2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/sched/task.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/interrupt.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/smp.h>
39 #include <linux/pagemap.h>
40 #include <linux/mount.h>
41 #include <linux/bitops.h>
42 #include <linux/capability.h>
43 #include <linux/rcupdate.h>
44 #include <linux/completion.h>
45 #include <linux/tracehook.h>
46 #include <linux/slab.h>
47 #include <linux/cpu.h>
49 #include <asm/errno.h>
50 #include <asm/intrinsics.h>
52 #include <asm/perfmon.h>
53 #include <asm/processor.h>
54 #include <asm/signal.h>
55 #include <linux/uaccess.h>
56 #include <asm/delay.h>
60 * perfmon context state
62 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
63 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
64 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
65 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
67 #define PFM_INVALID_ACTIVATION (~0UL)
69 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
70 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
73 * depth of message queue
75 #define PFM_MAX_MSGS 32
76 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
79 * type of a PMU register (bitmask).
81 * bit0 : register implemented
84 * bit4 : pmc has pmc.pm
85 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
86 * bit6-7 : register type
89 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
90 #define PFM_REG_IMPL 0x1 /* register implemented */
91 #define PFM_REG_END 0x2 /* end marker */
92 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
93 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
94 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
95 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
96 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
98 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
99 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
101 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
103 /* i assumed unsigned */
104 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
105 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
107 /* XXX: these assume that register i is implemented */
108 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
109 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
110 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
111 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
113 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
114 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
115 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
116 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
118 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
119 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
121 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
122 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
123 #define PFM_CTX_TASK(h) (h)->ctx_task
125 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
127 /* XXX: does not support more than 64 PMDs */
128 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
129 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
131 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
133 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
134 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
135 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
136 #define PFM_CODE_RR 0 /* requesting code range restriction */
137 #define PFM_DATA_RR 1 /* requestion data range restriction */
139 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
140 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
141 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
143 #define RDEP(x) (1UL<<(x))
146 * context protection macros
148 * - we need to protect against CPU concurrency (spin_lock)
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
151 * - we need to protect against PMU overflow interrupts (local_irq_disable)
153 * spin_lock_irqsave()/spin_unlock_irqrestore():
154 * in SMP: local_irq_disable + spin_lock
155 * in UP : local_irq_disable
157 * spin_lock()/spin_lock():
158 * in UP : removed automatically
159 * in SMP: protect against context accesses from other CPU. interrupts
160 * are not masked. This is useful for the PMU interrupt handler
161 * because we know we will not get PMU concurrency in that code.
163 #define PROTECT_CTX(c, f) \
165 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 spin_lock_irqsave(&(c)->ctx_lock, f); \
167 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
170 #define UNPROTECT_CTX(c, f) \
172 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
173 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
176 #define PROTECT_CTX_NOPRINT(c, f) \
178 spin_lock_irqsave(&(c)->ctx_lock, f); \
182 #define UNPROTECT_CTX_NOPRINT(c, f) \
184 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
188 #define PROTECT_CTX_NOIRQ(c) \
190 spin_lock(&(c)->ctx_lock); \
193 #define UNPROTECT_CTX_NOIRQ(c) \
195 spin_unlock(&(c)->ctx_lock); \
201 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
202 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
203 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
205 #else /* !CONFIG_SMP */
206 #define SET_ACTIVATION(t) do {} while(0)
207 #define GET_ACTIVATION(t) do {} while(0)
208 #define INC_ACTIVATION(t) do {} while(0)
209 #endif /* CONFIG_SMP */
211 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
212 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
213 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
215 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
216 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
218 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
221 * cmp0 must be the value of pmc0
223 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
225 #define PFMFS_MAGIC 0xa0b4d889
230 #define PFM_DEBUGGING 1
234 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
237 #define DPRINT_ovfl(a) \
239 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
244 * 64-bit software counter structure
246 * the next_reset_type is applied to the next call to pfm_reset_regs()
249 unsigned long val
; /* virtual 64bit counter value */
250 unsigned long lval
; /* last reset value */
251 unsigned long long_reset
; /* reset value on sampling overflow */
252 unsigned long short_reset
; /* reset value on overflow */
253 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
254 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
255 unsigned long seed
; /* seed for random-number generator */
256 unsigned long mask
; /* mask for random-number generator */
257 unsigned int flags
; /* notify/do not notify */
258 unsigned long eventid
; /* overflow event identifier */
265 unsigned int block
:1; /* when 1, task will blocked on user notifications */
266 unsigned int system
:1; /* do system wide monitoring */
267 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
268 unsigned int is_sampling
:1; /* true if using a custom format */
269 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
270 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
271 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
272 unsigned int no_msg
:1; /* no message sent on overflow */
273 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
274 unsigned int reserved
:22;
275 } pfm_context_flags_t
;
277 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
278 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
279 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
283 * perfmon context: encapsulates all the state of a monitoring session
286 typedef struct pfm_context
{
287 spinlock_t ctx_lock
; /* context protection */
289 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
290 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
292 struct task_struct
*ctx_task
; /* task to which context is attached */
294 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
296 struct completion ctx_restart_done
; /* use for blocking notification mode */
298 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
299 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
300 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
302 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
303 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
304 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
306 unsigned long ctx_pmcs
[PFM_NUM_PMC_REGS
]; /* saved copies of PMC values */
308 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
309 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
310 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
311 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
313 pfm_counter_t ctx_pmds
[PFM_NUM_PMD_REGS
]; /* software state for PMDS */
315 unsigned long th_pmcs
[PFM_NUM_PMC_REGS
]; /* PMC thread save state */
316 unsigned long th_pmds
[PFM_NUM_PMD_REGS
]; /* PMD thread save state */
318 unsigned long ctx_saved_psr_up
; /* only contains psr.up value */
320 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
321 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
322 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
324 int ctx_fd
; /* file descriptor used my this context */
325 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
327 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
328 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
329 unsigned long ctx_smpl_size
; /* size of sampling buffer */
330 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
332 wait_queue_head_t ctx_msgq_wait
;
333 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
336 struct fasync_struct
*ctx_async_queue
;
338 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
342 * magic number used to verify that structure is really
345 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
347 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
350 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
351 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
353 #define SET_LAST_CPU(ctx, v) do {} while(0)
354 #define GET_LAST_CPU(ctx) do {} while(0)
358 #define ctx_fl_block ctx_flags.block
359 #define ctx_fl_system ctx_flags.system
360 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
361 #define ctx_fl_is_sampling ctx_flags.is_sampling
362 #define ctx_fl_excl_idle ctx_flags.excl_idle
363 #define ctx_fl_going_zombie ctx_flags.going_zombie
364 #define ctx_fl_trap_reason ctx_flags.trap_reason
365 #define ctx_fl_no_msg ctx_flags.no_msg
366 #define ctx_fl_can_restart ctx_flags.can_restart
368 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
369 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
372 * global information about all sessions
373 * mostly used to synchronize between system wide and per-process
376 spinlock_t pfs_lock
; /* lock the structure */
378 unsigned int pfs_task_sessions
; /* number of per task sessions */
379 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
380 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
381 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
382 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
386 * information about a PMC or PMD.
387 * dep_pmd[]: a bitmask of dependent PMD registers
388 * dep_pmc[]: a bitmask of dependent PMC registers
390 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
394 unsigned long default_value
; /* power-on default value */
395 unsigned long reserved_mask
; /* bitmask of reserved bits */
396 pfm_reg_check_t read_check
;
397 pfm_reg_check_t write_check
;
398 unsigned long dep_pmd
[4];
399 unsigned long dep_pmc
[4];
402 /* assume cnum is a valid monitor */
403 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
406 * This structure is initialized at boot time and contains
407 * a description of the PMU main characteristics.
409 * If the probe function is defined, detection is based
410 * on its return value:
411 * - 0 means recognized PMU
412 * - anything else means not supported
413 * When the probe function is not defined, then the pmu_family field
414 * is used and it must match the host CPU family such that:
415 * - cpu->family & config->pmu_family != 0
418 unsigned long ovfl_val
; /* overflow value for counters */
420 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
421 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
423 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
424 unsigned int num_pmds
; /* number of PMDS: computed at init time */
425 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
426 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
428 char *pmu_name
; /* PMU family name */
429 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
430 unsigned int flags
; /* pmu specific flags */
431 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
432 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
433 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
434 int (*probe
)(void); /* customized probe routine */
435 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
440 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
443 * debug register related type definitions
446 unsigned long ibr_mask
:56;
447 unsigned long ibr_plm
:4;
448 unsigned long ibr_ig
:3;
449 unsigned long ibr_x
:1;
453 unsigned long dbr_mask
:56;
454 unsigned long dbr_plm
:4;
455 unsigned long dbr_ig
:2;
456 unsigned long dbr_w
:1;
457 unsigned long dbr_r
:1;
468 * perfmon command descriptions
471 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
474 unsigned int cmd_narg
;
476 int (*cmd_getsize
)(void *arg
, size_t *sz
);
479 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
480 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
481 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
482 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
485 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
486 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
487 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
488 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
489 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
491 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
494 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
495 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
496 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
498 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
499 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
500 unsigned long pfm_smpl_handler_calls
;
501 unsigned long pfm_smpl_handler_cycles
;
502 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
506 * perfmon internal variables
508 static pfm_stats_t pfm_stats
[NR_CPUS
];
509 static pfm_session_t pfm_sessions
; /* global sessions information */
511 static DEFINE_SPINLOCK(pfm_alt_install_check
);
512 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
514 static struct proc_dir_entry
*perfmon_dir
;
515 static pfm_uuid_t pfm_null_uuid
= {0,};
517 static spinlock_t pfm_buffer_fmt_lock
;
518 static LIST_HEAD(pfm_buffer_fmt_list
);
520 static pmu_config_t
*pmu_conf
;
522 /* sysctl() controls */
523 pfm_sysctl_t pfm_sysctl
;
524 EXPORT_SYMBOL(pfm_sysctl
);
526 static struct ctl_table pfm_ctl_table
[] = {
529 .data
= &pfm_sysctl
.debug
,
530 .maxlen
= sizeof(int),
532 .proc_handler
= proc_dointvec
,
535 .procname
= "debug_ovfl",
536 .data
= &pfm_sysctl
.debug_ovfl
,
537 .maxlen
= sizeof(int),
539 .proc_handler
= proc_dointvec
,
542 .procname
= "fastctxsw",
543 .data
= &pfm_sysctl
.fastctxsw
,
544 .maxlen
= sizeof(int),
546 .proc_handler
= proc_dointvec
,
549 .procname
= "expert_mode",
550 .data
= &pfm_sysctl
.expert_mode
,
551 .maxlen
= sizeof(int),
553 .proc_handler
= proc_dointvec
,
557 static struct ctl_table pfm_sysctl_dir
[] = {
559 .procname
= "perfmon",
561 .child
= pfm_ctl_table
,
565 static struct ctl_table pfm_sysctl_root
[] = {
567 .procname
= "kernel",
569 .child
= pfm_sysctl_dir
,
573 static struct ctl_table_header
*pfm_sysctl_header
;
575 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
577 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
578 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
581 pfm_put_task(struct task_struct
*task
)
583 if (task
!= current
) put_task_struct(task
);
587 pfm_reserve_page(unsigned long a
)
589 SetPageReserved(vmalloc_to_page((void *)a
));
592 pfm_unreserve_page(unsigned long a
)
594 ClearPageReserved(vmalloc_to_page((void*)a
));
597 static inline unsigned long
598 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
600 spin_lock(&(x
)->ctx_lock
);
605 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
607 spin_unlock(&(x
)->ctx_lock
);
610 /* forward declaration */
611 static const struct dentry_operations pfmfs_dentry_operations
;
613 static struct dentry
*
614 pfmfs_mount(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
)
616 return mount_pseudo(fs_type
, "pfm:", NULL
, &pfmfs_dentry_operations
,
620 static struct file_system_type pfm_fs_type
= {
622 .mount
= pfmfs_mount
,
623 .kill_sb
= kill_anon_super
,
625 MODULE_ALIAS_FS("pfmfs");
627 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
628 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
629 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
630 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
631 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
634 /* forward declaration */
635 static const struct file_operations pfm_file_ops
;
638 * forward declarations
641 static void pfm_lazy_save_regs (struct task_struct
*ta
);
644 void dump_pmu_state(const char *);
645 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
647 #include "perfmon_itanium.h"
648 #include "perfmon_mckinley.h"
649 #include "perfmon_montecito.h"
650 #include "perfmon_generic.h"
652 static pmu_config_t
*pmu_confs
[]={
656 &pmu_conf_gen
, /* must be last */
661 static int pfm_end_notify_user(pfm_context_t
*ctx
);
664 pfm_clear_psr_pp(void)
666 ia64_rsm(IA64_PSR_PP
);
673 ia64_ssm(IA64_PSR_PP
);
678 pfm_clear_psr_up(void)
680 ia64_rsm(IA64_PSR_UP
);
687 ia64_ssm(IA64_PSR_UP
);
691 static inline unsigned long
695 tmp
= ia64_getreg(_IA64_REG_PSR
);
701 pfm_set_psr_l(unsigned long val
)
703 ia64_setreg(_IA64_REG_PSR_L
, val
);
715 pfm_unfreeze_pmu(void)
722 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
726 for (i
=0; i
< nibrs
; i
++) {
727 ia64_set_ibr(i
, ibrs
[i
]);
728 ia64_dv_serialize_instruction();
734 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
738 for (i
=0; i
< ndbrs
; i
++) {
739 ia64_set_dbr(i
, dbrs
[i
]);
740 ia64_dv_serialize_data();
746 * PMD[i] must be a counter. no check is made
748 static inline unsigned long
749 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
751 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
755 * PMD[i] must be a counter. no check is made
758 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
760 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
762 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
764 * writing to unimplemented part is ignore, so we do not need to
767 ia64_set_pmd(i
, val
& ovfl_val
);
771 pfm_get_new_msg(pfm_context_t
*ctx
)
775 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
777 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
778 if (next
== ctx
->ctx_msgq_head
) return NULL
;
780 idx
= ctx
->ctx_msgq_tail
;
781 ctx
->ctx_msgq_tail
= next
;
783 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
785 return ctx
->ctx_msgq
+idx
;
789 pfm_get_next_msg(pfm_context_t
*ctx
)
793 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
795 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
800 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
805 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
807 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
813 pfm_reset_msgq(pfm_context_t
*ctx
)
815 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
816 DPRINT(("ctx=%p msgq reset\n", ctx
));
820 pfm_rvmalloc(unsigned long size
)
825 size
= PAGE_ALIGN(size
);
828 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
829 addr
= (unsigned long)mem
;
831 pfm_reserve_page(addr
);
840 pfm_rvfree(void *mem
, unsigned long size
)
845 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
846 addr
= (unsigned long) mem
;
847 while ((long) size
> 0) {
848 pfm_unreserve_page(addr
);
857 static pfm_context_t
*
858 pfm_context_alloc(int ctx_flags
)
863 * allocate context descriptor
864 * must be able to free with interrupts disabled
866 ctx
= kzalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
868 DPRINT(("alloc ctx @%p\n", ctx
));
871 * init context protection lock
873 spin_lock_init(&ctx
->ctx_lock
);
876 * context is unloaded
878 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
881 * initialization of context's flags
883 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
884 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
885 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
887 * will move to set properties
888 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
892 * init restart semaphore to locked
894 init_completion(&ctx
->ctx_restart_done
);
897 * activation is used in SMP only
899 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
900 SET_LAST_CPU(ctx
, -1);
903 * initialize notification message queue
905 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
906 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
907 init_waitqueue_head(&ctx
->ctx_zombieq
);
914 pfm_context_free(pfm_context_t
*ctx
)
917 DPRINT(("free ctx @%p\n", ctx
));
923 pfm_mask_monitoring(struct task_struct
*task
)
925 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
926 unsigned long mask
, val
, ovfl_mask
;
929 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task
)));
931 ovfl_mask
= pmu_conf
->ovfl_val
;
933 * monitoring can only be masked as a result of a valid
934 * counter overflow. In UP, it means that the PMU still
935 * has an owner. Note that the owner can be different
936 * from the current task. However the PMU state belongs
938 * In SMP, a valid overflow only happens when task is
939 * current. Therefore if we come here, we know that
940 * the PMU state belongs to the current task, therefore
941 * we can access the live registers.
943 * So in both cases, the live register contains the owner's
944 * state. We can ONLY touch the PMU registers and NOT the PSR.
946 * As a consequence to this call, the ctx->th_pmds[] array
947 * contains stale information which must be ignored
948 * when context is reloaded AND monitoring is active (see
951 mask
= ctx
->ctx_used_pmds
[0];
952 for (i
= 0; mask
; i
++, mask
>>=1) {
953 /* skip non used pmds */
954 if ((mask
& 0x1) == 0) continue;
955 val
= ia64_get_pmd(i
);
957 if (PMD_IS_COUNTING(i
)) {
959 * we rebuild the full 64 bit value of the counter
961 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
963 ctx
->ctx_pmds
[i
].val
= val
;
965 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
967 ctx
->ctx_pmds
[i
].val
,
971 * mask monitoring by setting the privilege level to 0
972 * we cannot use psr.pp/psr.up for this, it is controlled by
975 * if task is current, modify actual registers, otherwise modify
976 * thread save state, i.e., what will be restored in pfm_load_regs()
978 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
979 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
980 if ((mask
& 0x1) == 0UL) continue;
981 ia64_set_pmc(i
, ctx
->th_pmcs
[i
] & ~0xfUL
);
982 ctx
->th_pmcs
[i
] &= ~0xfUL
;
983 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
986 * make all of this visible
992 * must always be done with task == current
994 * context must be in MASKED state when calling
997 pfm_restore_monitoring(struct task_struct
*task
)
999 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
1000 unsigned long mask
, ovfl_mask
;
1001 unsigned long psr
, val
;
1004 is_system
= ctx
->ctx_fl_system
;
1005 ovfl_mask
= pmu_conf
->ovfl_val
;
1007 if (task
!= current
) {
1008 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task_pid_nr(task
), task_pid_nr(current
));
1011 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
1012 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
1013 task_pid_nr(task
), task_pid_nr(current
), ctx
->ctx_state
);
1016 psr
= pfm_get_psr();
1018 * monitoring is masked via the PMC.
1019 * As we restore their value, we do not want each counter to
1020 * restart right away. We stop monitoring using the PSR,
1021 * restore the PMC (and PMD) and then re-establish the psr
1022 * as it was. Note that there can be no pending overflow at
1023 * this point, because monitoring was MASKED.
1025 * system-wide session are pinned and self-monitoring
1027 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1028 /* disable dcr pp */
1029 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
1035 * first, we restore the PMD
1037 mask
= ctx
->ctx_used_pmds
[0];
1038 for (i
= 0; mask
; i
++, mask
>>=1) {
1039 /* skip non used pmds */
1040 if ((mask
& 0x1) == 0) continue;
1042 if (PMD_IS_COUNTING(i
)) {
1044 * we split the 64bit value according to
1047 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
1048 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
1050 val
= ctx
->ctx_pmds
[i
].val
;
1052 ia64_set_pmd(i
, val
);
1054 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1056 ctx
->ctx_pmds
[i
].val
,
1062 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1063 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1064 if ((mask
& 0x1) == 0UL) continue;
1065 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1066 ia64_set_pmc(i
, ctx
->th_pmcs
[i
]);
1067 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1068 task_pid_nr(task
), i
, ctx
->th_pmcs
[i
]));
1073 * must restore DBR/IBR because could be modified while masked
1074 * XXX: need to optimize
1076 if (ctx
->ctx_fl_using_dbreg
) {
1077 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1078 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1084 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1086 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1093 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1099 for (i
=0; mask
; i
++, mask
>>=1) {
1100 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1105 * reload from thread state (used for ctxw only)
1108 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1111 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1113 for (i
=0; mask
; i
++, mask
>>=1) {
1114 if ((mask
& 0x1) == 0) continue;
1115 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1116 ia64_set_pmd(i
, val
);
1122 * propagate PMD from context to thread-state
1125 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1127 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1128 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1132 DPRINT(("mask=0x%lx\n", mask
));
1134 for (i
=0; mask
; i
++, mask
>>=1) {
1136 val
= ctx
->ctx_pmds
[i
].val
;
1139 * We break up the 64 bit value into 2 pieces
1140 * the lower bits go to the machine state in the
1141 * thread (will be reloaded on ctxsw in).
1142 * The upper part stays in the soft-counter.
1144 if (PMD_IS_COUNTING(i
)) {
1145 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1148 ctx
->th_pmds
[i
] = val
;
1150 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1153 ctx
->ctx_pmds
[i
].val
));
1158 * propagate PMC from context to thread-state
1161 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1163 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1166 DPRINT(("mask=0x%lx\n", mask
));
1168 for (i
=0; mask
; i
++, mask
>>=1) {
1169 /* masking 0 with ovfl_val yields 0 */
1170 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1171 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
1178 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1182 for (i
=0; mask
; i
++, mask
>>=1) {
1183 if ((mask
& 0x1) == 0) continue;
1184 ia64_set_pmc(i
, pmcs
[i
]);
1190 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1192 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1196 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1199 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1204 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1207 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1213 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1217 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1222 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1226 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1231 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1234 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1239 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1242 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1246 static pfm_buffer_fmt_t
*
1247 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1249 struct list_head
* pos
;
1250 pfm_buffer_fmt_t
* entry
;
1252 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1253 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1254 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1261 * find a buffer format based on its uuid
1263 static pfm_buffer_fmt_t
*
1264 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1266 pfm_buffer_fmt_t
* fmt
;
1267 spin_lock(&pfm_buffer_fmt_lock
);
1268 fmt
= __pfm_find_buffer_fmt(uuid
);
1269 spin_unlock(&pfm_buffer_fmt_lock
);
1274 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1278 /* some sanity checks */
1279 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1281 /* we need at least a handler */
1282 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1285 * XXX: need check validity of fmt_arg_size
1288 spin_lock(&pfm_buffer_fmt_lock
);
1290 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1291 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1295 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1296 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1299 spin_unlock(&pfm_buffer_fmt_lock
);
1302 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1305 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1307 pfm_buffer_fmt_t
*fmt
;
1310 spin_lock(&pfm_buffer_fmt_lock
);
1312 fmt
= __pfm_find_buffer_fmt(uuid
);
1314 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1318 list_del_init(&fmt
->fmt_list
);
1319 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1322 spin_unlock(&pfm_buffer_fmt_lock
);
1326 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1329 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1331 unsigned long flags
;
1333 * validity checks on cpu_mask have been done upstream
1337 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1338 pfm_sessions
.pfs_sys_sessions
,
1339 pfm_sessions
.pfs_task_sessions
,
1340 pfm_sessions
.pfs_sys_use_dbregs
,
1346 * cannot mix system wide and per-task sessions
1348 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1349 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1350 pfm_sessions
.pfs_task_sessions
));
1354 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1356 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1358 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1360 pfm_sessions
.pfs_sys_sessions
++ ;
1363 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1364 pfm_sessions
.pfs_task_sessions
++;
1367 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1368 pfm_sessions
.pfs_sys_sessions
,
1369 pfm_sessions
.pfs_task_sessions
,
1370 pfm_sessions
.pfs_sys_use_dbregs
,
1375 * Force idle() into poll mode
1377 cpu_idle_poll_ctrl(true);
1384 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1385 task_pid_nr(pfm_sessions
.pfs_sys_session
[cpu
]),
1395 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1397 unsigned long flags
;
1399 * validity checks on cpu_mask have been done upstream
1403 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1404 pfm_sessions
.pfs_sys_sessions
,
1405 pfm_sessions
.pfs_task_sessions
,
1406 pfm_sessions
.pfs_sys_use_dbregs
,
1412 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1414 * would not work with perfmon+more than one bit in cpu_mask
1416 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1417 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1418 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1420 pfm_sessions
.pfs_sys_use_dbregs
--;
1423 pfm_sessions
.pfs_sys_sessions
--;
1425 pfm_sessions
.pfs_task_sessions
--;
1427 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1428 pfm_sessions
.pfs_sys_sessions
,
1429 pfm_sessions
.pfs_task_sessions
,
1430 pfm_sessions
.pfs_sys_use_dbregs
,
1434 /* Undo forced polling. Last session reenables pal_halt */
1435 cpu_idle_poll_ctrl(false);
1443 * removes virtual mapping of the sampling buffer.
1444 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1445 * a PROTECT_CTX() section.
1448 pfm_remove_smpl_mapping(void *vaddr
, unsigned long size
)
1450 struct task_struct
*task
= current
;
1454 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1455 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task
), task
->mm
);
1459 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1462 * does the actual unmapping
1464 r
= vm_munmap((unsigned long)vaddr
, size
);
1467 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task
), vaddr
, size
);
1470 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1476 * free actual physical storage used by sampling buffer
1480 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1482 pfm_buffer_fmt_t
*fmt
;
1484 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1487 * we won't use the buffer format anymore
1489 fmt
= ctx
->ctx_buf_fmt
;
1491 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1494 ctx
->ctx_smpl_vaddr
));
1496 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1501 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1503 ctx
->ctx_smpl_hdr
= NULL
;
1504 ctx
->ctx_smpl_size
= 0UL;
1509 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current
));
1515 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1517 if (fmt
== NULL
) return;
1519 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1524 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1525 * no real gain from having the whole whorehouse mounted. So we don't need
1526 * any operations on the root directory. However, we need a non-trivial
1527 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1529 static struct vfsmount
*pfmfs_mnt __read_mostly
;
1534 int err
= register_filesystem(&pfm_fs_type
);
1536 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1537 err
= PTR_ERR(pfmfs_mnt
);
1538 if (IS_ERR(pfmfs_mnt
))
1539 unregister_filesystem(&pfm_fs_type
);
1547 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1552 unsigned long flags
;
1553 DECLARE_WAITQUEUE(wait
, current
);
1554 if (PFM_IS_FILE(filp
) == 0) {
1555 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1559 ctx
= filp
->private_data
;
1561 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current
));
1566 * check even when there is no message
1568 if (size
< sizeof(pfm_msg_t
)) {
1569 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1573 PROTECT_CTX(ctx
, flags
);
1576 * put ourselves on the wait queue
1578 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1586 set_current_state(TASK_INTERRUPTIBLE
);
1588 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1591 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1593 UNPROTECT_CTX(ctx
, flags
);
1596 * check non-blocking read
1599 if(filp
->f_flags
& O_NONBLOCK
) break;
1602 * check pending signals
1604 if(signal_pending(current
)) {
1609 * no message, so wait
1613 PROTECT_CTX(ctx
, flags
);
1615 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current
), ret
));
1616 set_current_state(TASK_RUNNING
);
1617 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1619 if (ret
< 0) goto abort
;
1622 msg
= pfm_get_next_msg(ctx
);
1624 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, task_pid_nr(current
));
1628 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1631 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1634 UNPROTECT_CTX(ctx
, flags
);
1640 pfm_write(struct file
*file
, const char __user
*ubuf
,
1641 size_t size
, loff_t
*ppos
)
1643 DPRINT(("pfm_write called\n"));
1648 pfm_poll(struct file
*filp
, poll_table
* wait
)
1651 unsigned long flags
;
1654 if (PFM_IS_FILE(filp
) == 0) {
1655 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1659 ctx
= filp
->private_data
;
1661 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current
));
1666 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1668 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1670 PROTECT_CTX(ctx
, flags
);
1672 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1673 mask
= EPOLLIN
| EPOLLRDNORM
;
1675 UNPROTECT_CTX(ctx
, flags
);
1677 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1683 pfm_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1685 DPRINT(("pfm_ioctl called\n"));
1690 * interrupt cannot be masked when coming here
1693 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1697 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1699 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700 task_pid_nr(current
),
1703 ctx
->ctx_async_queue
, ret
));
1709 pfm_fasync(int fd
, struct file
*filp
, int on
)
1714 if (PFM_IS_FILE(filp
) == 0) {
1715 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current
));
1719 ctx
= filp
->private_data
;
1721 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current
));
1725 * we cannot mask interrupts during this call because this may
1726 * may go to sleep if memory is not readily avalaible.
1728 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1729 * done in caller. Serialization of this function is ensured by caller.
1731 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1734 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1737 ctx
->ctx_async_queue
, ret
));
1744 * this function is exclusively called from pfm_close().
1745 * The context is not protected at that time, nor are interrupts
1746 * on the remote CPU. That's necessary to avoid deadlocks.
1749 pfm_syswide_force_stop(void *info
)
1751 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1752 struct pt_regs
*regs
= task_pt_regs(current
);
1753 struct task_struct
*owner
;
1754 unsigned long flags
;
1757 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1758 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1760 smp_processor_id());
1763 owner
= GET_PMU_OWNER();
1764 if (owner
!= ctx
->ctx_task
) {
1765 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1767 task_pid_nr(owner
), task_pid_nr(ctx
->ctx_task
));
1770 if (GET_PMU_CTX() != ctx
) {
1771 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1773 GET_PMU_CTX(), ctx
);
1777 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx
->ctx_task
)));
1779 * the context is already protected in pfm_close(), we simply
1780 * need to mask interrupts to avoid a PMU interrupt race on
1783 local_irq_save(flags
);
1785 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1787 DPRINT(("context_unload returned %d\n", ret
));
1791 * unmask interrupts, PMU interrupts are now spurious here
1793 local_irq_restore(flags
);
1797 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1801 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1802 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 1);
1803 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1805 #endif /* CONFIG_SMP */
1808 * called for each close(). Partially free resources.
1809 * When caller is self-monitoring, the context is unloaded.
1812 pfm_flush(struct file
*filp
, fl_owner_t id
)
1815 struct task_struct
*task
;
1816 struct pt_regs
*regs
;
1817 unsigned long flags
;
1818 unsigned long smpl_buf_size
= 0UL;
1819 void *smpl_buf_vaddr
= NULL
;
1820 int state
, is_system
;
1822 if (PFM_IS_FILE(filp
) == 0) {
1823 DPRINT(("bad magic for\n"));
1827 ctx
= filp
->private_data
;
1829 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current
));
1834 * remove our file from the async queue, if we use this mode.
1835 * This can be done without the context being protected. We come
1836 * here when the context has become unreachable by other tasks.
1838 * We may still have active monitoring at this point and we may
1839 * end up in pfm_overflow_handler(). However, fasync_helper()
1840 * operates with interrupts disabled and it cleans up the
1841 * queue. If the PMU handler is called prior to entering
1842 * fasync_helper() then it will send a signal. If it is
1843 * invoked after, it will find an empty queue and no
1844 * signal will be sent. In both case, we are safe
1846 PROTECT_CTX(ctx
, flags
);
1848 state
= ctx
->ctx_state
;
1849 is_system
= ctx
->ctx_fl_system
;
1851 task
= PFM_CTX_TASK(ctx
);
1852 regs
= task_pt_regs(task
);
1854 DPRINT(("ctx_state=%d is_current=%d\n",
1856 task
== current
? 1 : 0));
1859 * if state == UNLOADED, then task is NULL
1863 * we must stop and unload because we are losing access to the context.
1865 if (task
== current
) {
1868 * the task IS the owner but it migrated to another CPU: that's bad
1869 * but we must handle this cleanly. Unfortunately, the kernel does
1870 * not provide a mechanism to block migration (while the context is loaded).
1872 * We need to release the resource on the ORIGINAL cpu.
1874 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1876 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1878 * keep context protected but unmask interrupt for IPI
1880 local_irq_restore(flags
);
1882 pfm_syswide_cleanup_other_cpu(ctx
);
1885 * restore interrupt masking
1887 local_irq_save(flags
);
1890 * context is unloaded at this point
1893 #endif /* CONFIG_SMP */
1896 DPRINT(("forcing unload\n"));
1898 * stop and unload, returning with state UNLOADED
1899 * and session unreserved.
1901 pfm_context_unload(ctx
, NULL
, 0, regs
);
1903 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1908 * remove virtual mapping, if any, for the calling task.
1909 * cannot reset ctx field until last user is calling close().
1911 * ctx_smpl_vaddr must never be cleared because it is needed
1912 * by every task with access to the context
1914 * When called from do_exit(), the mm context is gone already, therefore
1915 * mm is NULL, i.e., the VMA is already gone and we do not have to
1918 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1919 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1920 smpl_buf_size
= ctx
->ctx_smpl_size
;
1923 UNPROTECT_CTX(ctx
, flags
);
1926 * if there was a mapping, then we systematically remove it
1927 * at this point. Cannot be done inside critical section
1928 * because some VM function reenables interrupts.
1931 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(smpl_buf_vaddr
, smpl_buf_size
);
1936 * called either on explicit close() or from exit_files().
1937 * Only the LAST user of the file gets to this point, i.e., it is
1940 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1941 * (fput()),i.e, last task to access the file. Nobody else can access the
1942 * file at this point.
1944 * When called from exit_files(), the VMA has been freed because exit_mm()
1945 * is executed before exit_files().
1947 * When called from exit_files(), the current task is not yet ZOMBIE but we
1948 * flush the PMU state to the context.
1951 pfm_close(struct inode
*inode
, struct file
*filp
)
1954 struct task_struct
*task
;
1955 struct pt_regs
*regs
;
1956 DECLARE_WAITQUEUE(wait
, current
);
1957 unsigned long flags
;
1958 unsigned long smpl_buf_size
= 0UL;
1959 void *smpl_buf_addr
= NULL
;
1960 int free_possible
= 1;
1961 int state
, is_system
;
1963 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1965 if (PFM_IS_FILE(filp
) == 0) {
1966 DPRINT(("bad magic\n"));
1970 ctx
= filp
->private_data
;
1972 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current
));
1976 PROTECT_CTX(ctx
, flags
);
1978 state
= ctx
->ctx_state
;
1979 is_system
= ctx
->ctx_fl_system
;
1981 task
= PFM_CTX_TASK(ctx
);
1982 regs
= task_pt_regs(task
);
1984 DPRINT(("ctx_state=%d is_current=%d\n",
1986 task
== current
? 1 : 0));
1989 * if task == current, then pfm_flush() unloaded the context
1991 if (state
== PFM_CTX_UNLOADED
) goto doit
;
1994 * context is loaded/masked and task != current, we need to
1995 * either force an unload or go zombie
1999 * The task is currently blocked or will block after an overflow.
2000 * we must force it to wakeup to get out of the
2001 * MASKED state and transition to the unloaded state by itself.
2003 * This situation is only possible for per-task mode
2005 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
2008 * set a "partial" zombie state to be checked
2009 * upon return from down() in pfm_handle_work().
2011 * We cannot use the ZOMBIE state, because it is checked
2012 * by pfm_load_regs() which is called upon wakeup from down().
2013 * In such case, it would free the context and then we would
2014 * return to pfm_handle_work() which would access the
2015 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016 * but visible to pfm_handle_work().
2018 * For some window of time, we have a zombie context with
2019 * ctx_state = MASKED and not ZOMBIE
2021 ctx
->ctx_fl_going_zombie
= 1;
2024 * force task to wake up from MASKED state
2026 complete(&ctx
->ctx_restart_done
);
2028 DPRINT(("waking up ctx_state=%d\n", state
));
2031 * put ourself to sleep waiting for the other
2032 * task to report completion
2034 * the context is protected by mutex, therefore there
2035 * is no risk of being notified of completion before
2036 * begin actually on the waitq.
2038 set_current_state(TASK_INTERRUPTIBLE
);
2039 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2041 UNPROTECT_CTX(ctx
, flags
);
2044 * XXX: check for signals :
2045 * - ok for explicit close
2046 * - not ok when coming from exit_files()
2051 PROTECT_CTX(ctx
, flags
);
2054 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2055 set_current_state(TASK_RUNNING
);
2058 * context is unloaded at this point
2060 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2062 else if (task
!= current
) {
2065 * switch context to zombie state
2067 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2069 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task
)));
2071 * cannot free the context on the spot. deferred until
2072 * the task notices the ZOMBIE state
2076 pfm_context_unload(ctx
, NULL
, 0, regs
);
2081 /* reload state, may have changed during opening of critical section */
2082 state
= ctx
->ctx_state
;
2085 * the context is still attached to a task (possibly current)
2086 * we cannot destroy it right now
2090 * we must free the sampling buffer right here because
2091 * we cannot rely on it being cleaned up later by the
2092 * monitored task. It is not possible to free vmalloc'ed
2093 * memory in pfm_load_regs(). Instead, we remove the buffer
2094 * now. should there be subsequent PMU overflow originally
2095 * meant for sampling, the will be converted to spurious
2096 * and that's fine because the monitoring tools is gone anyway.
2098 if (ctx
->ctx_smpl_hdr
) {
2099 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2100 smpl_buf_size
= ctx
->ctx_smpl_size
;
2101 /* no more sampling */
2102 ctx
->ctx_smpl_hdr
= NULL
;
2103 ctx
->ctx_fl_is_sampling
= 0;
2106 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2112 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2115 * UNLOADED that the session has already been unreserved.
2117 if (state
== PFM_CTX_ZOMBIE
) {
2118 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2122 * disconnect file descriptor from context must be done
2125 filp
->private_data
= NULL
;
2128 * if we free on the spot, the context is now completely unreachable
2129 * from the callers side. The monitored task side is also cut, so we
2132 * If we have a deferred free, only the caller side is disconnected.
2134 UNPROTECT_CTX(ctx
, flags
);
2137 * All memory free operations (especially for vmalloc'ed memory)
2138 * MUST be done with interrupts ENABLED.
2140 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2143 * return the memory used by the context
2145 if (free_possible
) pfm_context_free(ctx
);
2150 static const struct file_operations pfm_file_ops
= {
2151 .llseek
= no_llseek
,
2155 .unlocked_ioctl
= pfm_ioctl
,
2156 .fasync
= pfm_fasync
,
2157 .release
= pfm_close
,
2161 static char *pfmfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
2163 return dynamic_dname(dentry
, buffer
, buflen
, "pfm:[%lu]",
2164 d_inode(dentry
)->i_ino
);
2167 static const struct dentry_operations pfmfs_dentry_operations
= {
2168 .d_delete
= always_delete_dentry
,
2169 .d_dname
= pfmfs_dname
,
2173 static struct file
*
2174 pfm_alloc_file(pfm_context_t
*ctx
)
2177 struct inode
*inode
;
2179 struct qstr
this = { .name
= "" };
2182 * allocate a new inode
2184 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2186 return ERR_PTR(-ENOMEM
);
2188 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2190 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2191 inode
->i_uid
= current_fsuid();
2192 inode
->i_gid
= current_fsgid();
2195 * allocate a new dcache entry
2197 path
.dentry
= d_alloc(pfmfs_mnt
->mnt_root
, &this);
2200 return ERR_PTR(-ENOMEM
);
2202 path
.mnt
= mntget(pfmfs_mnt
);
2204 d_add(path
.dentry
, inode
);
2206 file
= alloc_file(&path
, FMODE_READ
, &pfm_file_ops
);
2212 file
->f_flags
= O_RDONLY
;
2213 file
->private_data
= ctx
;
2219 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2221 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2224 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2227 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2238 * allocate a sampling buffer and remaps it into the user address space of the task
2241 pfm_smpl_buffer_alloc(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2243 struct mm_struct
*mm
= task
->mm
;
2244 struct vm_area_struct
*vma
= NULL
;
2250 * the fixed header + requested size and align to page boundary
2252 size
= PAGE_ALIGN(rsize
);
2254 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2257 * check requested size to avoid Denial-of-service attacks
2258 * XXX: may have to refine this test
2259 * Check against address space limit.
2261 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2264 if (size
> task_rlimit(task
, RLIMIT_MEMLOCK
))
2268 * We do the easy to undo allocations first.
2270 * pfm_rvmalloc(), clears the buffer, so there is no leak
2272 smpl_buf
= pfm_rvmalloc(size
);
2273 if (smpl_buf
== NULL
) {
2274 DPRINT(("Can't allocate sampling buffer\n"));
2278 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2281 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2283 DPRINT(("Cannot allocate vma\n"));
2286 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2289 * partially initialize the vma for the sampling buffer
2292 vma
->vm_file
= get_file(filp
);
2293 vma
->vm_flags
= VM_READ
|VM_MAYREAD
|VM_DONTEXPAND
|VM_DONTDUMP
;
2294 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2297 * Now we have everything we need and we can initialize
2298 * and connect all the data structures
2301 ctx
->ctx_smpl_hdr
= smpl_buf
;
2302 ctx
->ctx_smpl_size
= size
; /* aligned size */
2305 * Let's do the difficult operations next.
2307 * now we atomically find some area in the address space and
2308 * remap the buffer in it.
2310 down_write(&task
->mm
->mmap_sem
);
2312 /* find some free area in address space, must have mmap sem held */
2313 vma
->vm_start
= get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
);
2314 if (IS_ERR_VALUE(vma
->vm_start
)) {
2315 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2316 up_write(&task
->mm
->mmap_sem
);
2319 vma
->vm_end
= vma
->vm_start
+ size
;
2320 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2322 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2324 /* can only be applied to current task, need to have the mm semaphore held when called */
2325 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2326 DPRINT(("Can't remap buffer\n"));
2327 up_write(&task
->mm
->mmap_sem
);
2332 * now insert the vma in the vm list for the process, must be
2333 * done with mmap lock held
2335 insert_vm_struct(mm
, vma
);
2337 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma_pages(vma
));
2338 up_write(&task
->mm
->mmap_sem
);
2341 * keep track of user level virtual address
2343 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2344 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2349 kmem_cache_free(vm_area_cachep
, vma
);
2351 pfm_rvfree(smpl_buf
, size
);
2357 * XXX: do something better here
2360 pfm_bad_permissions(struct task_struct
*task
)
2362 const struct cred
*tcred
;
2363 kuid_t uid
= current_uid();
2364 kgid_t gid
= current_gid();
2368 tcred
= __task_cred(task
);
2370 /* inspired by ptrace_attach() */
2371 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2372 from_kuid(&init_user_ns
, uid
),
2373 from_kgid(&init_user_ns
, gid
),
2374 from_kuid(&init_user_ns
, tcred
->euid
),
2375 from_kuid(&init_user_ns
, tcred
->suid
),
2376 from_kuid(&init_user_ns
, tcred
->uid
),
2377 from_kgid(&init_user_ns
, tcred
->egid
),
2378 from_kgid(&init_user_ns
, tcred
->sgid
)));
2380 ret
= ((!uid_eq(uid
, tcred
->euid
))
2381 || (!uid_eq(uid
, tcred
->suid
))
2382 || (!uid_eq(uid
, tcred
->uid
))
2383 || (!gid_eq(gid
, tcred
->egid
))
2384 || (!gid_eq(gid
, tcred
->sgid
))
2385 || (!gid_eq(gid
, tcred
->gid
))) && !capable(CAP_SYS_PTRACE
);
2392 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2398 ctx_flags
= pfx
->ctx_flags
;
2400 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2403 * cannot block in this mode
2405 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2406 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2411 /* probably more to add here */
2417 pfm_setup_buffer_fmt(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2418 unsigned int cpu
, pfarg_context_t
*arg
)
2420 pfm_buffer_fmt_t
*fmt
= NULL
;
2421 unsigned long size
= 0UL;
2423 void *fmt_arg
= NULL
;
2425 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2427 /* invoke and lock buffer format, if found */
2428 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2430 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task
)));
2435 * buffer argument MUST be contiguous to pfarg_context_t
2437 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2439 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2441 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task
), ctx_flags
, cpu
, fmt_arg
, ret
));
2443 if (ret
) goto error
;
2445 /* link buffer format and context */
2446 ctx
->ctx_buf_fmt
= fmt
;
2447 ctx
->ctx_fl_is_sampling
= 1; /* assume record() is defined */
2450 * check if buffer format wants to use perfmon buffer allocation/mapping service
2452 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2453 if (ret
) goto error
;
2457 * buffer is always remapped into the caller's address space
2459 ret
= pfm_smpl_buffer_alloc(current
, filp
, ctx
, size
, &uaddr
);
2460 if (ret
) goto error
;
2462 /* keep track of user address of buffer */
2463 arg
->ctx_smpl_vaddr
= uaddr
;
2465 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2472 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2477 * install reset values for PMC.
2479 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2480 if (PMC_IS_IMPL(i
) == 0) continue;
2481 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2482 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2485 * PMD registers are set to 0UL when the context in memset()
2489 * On context switched restore, we must restore ALL pmc and ALL pmd even
2490 * when they are not actively used by the task. In UP, the incoming process
2491 * may otherwise pick up left over PMC, PMD state from the previous process.
2492 * As opposed to PMD, stale PMC can cause harm to the incoming
2493 * process because they may change what is being measured.
2494 * Therefore, we must systematically reinstall the entire
2495 * PMC state. In SMP, the same thing is possible on the
2496 * same CPU but also on between 2 CPUs.
2498 * The problem with PMD is information leaking especially
2499 * to user level when psr.sp=0
2501 * There is unfortunately no easy way to avoid this problem
2502 * on either UP or SMP. This definitively slows down the
2503 * pfm_load_regs() function.
2507 * bitmask of all PMCs accessible to this context
2509 * PMC0 is treated differently.
2511 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2514 * bitmask of all PMDs that are accessible to this context
2516 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2518 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2521 * useful in case of re-enable after disable
2523 ctx
->ctx_used_ibrs
[0] = 0UL;
2524 ctx
->ctx_used_dbrs
[0] = 0UL;
2528 pfm_ctx_getsize(void *arg
, size_t *sz
)
2530 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2531 pfm_buffer_fmt_t
*fmt
;
2535 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2537 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2539 DPRINT(("cannot find buffer format\n"));
2542 /* get just enough to copy in user parameters */
2543 *sz
= fmt
->fmt_arg_size
;
2544 DPRINT(("arg_size=%lu\n", *sz
));
2552 * cannot attach if :
2554 * - task not owned by caller
2555 * - task incompatible with context mode
2558 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2561 * no kernel task or task not owner by caller
2563 if (task
->mm
== NULL
) {
2564 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task
)));
2567 if (pfm_bad_permissions(task
)) {
2568 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task
)));
2572 * cannot block in self-monitoring mode
2574 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2575 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task
)));
2579 if (task
->exit_state
== EXIT_ZOMBIE
) {
2580 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task
)));
2585 * always ok for self
2587 if (task
== current
) return 0;
2589 if (!task_is_stopped_or_traced(task
)) {
2590 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task
), task
->state
));
2594 * make sure the task is off any CPU
2596 wait_task_inactive(task
, 0);
2598 /* more to come... */
2604 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2606 struct task_struct
*p
= current
;
2609 /* XXX: need to add more checks here */
2610 if (pid
< 2) return -EPERM
;
2612 if (pid
!= task_pid_vnr(current
)) {
2613 /* make sure task cannot go away while we operate on it */
2614 p
= find_get_task_by_vpid(pid
);
2619 ret
= pfm_task_incompatible(ctx
, p
);
2622 } else if (p
!= current
) {
2631 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2633 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2640 /* let's check the arguments first */
2641 ret
= pfarg_is_sane(current
, req
);
2645 ctx_flags
= req
->ctx_flags
;
2649 fd
= get_unused_fd_flags(0);
2653 ctx
= pfm_context_alloc(ctx_flags
);
2657 filp
= pfm_alloc_file(ctx
);
2659 ret
= PTR_ERR(filp
);
2663 req
->ctx_fd
= ctx
->ctx_fd
= fd
;
2666 * does the user want to sample?
2668 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2669 ret
= pfm_setup_buffer_fmt(current
, filp
, ctx
, ctx_flags
, 0, req
);
2674 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2679 ctx
->ctx_fl_excl_idle
,
2684 * initialize soft PMU state
2686 pfm_reset_pmu_state(ctx
);
2688 fd_install(fd
, filp
);
2693 path
= filp
->f_path
;
2697 if (ctx
->ctx_buf_fmt
) {
2698 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2701 pfm_context_free(ctx
);
2708 static inline unsigned long
2709 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2711 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2712 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2713 extern unsigned long carta_random32 (unsigned long seed
);
2715 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2716 new_seed
= carta_random32(old_seed
);
2717 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2718 if ((mask
>> 32) != 0)
2719 /* construct a full 64-bit random value: */
2720 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2721 reg
->seed
= new_seed
;
2728 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2730 unsigned long mask
= ovfl_regs
[0];
2731 unsigned long reset_others
= 0UL;
2736 * now restore reset value on sampling overflowed counters
2738 mask
>>= PMU_FIRST_COUNTER
;
2739 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2741 if ((mask
& 0x1UL
) == 0UL) continue;
2743 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2744 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2746 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2750 * Now take care of resetting the other registers
2752 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2754 if ((reset_others
& 0x1) == 0) continue;
2756 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2758 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2759 is_long_reset
? "long" : "short", i
, val
));
2764 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2766 unsigned long mask
= ovfl_regs
[0];
2767 unsigned long reset_others
= 0UL;
2771 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2773 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2774 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2779 * now restore reset value on sampling overflowed counters
2781 mask
>>= PMU_FIRST_COUNTER
;
2782 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2784 if ((mask
& 0x1UL
) == 0UL) continue;
2786 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2787 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2789 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2791 pfm_write_soft_counter(ctx
, i
, val
);
2795 * Now take care of resetting the other registers
2797 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2799 if ((reset_others
& 0x1) == 0) continue;
2801 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2803 if (PMD_IS_COUNTING(i
)) {
2804 pfm_write_soft_counter(ctx
, i
, val
);
2806 ia64_set_pmd(i
, val
);
2808 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2809 is_long_reset
? "long" : "short", i
, val
));
2815 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2817 struct task_struct
*task
;
2818 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2819 unsigned long value
, pmc_pm
;
2820 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2821 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2822 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2823 int is_monitor
, is_counting
, state
;
2825 pfm_reg_check_t wr_func
;
2826 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2828 state
= ctx
->ctx_state
;
2829 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2830 is_system
= ctx
->ctx_fl_system
;
2831 task
= ctx
->ctx_task
;
2832 impl_pmds
= pmu_conf
->impl_pmds
[0];
2834 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2838 * In system wide and when the context is loaded, access can only happen
2839 * when the caller is running on the CPU being monitored by the session.
2840 * It does not have to be the owner (ctx_task) of the context per se.
2842 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2843 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2846 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2848 expert_mode
= pfm_sysctl
.expert_mode
;
2850 for (i
= 0; i
< count
; i
++, req
++) {
2852 cnum
= req
->reg_num
;
2853 reg_flags
= req
->reg_flags
;
2854 value
= req
->reg_value
;
2855 smpl_pmds
= req
->reg_smpl_pmds
[0];
2856 reset_pmds
= req
->reg_reset_pmds
[0];
2860 if (cnum
>= PMU_MAX_PMCS
) {
2861 DPRINT(("pmc%u is invalid\n", cnum
));
2865 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2866 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2867 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2868 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2871 * we reject all non implemented PMC as well
2872 * as attempts to modify PMC[0-3] which are used
2873 * as status registers by the PMU
2875 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2876 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2879 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2881 * If the PMC is a monitor, then if the value is not the default:
2882 * - system-wide session: PMCx.pm=1 (privileged monitor)
2883 * - per-task : PMCx.pm=0 (user monitor)
2885 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2886 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2895 * enforce generation of overflow interrupt. Necessary on all
2898 value
|= 1 << PMU_PMC_OI
;
2900 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2901 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2904 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2906 /* verify validity of smpl_pmds */
2907 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2908 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2912 /* verify validity of reset_pmds */
2913 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2914 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2918 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2919 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2922 /* eventid on non-counting monitors are ignored */
2926 * execute write checker, if any
2928 if (likely(expert_mode
== 0 && wr_func
)) {
2929 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2930 if (ret
) goto error
;
2935 * no error on this register
2937 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
2940 * Now we commit the changes to the software state
2944 * update overflow information
2948 * full flag update each time a register is programmed
2950 ctx
->ctx_pmds
[cnum
].flags
= flags
;
2952 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
2953 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
2954 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
2957 * Mark all PMDS to be accessed as used.
2959 * We do not keep track of PMC because we have to
2960 * systematically restore ALL of them.
2962 * We do not update the used_monitors mask, because
2963 * if we have not programmed them, then will be in
2964 * a quiescent state, therefore we will not need to
2965 * mask/restore then when context is MASKED.
2967 CTX_USED_PMD(ctx
, reset_pmds
);
2968 CTX_USED_PMD(ctx
, smpl_pmds
);
2970 * make sure we do not try to reset on
2971 * restart because we have established new values
2973 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
2976 * Needed in case the user does not initialize the equivalent
2977 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2978 * possible leak here.
2980 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
2983 * keep track of the monitor PMC that we are using.
2984 * we save the value of the pmc in ctx_pmcs[] and if
2985 * the monitoring is not stopped for the context we also
2986 * place it in the saved state area so that it will be
2987 * picked up later by the context switch code.
2989 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2991 * The value in th_pmcs[] may be modified on overflow, i.e., when
2992 * monitoring needs to be stopped.
2994 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
2997 * update context state
2999 ctx
->ctx_pmcs
[cnum
] = value
;
3003 * write thread state
3005 if (is_system
== 0) ctx
->th_pmcs
[cnum
] = value
;
3008 * write hardware register if we can
3010 if (can_access_pmu
) {
3011 ia64_set_pmc(cnum
, value
);
3016 * per-task SMP only here
3018 * we are guaranteed that the task is not running on the other CPU,
3019 * we indicate that this PMD will need to be reloaded if the task
3020 * is rescheduled on the CPU it ran last on.
3022 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3027 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3033 ctx
->ctx_all_pmcs
[0],
3034 ctx
->ctx_used_pmds
[0],
3035 ctx
->ctx_pmds
[cnum
].eventid
,
3038 ctx
->ctx_reload_pmcs
[0],
3039 ctx
->ctx_used_monitors
[0],
3040 ctx
->ctx_ovfl_regs
[0]));
3044 * make sure the changes are visible
3046 if (can_access_pmu
) ia64_srlz_d();
3050 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3055 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3057 struct task_struct
*task
;
3058 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3059 unsigned long value
, hw_value
, ovfl_mask
;
3061 int i
, can_access_pmu
= 0, state
;
3062 int is_counting
, is_loaded
, is_system
, expert_mode
;
3064 pfm_reg_check_t wr_func
;
3067 state
= ctx
->ctx_state
;
3068 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3069 is_system
= ctx
->ctx_fl_system
;
3070 ovfl_mask
= pmu_conf
->ovfl_val
;
3071 task
= ctx
->ctx_task
;
3073 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3076 * on both UP and SMP, we can only write to the PMC when the task is
3077 * the owner of the local PMU.
3079 if (likely(is_loaded
)) {
3081 * In system wide and when the context is loaded, access can only happen
3082 * when the caller is running on the CPU being monitored by the session.
3083 * It does not have to be the owner (ctx_task) of the context per se.
3085 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3086 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3089 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3091 expert_mode
= pfm_sysctl
.expert_mode
;
3093 for (i
= 0; i
< count
; i
++, req
++) {
3095 cnum
= req
->reg_num
;
3096 value
= req
->reg_value
;
3098 if (!PMD_IS_IMPL(cnum
)) {
3099 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3102 is_counting
= PMD_IS_COUNTING(cnum
);
3103 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3106 * execute write checker, if any
3108 if (unlikely(expert_mode
== 0 && wr_func
)) {
3109 unsigned long v
= value
;
3111 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3112 if (ret
) goto abort_mission
;
3119 * no error on this register
3121 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3124 * now commit changes to software state
3129 * update virtualized (64bits) counter
3133 * write context state
3135 ctx
->ctx_pmds
[cnum
].lval
= value
;
3138 * when context is load we use the split value
3141 hw_value
= value
& ovfl_mask
;
3142 value
= value
& ~ovfl_mask
;
3146 * update reset values (not just for counters)
3148 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3149 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3152 * update randomization parameters (not just for counters)
3154 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3155 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3158 * update context value
3160 ctx
->ctx_pmds
[cnum
].val
= value
;
3163 * Keep track of what we use
3165 * We do not keep track of PMC because we have to
3166 * systematically restore ALL of them.
3168 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3171 * mark this PMD register used as well
3173 CTX_USED_PMD(ctx
, RDEP(cnum
));
3176 * make sure we do not try to reset on
3177 * restart because we have established new values
3179 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3180 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3185 * write thread state
3187 if (is_system
== 0) ctx
->th_pmds
[cnum
] = hw_value
;
3190 * write hardware register if we can
3192 if (can_access_pmu
) {
3193 ia64_set_pmd(cnum
, hw_value
);
3197 * we are guaranteed that the task is not running on the other CPU,
3198 * we indicate that this PMD will need to be reloaded if the task
3199 * is rescheduled on the CPU it ran last on.
3201 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3206 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3207 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3213 ctx
->ctx_pmds
[cnum
].val
,
3214 ctx
->ctx_pmds
[cnum
].short_reset
,
3215 ctx
->ctx_pmds
[cnum
].long_reset
,
3216 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3217 ctx
->ctx_pmds
[cnum
].seed
,
3218 ctx
->ctx_pmds
[cnum
].mask
,
3219 ctx
->ctx_used_pmds
[0],
3220 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3221 ctx
->ctx_reload_pmds
[0],
3222 ctx
->ctx_all_pmds
[0],
3223 ctx
->ctx_ovfl_regs
[0]));
3227 * make changes visible
3229 if (can_access_pmu
) ia64_srlz_d();
3235 * for now, we have only one possibility for error
3237 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3242 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3243 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3244 * interrupt is delivered during the call, it will be kept pending until we leave, making
3245 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3246 * guaranteed to return consistent data to the user, it may simply be old. It is not
3247 * trivial to treat the overflow while inside the call because you may end up in
3248 * some module sampling buffer code causing deadlocks.
3251 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3253 struct task_struct
*task
;
3254 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3255 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3256 unsigned int cnum
, reg_flags
= 0;
3257 int i
, can_access_pmu
= 0, state
;
3258 int is_loaded
, is_system
, is_counting
, expert_mode
;
3260 pfm_reg_check_t rd_func
;
3263 * access is possible when loaded only for
3264 * self-monitoring tasks or in UP mode
3267 state
= ctx
->ctx_state
;
3268 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3269 is_system
= ctx
->ctx_fl_system
;
3270 ovfl_mask
= pmu_conf
->ovfl_val
;
3271 task
= ctx
->ctx_task
;
3273 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3275 if (likely(is_loaded
)) {
3277 * In system wide and when the context is loaded, access can only happen
3278 * when the caller is running on the CPU being monitored by the session.
3279 * It does not have to be the owner (ctx_task) of the context per se.
3281 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3282 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3286 * this can be true when not self-monitoring only in UP
3288 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3290 if (can_access_pmu
) ia64_srlz_d();
3292 expert_mode
= pfm_sysctl
.expert_mode
;
3294 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3300 * on both UP and SMP, we can only read the PMD from the hardware register when
3301 * the task is the owner of the local PMU.
3304 for (i
= 0; i
< count
; i
++, req
++) {
3306 cnum
= req
->reg_num
;
3307 reg_flags
= req
->reg_flags
;
3309 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3311 * we can only read the register that we use. That includes
3312 * the one we explicitly initialize AND the one we want included
3313 * in the sampling buffer (smpl_regs).
3315 * Having this restriction allows optimization in the ctxsw routine
3316 * without compromising security (leaks)
3318 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3320 sval
= ctx
->ctx_pmds
[cnum
].val
;
3321 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3322 is_counting
= PMD_IS_COUNTING(cnum
);
3325 * If the task is not the current one, then we check if the
3326 * PMU state is still in the local live register due to lazy ctxsw.
3327 * If true, then we read directly from the registers.
3329 if (can_access_pmu
){
3330 val
= ia64_get_pmd(cnum
);
3333 * context has been saved
3334 * if context is zombie, then task does not exist anymore.
3335 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3337 val
= is_loaded
? ctx
->th_pmds
[cnum
] : 0UL;
3339 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3343 * XXX: need to check for overflow when loaded
3350 * execute read checker, if any
3352 if (unlikely(expert_mode
== 0 && rd_func
)) {
3353 unsigned long v
= val
;
3354 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3355 if (ret
) goto error
;
3360 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3362 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3365 * update register return value, abort all if problem during copy.
3366 * we only modify the reg_flags field. no check mode is fine because
3367 * access has been verified upfront in sys_perfmonctl().
3369 req
->reg_value
= val
;
3370 req
->reg_flags
= reg_flags
;
3371 req
->reg_last_reset_val
= lval
;
3377 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3382 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3386 if (req
== NULL
) return -EINVAL
;
3388 ctx
= GET_PMU_CTX();
3390 if (ctx
== NULL
) return -EINVAL
;
3393 * for now limit to current task, which is enough when calling
3394 * from overflow handler
3396 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3398 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3400 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3403 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3407 if (req
== NULL
) return -EINVAL
;
3409 ctx
= GET_PMU_CTX();
3411 if (ctx
== NULL
) return -EINVAL
;
3414 * for now limit to current task, which is enough when calling
3415 * from overflow handler
3417 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3419 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3421 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3424 * Only call this function when a process it trying to
3425 * write the debug registers (reading is always allowed)
3428 pfm_use_debug_registers(struct task_struct
*task
)
3430 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3431 unsigned long flags
;
3434 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3436 DPRINT(("called for [%d]\n", task_pid_nr(task
)));
3441 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3444 * Even on SMP, we do not need to use an atomic here because
3445 * the only way in is via ptrace() and this is possible only when the
3446 * process is stopped. Even in the case where the ctxsw out is not totally
3447 * completed by the time we come here, there is no way the 'stopped' process
3448 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3449 * So this is always safe.
3451 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3456 * We cannot allow setting breakpoints when system wide monitoring
3457 * sessions are using the debug registers.
3459 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3462 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3464 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3465 pfm_sessions
.pfs_ptrace_use_dbregs
,
3466 pfm_sessions
.pfs_sys_use_dbregs
,
3467 task_pid_nr(task
), ret
));
3475 * This function is called for every task that exits with the
3476 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3477 * able to use the debug registers for debugging purposes via
3478 * ptrace(). Therefore we know it was not using them for
3479 * performance monitoring, so we only decrement the number
3480 * of "ptraced" debug register users to keep the count up to date
3483 pfm_release_debug_registers(struct task_struct
*task
)
3485 unsigned long flags
;
3488 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3491 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3492 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task
));
3495 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3504 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3506 struct task_struct
*task
;
3507 pfm_buffer_fmt_t
*fmt
;
3508 pfm_ovfl_ctrl_t rst_ctrl
;
3509 int state
, is_system
;
3512 state
= ctx
->ctx_state
;
3513 fmt
= ctx
->ctx_buf_fmt
;
3514 is_system
= ctx
->ctx_fl_system
;
3515 task
= PFM_CTX_TASK(ctx
);
3518 case PFM_CTX_MASKED
:
3520 case PFM_CTX_LOADED
:
3521 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3523 case PFM_CTX_UNLOADED
:
3524 case PFM_CTX_ZOMBIE
:
3525 DPRINT(("invalid state=%d\n", state
));
3528 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3533 * In system wide and when the context is loaded, access can only happen
3534 * when the caller is running on the CPU being monitored by the session.
3535 * It does not have to be the owner (ctx_task) of the context per se.
3537 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3538 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3543 if (unlikely(task
== NULL
)) {
3544 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", task_pid_nr(current
));
3548 if (task
== current
|| is_system
) {
3550 fmt
= ctx
->ctx_buf_fmt
;
3552 DPRINT(("restarting self %d ovfl=0x%lx\n",
3554 ctx
->ctx_ovfl_regs
[0]));
3556 if (CTX_HAS_SMPL(ctx
)) {
3558 prefetch(ctx
->ctx_smpl_hdr
);
3560 rst_ctrl
.bits
.mask_monitoring
= 0;
3561 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3563 if (state
== PFM_CTX_LOADED
)
3564 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3566 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3568 rst_ctrl
.bits
.mask_monitoring
= 0;
3569 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3573 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3574 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3576 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3577 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task
)));
3579 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3581 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task
)));
3583 // cannot use pfm_stop_monitoring(task, regs);
3587 * clear overflowed PMD mask to remove any stale information
3589 ctx
->ctx_ovfl_regs
[0] = 0UL;
3592 * back to LOADED state
3594 ctx
->ctx_state
= PFM_CTX_LOADED
;
3597 * XXX: not really useful for self monitoring
3599 ctx
->ctx_fl_can_restart
= 0;
3605 * restart another task
3609 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3610 * one is seen by the task.
3612 if (state
== PFM_CTX_MASKED
) {
3613 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3615 * will prevent subsequent restart before this one is
3616 * seen by other task
3618 ctx
->ctx_fl_can_restart
= 0;
3622 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3623 * the task is blocked or on its way to block. That's the normal
3624 * restart path. If the monitoring is not masked, then the task
3625 * can be actively monitoring and we cannot directly intervene.
3626 * Therefore we use the trap mechanism to catch the task and
3627 * force it to reset the buffer/reset PMDs.
3629 * if non-blocking, then we ensure that the task will go into
3630 * pfm_handle_work() before returning to user mode.
3632 * We cannot explicitly reset another task, it MUST always
3633 * be done by the task itself. This works for system wide because
3634 * the tool that is controlling the session is logically doing
3635 * "self-monitoring".
3637 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3638 DPRINT(("unblocking [%d]\n", task_pid_nr(task
)));
3639 complete(&ctx
->ctx_restart_done
);
3641 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task
)));
3643 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3645 PFM_SET_WORK_PENDING(task
, 1);
3647 set_notify_resume(task
);
3650 * XXX: send reschedule if task runs on another CPU
3657 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3659 unsigned int m
= *(unsigned int *)arg
;
3661 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3663 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3666 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3667 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3673 * arg can be NULL and count can be zero for this function
3676 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3678 struct thread_struct
*thread
= NULL
;
3679 struct task_struct
*task
;
3680 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3681 unsigned long flags
;
3686 int i
, can_access_pmu
= 0;
3687 int is_system
, is_loaded
;
3689 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3691 state
= ctx
->ctx_state
;
3692 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3693 is_system
= ctx
->ctx_fl_system
;
3694 task
= ctx
->ctx_task
;
3696 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3699 * on both UP and SMP, we can only write to the PMC when the task is
3700 * the owner of the local PMU.
3703 thread
= &task
->thread
;
3705 * In system wide and when the context is loaded, access can only happen
3706 * when the caller is running on the CPU being monitored by the session.
3707 * It does not have to be the owner (ctx_task) of the context per se.
3709 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3710 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3713 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3717 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3718 * ensuring that no real breakpoint can be installed via this call.
3720 * IMPORTANT: regs can be NULL in this function
3723 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3726 * don't bother if we are loaded and task is being debugged
3728 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3729 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task
)));
3734 * check for debug registers in system wide mode
3736 * If though a check is done in pfm_context_load(),
3737 * we must repeat it here, in case the registers are
3738 * written after the context is loaded
3743 if (first_time
&& is_system
) {
3744 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3747 pfm_sessions
.pfs_sys_use_dbregs
++;
3752 if (ret
!= 0) return ret
;
3755 * mark ourself as user of the debug registers for
3758 ctx
->ctx_fl_using_dbreg
= 1;
3761 * clear hardware registers to make sure we don't
3762 * pick up stale state.
3764 * for a system wide session, we do not use
3765 * thread.dbr, thread.ibr because this process
3766 * never leaves the current CPU and the state
3767 * is shared by all processes running on it
3769 if (first_time
&& can_access_pmu
) {
3770 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task
)));
3771 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3772 ia64_set_ibr(i
, 0UL);
3773 ia64_dv_serialize_instruction();
3776 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3777 ia64_set_dbr(i
, 0UL);
3778 ia64_dv_serialize_data();
3784 * Now install the values into the registers
3786 for (i
= 0; i
< count
; i
++, req
++) {
3788 rnum
= req
->dbreg_num
;
3789 dbreg
.val
= req
->dbreg_value
;
3793 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3794 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3795 rnum
, dbreg
.val
, mode
, i
, count
));
3801 * make sure we do not install enabled breakpoint
3804 if (mode
== PFM_CODE_RR
)
3805 dbreg
.ibr
.ibr_x
= 0;
3807 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3810 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3813 * Debug registers, just like PMC, can only be modified
3814 * by a kernel call. Moreover, perfmon() access to those
3815 * registers are centralized in this routine. The hardware
3816 * does not modify the value of these registers, therefore,
3817 * if we save them as they are written, we can avoid having
3818 * to save them on context switch out. This is made possible
3819 * by the fact that when perfmon uses debug registers, ptrace()
3820 * won't be able to modify them concurrently.
3822 if (mode
== PFM_CODE_RR
) {
3823 CTX_USED_IBR(ctx
, rnum
);
3825 if (can_access_pmu
) {
3826 ia64_set_ibr(rnum
, dbreg
.val
);
3827 ia64_dv_serialize_instruction();
3830 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3832 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3833 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3835 CTX_USED_DBR(ctx
, rnum
);
3837 if (can_access_pmu
) {
3838 ia64_set_dbr(rnum
, dbreg
.val
);
3839 ia64_dv_serialize_data();
3841 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3843 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3844 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3852 * in case it was our first attempt, we undo the global modifications
3856 if (ctx
->ctx_fl_system
) {
3857 pfm_sessions
.pfs_sys_use_dbregs
--;
3860 ctx
->ctx_fl_using_dbreg
= 0;
3863 * install error return flag
3865 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3871 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3873 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3877 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3879 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3883 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3887 if (req
== NULL
) return -EINVAL
;
3889 ctx
= GET_PMU_CTX();
3891 if (ctx
== NULL
) return -EINVAL
;
3894 * for now limit to current task, which is enough when calling
3895 * from overflow handler
3897 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3899 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3901 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3904 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3908 if (req
== NULL
) return -EINVAL
;
3910 ctx
= GET_PMU_CTX();
3912 if (ctx
== NULL
) return -EINVAL
;
3915 * for now limit to current task, which is enough when calling
3916 * from overflow handler
3918 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3920 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3922 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3926 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3928 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3930 req
->ft_version
= PFM_VERSION
;
3935 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3937 struct pt_regs
*tregs
;
3938 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
3939 int state
, is_system
;
3941 state
= ctx
->ctx_state
;
3942 is_system
= ctx
->ctx_fl_system
;
3945 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3947 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
3950 * In system wide and when the context is loaded, access can only happen
3951 * when the caller is running on the CPU being monitored by the session.
3952 * It does not have to be the owner (ctx_task) of the context per se.
3954 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3955 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3958 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3959 task_pid_nr(PFM_CTX_TASK(ctx
)),
3963 * in system mode, we need to update the PMU directly
3964 * and the user level state of the caller, which may not
3965 * necessarily be the creator of the context.
3969 * Update local PMU first
3973 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
3977 * update local cpuinfo
3979 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
3982 * stop monitoring, does srlz.i
3987 * stop monitoring in the caller
3989 ia64_psr(regs
)->pp
= 0;
3997 if (task
== current
) {
3998 /* stop monitoring at kernel level */
4002 * stop monitoring at the user level
4004 ia64_psr(regs
)->up
= 0;
4006 tregs
= task_pt_regs(task
);
4009 * stop monitoring at the user level
4011 ia64_psr(tregs
)->up
= 0;
4014 * monitoring disabled in kernel at next reschedule
4016 ctx
->ctx_saved_psr_up
= 0;
4017 DPRINT(("task=[%d]\n", task_pid_nr(task
)));
4024 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4026 struct pt_regs
*tregs
;
4027 int state
, is_system
;
4029 state
= ctx
->ctx_state
;
4030 is_system
= ctx
->ctx_fl_system
;
4032 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4035 * In system wide and when the context is loaded, access can only happen
4036 * when the caller is running on the CPU being monitored by the session.
4037 * It does not have to be the owner (ctx_task) of the context per se.
4039 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4040 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4045 * in system mode, we need to update the PMU directly
4046 * and the user level state of the caller, which may not
4047 * necessarily be the creator of the context.
4052 * set user level psr.pp for the caller
4054 ia64_psr(regs
)->pp
= 1;
4057 * now update the local PMU and cpuinfo
4059 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4062 * start monitoring at kernel level
4067 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4077 if (ctx
->ctx_task
== current
) {
4079 /* start monitoring at kernel level */
4083 * activate monitoring at user level
4085 ia64_psr(regs
)->up
= 1;
4088 tregs
= task_pt_regs(ctx
->ctx_task
);
4091 * start monitoring at the kernel level the next
4092 * time the task is scheduled
4094 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4097 * activate monitoring at user level
4099 ia64_psr(tregs
)->up
= 1;
4105 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4107 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4112 for (i
= 0; i
< count
; i
++, req
++) {
4114 cnum
= req
->reg_num
;
4116 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4118 req
->reg_value
= PMC_DFL_VAL(cnum
);
4120 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4122 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4127 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4132 pfm_check_task_exist(pfm_context_t
*ctx
)
4134 struct task_struct
*g
, *t
;
4137 read_lock(&tasklist_lock
);
4139 do_each_thread (g
, t
) {
4140 if (t
->thread
.pfm_context
== ctx
) {
4144 } while_each_thread (g
, t
);
4146 read_unlock(&tasklist_lock
);
4148 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4154 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4156 struct task_struct
*task
;
4157 struct thread_struct
*thread
;
4158 struct pfm_context_t
*old
;
4159 unsigned long flags
;
4161 struct task_struct
*owner_task
= NULL
;
4163 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4164 unsigned long *pmcs_source
, *pmds_source
;
4167 int state
, is_system
, set_dbregs
= 0;
4169 state
= ctx
->ctx_state
;
4170 is_system
= ctx
->ctx_fl_system
;
4172 * can only load from unloaded or terminated state
4174 if (state
!= PFM_CTX_UNLOADED
) {
4175 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4181 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4183 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4184 DPRINT(("cannot use blocking mode on self\n"));
4188 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4190 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4197 * system wide is self monitoring only
4199 if (is_system
&& task
!= current
) {
4200 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4205 thread
= &task
->thread
;
4209 * cannot load a context which is using range restrictions,
4210 * into a task that is being debugged.
4212 if (ctx
->ctx_fl_using_dbreg
) {
4213 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4215 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4221 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4222 DPRINT(("cannot load [%d] dbregs in use\n",
4223 task_pid_nr(task
)));
4226 pfm_sessions
.pfs_sys_use_dbregs
++;
4227 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task
), pfm_sessions
.pfs_sys_use_dbregs
));
4234 if (ret
) goto error
;
4238 * SMP system-wide monitoring implies self-monitoring.
4240 * The programming model expects the task to
4241 * be pinned on a CPU throughout the session.
4242 * Here we take note of the current CPU at the
4243 * time the context is loaded. No call from
4244 * another CPU will be allowed.
4246 * The pinning via shed_setaffinity()
4247 * must be done by the calling task prior
4250 * systemwide: keep track of CPU this session is supposed to run on
4252 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4256 * now reserve the session
4258 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4259 if (ret
) goto error
;
4262 * task is necessarily stopped at this point.
4264 * If the previous context was zombie, then it got removed in
4265 * pfm_save_regs(). Therefore we should not see it here.
4266 * If we see a context, then this is an active context
4268 * XXX: needs to be atomic
4270 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4271 thread
->pfm_context
, ctx
));
4274 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4276 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4280 pfm_reset_msgq(ctx
);
4282 ctx
->ctx_state
= PFM_CTX_LOADED
;
4285 * link context to task
4287 ctx
->ctx_task
= task
;
4291 * we load as stopped
4293 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4294 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4296 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4298 thread
->flags
|= IA64_THREAD_PM_VALID
;
4302 * propagate into thread-state
4304 pfm_copy_pmds(task
, ctx
);
4305 pfm_copy_pmcs(task
, ctx
);
4307 pmcs_source
= ctx
->th_pmcs
;
4308 pmds_source
= ctx
->th_pmds
;
4311 * always the case for system-wide
4313 if (task
== current
) {
4315 if (is_system
== 0) {
4317 /* allow user level control */
4318 ia64_psr(regs
)->sp
= 0;
4319 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task
)));
4321 SET_LAST_CPU(ctx
, smp_processor_id());
4323 SET_ACTIVATION(ctx
);
4326 * push the other task out, if any
4328 owner_task
= GET_PMU_OWNER();
4329 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4333 * load all PMD from ctx to PMU (as opposed to thread state)
4334 * restore all PMC from ctx to PMU
4336 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4337 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4339 ctx
->ctx_reload_pmcs
[0] = 0UL;
4340 ctx
->ctx_reload_pmds
[0] = 0UL;
4343 * guaranteed safe by earlier check against DBG_VALID
4345 if (ctx
->ctx_fl_using_dbreg
) {
4346 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4347 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4352 SET_PMU_OWNER(task
, ctx
);
4354 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task
)));
4357 * when not current, task MUST be stopped, so this is safe
4359 regs
= task_pt_regs(task
);
4361 /* force a full reload */
4362 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4363 SET_LAST_CPU(ctx
, -1);
4365 /* initial saved psr (stopped) */
4366 ctx
->ctx_saved_psr_up
= 0UL;
4367 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4373 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4376 * we must undo the dbregs setting (for system-wide)
4378 if (ret
&& set_dbregs
) {
4380 pfm_sessions
.pfs_sys_use_dbregs
--;
4384 * release task, there is now a link with the context
4386 if (is_system
== 0 && task
!= current
) {
4390 ret
= pfm_check_task_exist(ctx
);
4392 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4393 ctx
->ctx_task
= NULL
;
4401 * in this function, we do not need to increase the use count
4402 * for the task via get_task_struct(), because we hold the
4403 * context lock. If the task were to disappear while having
4404 * a context attached, it would go through pfm_exit_thread()
4405 * which also grabs the context lock and would therefore be blocked
4406 * until we are here.
4408 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4411 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4413 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4414 struct pt_regs
*tregs
;
4415 int prev_state
, is_system
;
4418 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task_pid_nr(task
) : -1));
4420 prev_state
= ctx
->ctx_state
;
4421 is_system
= ctx
->ctx_fl_system
;
4424 * unload only when necessary
4426 if (prev_state
== PFM_CTX_UNLOADED
) {
4427 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4432 * clear psr and dcr bits
4434 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4435 if (ret
) return ret
;
4437 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4440 * in system mode, we need to update the PMU directly
4441 * and the user level state of the caller, which may not
4442 * necessarily be the creator of the context.
4449 * local PMU is taken care of in pfm_stop()
4451 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4452 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4455 * save PMDs in context
4458 pfm_flush_pmds(current
, ctx
);
4461 * at this point we are done with the PMU
4462 * so we can unreserve the resource.
4464 if (prev_state
!= PFM_CTX_ZOMBIE
)
4465 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4468 * disconnect context from task
4470 task
->thread
.pfm_context
= NULL
;
4472 * disconnect task from context
4474 ctx
->ctx_task
= NULL
;
4477 * There is nothing more to cleanup here.
4485 tregs
= task
== current
? regs
: task_pt_regs(task
);
4487 if (task
== current
) {
4489 * cancel user level control
4491 ia64_psr(regs
)->sp
= 1;
4493 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task
)));
4496 * save PMDs to context
4499 pfm_flush_pmds(task
, ctx
);
4502 * at this point we are done with the PMU
4503 * so we can unreserve the resource.
4505 * when state was ZOMBIE, we have already unreserved.
4507 if (prev_state
!= PFM_CTX_ZOMBIE
)
4508 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4511 * reset activation counter and psr
4513 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4514 SET_LAST_CPU(ctx
, -1);
4517 * PMU state will not be restored
4519 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4522 * break links between context and task
4524 task
->thread
.pfm_context
= NULL
;
4525 ctx
->ctx_task
= NULL
;
4527 PFM_SET_WORK_PENDING(task
, 0);
4529 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4530 ctx
->ctx_fl_can_restart
= 0;
4531 ctx
->ctx_fl_going_zombie
= 0;
4533 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task
)));
4540 * called only from exit_thread()
4541 * we come here only if the task has a context attached (loaded or masked)
4544 pfm_exit_thread(struct task_struct
*task
)
4547 unsigned long flags
;
4548 struct pt_regs
*regs
= task_pt_regs(task
);
4552 ctx
= PFM_GET_CTX(task
);
4554 PROTECT_CTX(ctx
, flags
);
4556 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task_pid_nr(task
)));
4558 state
= ctx
->ctx_state
;
4560 case PFM_CTX_UNLOADED
:
4562 * only comes to this function if pfm_context is not NULL, i.e., cannot
4563 * be in unloaded state
4565 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task
));
4567 case PFM_CTX_LOADED
:
4568 case PFM_CTX_MASKED
:
4569 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4571 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4573 DPRINT(("ctx unloaded for current state was %d\n", state
));
4575 pfm_end_notify_user(ctx
);
4577 case PFM_CTX_ZOMBIE
:
4578 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4580 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4585 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task
), state
);
4588 UNPROTECT_CTX(ctx
, flags
);
4590 { u64 psr
= pfm_get_psr();
4591 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4592 BUG_ON(GET_PMU_OWNER());
4593 BUG_ON(ia64_psr(regs
)->up
);
4594 BUG_ON(ia64_psr(regs
)->pp
);
4598 * All memory free operations (especially for vmalloc'ed memory)
4599 * MUST be done with interrupts ENABLED.
4601 if (free_ok
) pfm_context_free(ctx
);
4605 * functions MUST be listed in the increasing order of their index (see permfon.h)
4607 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4608 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4609 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4610 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4611 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4613 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4614 /* 0 */PFM_CMD_NONE
,
4615 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4616 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4617 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4618 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4619 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4620 /* 6 */PFM_CMD_NONE
,
4621 /* 7 */PFM_CMD_NONE
,
4622 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4623 /* 9 */PFM_CMD_NONE
,
4624 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4625 /* 11 */PFM_CMD_NONE
,
4626 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4627 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4628 /* 14 */PFM_CMD_NONE
,
4629 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4630 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4631 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4632 /* 18 */PFM_CMD_NONE
,
4633 /* 19 */PFM_CMD_NONE
,
4634 /* 20 */PFM_CMD_NONE
,
4635 /* 21 */PFM_CMD_NONE
,
4636 /* 22 */PFM_CMD_NONE
,
4637 /* 23 */PFM_CMD_NONE
,
4638 /* 24 */PFM_CMD_NONE
,
4639 /* 25 */PFM_CMD_NONE
,
4640 /* 26 */PFM_CMD_NONE
,
4641 /* 27 */PFM_CMD_NONE
,
4642 /* 28 */PFM_CMD_NONE
,
4643 /* 29 */PFM_CMD_NONE
,
4644 /* 30 */PFM_CMD_NONE
,
4645 /* 31 */PFM_CMD_NONE
,
4646 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4647 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4649 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4652 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4654 struct task_struct
*task
;
4655 int state
, old_state
;
4658 state
= ctx
->ctx_state
;
4659 task
= ctx
->ctx_task
;
4662 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4666 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4670 task
->state
, PFM_CMD_STOPPED(cmd
)));
4673 * self-monitoring always ok.
4675 * for system-wide the caller can either be the creator of the
4676 * context (to one to which the context is attached to) OR
4677 * a task running on the same CPU as the session.
4679 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4682 * we are monitoring another thread
4685 case PFM_CTX_UNLOADED
:
4687 * if context is UNLOADED we are safe to go
4690 case PFM_CTX_ZOMBIE
:
4692 * no command can operate on a zombie context
4694 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4696 case PFM_CTX_MASKED
:
4698 * PMU state has been saved to software even though
4699 * the thread may still be running.
4701 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4705 * context is LOADED or MASKED. Some commands may need to have
4708 * We could lift this restriction for UP but it would mean that
4709 * the user has no guarantee the task would not run between
4710 * two successive calls to perfmonctl(). That's probably OK.
4711 * If this user wants to ensure the task does not run, then
4712 * the task must be stopped.
4714 if (PFM_CMD_STOPPED(cmd
)) {
4715 if (!task_is_stopped_or_traced(task
)) {
4716 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task
)));
4720 * task is now stopped, wait for ctxsw out
4722 * This is an interesting point in the code.
4723 * We need to unprotect the context because
4724 * the pfm_save_regs() routines needs to grab
4725 * the same lock. There are danger in doing
4726 * this because it leaves a window open for
4727 * another task to get access to the context
4728 * and possibly change its state. The one thing
4729 * that is not possible is for the context to disappear
4730 * because we are protected by the VFS layer, i.e.,
4731 * get_fd()/put_fd().
4735 UNPROTECT_CTX(ctx
, flags
);
4737 wait_task_inactive(task
, 0);
4739 PROTECT_CTX(ctx
, flags
);
4742 * we must recheck to verify if state has changed
4744 if (ctx
->ctx_state
!= old_state
) {
4745 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4753 * system-call entry point (must return long)
4756 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4758 struct fd f
= {NULL
, 0};
4759 pfm_context_t
*ctx
= NULL
;
4760 unsigned long flags
= 0UL;
4761 void *args_k
= NULL
;
4762 long ret
; /* will expand int return types */
4763 size_t base_sz
, sz
, xtra_sz
= 0;
4764 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4765 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4766 int (*getsize
)(void *arg
, size_t *sz
);
4767 #define PFM_MAX_ARGSIZE 4096
4770 * reject any call if perfmon was disabled at initialization
4772 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4774 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4775 DPRINT(("invalid cmd=%d\n", cmd
));
4779 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4780 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4781 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4782 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4783 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4785 if (unlikely(func
== NULL
)) {
4786 DPRINT(("invalid cmd=%d\n", cmd
));
4790 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4798 * check if number of arguments matches what the command expects
4800 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4804 sz
= xtra_sz
+ base_sz
*count
;
4806 * limit abuse to min page size
4808 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4809 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", task_pid_nr(current
), sz
);
4814 * allocate default-sized argument buffer
4816 if (likely(count
&& args_k
== NULL
)) {
4817 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4818 if (args_k
== NULL
) return -ENOMEM
;
4826 * assume sz = 0 for command without parameters
4828 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4829 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4834 * check if command supports extra parameters
4836 if (completed_args
== 0 && getsize
) {
4838 * get extra parameters size (based on main argument)
4840 ret
= (*getsize
)(args_k
, &xtra_sz
);
4841 if (ret
) goto error_args
;
4845 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4847 /* retry if necessary */
4848 if (likely(xtra_sz
)) goto restart_args
;
4851 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4856 if (unlikely(f
.file
== NULL
)) {
4857 DPRINT(("invalid fd %d\n", fd
));
4860 if (unlikely(PFM_IS_FILE(f
.file
) == 0)) {
4861 DPRINT(("fd %d not related to perfmon\n", fd
));
4865 ctx
= f
.file
->private_data
;
4866 if (unlikely(ctx
== NULL
)) {
4867 DPRINT(("no context for fd %d\n", fd
));
4870 prefetch(&ctx
->ctx_state
);
4872 PROTECT_CTX(ctx
, flags
);
4875 * check task is stopped
4877 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4878 if (unlikely(ret
)) goto abort_locked
;
4881 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4887 DPRINT(("context unlocked\n"));
4888 UNPROTECT_CTX(ctx
, flags
);
4891 /* copy argument back to user, if needed */
4892 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4900 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4906 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4908 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4909 pfm_ovfl_ctrl_t rst_ctrl
;
4913 state
= ctx
->ctx_state
;
4915 * Unlock sampling buffer and reset index atomically
4916 * XXX: not really needed when blocking
4918 if (CTX_HAS_SMPL(ctx
)) {
4920 rst_ctrl
.bits
.mask_monitoring
= 0;
4921 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4923 if (state
== PFM_CTX_LOADED
)
4924 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4926 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4928 rst_ctrl
.bits
.mask_monitoring
= 0;
4929 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4933 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4934 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
4936 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
4937 DPRINT(("resuming monitoring\n"));
4938 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
4940 DPRINT(("stopping monitoring\n"));
4941 //pfm_stop_monitoring(current, regs);
4943 ctx
->ctx_state
= PFM_CTX_LOADED
;
4948 * context MUST BE LOCKED when calling
4949 * can only be called for current
4952 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
4956 DPRINT(("entering for [%d]\n", task_pid_nr(current
)));
4958 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4960 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current
), ret
);
4964 * and wakeup controlling task, indicating we are now disconnected
4966 wake_up_interruptible(&ctx
->ctx_zombieq
);
4969 * given that context is still locked, the controlling
4970 * task will only get access when we return from
4971 * pfm_handle_work().
4975 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
4978 * pfm_handle_work() can be called with interrupts enabled
4979 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4980 * call may sleep, therefore we must re-enable interrupts
4981 * to avoid deadlocks. It is safe to do so because this function
4982 * is called ONLY when returning to user level (pUStk=1), in which case
4983 * there is no risk of kernel stack overflow due to deep
4984 * interrupt nesting.
4987 pfm_handle_work(void)
4990 struct pt_regs
*regs
;
4991 unsigned long flags
, dummy_flags
;
4992 unsigned long ovfl_regs
;
4993 unsigned int reason
;
4996 ctx
= PFM_GET_CTX(current
);
4998 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n",
4999 task_pid_nr(current
));
5003 PROTECT_CTX(ctx
, flags
);
5005 PFM_SET_WORK_PENDING(current
, 0);
5007 regs
= task_pt_regs(current
);
5010 * extract reason for being here and clear
5012 reason
= ctx
->ctx_fl_trap_reason
;
5013 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5014 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5016 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5019 * must be done before we check for simple-reset mode
5021 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
)
5024 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5025 if (reason
== PFM_TRAP_REASON_RESET
)
5029 * restore interrupt mask to what it was on entry.
5030 * Could be enabled/diasbled.
5032 UNPROTECT_CTX(ctx
, flags
);
5035 * force interrupt enable because of down_interruptible()
5039 DPRINT(("before block sleeping\n"));
5042 * may go through without blocking on SMP systems
5043 * if restart has been received already by the time we call down()
5045 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
5047 DPRINT(("after block sleeping ret=%d\n", ret
));
5050 * lock context and mask interrupts again
5051 * We save flags into a dummy because we may have
5052 * altered interrupts mask compared to entry in this
5055 PROTECT_CTX(ctx
, dummy_flags
);
5058 * we need to read the ovfl_regs only after wake-up
5059 * because we may have had pfm_write_pmds() in between
5060 * and that can changed PMD values and therefore
5061 * ovfl_regs is reset for these new PMD values.
5063 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5065 if (ctx
->ctx_fl_going_zombie
) {
5067 DPRINT(("context is zombie, bailing out\n"));
5068 pfm_context_force_terminate(ctx
, regs
);
5072 * in case of interruption of down() we don't restart anything
5078 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5079 ctx
->ctx_ovfl_regs
[0] = 0UL;
5083 * restore flags as they were upon entry
5085 UNPROTECT_CTX(ctx
, flags
);
5089 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5091 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5092 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5096 DPRINT(("waking up somebody\n"));
5098 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5101 * safe, we are not in intr handler, nor in ctxsw when
5104 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5110 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5112 pfm_msg_t
*msg
= NULL
;
5114 if (ctx
->ctx_fl_no_msg
== 0) {
5115 msg
= pfm_get_new_msg(ctx
);
5117 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5121 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5122 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5123 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5124 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5125 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5126 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5127 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5128 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5131 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5137 return pfm_notify_user(ctx
, msg
);
5141 pfm_end_notify_user(pfm_context_t
*ctx
)
5145 msg
= pfm_get_new_msg(ctx
);
5147 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5151 memset(msg
, 0, sizeof(*msg
));
5153 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5154 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5155 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5157 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5162 return pfm_notify_user(ctx
, msg
);
5166 * main overflow processing routine.
5167 * it can be called from the interrupt path or explicitly during the context switch code
5169 static void pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
,
5170 unsigned long pmc0
, struct pt_regs
*regs
)
5172 pfm_ovfl_arg_t
*ovfl_arg
;
5174 unsigned long old_val
, ovfl_val
, new_val
;
5175 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5176 unsigned long tstamp
;
5177 pfm_ovfl_ctrl_t ovfl_ctrl
;
5178 unsigned int i
, has_smpl
;
5179 int must_notify
= 0;
5181 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5184 * sanity test. Should never happen
5186 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5188 tstamp
= ia64_get_itc();
5189 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5190 ovfl_val
= pmu_conf
->ovfl_val
;
5191 has_smpl
= CTX_HAS_SMPL(ctx
);
5193 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5194 "used_pmds=0x%lx\n",
5196 task
? task_pid_nr(task
): -1,
5197 (regs
? regs
->cr_iip
: 0),
5198 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5199 ctx
->ctx_used_pmds
[0]));
5203 * first we update the virtual counters
5204 * assume there was a prior ia64_srlz_d() issued
5206 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5208 /* skip pmd which did not overflow */
5209 if ((mask
& 0x1) == 0) continue;
5212 * Note that the pmd is not necessarily 0 at this point as qualified events
5213 * may have happened before the PMU was frozen. The residual count is not
5214 * taken into consideration here but will be with any read of the pmd via
5217 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5218 new_val
+= 1 + ovfl_val
;
5219 ctx
->ctx_pmds
[i
].val
= new_val
;
5222 * check for overflow condition
5224 if (likely(old_val
> new_val
)) {
5225 ovfl_pmds
|= 1UL << i
;
5226 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5229 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5233 ia64_get_pmd(i
) & ovfl_val
,
5239 * there was no 64-bit overflow, nothing else to do
5241 if (ovfl_pmds
== 0UL) return;
5244 * reset all control bits
5250 * if a sampling format module exists, then we "cache" the overflow by
5251 * calling the module's handler() routine.
5254 unsigned long start_cycles
, end_cycles
;
5255 unsigned long pmd_mask
;
5257 int this_cpu
= smp_processor_id();
5259 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5260 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5262 prefetch(ctx
->ctx_smpl_hdr
);
5264 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5268 if ((pmd_mask
& 0x1) == 0) continue;
5270 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5271 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5272 ovfl_arg
->active_set
= 0;
5273 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5274 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5276 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5277 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5278 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5281 * copy values of pmds of interest. Sampling format may copy them
5282 * into sampling buffer.
5285 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5286 if ((smpl_pmds
& 0x1) == 0) continue;
5287 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5288 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5292 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5294 start_cycles
= ia64_get_itc();
5297 * call custom buffer format record (handler) routine
5299 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5301 end_cycles
= ia64_get_itc();
5304 * For those controls, we take the union because they have
5305 * an all or nothing behavior.
5307 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5308 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5309 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5311 * build the bitmask of pmds to reset now
5313 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5315 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5318 * when the module cannot handle the rest of the overflows, we abort right here
5320 if (ret
&& pmd_mask
) {
5321 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5322 pmd_mask
<<PMU_FIRST_COUNTER
));
5325 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5327 ovfl_pmds
&= ~reset_pmds
;
5330 * when no sampling module is used, then the default
5331 * is to notify on overflow if requested by user
5333 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5334 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5335 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5336 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5338 * if needed, we reset all overflowed pmds
5340 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5343 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5346 * reset the requested PMD registers using the short reset values
5349 unsigned long bm
= reset_pmds
;
5350 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5353 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5355 * keep track of what to reset when unblocking
5357 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5360 * check for blocking context
5362 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5364 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5367 * set the perfmon specific checking pending work for the task
5369 PFM_SET_WORK_PENDING(task
, 1);
5372 * when coming from ctxsw, current still points to the
5373 * previous task, therefore we must work with task and not current.
5375 set_notify_resume(task
);
5378 * defer until state is changed (shorten spin window). the context is locked
5379 * anyway, so the signal receiver would come spin for nothing.
5384 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5385 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5386 PFM_GET_WORK_PENDING(task
),
5387 ctx
->ctx_fl_trap_reason
,
5390 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5392 * in case monitoring must be stopped, we toggle the psr bits
5394 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5395 pfm_mask_monitoring(task
);
5396 ctx
->ctx_state
= PFM_CTX_MASKED
;
5397 ctx
->ctx_fl_can_restart
= 1;
5401 * send notification now
5403 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5408 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5410 task
? task_pid_nr(task
) : -1,
5416 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5417 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5418 * come here as zombie only if the task is the current task. In which case, we
5419 * can access the PMU hardware directly.
5421 * Note that zombies do have PM_VALID set. So here we do the minimal.
5423 * In case the context was zombified it could not be reclaimed at the time
5424 * the monitoring program exited. At this point, the PMU reservation has been
5425 * returned, the sampiing buffer has been freed. We must convert this call
5426 * into a spurious interrupt. However, we must also avoid infinite overflows
5427 * by stopping monitoring for this task. We can only come here for a per-task
5428 * context. All we need to do is to stop monitoring using the psr bits which
5429 * are always task private. By re-enabling secure montioring, we ensure that
5430 * the monitored task will not be able to re-activate monitoring.
5431 * The task will eventually be context switched out, at which point the context
5432 * will be reclaimed (that includes releasing ownership of the PMU).
5434 * So there might be a window of time where the number of per-task session is zero
5435 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5436 * context. This is safe because if a per-task session comes in, it will push this one
5437 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5438 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5439 * also push our zombie context out.
5441 * Overall pretty hairy stuff....
5443 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task_pid_nr(task
): -1));
5445 ia64_psr(regs
)->up
= 0;
5446 ia64_psr(regs
)->sp
= 1;
5451 pfm_do_interrupt_handler(void *arg
, struct pt_regs
*regs
)
5453 struct task_struct
*task
;
5455 unsigned long flags
;
5457 int this_cpu
= smp_processor_id();
5460 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5463 * srlz.d done before arriving here
5465 pmc0
= ia64_get_pmc(0);
5467 task
= GET_PMU_OWNER();
5468 ctx
= GET_PMU_CTX();
5471 * if we have some pending bits set
5472 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5474 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5476 * we assume that pmc0.fr is always set here
5480 if (!ctx
) goto report_spurious1
;
5482 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5483 goto report_spurious2
;
5485 PROTECT_CTX_NOPRINT(ctx
, flags
);
5487 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5489 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5492 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5496 * keep it unfrozen at all times
5503 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5504 this_cpu
, task_pid_nr(task
));
5508 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5516 pfm_interrupt_handler(int irq
, void *arg
)
5518 unsigned long start_cycles
, total_cycles
;
5519 unsigned long min
, max
;
5522 struct pt_regs
*regs
= get_irq_regs();
5524 this_cpu
= get_cpu();
5525 if (likely(!pfm_alt_intr_handler
)) {
5526 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5527 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5529 start_cycles
= ia64_get_itc();
5531 ret
= pfm_do_interrupt_handler(arg
, regs
);
5533 total_cycles
= ia64_get_itc();
5536 * don't measure spurious interrupts
5538 if (likely(ret
== 0)) {
5539 total_cycles
-= start_cycles
;
5541 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5542 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5544 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5548 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5556 * /proc/perfmon interface, for debug only
5559 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5562 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5565 return PFM_PROC_SHOW_HEADER
;
5568 while (*pos
<= nr_cpu_ids
) {
5569 if (cpu_online(*pos
- 1)) {
5570 return (void *)*pos
;
5578 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5581 return pfm_proc_start(m
, pos
);
5585 pfm_proc_stop(struct seq_file
*m
, void *v
)
5590 pfm_proc_show_header(struct seq_file
*m
)
5592 struct list_head
* pos
;
5593 pfm_buffer_fmt_t
* entry
;
5594 unsigned long flags
;
5597 "perfmon version : %u.%u\n"
5600 "expert mode : %s\n"
5601 "ovfl_mask : 0x%lx\n"
5602 "PMU flags : 0x%x\n",
5603 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5605 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5606 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5613 "proc_sessions : %u\n"
5614 "sys_sessions : %u\n"
5615 "sys_use_dbregs : %u\n"
5616 "ptrace_use_dbregs : %u\n",
5617 pfm_sessions
.pfs_task_sessions
,
5618 pfm_sessions
.pfs_sys_sessions
,
5619 pfm_sessions
.pfs_sys_use_dbregs
,
5620 pfm_sessions
.pfs_ptrace_use_dbregs
);
5624 spin_lock(&pfm_buffer_fmt_lock
);
5626 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5627 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5628 seq_printf(m
, "format : %16phD %s\n",
5629 entry
->fmt_uuid
, entry
->fmt_name
);
5631 spin_unlock(&pfm_buffer_fmt_lock
);
5636 pfm_proc_show(struct seq_file
*m
, void *v
)
5642 if (v
== PFM_PROC_SHOW_HEADER
) {
5643 pfm_proc_show_header(m
);
5647 /* show info for CPU (v - 1) */
5651 "CPU%-2d overflow intrs : %lu\n"
5652 "CPU%-2d overflow cycles : %lu\n"
5653 "CPU%-2d overflow min : %lu\n"
5654 "CPU%-2d overflow max : %lu\n"
5655 "CPU%-2d smpl handler calls : %lu\n"
5656 "CPU%-2d smpl handler cycles : %lu\n"
5657 "CPU%-2d spurious intrs : %lu\n"
5658 "CPU%-2d replay intrs : %lu\n"
5659 "CPU%-2d syst_wide : %d\n"
5660 "CPU%-2d dcr_pp : %d\n"
5661 "CPU%-2d exclude idle : %d\n"
5662 "CPU%-2d owner : %d\n"
5663 "CPU%-2d context : %p\n"
5664 "CPU%-2d activations : %lu\n",
5665 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5666 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5667 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5668 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5669 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5670 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5671 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5672 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5673 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5674 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5675 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5676 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5677 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5678 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5680 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5682 psr
= pfm_get_psr();
5687 "CPU%-2d psr : 0x%lx\n"
5688 "CPU%-2d pmc0 : 0x%lx\n",
5690 cpu
, ia64_get_pmc(0));
5692 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5693 if (PMC_IS_COUNTING(i
) == 0) continue;
5695 "CPU%-2d pmc%u : 0x%lx\n"
5696 "CPU%-2d pmd%u : 0x%lx\n",
5697 cpu
, i
, ia64_get_pmc(i
),
5698 cpu
, i
, ia64_get_pmd(i
));
5704 const struct seq_operations pfm_seq_ops
= {
5705 .start
= pfm_proc_start
,
5706 .next
= pfm_proc_next
,
5707 .stop
= pfm_proc_stop
,
5708 .show
= pfm_proc_show
5712 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5714 return seq_open(file
, &pfm_seq_ops
);
5719 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5720 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5721 * is active or inactive based on mode. We must rely on the value in
5722 * local_cpu_data->pfm_syst_info
5725 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5727 struct pt_regs
*regs
;
5729 unsigned long dcr_pp
;
5731 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5734 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5735 * on every CPU, so we can rely on the pid to identify the idle task.
5737 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5738 regs
= task_pt_regs(task
);
5739 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5743 * if monitoring has started
5746 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5748 * context switching in?
5751 /* mask monitoring for the idle task */
5752 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5758 * context switching out
5759 * restore monitoring for next task
5761 * Due to inlining this odd if-then-else construction generates
5764 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5773 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5775 struct task_struct
*task
= ctx
->ctx_task
;
5777 ia64_psr(regs
)->up
= 0;
5778 ia64_psr(regs
)->sp
= 1;
5780 if (GET_PMU_OWNER() == task
) {
5781 DPRINT(("cleared ownership for [%d]\n",
5782 task_pid_nr(ctx
->ctx_task
)));
5783 SET_PMU_OWNER(NULL
, NULL
);
5787 * disconnect the task from the context and vice-versa
5789 PFM_SET_WORK_PENDING(task
, 0);
5791 task
->thread
.pfm_context
= NULL
;
5792 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5794 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task
)));
5799 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5802 pfm_save_regs(struct task_struct
*task
)
5805 unsigned long flags
;
5809 ctx
= PFM_GET_CTX(task
);
5810 if (ctx
== NULL
) return;
5813 * we always come here with interrupts ALREADY disabled by
5814 * the scheduler. So we simply need to protect against concurrent
5815 * access, not CPU concurrency.
5817 flags
= pfm_protect_ctx_ctxsw(ctx
);
5819 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5820 struct pt_regs
*regs
= task_pt_regs(task
);
5824 pfm_force_cleanup(ctx
, regs
);
5826 BUG_ON(ctx
->ctx_smpl_hdr
);
5828 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5830 pfm_context_free(ctx
);
5835 * save current PSR: needed because we modify it
5838 psr
= pfm_get_psr();
5840 BUG_ON(psr
& (IA64_PSR_I
));
5844 * This is the last instruction which may generate an overflow
5846 * We do not need to set psr.sp because, it is irrelevant in kernel.
5847 * It will be restored from ipsr when going back to user level
5852 * keep a copy of psr.up (for reload)
5854 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5857 * release ownership of this PMU.
5858 * PM interrupts are masked, so nothing
5861 SET_PMU_OWNER(NULL
, NULL
);
5864 * we systematically save the PMD as we have no
5865 * guarantee we will be schedule at that same
5868 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5871 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5872 * we will need it on the restore path to check
5873 * for pending overflow.
5875 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5878 * unfreeze PMU if had pending overflows
5880 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5883 * finally, allow context access.
5884 * interrupts will still be masked after this call.
5886 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5889 #else /* !CONFIG_SMP */
5891 pfm_save_regs(struct task_struct
*task
)
5896 ctx
= PFM_GET_CTX(task
);
5897 if (ctx
== NULL
) return;
5900 * save current PSR: needed because we modify it
5902 psr
= pfm_get_psr();
5904 BUG_ON(psr
& (IA64_PSR_I
));
5908 * This is the last instruction which may generate an overflow
5910 * We do not need to set psr.sp because, it is irrelevant in kernel.
5911 * It will be restored from ipsr when going back to user level
5916 * keep a copy of psr.up (for reload)
5918 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5922 pfm_lazy_save_regs (struct task_struct
*task
)
5925 unsigned long flags
;
5927 { u64 psr
= pfm_get_psr();
5928 BUG_ON(psr
& IA64_PSR_UP
);
5931 ctx
= PFM_GET_CTX(task
);
5934 * we need to mask PMU overflow here to
5935 * make sure that we maintain pmc0 until
5936 * we save it. overflow interrupts are
5937 * treated as spurious if there is no
5940 * XXX: I don't think this is necessary
5942 PROTECT_CTX(ctx
,flags
);
5945 * release ownership of this PMU.
5946 * must be done before we save the registers.
5948 * after this call any PMU interrupt is treated
5951 SET_PMU_OWNER(NULL
, NULL
);
5954 * save all the pmds we use
5956 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5959 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5960 * it is needed to check for pended overflow
5961 * on the restore path
5963 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5966 * unfreeze PMU if had pending overflows
5968 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5971 * now get can unmask PMU interrupts, they will
5972 * be treated as purely spurious and we will not
5973 * lose any information
5975 UNPROTECT_CTX(ctx
,flags
);
5977 #endif /* CONFIG_SMP */
5981 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5984 pfm_load_regs (struct task_struct
*task
)
5987 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
5988 unsigned long flags
;
5990 int need_irq_resend
;
5992 ctx
= PFM_GET_CTX(task
);
5993 if (unlikely(ctx
== NULL
)) return;
5995 BUG_ON(GET_PMU_OWNER());
5998 * possible on unload
6000 if (unlikely((task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6003 * we always come here with interrupts ALREADY disabled by
6004 * the scheduler. So we simply need to protect against concurrent
6005 * access, not CPU concurrency.
6007 flags
= pfm_protect_ctx_ctxsw(ctx
);
6008 psr
= pfm_get_psr();
6010 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6012 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6013 BUG_ON(psr
& IA64_PSR_I
);
6015 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6016 struct pt_regs
*regs
= task_pt_regs(task
);
6018 BUG_ON(ctx
->ctx_smpl_hdr
);
6020 pfm_force_cleanup(ctx
, regs
);
6022 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6025 * this one (kmalloc'ed) is fine with interrupts disabled
6027 pfm_context_free(ctx
);
6033 * we restore ALL the debug registers to avoid picking up
6036 if (ctx
->ctx_fl_using_dbreg
) {
6037 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6038 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6041 * retrieve saved psr.up
6043 psr_up
= ctx
->ctx_saved_psr_up
;
6046 * if we were the last user of the PMU on that CPU,
6047 * then nothing to do except restore psr
6049 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6052 * retrieve partial reload masks (due to user modifications)
6054 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6055 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6059 * To avoid leaking information to the user level when psr.sp=0,
6060 * we must reload ALL implemented pmds (even the ones we don't use).
6061 * In the kernel we only allow PFM_READ_PMDS on registers which
6062 * we initialized or requested (sampling) so there is no risk there.
6064 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6067 * ALL accessible PMCs are systematically reloaded, unused registers
6068 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6069 * up stale configuration.
6071 * PMC0 is never in the mask. It is always restored separately.
6073 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6076 * when context is MASKED, we will restore PMC with plm=0
6077 * and PMD with stale information, but that's ok, nothing
6080 * XXX: optimize here
6082 if (pmd_mask
) pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6083 if (pmc_mask
) pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6086 * check for pending overflow at the time the state
6089 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6091 * reload pmc0 with the overflow information
6092 * On McKinley PMU, this will trigger a PMU interrupt
6094 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6096 ctx
->th_pmcs
[0] = 0UL;
6099 * will replay the PMU interrupt
6101 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6103 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6107 * we just did a reload, so we reset the partial reload fields
6109 ctx
->ctx_reload_pmcs
[0] = 0UL;
6110 ctx
->ctx_reload_pmds
[0] = 0UL;
6112 SET_LAST_CPU(ctx
, smp_processor_id());
6115 * dump activation value for this PMU
6119 * record current activation for this context
6121 SET_ACTIVATION(ctx
);
6124 * establish new ownership.
6126 SET_PMU_OWNER(task
, ctx
);
6129 * restore the psr.up bit. measurement
6131 * no PMU interrupt can happen at this point
6132 * because we still have interrupts disabled.
6134 if (likely(psr_up
)) pfm_set_psr_up();
6137 * allow concurrent access to context
6139 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6141 #else /* !CONFIG_SMP */
6143 * reload PMU state for UP kernels
6144 * in 2.5 we come here with interrupts disabled
6147 pfm_load_regs (struct task_struct
*task
)
6150 struct task_struct
*owner
;
6151 unsigned long pmd_mask
, pmc_mask
;
6153 int need_irq_resend
;
6155 owner
= GET_PMU_OWNER();
6156 ctx
= PFM_GET_CTX(task
);
6157 psr
= pfm_get_psr();
6159 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6160 BUG_ON(psr
& IA64_PSR_I
);
6163 * we restore ALL the debug registers to avoid picking up
6166 * This must be done even when the task is still the owner
6167 * as the registers may have been modified via ptrace()
6168 * (not perfmon) by the previous task.
6170 if (ctx
->ctx_fl_using_dbreg
) {
6171 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6172 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6176 * retrieved saved psr.up
6178 psr_up
= ctx
->ctx_saved_psr_up
;
6179 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6182 * short path, our state is still there, just
6183 * need to restore psr and we go
6185 * we do not touch either PMC nor PMD. the psr is not touched
6186 * by the overflow_handler. So we are safe w.r.t. to interrupt
6187 * concurrency even without interrupt masking.
6189 if (likely(owner
== task
)) {
6190 if (likely(psr_up
)) pfm_set_psr_up();
6195 * someone else is still using the PMU, first push it out and
6196 * then we'll be able to install our stuff !
6198 * Upon return, there will be no owner for the current PMU
6200 if (owner
) pfm_lazy_save_regs(owner
);
6203 * To avoid leaking information to the user level when psr.sp=0,
6204 * we must reload ALL implemented pmds (even the ones we don't use).
6205 * In the kernel we only allow PFM_READ_PMDS on registers which
6206 * we initialized or requested (sampling) so there is no risk there.
6208 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6211 * ALL accessible PMCs are systematically reloaded, unused registers
6212 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6213 * up stale configuration.
6215 * PMC0 is never in the mask. It is always restored separately
6217 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6219 pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6220 pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6223 * check for pending overflow at the time the state
6226 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6228 * reload pmc0 with the overflow information
6229 * On McKinley PMU, this will trigger a PMU interrupt
6231 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6234 ctx
->th_pmcs
[0] = 0UL;
6237 * will replay the PMU interrupt
6239 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6241 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6245 * establish new ownership.
6247 SET_PMU_OWNER(task
, ctx
);
6250 * restore the psr.up bit. measurement
6252 * no PMU interrupt can happen at this point
6253 * because we still have interrupts disabled.
6255 if (likely(psr_up
)) pfm_set_psr_up();
6257 #endif /* CONFIG_SMP */
6260 * this function assumes monitoring is stopped
6263 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6266 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6267 int i
, can_access_pmu
= 0;
6271 * is the caller the task being monitored (or which initiated the
6272 * session for system wide measurements)
6274 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6277 * can access PMU is task is the owner of the PMU state on the current CPU
6278 * or if we are running on the CPU bound to the context in system-wide mode
6279 * (that is not necessarily the task the context is attached to in this mode).
6280 * In system-wide we always have can_access_pmu true because a task running on an
6281 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6283 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6284 if (can_access_pmu
) {
6286 * Mark the PMU as not owned
6287 * This will cause the interrupt handler to do nothing in case an overflow
6288 * interrupt was in-flight
6289 * This also guarantees that pmc0 will contain the final state
6290 * It virtually gives us full control on overflow processing from that point
6293 SET_PMU_OWNER(NULL
, NULL
);
6294 DPRINT(("releasing ownership\n"));
6297 * read current overflow status:
6299 * we are guaranteed to read the final stable state
6302 pmc0
= ia64_get_pmc(0); /* slow */
6305 * reset freeze bit, overflow status information destroyed
6309 pmc0
= ctx
->th_pmcs
[0];
6311 * clear whatever overflow status bits there were
6313 ctx
->th_pmcs
[0] = 0;
6315 ovfl_val
= pmu_conf
->ovfl_val
;
6317 * we save all the used pmds
6318 * we take care of overflows for counting PMDs
6320 * XXX: sampling situation is not taken into account here
6322 mask2
= ctx
->ctx_used_pmds
[0];
6324 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6326 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6328 /* skip non used pmds */
6329 if ((mask2
& 0x1) == 0) continue;
6332 * can access PMU always true in system wide mode
6334 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : ctx
->th_pmds
[i
];
6336 if (PMD_IS_COUNTING(i
)) {
6337 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6340 ctx
->ctx_pmds
[i
].val
,
6344 * we rebuild the full 64 bit value of the counter
6346 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6349 * now everything is in ctx_pmds[] and we need
6350 * to clear the saved context from save_regs() such that
6351 * pfm_read_pmds() gets the correct value
6356 * take care of overflow inline
6358 if (pmc0
& (1UL << i
)) {
6359 val
+= 1 + ovfl_val
;
6360 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task
), i
));
6364 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task
), i
, val
, pmd_val
));
6366 if (is_self
) ctx
->th_pmds
[i
] = pmd_val
;
6368 ctx
->ctx_pmds
[i
].val
= val
;
6372 static struct irqaction perfmon_irqaction
= {
6373 .handler
= pfm_interrupt_handler
,
6378 pfm_alt_save_pmu_state(void *data
)
6380 struct pt_regs
*regs
;
6382 regs
= task_pt_regs(current
);
6384 DPRINT(("called\n"));
6387 * should not be necessary but
6388 * let's take not risk
6392 ia64_psr(regs
)->pp
= 0;
6395 * This call is required
6396 * May cause a spurious interrupt on some processors
6404 pfm_alt_restore_pmu_state(void *data
)
6406 struct pt_regs
*regs
;
6408 regs
= task_pt_regs(current
);
6410 DPRINT(("called\n"));
6413 * put PMU back in state expected
6418 ia64_psr(regs
)->pp
= 0;
6421 * perfmon runs with PMU unfrozen at all times
6429 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6434 /* some sanity checks */
6435 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6437 /* do the easy test first */
6438 if (pfm_alt_intr_handler
) return -EBUSY
;
6440 /* one at a time in the install or remove, just fail the others */
6441 if (!spin_trylock(&pfm_alt_install_check
)) {
6445 /* reserve our session */
6446 for_each_online_cpu(reserve_cpu
) {
6447 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6448 if (ret
) goto cleanup_reserve
;
6451 /* save the current system wide pmu states */
6452 ret
= on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 1);
6454 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6455 goto cleanup_reserve
;
6458 /* officially change to the alternate interrupt handler */
6459 pfm_alt_intr_handler
= hdl
;
6461 spin_unlock(&pfm_alt_install_check
);
6466 for_each_online_cpu(i
) {
6467 /* don't unreserve more than we reserved */
6468 if (i
>= reserve_cpu
) break;
6470 pfm_unreserve_session(NULL
, 1, i
);
6473 spin_unlock(&pfm_alt_install_check
);
6477 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6480 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6485 if (hdl
== NULL
) return -EINVAL
;
6487 /* cannot remove someone else's handler! */
6488 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6490 /* one at a time in the install or remove, just fail the others */
6491 if (!spin_trylock(&pfm_alt_install_check
)) {
6495 pfm_alt_intr_handler
= NULL
;
6497 ret
= on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 1);
6499 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6502 for_each_online_cpu(i
) {
6503 pfm_unreserve_session(NULL
, 1, i
);
6506 spin_unlock(&pfm_alt_install_check
);
6510 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6513 * perfmon initialization routine, called from the initcall() table
6515 static int init_pfm_fs(void);
6523 family
= local_cpu_data
->family
;
6528 if ((*p
)->probe() == 0) goto found
;
6529 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6540 static const struct file_operations pfm_proc_fops
= {
6541 .open
= pfm_proc_open
,
6543 .llseek
= seq_lseek
,
6544 .release
= seq_release
,
6550 unsigned int n
, n_counters
, i
;
6552 printk("perfmon: version %u.%u IRQ %u\n",
6555 IA64_PERFMON_VECTOR
);
6557 if (pfm_probe_pmu()) {
6558 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6559 local_cpu_data
->family
);
6564 * compute the number of implemented PMD/PMC from the
6565 * description tables
6568 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6569 if (PMC_IS_IMPL(i
) == 0) continue;
6570 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6573 pmu_conf
->num_pmcs
= n
;
6575 n
= 0; n_counters
= 0;
6576 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6577 if (PMD_IS_IMPL(i
) == 0) continue;
6578 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6580 if (PMD_IS_COUNTING(i
)) n_counters
++;
6582 pmu_conf
->num_pmds
= n
;
6583 pmu_conf
->num_counters
= n_counters
;
6586 * sanity checks on the number of debug registers
6588 if (pmu_conf
->use_rr_dbregs
) {
6589 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6590 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6594 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6595 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6601 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6605 pmu_conf
->num_counters
,
6606 ffz(pmu_conf
->ovfl_val
));
6609 if (pmu_conf
->num_pmds
>= PFM_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= PFM_NUM_PMC_REGS
) {
6610 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6616 * create /proc/perfmon (mostly for debugging purposes)
6618 perfmon_dir
= proc_create("perfmon", S_IRUGO
, NULL
, &pfm_proc_fops
);
6619 if (perfmon_dir
== NULL
) {
6620 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6626 * create /proc/sys/kernel/perfmon (for debugging purposes)
6628 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
);
6631 * initialize all our spinlocks
6633 spin_lock_init(&pfm_sessions
.pfs_lock
);
6634 spin_lock_init(&pfm_buffer_fmt_lock
);
6638 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6643 __initcall(pfm_init
);
6646 * this function is called before pfm_init()
6649 pfm_init_percpu (void)
6651 static int first_time
=1;
6653 * make sure no measurement is active
6654 * (may inherit programmed PMCs from EFI).
6660 * we run with the PMU not frozen at all times
6665 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6669 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6674 * used for debug purposes only
6677 dump_pmu_state(const char *from
)
6679 struct task_struct
*task
;
6680 struct pt_regs
*regs
;
6682 unsigned long psr
, dcr
, info
, flags
;
6685 local_irq_save(flags
);
6687 this_cpu
= smp_processor_id();
6688 regs
= task_pt_regs(current
);
6689 info
= PFM_CPUINFO_GET();
6690 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6692 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6693 local_irq_restore(flags
);
6697 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6700 task_pid_nr(current
),
6704 task
= GET_PMU_OWNER();
6705 ctx
= GET_PMU_CTX();
6707 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task_pid_nr(task
) : -1, ctx
);
6709 psr
= pfm_get_psr();
6711 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6714 psr
& IA64_PSR_PP
? 1 : 0,
6715 psr
& IA64_PSR_UP
? 1 : 0,
6716 dcr
& IA64_DCR_PP
? 1 : 0,
6719 ia64_psr(regs
)->pp
);
6721 ia64_psr(regs
)->up
= 0;
6722 ia64_psr(regs
)->pp
= 0;
6724 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6725 if (PMC_IS_IMPL(i
) == 0) continue;
6726 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, ctx
->th_pmcs
[i
]);
6729 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6730 if (PMD_IS_IMPL(i
) == 0) continue;
6731 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, ctx
->th_pmds
[i
]);
6735 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6738 ctx
->ctx_smpl_vaddr
,
6742 ctx
->ctx_saved_psr_up
);
6744 local_irq_restore(flags
);
6748 * called from process.c:copy_thread(). task is new child.
6751 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6753 struct thread_struct
*thread
;
6755 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task
)));
6757 thread
= &task
->thread
;
6760 * cut links inherited from parent (current)
6762 thread
->pfm_context
= NULL
;
6764 PFM_SET_WORK_PENDING(task
, 0);
6767 * the psr bits are already set properly in copy_threads()
6770 #else /* !CONFIG_PERFMON */
6772 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6776 #endif /* CONFIG_PERFMON */