x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / arch / powerpc / kernel / smp.c
blobbbe7634b3a43538cbbcd11e03cc515aba99b0deb
1 /*
2 * SMP support for ppc.
4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5 * deal of code from the sparc and intel versions.
7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #undef DEBUG
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/topology.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/spinlock.h>
29 #include <linux/cache.h>
30 #include <linux/err.h>
31 #include <linux/device.h>
32 #include <linux/cpu.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/profile.h>
36 #include <linux/processor.h>
38 #include <asm/ptrace.h>
39 #include <linux/atomic.h>
40 #include <asm/irq.h>
41 #include <asm/hw_irq.h>
42 #include <asm/kvm_ppc.h>
43 #include <asm/dbell.h>
44 #include <asm/page.h>
45 #include <asm/pgtable.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/kexec.h>
60 #include <asm/asm-prototypes.h>
61 #include <asm/cpu_has_feature.h>
63 #ifdef DEBUG
64 #include <asm/udbg.h>
65 #define DBG(fmt...) udbg_printf(fmt)
66 #else
67 #define DBG(fmt...)
68 #endif
70 #ifdef CONFIG_HOTPLUG_CPU
71 /* State of each CPU during hotplug phases */
72 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
73 #endif
75 struct thread_info *secondary_ti;
77 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
78 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
79 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
81 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
82 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
83 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
85 /* SMP operations for this machine */
86 struct smp_ops_t *smp_ops;
88 /* Can't be static due to PowerMac hackery */
89 volatile unsigned int cpu_callin_map[NR_CPUS];
91 int smt_enabled_at_boot = 1;
94 * Returns 1 if the specified cpu should be brought up during boot.
95 * Used to inhibit booting threads if they've been disabled or
96 * limited on the command line
98 int smp_generic_cpu_bootable(unsigned int nr)
100 /* Special case - we inhibit secondary thread startup
101 * during boot if the user requests it.
103 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
104 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
105 return 0;
106 if (smt_enabled_at_boot
107 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
108 return 0;
111 return 1;
115 #ifdef CONFIG_PPC64
116 int smp_generic_kick_cpu(int nr)
118 if (nr < 0 || nr >= nr_cpu_ids)
119 return -EINVAL;
122 * The processor is currently spinning, waiting for the
123 * cpu_start field to become non-zero After we set cpu_start,
124 * the processor will continue on to secondary_start
126 if (!paca[nr].cpu_start) {
127 paca[nr].cpu_start = 1;
128 smp_mb();
129 return 0;
132 #ifdef CONFIG_HOTPLUG_CPU
134 * Ok it's not there, so it might be soft-unplugged, let's
135 * try to bring it back
137 generic_set_cpu_up(nr);
138 smp_wmb();
139 smp_send_reschedule(nr);
140 #endif /* CONFIG_HOTPLUG_CPU */
142 return 0;
144 #endif /* CONFIG_PPC64 */
146 static irqreturn_t call_function_action(int irq, void *data)
148 generic_smp_call_function_interrupt();
149 return IRQ_HANDLED;
152 static irqreturn_t reschedule_action(int irq, void *data)
154 scheduler_ipi();
155 return IRQ_HANDLED;
158 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
160 tick_broadcast_ipi_handler();
161 return IRQ_HANDLED;
164 #ifdef CONFIG_NMI_IPI
165 static irqreturn_t nmi_ipi_action(int irq, void *data)
167 smp_handle_nmi_ipi(get_irq_regs());
168 return IRQ_HANDLED;
170 #endif
172 static irq_handler_t smp_ipi_action[] = {
173 [PPC_MSG_CALL_FUNCTION] = call_function_action,
174 [PPC_MSG_RESCHEDULE] = reschedule_action,
175 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
176 #ifdef CONFIG_NMI_IPI
177 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
178 #endif
182 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
183 * than going through the call function infrastructure, and strongly
184 * serialized, so it is more appropriate for debugging.
186 const char *smp_ipi_name[] = {
187 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
188 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
189 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
190 [PPC_MSG_NMI_IPI] = "nmi ipi",
193 /* optional function to request ipi, for controllers with >= 4 ipis */
194 int smp_request_message_ipi(int virq, int msg)
196 int err;
198 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
199 return -EINVAL;
200 #ifndef CONFIG_NMI_IPI
201 if (msg == PPC_MSG_NMI_IPI)
202 return 1;
203 #endif
205 err = request_irq(virq, smp_ipi_action[msg],
206 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
207 smp_ipi_name[msg], NULL);
208 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
209 virq, smp_ipi_name[msg], err);
211 return err;
214 #ifdef CONFIG_PPC_SMP_MUXED_IPI
215 struct cpu_messages {
216 long messages; /* current messages */
218 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
220 void smp_muxed_ipi_set_message(int cpu, int msg)
222 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
223 char *message = (char *)&info->messages;
226 * Order previous accesses before accesses in the IPI handler.
228 smp_mb();
229 message[msg] = 1;
232 void smp_muxed_ipi_message_pass(int cpu, int msg)
234 smp_muxed_ipi_set_message(cpu, msg);
237 * cause_ipi functions are required to include a full barrier
238 * before doing whatever causes the IPI.
240 smp_ops->cause_ipi(cpu);
243 #ifdef __BIG_ENDIAN__
244 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
245 #else
246 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
247 #endif
249 irqreturn_t smp_ipi_demux(void)
251 mb(); /* order any irq clear */
253 return smp_ipi_demux_relaxed();
256 /* sync-free variant. Callers should ensure synchronization */
257 irqreturn_t smp_ipi_demux_relaxed(void)
259 struct cpu_messages *info;
260 unsigned long all;
262 info = this_cpu_ptr(&ipi_message);
263 do {
264 all = xchg(&info->messages, 0);
265 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
267 * Must check for PPC_MSG_RM_HOST_ACTION messages
268 * before PPC_MSG_CALL_FUNCTION messages because when
269 * a VM is destroyed, we call kick_all_cpus_sync()
270 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
271 * messages have completed before we free any VCPUs.
273 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
274 kvmppc_xics_ipi_action();
275 #endif
276 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
277 generic_smp_call_function_interrupt();
278 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
279 scheduler_ipi();
280 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
281 tick_broadcast_ipi_handler();
282 #ifdef CONFIG_NMI_IPI
283 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
284 nmi_ipi_action(0, NULL);
285 #endif
286 } while (info->messages);
288 return IRQ_HANDLED;
290 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
292 static inline void do_message_pass(int cpu, int msg)
294 if (smp_ops->message_pass)
295 smp_ops->message_pass(cpu, msg);
296 #ifdef CONFIG_PPC_SMP_MUXED_IPI
297 else
298 smp_muxed_ipi_message_pass(cpu, msg);
299 #endif
302 void smp_send_reschedule(int cpu)
304 if (likely(smp_ops))
305 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
307 EXPORT_SYMBOL_GPL(smp_send_reschedule);
309 void arch_send_call_function_single_ipi(int cpu)
311 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
314 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
316 unsigned int cpu;
318 for_each_cpu(cpu, mask)
319 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
322 #ifdef CONFIG_NMI_IPI
325 * "NMI IPI" system.
327 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
328 * a running system. They can be used for crash, debug, halt/reboot, etc.
330 * NMI IPIs are globally single threaded. No more than one in progress at
331 * any time.
333 * The IPI call waits with interrupts disabled until all targets enter the
334 * NMI handler, then the call returns.
336 * No new NMI can be initiated until targets exit the handler.
338 * The IPI call may time out without all targets entering the NMI handler.
339 * In that case, there is some logic to recover (and ignore subsequent
340 * NMI interrupts that may eventually be raised), but the platform interrupt
341 * handler may not be able to distinguish this from other exception causes,
342 * which may cause a crash.
345 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
346 static struct cpumask nmi_ipi_pending_mask;
347 static int nmi_ipi_busy_count = 0;
348 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
350 static void nmi_ipi_lock_start(unsigned long *flags)
352 raw_local_irq_save(*flags);
353 hard_irq_disable();
354 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
355 raw_local_irq_restore(*flags);
356 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
357 raw_local_irq_save(*flags);
358 hard_irq_disable();
362 static void nmi_ipi_lock(void)
364 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
365 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
368 static void nmi_ipi_unlock(void)
370 smp_mb();
371 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
372 atomic_set(&__nmi_ipi_lock, 0);
375 static void nmi_ipi_unlock_end(unsigned long *flags)
377 nmi_ipi_unlock();
378 raw_local_irq_restore(*flags);
382 * Platform NMI handler calls this to ack
384 int smp_handle_nmi_ipi(struct pt_regs *regs)
386 void (*fn)(struct pt_regs *);
387 unsigned long flags;
388 int me = raw_smp_processor_id();
389 int ret = 0;
392 * Unexpected NMIs are possible here because the interrupt may not
393 * be able to distinguish NMI IPIs from other types of NMIs, or
394 * because the caller may have timed out.
396 nmi_ipi_lock_start(&flags);
397 if (!nmi_ipi_busy_count)
398 goto out;
399 if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
400 goto out;
402 fn = nmi_ipi_function;
403 if (!fn)
404 goto out;
406 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
407 nmi_ipi_busy_count++;
408 nmi_ipi_unlock();
410 ret = 1;
412 fn(regs);
414 nmi_ipi_lock();
415 nmi_ipi_busy_count--;
416 out:
417 nmi_ipi_unlock_end(&flags);
419 return ret;
422 static void do_smp_send_nmi_ipi(int cpu)
424 if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
425 return;
427 if (cpu >= 0) {
428 do_message_pass(cpu, PPC_MSG_NMI_IPI);
429 } else {
430 int c;
432 for_each_online_cpu(c) {
433 if (c == raw_smp_processor_id())
434 continue;
435 do_message_pass(c, PPC_MSG_NMI_IPI);
440 void smp_flush_nmi_ipi(u64 delay_us)
442 unsigned long flags;
444 nmi_ipi_lock_start(&flags);
445 while (nmi_ipi_busy_count) {
446 nmi_ipi_unlock_end(&flags);
447 udelay(1);
448 if (delay_us) {
449 delay_us--;
450 if (!delay_us)
451 return;
453 nmi_ipi_lock_start(&flags);
455 nmi_ipi_unlock_end(&flags);
459 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
460 * - fn is the target callback function.
461 * - delay_us > 0 is the delay before giving up waiting for targets to
462 * enter the handler, == 0 specifies indefinite delay.
464 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
466 unsigned long flags;
467 int me = raw_smp_processor_id();
468 int ret = 1;
470 BUG_ON(cpu == me);
471 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
473 if (unlikely(!smp_ops))
474 return 0;
476 /* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
477 nmi_ipi_lock_start(&flags);
478 while (nmi_ipi_busy_count) {
479 nmi_ipi_unlock_end(&flags);
480 spin_until_cond(nmi_ipi_busy_count == 0);
481 nmi_ipi_lock_start(&flags);
484 nmi_ipi_function = fn;
486 if (cpu < 0) {
487 /* ALL_OTHERS */
488 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
489 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
490 } else {
491 /* cpumask starts clear */
492 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
494 nmi_ipi_busy_count++;
495 nmi_ipi_unlock();
497 do_smp_send_nmi_ipi(cpu);
499 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
500 udelay(1);
501 if (delay_us) {
502 delay_us--;
503 if (!delay_us)
504 break;
508 nmi_ipi_lock();
509 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
510 /* Could not gather all CPUs */
511 ret = 0;
512 cpumask_clear(&nmi_ipi_pending_mask);
514 nmi_ipi_busy_count--;
515 nmi_ipi_unlock_end(&flags);
517 return ret;
519 #endif /* CONFIG_NMI_IPI */
521 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
522 void tick_broadcast(const struct cpumask *mask)
524 unsigned int cpu;
526 for_each_cpu(cpu, mask)
527 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
529 #endif
531 #ifdef CONFIG_DEBUGGER
532 void debugger_ipi_callback(struct pt_regs *regs)
534 debugger_ipi(regs);
537 void smp_send_debugger_break(void)
539 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
541 #endif
543 #ifdef CONFIG_KEXEC_CORE
544 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
546 int cpu;
548 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
549 if (kdump_in_progress() && crash_wake_offline) {
550 for_each_present_cpu(cpu) {
551 if (cpu_online(cpu))
552 continue;
554 * crash_ipi_callback will wait for
555 * all cpus, including offline CPUs.
556 * We don't care about nmi_ipi_function.
557 * Offline cpus will jump straight into
558 * crash_ipi_callback, we can skip the
559 * entire NMI dance and waiting for
560 * cpus to clear pending mask, etc.
562 do_smp_send_nmi_ipi(cpu);
566 #endif
568 static void stop_this_cpu(void *dummy)
570 /* Remove this CPU */
571 set_cpu_online(smp_processor_id(), false);
573 local_irq_disable();
574 while (1)
578 void smp_send_stop(void)
580 smp_call_function(stop_this_cpu, NULL, 0);
583 struct thread_info *current_set[NR_CPUS];
585 static void smp_store_cpu_info(int id)
587 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
588 #ifdef CONFIG_PPC_FSL_BOOK3E
589 per_cpu(next_tlbcam_idx, id)
590 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
591 #endif
595 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
596 * rather than just passing around the cpumask we pass around a function that
597 * returns the that cpumask for the given CPU.
599 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
601 cpumask_set_cpu(i, get_cpumask(j));
602 cpumask_set_cpu(j, get_cpumask(i));
605 #ifdef CONFIG_HOTPLUG_CPU
606 static void set_cpus_unrelated(int i, int j,
607 struct cpumask *(*get_cpumask)(int))
609 cpumask_clear_cpu(i, get_cpumask(j));
610 cpumask_clear_cpu(j, get_cpumask(i));
612 #endif
614 void __init smp_prepare_cpus(unsigned int max_cpus)
616 unsigned int cpu;
618 DBG("smp_prepare_cpus\n");
621 * setup_cpu may need to be called on the boot cpu. We havent
622 * spun any cpus up but lets be paranoid.
624 BUG_ON(boot_cpuid != smp_processor_id());
626 /* Fixup boot cpu */
627 smp_store_cpu_info(boot_cpuid);
628 cpu_callin_map[boot_cpuid] = 1;
630 for_each_possible_cpu(cpu) {
631 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
632 GFP_KERNEL, cpu_to_node(cpu));
633 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
634 GFP_KERNEL, cpu_to_node(cpu));
635 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
636 GFP_KERNEL, cpu_to_node(cpu));
638 * numa_node_id() works after this.
640 if (cpu_present(cpu)) {
641 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
642 set_cpu_numa_mem(cpu,
643 local_memory_node(numa_cpu_lookup_table[cpu]));
647 /* Init the cpumasks so the boot CPU is related to itself */
648 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
649 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
650 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
652 if (smp_ops && smp_ops->probe)
653 smp_ops->probe();
656 void smp_prepare_boot_cpu(void)
658 BUG_ON(smp_processor_id() != boot_cpuid);
659 #ifdef CONFIG_PPC64
660 paca[boot_cpuid].__current = current;
661 #endif
662 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
663 current_set[boot_cpuid] = task_thread_info(current);
666 #ifdef CONFIG_HOTPLUG_CPU
668 int generic_cpu_disable(void)
670 unsigned int cpu = smp_processor_id();
672 if (cpu == boot_cpuid)
673 return -EBUSY;
675 set_cpu_online(cpu, false);
676 #ifdef CONFIG_PPC64
677 vdso_data->processorCount--;
678 #endif
679 /* Update affinity of all IRQs previously aimed at this CPU */
680 irq_migrate_all_off_this_cpu();
683 * Depending on the details of the interrupt controller, it's possible
684 * that one of the interrupts we just migrated away from this CPU is
685 * actually already pending on this CPU. If we leave it in that state
686 * the interrupt will never be EOI'ed, and will never fire again. So
687 * temporarily enable interrupts here, to allow any pending interrupt to
688 * be received (and EOI'ed), before we take this CPU offline.
690 local_irq_enable();
691 mdelay(1);
692 local_irq_disable();
694 return 0;
697 void generic_cpu_die(unsigned int cpu)
699 int i;
701 for (i = 0; i < 100; i++) {
702 smp_rmb();
703 if (is_cpu_dead(cpu))
704 return;
705 msleep(100);
707 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
710 void generic_set_cpu_dead(unsigned int cpu)
712 per_cpu(cpu_state, cpu) = CPU_DEAD;
716 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
717 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
718 * which makes the delay in generic_cpu_die() not happen.
720 void generic_set_cpu_up(unsigned int cpu)
722 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
725 int generic_check_cpu_restart(unsigned int cpu)
727 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
730 int is_cpu_dead(unsigned int cpu)
732 return per_cpu(cpu_state, cpu) == CPU_DEAD;
735 static bool secondaries_inhibited(void)
737 return kvm_hv_mode_active();
740 #else /* HOTPLUG_CPU */
742 #define secondaries_inhibited() 0
744 #endif
746 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
748 struct thread_info *ti = task_thread_info(idle);
750 #ifdef CONFIG_PPC64
751 paca[cpu].__current = idle;
752 paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
753 #endif
754 ti->cpu = cpu;
755 secondary_ti = current_set[cpu] = ti;
758 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
760 int rc, c;
763 * Don't allow secondary threads to come online if inhibited
765 if (threads_per_core > 1 && secondaries_inhibited() &&
766 cpu_thread_in_subcore(cpu))
767 return -EBUSY;
769 if (smp_ops == NULL ||
770 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
771 return -EINVAL;
773 cpu_idle_thread_init(cpu, tidle);
776 * The platform might need to allocate resources prior to bringing
777 * up the CPU
779 if (smp_ops->prepare_cpu) {
780 rc = smp_ops->prepare_cpu(cpu);
781 if (rc)
782 return rc;
785 /* Make sure callin-map entry is 0 (can be leftover a CPU
786 * hotplug
788 cpu_callin_map[cpu] = 0;
790 /* The information for processor bringup must
791 * be written out to main store before we release
792 * the processor.
794 smp_mb();
796 /* wake up cpus */
797 DBG("smp: kicking cpu %d\n", cpu);
798 rc = smp_ops->kick_cpu(cpu);
799 if (rc) {
800 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
801 return rc;
805 * wait to see if the cpu made a callin (is actually up).
806 * use this value that I found through experimentation.
807 * -- Cort
809 if (system_state < SYSTEM_RUNNING)
810 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
811 udelay(100);
812 #ifdef CONFIG_HOTPLUG_CPU
813 else
815 * CPUs can take much longer to come up in the
816 * hotplug case. Wait five seconds.
818 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
819 msleep(1);
820 #endif
822 if (!cpu_callin_map[cpu]) {
823 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
824 return -ENOENT;
827 DBG("Processor %u found.\n", cpu);
829 if (smp_ops->give_timebase)
830 smp_ops->give_timebase();
832 /* Wait until cpu puts itself in the online & active maps */
833 spin_until_cond(cpu_online(cpu));
835 return 0;
838 /* Return the value of the reg property corresponding to the given
839 * logical cpu.
841 int cpu_to_core_id(int cpu)
843 struct device_node *np;
844 const __be32 *reg;
845 int id = -1;
847 np = of_get_cpu_node(cpu, NULL);
848 if (!np)
849 goto out;
851 reg = of_get_property(np, "reg", NULL);
852 if (!reg)
853 goto out;
855 id = be32_to_cpup(reg);
856 out:
857 of_node_put(np);
858 return id;
860 EXPORT_SYMBOL_GPL(cpu_to_core_id);
862 /* Helper routines for cpu to core mapping */
863 int cpu_core_index_of_thread(int cpu)
865 return cpu >> threads_shift;
867 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
869 int cpu_first_thread_of_core(int core)
871 return core << threads_shift;
873 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
875 /* Must be called when no change can occur to cpu_present_mask,
876 * i.e. during cpu online or offline.
878 static struct device_node *cpu_to_l2cache(int cpu)
880 struct device_node *np;
881 struct device_node *cache;
883 if (!cpu_present(cpu))
884 return NULL;
886 np = of_get_cpu_node(cpu, NULL);
887 if (np == NULL)
888 return NULL;
890 cache = of_find_next_cache_node(np);
892 of_node_put(np);
894 return cache;
897 static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
899 struct device_node *l2_cache, *np;
900 int i;
902 l2_cache = cpu_to_l2cache(cpu);
903 if (!l2_cache)
904 return false;
906 for_each_cpu(i, cpu_online_mask) {
908 * when updating the marks the current CPU has not been marked
909 * online, but we need to update the cache masks
911 np = cpu_to_l2cache(i);
912 if (!np)
913 continue;
915 if (np == l2_cache)
916 set_cpus_related(cpu, i, mask_fn);
918 of_node_put(np);
920 of_node_put(l2_cache);
922 return true;
925 #ifdef CONFIG_HOTPLUG_CPU
926 static void remove_cpu_from_masks(int cpu)
928 int i;
930 /* NB: cpu_core_mask is a superset of the others */
931 for_each_cpu(i, cpu_core_mask(cpu)) {
932 set_cpus_unrelated(cpu, i, cpu_core_mask);
933 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
934 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
937 #endif
939 static void add_cpu_to_masks(int cpu)
941 int first_thread = cpu_first_thread_sibling(cpu);
942 int chipid = cpu_to_chip_id(cpu);
943 int i;
946 * This CPU will not be in the online mask yet so we need to manually
947 * add it to it's own thread sibling mask.
949 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
951 for (i = first_thread; i < first_thread + threads_per_core; i++)
952 if (cpu_online(i))
953 set_cpus_related(i, cpu, cpu_sibling_mask);
956 * Copy the thread sibling mask into the cache sibling mask
957 * and mark any CPUs that share an L2 with this CPU.
959 for_each_cpu(i, cpu_sibling_mask(cpu))
960 set_cpus_related(cpu, i, cpu_l2_cache_mask);
961 update_mask_by_l2(cpu, cpu_l2_cache_mask);
964 * Copy the cache sibling mask into core sibling mask and mark
965 * any CPUs on the same chip as this CPU.
967 for_each_cpu(i, cpu_l2_cache_mask(cpu))
968 set_cpus_related(cpu, i, cpu_core_mask);
970 if (chipid == -1)
971 return;
973 for_each_cpu(i, cpu_online_mask)
974 if (cpu_to_chip_id(i) == chipid)
975 set_cpus_related(cpu, i, cpu_core_mask);
978 static bool shared_caches;
980 /* Activate a secondary processor. */
981 void start_secondary(void *unused)
983 unsigned int cpu = smp_processor_id();
985 mmgrab(&init_mm);
986 current->active_mm = &init_mm;
988 smp_store_cpu_info(cpu);
989 set_dec(tb_ticks_per_jiffy);
990 preempt_disable();
991 cpu_callin_map[cpu] = 1;
993 if (smp_ops->setup_cpu)
994 smp_ops->setup_cpu(cpu);
995 if (smp_ops->take_timebase)
996 smp_ops->take_timebase();
998 secondary_cpu_time_init();
1000 #ifdef CONFIG_PPC64
1001 if (system_state == SYSTEM_RUNNING)
1002 vdso_data->processorCount++;
1004 vdso_getcpu_init();
1005 #endif
1006 /* Update topology CPU masks */
1007 add_cpu_to_masks(cpu);
1010 * Check for any shared caches. Note that this must be done on a
1011 * per-core basis because one core in the pair might be disabled.
1013 if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
1014 shared_caches = true;
1016 set_numa_node(numa_cpu_lookup_table[cpu]);
1017 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1019 smp_wmb();
1020 notify_cpu_starting(cpu);
1021 set_cpu_online(cpu, true);
1023 local_irq_enable();
1025 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1027 BUG();
1030 int setup_profiling_timer(unsigned int multiplier)
1032 return 0;
1035 #ifdef CONFIG_SCHED_SMT
1036 /* cpumask of CPUs with asymetric SMT dependancy */
1037 static int powerpc_smt_flags(void)
1039 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1041 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1042 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1043 flags |= SD_ASYM_PACKING;
1045 return flags;
1047 #endif
1049 static struct sched_domain_topology_level powerpc_topology[] = {
1050 #ifdef CONFIG_SCHED_SMT
1051 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1052 #endif
1053 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1054 { NULL, },
1058 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1059 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1060 * since the migrated task remains cache hot. We want to take advantage of this
1061 * at the scheduler level so an extra topology level is required.
1063 static int powerpc_shared_cache_flags(void)
1065 return SD_SHARE_PKG_RESOURCES;
1069 * We can't just pass cpu_l2_cache_mask() directly because
1070 * returns a non-const pointer and the compiler barfs on that.
1072 static const struct cpumask *shared_cache_mask(int cpu)
1074 return cpu_l2_cache_mask(cpu);
1077 static struct sched_domain_topology_level power9_topology[] = {
1078 #ifdef CONFIG_SCHED_SMT
1079 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1080 #endif
1081 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1082 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1083 { NULL, },
1086 void __init smp_cpus_done(unsigned int max_cpus)
1089 * We are running pinned to the boot CPU, see rest_init().
1091 if (smp_ops && smp_ops->setup_cpu)
1092 smp_ops->setup_cpu(boot_cpuid);
1094 if (smp_ops && smp_ops->bringup_done)
1095 smp_ops->bringup_done();
1097 dump_numa_cpu_topology();
1100 * If any CPU detects that it's sharing a cache with another CPU then
1101 * use the deeper topology that is aware of this sharing.
1103 if (shared_caches) {
1104 pr_info("Using shared cache scheduler topology\n");
1105 set_sched_topology(power9_topology);
1106 } else {
1107 pr_info("Using standard scheduler topology\n");
1108 set_sched_topology(powerpc_topology);
1112 #ifdef CONFIG_HOTPLUG_CPU
1113 int __cpu_disable(void)
1115 int cpu = smp_processor_id();
1116 int err;
1118 if (!smp_ops->cpu_disable)
1119 return -ENOSYS;
1121 err = smp_ops->cpu_disable();
1122 if (err)
1123 return err;
1125 /* Update sibling maps */
1126 remove_cpu_from_masks(cpu);
1128 return 0;
1131 void __cpu_die(unsigned int cpu)
1133 if (smp_ops->cpu_die)
1134 smp_ops->cpu_die(cpu);
1137 void cpu_die(void)
1139 if (ppc_md.cpu_die)
1140 ppc_md.cpu_die();
1142 /* If we return, we re-enter start_secondary */
1143 start_secondary_resume();
1146 #endif