1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
3 * Copyright (C) 2012 ARM Ltd.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 #ifndef _UAPI__ASM_SIGCONTEXT_H
18 #define _UAPI__ASM_SIGCONTEXT_H
22 #include <linux/types.h>
25 * Signal context structure - contains all info to do with the state
26 * before the signal handler was invoked.
30 /* AArch64 registers */
35 /* 4K reserved for FP/SIMD state and future expansion */
36 __u8 __reserved
[4096] __attribute__((__aligned__(16)));
40 * Allocation of __reserved[]:
41 * (Note: records do not necessarily occur in the order shown here.)
45 * 0x210 fpsimd_context
47 * 0x8a0 sve_context (vl <= 64) (optional)
48 * 0x20 extra_context (optional)
49 * 0x10 terminator (null _aarch64_ctx)
51 * 0x510 (reserved for future allocation)
53 * New records that can exceed this space need to be opt-in for userspace, so
54 * that an expanded signal frame is not generated unexpectedly. The mechanism
55 * for opting in will depend on the extension that generates each new record.
56 * The above table documents the maximum set and sizes of records than can be
57 * generated when userspace does not opt in for any such extension.
61 * Header to be used at the beginning of structures extending the user
62 * context. Such structures must be placed after the rt_sigframe on the stack
63 * and be 16-byte aligned. The last structure must be a dummy one with the
64 * magic and size set to 0.
71 #define FPSIMD_MAGIC 0x46508001
73 struct fpsimd_context
{
74 struct _aarch64_ctx head
;
77 __uint128_t vregs
[32];
81 #define ESR_MAGIC 0x45535201
84 struct _aarch64_ctx head
;
89 * extra_context: describes extra space in the signal frame for
90 * additional structures that don't fit in sigcontext.__reserved[].
94 * 1) fpsimd_context, esr_context and extra_context must be placed in
95 * sigcontext.__reserved[] if present. They cannot be placed in the
96 * extra space. Any other record can be placed either in the extra
97 * space or in sigcontext.__reserved[], unless otherwise specified in
100 * 2) There must not be more than one extra_context.
102 * 3) If extra_context is present, it must be followed immediately in
103 * sigcontext.__reserved[] by the terminating null _aarch64_ctx.
105 * 4) The extra space to which datap points must start at the first
106 * 16-byte aligned address immediately after the terminating null
107 * _aarch64_ctx that follows the extra_context structure in
108 * __reserved[]. The extra space may overrun the end of __reserved[],
109 * as indicated by a sufficiently large value for the size field.
111 * 5) The extra space must itself be terminated with a null
114 #define EXTRA_MAGIC 0x45585401
116 struct extra_context
{
117 struct _aarch64_ctx head
;
118 __u64 datap
; /* 16-byte aligned pointer to extra space cast to __u64 */
119 __u32 size
; /* size in bytes of the extra space */
123 #define SVE_MAGIC 0x53564501
126 struct _aarch64_ctx head
;
131 #endif /* !__ASSEMBLY__ */
134 * The SVE architecture leaves space for future expansion of the
135 * vector length beyond its initial architectural limit of 2048 bits
138 * See linux/Documentation/arm64/sve.txt for a description of the VL/VQ
141 #define SVE_VQ_BYTES 16 /* number of bytes per quadword */
144 #define SVE_VQ_MAX 512
146 #define SVE_VL_MIN (SVE_VQ_MIN * SVE_VQ_BYTES)
147 #define SVE_VL_MAX (SVE_VQ_MAX * SVE_VQ_BYTES)
149 #define SVE_NUM_ZREGS 32
150 #define SVE_NUM_PREGS 16
152 #define sve_vl_valid(vl) \
153 ((vl) % SVE_VQ_BYTES == 0 && (vl) >= SVE_VL_MIN && (vl) <= SVE_VL_MAX)
154 #define sve_vq_from_vl(vl) ((vl) / SVE_VQ_BYTES)
155 #define sve_vl_from_vq(vq) ((vq) * SVE_VQ_BYTES)
158 * If the SVE registers are currently live for the thread at signal delivery,
159 * sve_context.head.size >=
160 * SVE_SIG_CONTEXT_SIZE(sve_vq_from_vl(sve_context.vl))
161 * and the register data may be accessed using the SVE_SIG_*() macros.
163 * If sve_context.head.size <
164 * SVE_SIG_CONTEXT_SIZE(sve_vq_from_vl(sve_context.vl)),
165 * the SVE registers were not live for the thread and no register data
166 * is included: in this case, the SVE_SIG_*() macros should not be
167 * used except for this check.
169 * The same convention applies when returning from a signal: a caller
170 * will need to remove or resize the sve_context block if it wants to
171 * make the SVE registers live when they were previously non-live or
172 * vice-versa. This may require the the caller to allocate fresh
173 * memory and/or move other context blocks in the signal frame.
175 * Changing the vector length during signal return is not permitted:
176 * sve_context.vl must equal the thread's current vector length when
180 * Note: for all these macros, the "vq" argument denotes the SVE
181 * vector length in quadwords (i.e., units of 128 bits).
183 * The correct way to obtain vq is to use sve_vq_from_vl(vl). The
184 * result is valid if and only if sve_vl_valid(vl) is true. This is
185 * guaranteed for a struct sve_context written by the kernel.
188 * Additional macros describe the contents and layout of the payload.
189 * For each, SVE_SIG_x_OFFSET(args) is the start offset relative to
190 * the start of struct sve_context, and SVE_SIG_x_SIZE(args) is the
195 * REGS the entire SVE context
197 * ZREGS __uint128_t[SVE_NUM_ZREGS][vq] all Z-registers
198 * ZREG __uint128_t[vq] individual Z-register Zn
200 * PREGS uint16_t[SVE_NUM_PREGS][vq] all P-registers
201 * PREG uint16_t[vq] individual P-register Pn
203 * FFR uint16_t[vq] first-fault status register
205 * Additional data might be appended in the future.
208 #define SVE_SIG_ZREG_SIZE(vq) ((__u32)(vq) * SVE_VQ_BYTES)
209 #define SVE_SIG_PREG_SIZE(vq) ((__u32)(vq) * (SVE_VQ_BYTES / 8))
210 #define SVE_SIG_FFR_SIZE(vq) SVE_SIG_PREG_SIZE(vq)
212 #define SVE_SIG_REGS_OFFSET \
213 ((sizeof(struct sve_context) + (SVE_VQ_BYTES - 1)) \
214 / SVE_VQ_BYTES * SVE_VQ_BYTES)
216 #define SVE_SIG_ZREGS_OFFSET SVE_SIG_REGS_OFFSET
217 #define SVE_SIG_ZREG_OFFSET(vq, n) \
218 (SVE_SIG_ZREGS_OFFSET + SVE_SIG_ZREG_SIZE(vq) * (n))
219 #define SVE_SIG_ZREGS_SIZE(vq) \
220 (SVE_SIG_ZREG_OFFSET(vq, SVE_NUM_ZREGS) - SVE_SIG_ZREGS_OFFSET)
222 #define SVE_SIG_PREGS_OFFSET(vq) \
223 (SVE_SIG_ZREGS_OFFSET + SVE_SIG_ZREGS_SIZE(vq))
224 #define SVE_SIG_PREG_OFFSET(vq, n) \
225 (SVE_SIG_PREGS_OFFSET(vq) + SVE_SIG_PREG_SIZE(vq) * (n))
226 #define SVE_SIG_PREGS_SIZE(vq) \
227 (SVE_SIG_PREG_OFFSET(vq, SVE_NUM_PREGS) - SVE_SIG_PREGS_OFFSET(vq))
229 #define SVE_SIG_FFR_OFFSET(vq) \
230 (SVE_SIG_PREGS_OFFSET(vq) + SVE_SIG_PREGS_SIZE(vq))
232 #define SVE_SIG_REGS_SIZE(vq) \
233 (SVE_SIG_FFR_OFFSET(vq) + SVE_SIG_FFR_SIZE(vq) - SVE_SIG_REGS_OFFSET)
235 #define SVE_SIG_CONTEXT_SIZE(vq) (SVE_SIG_REGS_OFFSET + SVE_SIG_REGS_SIZE(vq))
238 #endif /* _UAPI__ASM_SIGCONTEXT_H */