x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / arch / ia64 / lib / copy_page_mck.S
blobd6fd56e4f1c1dcac5965ce4cb03516a7f15d4587
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * McKinley-optimized version of copy_page().
4  *
5  * Copyright (C) 2002 Hewlett-Packard Co
6  *      David Mosberger <davidm@hpl.hp.com>
7  *
8  * Inputs:
9  *      in0:    address of target page
10  *      in1:    address of source page
11  * Output:
12  *      no return value
13  *
14  * General idea:
15  *      - use regular loads and stores to prefetch data to avoid consuming M-slot just for
16  *        lfetches => good for in-cache performance
17  *      - avoid l2 bank-conflicts by not storing into the same 16-byte bank within a single
18  *        cycle
19  *
20  * Principle of operation:
21  *      First, note that L1 has a line-size of 64 bytes and L2 a line-size of 128 bytes.
22  *      To avoid secondary misses in L2, we prefetch both source and destination with a line-size
23  *      of 128 bytes.  When both of these lines are in the L2 and the first half of the
24  *      source line is in L1, we start copying the remaining words.  The second half of the
25  *      source line is prefetched in an earlier iteration, so that by the time we start
26  *      accessing it, it's also present in the L1.
27  *
28  *      We use a software-pipelined loop to control the overall operation.  The pipeline
29  *      has 2*PREFETCH_DIST+K stages.  The first PREFETCH_DIST stages are used for prefetching
30  *      source cache-lines.  The second PREFETCH_DIST stages are used for prefetching destination
31  *      cache-lines, the last K stages are used to copy the cache-line words not copied by
32  *      the prefetches.  The four relevant points in the pipelined are called A, B, C, D:
33  *      p[A] is TRUE if a source-line should be prefetched, p[B] is TRUE if a destination-line
34  *      should be prefetched, p[C] is TRUE if the second half of an L2 line should be brought
35  *      into L1D and p[D] is TRUE if a cacheline needs to be copied.
36  *
37  *      This all sounds very complicated, but thanks to the modulo-scheduled loop support,
38  *      the resulting code is very regular and quite easy to follow (once you get the idea).
39  *
40  *      As a secondary optimization, the first 2*PREFETCH_DIST iterations are implemented
41  *      as the separate .prefetch_loop.  Logically, this loop performs exactly like the
42  *      main-loop (.line_copy), but has all known-to-be-predicated-off instructions removed,
43  *      so that each loop iteration is faster (again, good for cached case).
44  *
45  *      When reading the code, it helps to keep the following picture in mind:
46  *
47  *             word 0 word 1
48  *            +------+------+---
49  *            | v[x] |  t1  | ^
50  *            | t2   |  t3  | |
51  *            | t4   |  t5  | |
52  *            | t6   |  t7  | | 128 bytes
53  *            | n[y] |  t9  | | (L2 cache line)
54  *            | t10  |  t11 | |
55  *            | t12  |  t13 | |
56  *            | t14  |  t15 | v
57  *            +------+------+---
58  *
59  *      Here, v[x] is copied by the (memory) prefetch.  n[y] is loaded at p[C]
60  *      to fetch the second-half of the L2 cache line into L1, and the tX words are copied in
61  *      an order that avoids bank conflicts.
62  */
63 #include <asm/asmmacro.h>
64 #include <asm/page.h>
65 #include <asm/export.h>
67 #define PREFETCH_DIST   8               // McKinley sustains 16 outstanding L2 misses (8 ld, 8 st)
69 #define src0            r2
70 #define src1            r3
71 #define dst0            r9
72 #define dst1            r10
73 #define src_pre_mem     r11
74 #define dst_pre_mem     r14
75 #define src_pre_l2      r15
76 #define dst_pre_l2      r16
77 #define t1              r17
78 #define t2              r18
79 #define t3              r19
80 #define t4              r20
81 #define t5              t1      // alias!
82 #define t6              t2      // alias!
83 #define t7              t3      // alias!
84 #define t9              t5      // alias!
85 #define t10             t4      // alias!
86 #define t11             t7      // alias!
87 #define t12             t6      // alias!
88 #define t14             t10     // alias!
89 #define t13             r21
90 #define t15             r22
92 #define saved_lc        r23
93 #define saved_pr        r24
95 #define A       0
96 #define B       (PREFETCH_DIST)
97 #define C       (B + PREFETCH_DIST)
98 #define D       (C + 3)
99 #define N       (D + 1)
100 #define Nrot    ((N + 7) & ~7)
102 GLOBAL_ENTRY(copy_page)
103         .prologue
104         alloc r8 = ar.pfs, 2, Nrot-2, 0, Nrot
106         .rotr v[2*PREFETCH_DIST], n[D-C+1]
107         .rotp p[N]
109         .save ar.lc, saved_lc
110         mov saved_lc = ar.lc
111         .save pr, saved_pr
112         mov saved_pr = pr
113         .body
115         mov src_pre_mem = in1
116         mov pr.rot = 0x10000
117         mov ar.ec = 1                           // special unrolled loop
119         mov dst_pre_mem = in0
120         mov ar.lc = 2*PREFETCH_DIST - 1
122         add src_pre_l2 = 8*8, in1
123         add dst_pre_l2 = 8*8, in0
124         add src0 = 8, in1                       // first t1 src
125         add src1 = 3*8, in1                     // first t3 src
126         add dst0 = 8, in0                       // first t1 dst
127         add dst1 = 3*8, in0                     // first t3 dst
128         mov t1 = (PAGE_SIZE/128) - (2*PREFETCH_DIST) - 1
129         nop.m 0
130         nop.i 0
131         ;;
132         // same as .line_copy loop, but with all predicated-off instructions removed:
133 .prefetch_loop:
134 (p[A])  ld8 v[A] = [src_pre_mem], 128           // M0
135 (p[B])  st8 [dst_pre_mem] = v[B], 128           // M2
136         br.ctop.sptk .prefetch_loop
137         ;;
138         cmp.eq p16, p0 = r0, r0                 // reset p16 to 1 (br.ctop cleared it to zero)
139         mov ar.lc = t1                          // with 64KB pages, t1 is too big to fit in 8 bits!
140         mov ar.ec = N                           // # of stages in pipeline
141         ;;
142 .line_copy:
143 (p[D])  ld8 t2 = [src0], 3*8                    // M0
144 (p[D])  ld8 t4 = [src1], 3*8                    // M1
145 (p[B])  st8 [dst_pre_mem] = v[B], 128           // M2 prefetch dst from memory
146 (p[D])  st8 [dst_pre_l2] = n[D-C], 128          // M3 prefetch dst from L2
147         ;;
148 (p[A])  ld8 v[A] = [src_pre_mem], 128           // M0 prefetch src from memory
149 (p[C])  ld8 n[0] = [src_pre_l2], 128            // M1 prefetch src from L2
150 (p[D])  st8 [dst0] =  t1, 8                     // M2
151 (p[D])  st8 [dst1] =  t3, 8                     // M3
152         ;;
153 (p[D])  ld8  t5 = [src0], 8
154 (p[D])  ld8  t7 = [src1], 3*8
155 (p[D])  st8 [dst0] =  t2, 3*8
156 (p[D])  st8 [dst1] =  t4, 3*8
157         ;;
158 (p[D])  ld8  t6 = [src0], 3*8
159 (p[D])  ld8 t10 = [src1], 8
160 (p[D])  st8 [dst0] =  t5, 8
161 (p[D])  st8 [dst1] =  t7, 3*8
162         ;;
163 (p[D])  ld8  t9 = [src0], 3*8
164 (p[D])  ld8 t11 = [src1], 3*8
165 (p[D])  st8 [dst0] =  t6, 3*8
166 (p[D])  st8 [dst1] = t10, 8
167         ;;
168 (p[D])  ld8 t12 = [src0], 8
169 (p[D])  ld8 t14 = [src1], 8
170 (p[D])  st8 [dst0] =  t9, 3*8
171 (p[D])  st8 [dst1] = t11, 3*8
172         ;;
173 (p[D])  ld8 t13 = [src0], 4*8
174 (p[D])  ld8 t15 = [src1], 4*8
175 (p[D])  st8 [dst0] = t12, 8
176 (p[D])  st8 [dst1] = t14, 8
177         ;;
178 (p[D-1])ld8  t1 = [src0], 8
179 (p[D-1])ld8  t3 = [src1], 8
180 (p[D])  st8 [dst0] = t13, 4*8
181 (p[D])  st8 [dst1] = t15, 4*8
182         br.ctop.sptk .line_copy
183         ;;
184         mov ar.lc = saved_lc
185         mov pr = saved_pr, -1
186         br.ret.sptk.many rp
187 END(copy_page)
188 EXPORT_SYMBOL(copy_page)