram.
2324 if (MSG_CMSG_COMPAT & flags) {
2325 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2326 &msg_sys, flags & ~MSG_WAITFORONE,
2327 datagrams);
2328 if (err < 0)
2329 break;
2330 err = __put_user(err, &compat_entry->msg_len);
2331 ++compat_entry;
2332 } else {
2333 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2334 &msg_sys, flags & ~MSG_WAITFORONE,
2335 datagrams);
2336 if (err < 0)
2337 break;
2338 err = put_user(err, &entry->msg_len);
2339 ++entry;
2342 if (err)
2343 break;
2344 ++datagrams;
2346 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2347 if (flags & MSG_WAITFORONE)
2348 flags |= MSG_DONTWAIT;
2350 if (timeout) {
2351 ktime_get_ts(timeout);
2352 *timeout = timespec_sub(end_time, *timeout);
2353 if (timeout->tv_sec < 0) {
2354 timeout->tv_sec = timeout->tv_nsec = 0;
2355 break;
2358 /* Timeout, return less than vlen datagrams */
2359 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2360 break;
2363 /* Out of band data, return right away */
2364 if (msg_sys.msg_flags & MSG_OOB)
2365 break;
2368 out_put:
2369 fput_light(sock->file, fput_needed);
2371 if (err == 0)
2372 return datagrams;
2374 if (datagrams != 0) {
2376 * We may return less entries than requested (vlen) if the
2377 * sock is non block and there aren't enough datagrams...
2379 if (err != -EAGAIN) {
2381 * ... or if recvmsg returns an error after we
2382 * received some datagrams, where we record the
2383 * error to return on the next call or if the
2384 * app asks about it using getsockopt(SO_ERROR).
2386 sock->sk->sk_err = -err;
2389 return datagrams;
2392 return err;
2395 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2396 unsigned int, vlen, unsigned int, flags,
2397 struct timespec __user *, timeout)
2399 int datagrams;
2400 struct timespec timeout_sys;
2402 if (!timeout)
2403 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2405 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2406 return -EFAULT;
2408 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2410 if (datagrams > 0 &&
2411 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2412 datagrams = -EFAULT;
2414 return datagrams;
2417 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2418 /* Argument list sizes for sys_socketcall */
2419 #define AL(x) ((x) * sizeof(unsigned long))
2420 static const unsigned char nargs[21] = {
2421 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2422 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2423 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2424 AL(4), AL(5), AL(4)
2427 #undef AL
2430 * System call vectors.
2432 * Argument checking cleaned up. Saved 20% in size.
2433 * This function doesn't need to set the kernel lock because
2434 * it is set by the callees.
2437 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2439 unsigned long a[6];
2440 unsigned long a0, a1;
2441 int err;
2442 unsigned int len;
2444 if (call < 1 || call > SYS_SENDMMSG)
2445 return -EINVAL;
2447 len = nargs[call];
2448 if (len > sizeof(a))
2449 return -EINVAL;
2451 /* copy_from_user should be SMP safe. */
2452 if (copy_from_user(a, args, len))
2453 return -EFAULT;
2455 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2457 a0 = a[0];
2458 a1 = a[1];
2460 switch (call) {
2461 case SYS_SOCKET:
2462 err = sys_socket(a0, a1, a[2]);
2463 break;
2464 case SYS_BIND:
2465 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2466 break;
2467 case SYS_CONNECT:
2468 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2469 break;
2470 case SYS_LISTEN:
2471 err = sys_listen(a0, a1);
2472 break;
2473 case SYS_ACCEPT:
2474 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2475 (int __user *)a[2], 0);
2476 break;
2477 case SYS_GETSOCKNAME:
2478 err =
2479 sys_getsockname(a0, (struct sockaddr __user *)a1,
2480 (int __user *)a[2]);
2481 break;
2482 case SYS_GETPEERNAME:
2483 err =
2484 sys_getpeername(a0, (struct sockaddr __user *)a1,
2485 (int __user *)a[2]);
2486 break;
2487 case SYS_SOCKETPAIR:
2488 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2489 break;
2490 case SYS_SEND:
2491 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2492 break;
2493 case SYS_SENDTO:
2494 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2495 (struct sockaddr __user *)a[4], a[5]);
2496 break;
2497 case SYS_RECV:
2498 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2499 break;
2500 case SYS_RECVFROM:
2501 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2502 (struct sockaddr __user *)a[4],
2503 (int __user *)a[5]);
2504 break;
2505 case SYS_SHUTDOWN:
2506 err = sys_shutdown(a0, a1);
2507 break;
2508 case SYS_SETSOCKOPT:
2509 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2510 break;
2511 case SYS_GETSOCKOPT:
2512 err =
2513 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2514 (int __user *)a[4]);
2515 break;
2516 case SYS_SENDMSG:
2517 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2518 break;
2519 case SYS_SENDMMSG:
2520 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2521 break;
2522 case SYS_RECVMSG:
2523 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2524 break;
2525 case SYS_RECVMMSG:
2526 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2527 (struct timespec __user *)a[4]);
2528 break;
2529 case SYS_ACCEPT4:
2530 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2531 (int __user *)a[2], a[3]);
2532 break;
2533 default:
2534 err = -EINVAL;
2535 break;
2537 return err;
2540 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2543 * sock_register - add a socket protocol handler
2544 * @ops: description of protocol
2546 * This function is called by a protocol handler that wants to
2547 * advertise its address family, and have it linked into the
2548 * socket interface. The value ops->family coresponds to the
2549 * socket system call protocol family.
2551 int sock_register(const struct net_proto_family *ops)
2553 int err;
2555 if (ops->family >= NPROTO) {
2556 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2557 NPROTO);
2558 return -ENOBUFS;
2561 spin_lock(&net_family_lock);
2562 if (rcu_dereference_protected(net_families[ops->family],
2563 lockdep_is_held(&net_family_lock)))
2564 err = -EEXIST;
2565 else {
2566 rcu_assign_pointer(net_families[ops->family], ops);
2567 err = 0;
2569 spin_unlock(&net_family_lock);
2571 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2572 return err;
2574 EXPORT_SYMBOL(sock_register);
2577 * sock_unregister - remove a protocol handler
2578 * @family: protocol family to remove
2580 * This function is called by a protocol handler that wants to
2581 * remove its address family, and have it unlinked from the
2582 * new socket creation.
2584 * If protocol handler is a module, then it can use module reference
2585 * counts to protect against new references. If protocol handler is not
2586 * a module then it needs to provide its own protection in
2587 * the ops->create routine.
2589 void sock_unregister(int family)
2591 BUG_ON(family < 0 || family >= NPROTO);
2593 spin_lock(&net_family_lock);
2594 RCU_INIT_POINTER(net_families[family], NULL);
2595 spin_unlock(&net_family_lock);
2597 synchronize_rcu();
2599 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2601 EXPORT_SYMBOL(sock_unregister);
2603 static int __init sock_init(void)
2605 int err;
2607 * Initialize the network sysctl infrastructure.
2609 err = net_sysctl_init();
2610 if (err)
2611 goto out;
2614 * Initialize skbuff SLAB cache
2616 skb_init();
2619 * Initialize the protocols module.
2622 init_inodecache();
2624 err = register_filesystem(&sock_fs_type);
2625 if (err)
2626 goto out_fs;
2627 sock_mnt = kern_mount(&sock_fs_type);
2628 if (IS_ERR(sock_mnt)) {
2629 err = PTR_ERR(sock_mnt);
2630 goto out_mount;
2633 /* The real protocol initialization is performed in later initcalls.
2636 #ifdef CONFIG_NETFILTER
2637 netfilter_init();
2638 #endif
2640 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2641 skb_timestamping_init();
2642 #endif
2644 out:
2645 return err;
2647 out_mount:
2648 unregister_filesystem(&sock_fs_type);
2649 out_fs:
2650 goto out;
2653 core_initcall(sock_init); /* early initcall */
2655 #ifdef CONFIG_PROC_FS
2656 void socket_seq_show(struct seq_file *seq)
2658 int cpu;
2659 int counter = 0;
2661 for_each_possible_cpu(cpu)
2662 counter += per_cpu(sockets_in_use, cpu);
2664 /* It can be negative, by the way. 8) */
2665 if (counter < 0)
2666 counter = 0;
2668 seq_printf(seq, "sockets: used %d\n", counter);
2670 #endif /* CONFIG_PROC_FS */
2672 #ifdef CONFIG_COMPAT
2673 static int do_siocgstamp(struct net *net, struct socket *sock,
2674 unsigned int cmd, void __user *up)
2676 mm_segment_t old_fs = get_fs();
2677 struct timeval ktv;
2678 int err;
2680 set_fs(KERNEL_DS);
2681 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2682 set_fs(old_fs);
2683 if (!err)
2684 err = compat_put_timeval(&ktv, up);
2686 return err;
2689 static int do_siocgstampns(struct net *net, struct socket *sock,
2690 unsigned int cmd, void __user *up)
2692 mm_segment_t old_fs = get_fs();
2693 struct timespec kts;
2694 int err;
2696 set_fs(KERNEL_DS);
2697 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2698 set_fs(old_fs);
2699 if (!err)
2700 err = compat_put_timespec(&kts, up);
2702 return err;
2705 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2707 struct ifreq __user *uifr;
2708 int err;
2710 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2711 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2712 return -EFAULT;
2714 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2715 if (err)
2716 return err;
2718 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2719 return -EFAULT;
2721 return 0;
2724 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2726 struct compat_ifconf ifc32;
2727 struct ifconf ifc;
2728 struct ifconf __user *uifc;
2729 struct compat_ifreq __user *ifr32;
2730 struct ifreq __user *ifr;
2731 unsigned int i, j;
2732 int err;
2734 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2735 return -EFAULT;
2737 memset(&ifc, 0, sizeof(ifc));
2738 if (ifc32.ifcbuf == 0) {
2739 ifc32.ifc_len = 0;
2740 ifc.ifc_len = 0;
2741 ifc.ifc_req = NULL;
2742 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2743 } else {
2744 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2745 sizeof(struct ifreq);
2746 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2747 ifc.ifc_len = len;
2748 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2749 ifr32 = compat_ptr(ifc32.ifcbuf);
2750 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2751 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2752 return -EFAULT;
2753 ifr++;
2754 ifr32++;
2757 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2758 return -EFAULT;
2760 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2761 if (err)
2762 return err;
2764 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2765 return -EFAULT;
2767 ifr = ifc.ifc_req;
2768 ifr32 = compat_ptr(ifc32.ifcbuf);
2769 for (i = 0, j = 0;
2770 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2771 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2772 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2773 return -EFAULT;
2774 ifr32++;
2775 ifr++;
2778 if (ifc32.ifcbuf == 0) {
2779 /* Translate from 64-bit structure multiple to
2780 * a 32-bit one.
2782 i = ifc.ifc_len;
2783 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2784 ifc32.ifc_len = i;
2785 } else {
2786 ifc32.ifc_len = i;
2788 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2789 return -EFAULT;
2791 return 0;
2794 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2796 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2797 bool convert_in = false, convert_out = false;
2798 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2799 struct ethtool_rxnfc __user *rxnfc;
2800 struct ifreq __user *ifr;
2801 u32 rule_cnt = 0, actual_rule_cnt;
2802 u32 ethcmd;
2803 u32 data;
2804 int ret;
2806 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2807 return -EFAULT;
2809 compat_rxnfc = compat_ptr(data);
2811 if (get_user(ethcmd, &compat_rxnfc->cmd))
2812 return -EFAULT;
2814 /* Most ethtool structures are defined without padding.
2815 * Unfortunately struct ethtool_rxnfc is an exception.
2817 switch (ethcmd) {
2818 default:
2819 break;
2820 case ETHTOOL_GRXCLSRLALL:
2821 /* Buffer size is variable */
2822 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2823 return -EFAULT;
2824 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2825 return -ENOMEM;
2826 buf_size += rule_cnt * sizeof(u32);
2827 /* fall through */
2828 case ETHTOOL_GRXRINGS:
2829 case ETHTOOL_GRXCLSRLCNT:
2830 case ETHTOOL_GRXCLSRULE:
2831 case ETHTOOL_SRXCLSRLINS:
2832 convert_out = true;
2833 /* fall through */
2834 case ETHTOOL_SRXCLSRLDEL:
2835 buf_size += sizeof(struct ethtool_rxnfc);
2836 convert_in = true;
2837 break;
2840 ifr = compat_alloc_user_space(buf_size);
2841 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2843 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2844 return -EFAULT;
2846 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2847 &ifr->ifr_ifru.ifru_data))
2848 return -EFAULT;
2850 if (convert_in) {
2851 /* We expect there to be holes between fs.m_ext and
2852 * fs.ring_cookie and at the end of fs, but nowhere else.
2854 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2855 sizeof(compat_rxnfc->fs.m_ext) !=
2856 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2857 sizeof(rxnfc->fs.m_ext));
2858 BUILD_BUG_ON(
2859 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2860 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2861 offsetof(struct ethtool_rxnfc, fs.location) -
2862 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2864 if (copy_in_user(rxnfc, compat_rxnfc,
2865 (void *)(&rxnfc->fs.m_ext + 1) -
2866 (void *)rxnfc) ||
2867 copy_in_user(&rxnfc->fs.ring_cookie,
2868 &compat_rxnfc->fs.ring_cookie,
2869 (void *)(&rxnfc->fs.location + 1) -
2870 (void *)&rxnfc->fs.ring_cookie) ||
2871 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2872 sizeof(rxnfc->rule_cnt)))
2873 return -EFAULT;
2876 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2877 if (ret)
2878 return ret;
2880 if (convert_out) {
2881 if (copy_in_user(compat_rxnfc, rxnfc,
2882 (const void *)(&rxnfc->fs.m_ext + 1) -
2883 (const void *)rxnfc) ||
2884 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2885 &rxnfc->fs.ring_cookie,
2886 (const void *)(&rxnfc->fs.location + 1) -
2887 (const void *)&rxnfc->fs.ring_cookie) ||
2888 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2889 sizeof(rxnfc->rule_cnt)))
2890 return -EFAULT;
2892 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2893 /* As an optimisation, we only copy the actual
2894 * number of rules that the underlying
2895 * function returned. Since Mallory might
2896 * change the rule count in user memory, we
2897 * check that it is less than the rule count
2898 * originally given (as the user buffer size),
2899 * which has been range-checked.
2901 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2902 return -EFAULT;
2903 if (actual_rule_cnt < rule_cnt)
2904 rule_cnt = actual_rule_cnt;
2905 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2906 &rxnfc->rule_locs[0],
2907 rule_cnt * sizeof(u32)))
2908 return -EFAULT;
2912 return 0;
2915 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2917 void __user *uptr;
2918 compat_uptr_t uptr32;
2919 struct ifreq __user *uifr;
2921 uifr = compat_alloc_user_space(sizeof(*uifr));
2922 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2923 return -EFAULT;
2925 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2926 return -EFAULT;
2928 uptr = compat_ptr(uptr32);
2930 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2931 return -EFAULT;
2933 return dev_ioctl(net, SIOCWANDEV, uifr);
2936 static int bond_ioctl(struct net *net, unsigned int cmd,
2937 struct compat_ifreq __user *ifr32)
2939 struct ifreq kifr;
2940 struct ifreq __user *uifr;
2941 mm_segment_t old_fs;
2942 int err;
2943 u32 data;
2944 void __user *datap;
2946 switch (cmd) {
2947 case SIOCBONDENSLAVE:
2948 case SIOCBONDRELEASE:
2949 case SIOCBONDSETHWADDR:
2950 case SIOCBONDCHANGEACTIVE:
2951 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2952 return -EFAULT;
2954 old_fs = get_fs();
2955 set_fs(KERNEL_DS);
2956 err = dev_ioctl(net, cmd,
2957 (struct ifreq __user __force *) &kifr);
2958 set_fs(old_fs);
2960 return err;
2961 case SIOCBONDSLAVEINFOQUERY:
2962 case SIOCBONDINFOQUERY:
2963 uifr = compat_alloc_user_space(sizeof(*uifr));
2964 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2965 return -EFAULT;
2967 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2968 return -EFAULT;
2970 datap = compat_ptr(data);
2971 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2972 return -EFAULT;
2974 return dev_ioctl(net, cmd, uifr);
2975 default:
2976 return -ENOIOCTLCMD;
2980 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2981 struct compat_ifreq __user *u_ifreq32)
2983 struct ifreq __user *u_ifreq64;
2984 char tmp_buf[IFNAMSIZ];
2985 void __user *data64;
2986 u32 data32;
2988 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2989 IFNAMSIZ))
2990 return -EFAULT;
2991 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2992 return -EFAULT;
2993 data64 = compat_ptr(data32);
2995 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2997 /* Don't check these user accesses, just let that get trapped
2998 * in the ioctl handler instead.
3000 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3001 IFNAMSIZ))
3002 return -EFAULT;
3003 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3004 return -EFAULT;
3006 return dev_ioctl(net, cmd, u_ifreq64);
3009 static int dev_ifsioc(struct net *net, struct socket *sock,
3010 unsigned int cmd, struct compat_ifreq __user *uifr32)
3012 struct ifreq __user *uifr;
3013 int err;
3015 uifr = compat_alloc_user_space(sizeof(*uifr));
3016 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3017 return -EFAULT;
3019 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3021 if (!err) {
3022 switch (cmd) {
3023 case SIOCGIFFLAGS:
3024 case SIOCGIFMETRIC:
3025 case SIOCGIFMTU:
3026 case SIOCGIFMEM:
3027 case SIOCGIFHWADDR:
3028 case SIOCGIFINDEX:
3029 case SIOCGIFADDR:
3030 case SIOCGIFBRDADDR:
3031 case SIOCGIFDSTADDR:
3032 case SIOCGIFNETMASK:
3033 case SIOCGIFPFLAGS:
3034 case SIOCGIFTXQLEN:
3035 case SIOCGMIIPHY:
3036 case SIOCGMIIREG:
3037 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3038 err = -EFAULT;
3039 break;
3042 return err;
3045 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3046 struct compat_ifreq __user *uifr32)
3048 struct ifreq ifr;
3049 struct compat_ifmap __user *uifmap32;
3050 mm_segment_t old_fs;
3051 int err;
3053 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3054 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3055 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3056 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3057 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3058 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3059 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3060 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3061 if (err)
3062 return -EFAULT;
3064 old_fs = get_fs();
3065 set_fs(KERNEL_DS);
3066 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3067 set_fs(old_fs);
3069 if (cmd == SIOCGIFMAP && !err) {
3070 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3071 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3072 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3073 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3074 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3075 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3076 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3077 if (err)
3078 err = -EFAULT;
3080 return err;
3083 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3085 void __user *uptr;
3086 compat_uptr_t uptr32;
3087 struct ifreq __user *uifr;
3089 uifr = compat_alloc_user_space(sizeof(*uifr));
3090 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3091 return -EFAULT;
3093 if (get_user(uptr32, &uifr32->ifr_data))
3094 return -EFAULT;
3096 uptr = compat_ptr(uptr32);
3098 if (put_user(uptr, &uifr->ifr_data))
3099 return -EFAULT;
3101 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3104 struct rtentry32 {
3105 u32 rt_pad1;
3106 struct sockaddr rt_dst; /* target address */
3107 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3108 struct sockaddr rt_genmask; /* target network mask (IP) */
3109 unsigned short rt_flags;
3110 short rt_pad2;
3111 u32 rt_pad3;
3112 unsigned char rt_tos;
3113 unsigned char rt_class;
3114 short rt_pad4;
3115 short rt_metric; /* +1 for binary compatibility! */
3116 /* char * */ u32 rt_dev; /* forcing the device at add */
3117 u32 rt_mtu; /* per route MTU/Window */
3118 u32 rt_window; /* Window clamping */
3119 unsigned short rt_irtt; /* Initial RTT */
3122 struct in6_rtmsg32 {
3123 struct in6_addr rtmsg_dst;
3124 struct in6_addr rtmsg_src;
3125 struct in6_addr rtmsg_gateway;
3126 u32 rtmsg_type;
3127 u16 rtmsg_dst_len;
3128 u16 rtmsg_src_len;
3129 u32 rtmsg_metric;
3130 u32 rtmsg_info;
3131 u32 rtmsg_flags;
3132 s32 rtmsg_ifindex;
3135 static int routing_ioctl(struct net *net, struct socket *sock,
3136 unsigned int cmd, void __user *argp)
3138 int ret;
3139 void *r = NULL;
3140 struct in6_rtmsg r6;
3141 struct rtentry r4;
3142 char devname[16];
3143 u32 rtdev;
3144 mm_segment_t old_fs = get_fs();
3146 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3147 struct in6_rtmsg32 __user *ur6 = argp;
3148 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3149 3 * sizeof(struct in6_addr));
3150 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3151 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3152 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3153 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3154 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3155 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3156 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3158 r = (void *) &r6;
3159 } else { /* ipv4 */
3160 struct rtentry32 __user *ur4 = argp;
3161 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3162 3 * sizeof(struct sockaddr));
3163 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3164 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3165 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3166 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3167 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3168 ret |= __get_user(rtdev, &(ur4->rt_dev));
3169 if (rtdev) {
3170 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3171 r4.rt_dev = (char __user __force *)devname;
3172 devname[15] = 0;
3173 } else
3174 r4.rt_dev = NULL;
3176 r = (void *) &r4;
3179 if (ret) {
3180 ret = -EFAULT;
3181 goto out;
3184 set_fs(KERNEL_DS);
3185 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3186 set_fs(old_fs);
3188 out:
3189 return ret;
3192 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3193 * for some operations; this forces use of the newer bridge-utils that
3194 * use compatible ioctls
3196 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3198 compat_ulong_t tmp;
3200 if (get_user(tmp, argp))
3201 return -EFAULT;
3202 if (tmp == BRCTL_GET_VERSION)
3203 return BRCTL_VERSION + 1;
3204 return -EINVAL;
3207 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3208 unsigned int cmd, unsigned long arg)
3210 void __user *argp = compat_ptr(arg);
3211 struct sock *sk = sock->sk;
3212 struct net *net = sock_net(sk);
3214 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3215 return siocdevprivate_ioctl(net, cmd, argp);
3217 switch (cmd) {
3218 case SIOCSIFBR:
3219 case SIOCGIFBR:
3220 return old_bridge_ioctl(argp);
3221 case SIOCGIFNAME:
3222 return dev_ifname32(net, argp);
3223 case SIOCGIFCONF:
3224 return dev_ifconf(net, argp);
3225 case SIOCETHTOOL:
3226 return ethtool_ioctl(net, argp);
3227 case SIOCWANDEV:
3228 return compat_siocwandev(net, argp);
3229 case SIOCGIFMAP:
3230 case SIOCSIFMAP:
3231 return compat_sioc_ifmap(net, cmd, argp);
3232 case SIOCBONDENSLAVE:
3233 case SIOCBONDRELEASE:
3234 case SIOCBONDSETHWADDR:
3235 case SIOCBONDSLAVEINFOQUERY:
3236 case SIOCBONDINFOQUERY:
3237 case SIOCBONDCHANGEACTIVE:
3238 return bond_ioctl(net, cmd, argp);
3239 case SIOCADDRT:
3240 case SIOCDELRT:
3241 return routing_ioctl(net, sock, cmd, argp);
3242 case SIOCGSTAMP:
3243 return do_siocgstamp(net, sock, cmd, argp);
3244 case SIOCGSTAMPNS:
3245 return do_siocgstampns(net, sock, cmd, argp);
3246 case SIOCSHWTSTAMP:
3247 return compat_siocshwtstamp(net, argp);
3249 case FIOSETOWN:
3250 case SIOCSPGRP:
3251 case FIOGETOWN:
3252 case SIOCGPGRP:
3253 case SIOCBRADDBR:
3254 case SIOCBRDELBR:
3255 case SIOCGIFVLAN:
3256 case SIOCSIFVLAN:
3257 case SIOCADDDLCI:
3258 case SIOCDELDLCI:
3259 return sock_ioctl(file, cmd, arg);
3261 case SIOCGIFFLAGS:
3262 case SIOCSIFFLAGS:
3263 case SIOCGIFMETRIC:
3264 case SIOCSIFMETRIC:
3265 case SIOCGIFMTU:
3266 case SIOCSIFMTU:
3267 case SIOCGIFMEM:
3268 case SIOCSIFMEM:
3269 case SIOCGIFHWADDR:
3270 case SIOCSIFHWADDR:
3271 case SIOCADDMULTI:
3272 case SIOCDELMULTI:
3273 case SIOCGIFINDEX:
3274 case SIOCGIFADDR:
3275 case SIOCSIFADDR:
3276 case SIOCSIFHWBROADCAST:
3277 case SIOCDIFADDR:
3278 case SIOCGIFBRDADDR:
3279 case SIOCSIFBRDADDR:
3280 case SIOCGIFDSTADDR:
3281 case SIOCSIFDSTADDR:
3282 case SIOCGIFNETMASK:
3283 case SIOCSIFNETMASK:
3284 case SIOCSIFPFLAGS:
3285 case SIOCGIFPFLAGS:
3286 case SIOCGIFTXQLEN:
3287 case SIOCSIFTXQLEN:
3288 case SIOCBRADDIF:
3289 case SIOCBRDELIF:
3290 case SIOCSIFNAME:
3291 case SIOCGMIIPHY:
3292 case SIOCGMIIREG:
3293 case SIOCSMIIREG:
3294 return dev_ifsioc(net, sock, cmd, argp);
3296 case SIOCSARP:
3297 case SIOCGARP:
3298 case SIOCDARP:
3299 case SIOCATMARK:
3300 return sock_do_ioctl(net, sock, cmd, arg);
3303 return -ENOIOCTLCMD;
3306 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3307 unsigned long arg)
3309 struct socket *sock = file->private_data;
3310 int ret = -ENOIOCTLCMD;
3311 struct sock *sk;
3312 struct net *net;
3314 sk = sock->sk;
3315 net = sock_net(sk);
3317 if (sock->ops->compat_ioctl)
3318 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3320 if (ret == -ENOIOCTLCMD &&
3321 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3322 ret = compat_wext_handle_ioctl(net, cmd, arg);
3324 if (ret == -ENOIOCTLCMD)
3325 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3327 return ret;
3329 #endif
3331 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3333 return sock->ops->bind(sock, addr, addrlen);
3335 EXPORT_SYMBOL(kernel_bind);
3337 int kernel_listen(struct socket *sock, int backlog)
3339 return sock->ops->listen(sock, backlog);
3341 EXPORT_SYMBOL(kernel_listen);
3343 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3345 struct sock *sk = sock->sk;
3346 int err;
3348 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3349 newsock);
3350 if (err < 0)
3351 goto done;
3353 err = sock->ops->accept(sock, *newsock, flags);
3354 if (err < 0) {
3355 sock_release(*newsock);
3356 *newsock = NULL;
3357 goto done;
3360 (*newsock)->ops = sock->ops;
3361 __module_get((*newsock)->ops->owner);
3363 done:
3364 return err;
3366 EXPORT_SYMBOL(kernel_accept);
3368 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3369 int flags)
3371 return sock->ops->connect(sock, addr, addrlen, flags);
3373 EXPORT_SYMBOL(kernel_connect);
3375 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3376 int *addrlen)
3378 return sock->ops->getname(sock, addr, addrlen, 0);
3380 EXPORT_SYMBOL(kernel_getsockname);
3382 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3383 int *addrlen)
3385 return sock->ops->getname(sock, addr, addrlen, 1);
3387 EXPORT_SYMBOL(kernel_getpeername);
3389 int kernel_getsockopt(struct socket *sock, int level, int optname,
3390 char *optval, int *optlen)
3392 mm_segment_t oldfs = get_fs();
3393 char __user *uoptval;
3394 int __user *uoptlen;
3395 int err;
3397 uoptval = (char __user __force *) optval;
3398 uoptlen = (int __user __force *) optlen;
3400 set_fs(KERNEL_DS);
3401 if (level == SOL_SOCKET)
3402 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3403 else
3404 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3405 uoptlen);
3406 set_fs(oldfs);
3407 return err;
3409 EXPORT_SYMBOL(kernel_getsockopt);
3411 int kernel_setsockopt(struct socket *sock, int level, int optname,
3412 char *optval, unsigned int optlen)
3414 mm_segment_t oldfs = get_fs();
3415 char __user *uoptval;
3416 int err;
3418 uoptval = (char __user __force *) optval;
3420 set_fs(KERNEL_DS);
3421 if (level == SOL_SOCKET)
3422 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3423 else
3424 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3425 optlen);
3426 set_fs(oldfs);
3427 return err;
3429 EXPORT_SYMBOL(kernel_setsockopt);
3431 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3432 size_t size, int flags)
3434 if (sock->ops->sendpage)
3435 return sock->ops->sendpage(sock, page, offset, size, flags);
3437 return sock_no_sendpage(sock, page, offset, size, flags);
3439 EXPORT_SYMBOL(kernel_sendpage);
3441 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3443 mm_segment_t oldfs = get_fs();
3444 int err;
3446 set_fs(KERNEL_DS);
3447 err = sock->ops->ioctl(sock, cmd, arg);
3448 set_fs(oldfs);
3450 return err;
3452 EXPORT_SYMBOL(kernel_sock_ioctl);
3454 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3456 return sock->ops->shutdown(sock, how);
3458 EXPORT_SYMBOL(kernel_sock_shutdown);