2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
32 #include <asm/tlbflush.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/book3s/64/mmu-hash.h>
36 #include <asm/hvcall.h>
37 #include <asm/synch.h>
38 #include <asm/ppc-opcode.h>
39 #include <asm/cputable.h>
40 #include <asm/pte-walk.h>
44 //#define DEBUG_RESIZE_HPT 1
46 #ifdef DEBUG_RESIZE_HPT
47 #define resize_hpt_debug(resize, ...) \
49 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \
50 printk(__VA_ARGS__); \
53 #define resize_hpt_debug(resize, ...) \
57 static long kvmppc_virtmode_do_h_enter(struct kvm
*kvm
, unsigned long flags
,
58 long pte_index
, unsigned long pteh
,
59 unsigned long ptel
, unsigned long *pte_idx_ret
);
61 struct kvm_resize_hpt
{
62 /* These fields read-only after init */
64 struct work_struct work
;
67 /* These fields protected by kvm->lock */
69 /* Possible values and their usage:
70 * <0 an error occurred during allocation,
71 * -EBUSY allocation is in the progress,
72 * 0 allocation made successfuly.
76 /* Private to the work thread, until error != -EBUSY,
77 * then protected by kvm->lock.
79 struct kvm_hpt_info hpt
;
82 int kvmppc_allocate_hpt(struct kvm_hpt_info
*info
, u32 order
)
84 unsigned long hpt
= 0;
86 struct page
*page
= NULL
;
87 struct revmap_entry
*rev
;
90 if ((order
< PPC_MIN_HPT_ORDER
) || (order
> PPC_MAX_HPT_ORDER
))
93 page
= kvm_alloc_hpt_cma(1ul << (order
- PAGE_SHIFT
));
95 hpt
= (unsigned long)pfn_to_kaddr(page_to_pfn(page
));
96 memset((void *)hpt
, 0, (1ul << order
));
101 hpt
= __get_free_pages(GFP_KERNEL
|__GFP_ZERO
|__GFP_RETRY_MAYFAIL
102 |__GFP_NOWARN
, order
- PAGE_SHIFT
);
107 /* HPTEs are 2**4 bytes long */
108 npte
= 1ul << (order
- 4);
110 /* Allocate reverse map array */
111 rev
= vmalloc(sizeof(struct revmap_entry
) * npte
);
114 kvm_free_hpt_cma(page
, 1 << (order
- PAGE_SHIFT
));
116 free_pages(hpt
, order
- PAGE_SHIFT
);
128 void kvmppc_set_hpt(struct kvm
*kvm
, struct kvm_hpt_info
*info
)
130 atomic64_set(&kvm
->arch
.mmio_update
, 0);
131 kvm
->arch
.hpt
= *info
;
132 kvm
->arch
.sdr1
= __pa(info
->virt
) | (info
->order
- 18);
134 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
135 info
->virt
, (long)info
->order
, kvm
->arch
.lpid
);
138 long kvmppc_alloc_reset_hpt(struct kvm
*kvm
, int order
)
141 struct kvm_hpt_info info
;
143 mutex_lock(&kvm
->lock
);
144 if (kvm
->arch
.mmu_ready
) {
145 kvm
->arch
.mmu_ready
= 0;
146 /* order mmu_ready vs. vcpus_running */
148 if (atomic_read(&kvm
->arch
.vcpus_running
)) {
149 kvm
->arch
.mmu_ready
= 1;
153 if (kvm_is_radix(kvm
)) {
154 err
= kvmppc_switch_mmu_to_hpt(kvm
);
159 if (kvm
->arch
.hpt
.order
== order
) {
160 /* We already have a suitable HPT */
162 /* Set the entire HPT to 0, i.e. invalid HPTEs */
163 memset((void *)kvm
->arch
.hpt
.virt
, 0, 1ul << order
);
165 * Reset all the reverse-mapping chains for all memslots
167 kvmppc_rmap_reset(kvm
);
172 if (kvm
->arch
.hpt
.virt
) {
173 kvmppc_free_hpt(&kvm
->arch
.hpt
);
174 kvmppc_rmap_reset(kvm
);
177 err
= kvmppc_allocate_hpt(&info
, order
);
180 kvmppc_set_hpt(kvm
, &info
);
184 /* Ensure that each vcpu will flush its TLB on next entry. */
185 cpumask_setall(&kvm
->arch
.need_tlb_flush
);
187 mutex_unlock(&kvm
->lock
);
191 void kvmppc_free_hpt(struct kvm_hpt_info
*info
)
196 kvm_free_hpt_cma(virt_to_page(info
->virt
),
197 1 << (info
->order
- PAGE_SHIFT
));
199 free_pages(info
->virt
, info
->order
- PAGE_SHIFT
);
204 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
205 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize
)
207 return (pgsize
> 0x1000) ? HPTE_V_LARGE
: 0;
210 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
211 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize
)
213 return (pgsize
== 0x10000) ? 0x1000 : 0;
216 void kvmppc_map_vrma(struct kvm_vcpu
*vcpu
, struct kvm_memory_slot
*memslot
,
217 unsigned long porder
)
220 unsigned long npages
;
221 unsigned long hp_v
, hp_r
;
222 unsigned long addr
, hash
;
224 unsigned long hp0
, hp1
;
225 unsigned long idx_ret
;
227 struct kvm
*kvm
= vcpu
->kvm
;
229 psize
= 1ul << porder
;
230 npages
= memslot
->npages
>> (porder
- PAGE_SHIFT
);
232 /* VRMA can't be > 1TB */
233 if (npages
> 1ul << (40 - porder
))
234 npages
= 1ul << (40 - porder
);
235 /* Can't use more than 1 HPTE per HPTEG */
236 if (npages
> kvmppc_hpt_mask(&kvm
->arch
.hpt
) + 1)
237 npages
= kvmppc_hpt_mask(&kvm
->arch
.hpt
) + 1;
239 hp0
= HPTE_V_1TB_SEG
| (VRMA_VSID
<< (40 - 16)) |
240 HPTE_V_BOLTED
| hpte0_pgsize_encoding(psize
);
241 hp1
= hpte1_pgsize_encoding(psize
) |
242 HPTE_R_R
| HPTE_R_C
| HPTE_R_M
| PP_RWXX
;
244 for (i
= 0; i
< npages
; ++i
) {
246 /* can't use hpt_hash since va > 64 bits */
247 hash
= (i
^ (VRMA_VSID
^ (VRMA_VSID
<< 25)))
248 & kvmppc_hpt_mask(&kvm
->arch
.hpt
);
250 * We assume that the hash table is empty and no
251 * vcpus are using it at this stage. Since we create
252 * at most one HPTE per HPTEG, we just assume entry 7
253 * is available and use it.
255 hash
= (hash
<< 3) + 7;
256 hp_v
= hp0
| ((addr
>> 16) & ~0x7fUL
);
258 ret
= kvmppc_virtmode_do_h_enter(kvm
, H_EXACT
, hash
, hp_v
, hp_r
,
260 if (ret
!= H_SUCCESS
) {
261 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
268 int kvmppc_mmu_hv_init(void)
270 unsigned long host_lpid
, rsvd_lpid
;
272 if (!cpu_has_feature(CPU_FTR_HVMODE
))
275 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
276 host_lpid
= mfspr(SPRN_LPID
);
277 rsvd_lpid
= LPID_RSVD
;
279 kvmppc_init_lpid(rsvd_lpid
+ 1);
281 kvmppc_claim_lpid(host_lpid
);
282 /* rsvd_lpid is reserved for use in partition switching */
283 kvmppc_claim_lpid(rsvd_lpid
);
288 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu
*vcpu
)
290 unsigned long msr
= vcpu
->arch
.intr_msr
;
292 /* If transactional, change to suspend mode on IRQ delivery */
293 if (MSR_TM_TRANSACTIONAL(vcpu
->arch
.shregs
.msr
))
296 msr
|= vcpu
->arch
.shregs
.msr
& MSR_TS_MASK
;
297 kvmppc_set_msr(vcpu
, msr
);
300 static long kvmppc_virtmode_do_h_enter(struct kvm
*kvm
, unsigned long flags
,
301 long pte_index
, unsigned long pteh
,
302 unsigned long ptel
, unsigned long *pte_idx_ret
)
306 /* Protect linux PTE lookup from page table destruction */
307 rcu_read_lock_sched(); /* this disables preemption too */
308 ret
= kvmppc_do_h_enter(kvm
, flags
, pte_index
, pteh
, ptel
,
309 current
->mm
->pgd
, false, pte_idx_ret
);
310 rcu_read_unlock_sched();
311 if (ret
== H_TOO_HARD
) {
312 /* this can't happen */
313 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
314 ret
= H_RESOURCE
; /* or something */
320 static struct kvmppc_slb
*kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu
*vcpu
,
326 for (i
= 0; i
< vcpu
->arch
.slb_nr
; i
++) {
327 if (!(vcpu
->arch
.slb
[i
].orige
& SLB_ESID_V
))
330 if (vcpu
->arch
.slb
[i
].origv
& SLB_VSID_B_1T
)
335 if (((vcpu
->arch
.slb
[i
].orige
^ eaddr
) & mask
) == 0)
336 return &vcpu
->arch
.slb
[i
];
341 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v
, unsigned long r
,
344 unsigned long ra_mask
;
346 ra_mask
= kvmppc_actual_pgsz(v
, r
) - 1;
347 return (r
& HPTE_R_RPN
& ~ra_mask
) | (ea
& ra_mask
);
350 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu
*vcpu
, gva_t eaddr
,
351 struct kvmppc_pte
*gpte
, bool data
, bool iswrite
)
353 struct kvm
*kvm
= vcpu
->kvm
;
354 struct kvmppc_slb
*slbe
;
356 unsigned long pp
, key
;
357 unsigned long v
, orig_v
, gr
;
360 int virtmode
= vcpu
->arch
.shregs
.msr
& (data
? MSR_DR
: MSR_IR
);
362 if (kvm_is_radix(vcpu
->kvm
))
363 return kvmppc_mmu_radix_xlate(vcpu
, eaddr
, gpte
, data
, iswrite
);
367 slbe
= kvmppc_mmu_book3s_hv_find_slbe(vcpu
, eaddr
);
372 /* real mode access */
373 slb_v
= vcpu
->kvm
->arch
.vrma_slb_v
;
377 /* Find the HPTE in the hash table */
378 index
= kvmppc_hv_find_lock_hpte(kvm
, eaddr
, slb_v
,
379 HPTE_V_VALID
| HPTE_V_ABSENT
);
384 hptep
= (__be64
*)(kvm
->arch
.hpt
.virt
+ (index
<< 4));
385 v
= orig_v
= be64_to_cpu(hptep
[0]) & ~HPTE_V_HVLOCK
;
386 if (cpu_has_feature(CPU_FTR_ARCH_300
))
387 v
= hpte_new_to_old_v(v
, be64_to_cpu(hptep
[1]));
388 gr
= kvm
->arch
.hpt
.rev
[index
].guest_rpte
;
390 unlock_hpte(hptep
, orig_v
);
394 gpte
->vpage
= ((v
& HPTE_V_AVPN
) << 4) | ((eaddr
>> 12) & 0xfff);
396 /* Get PP bits and key for permission check */
397 pp
= gr
& (HPTE_R_PP0
| HPTE_R_PP
);
398 key
= (vcpu
->arch
.shregs
.msr
& MSR_PR
) ? SLB_VSID_KP
: SLB_VSID_KS
;
401 /* Calculate permissions */
402 gpte
->may_read
= hpte_read_permission(pp
, key
);
403 gpte
->may_write
= hpte_write_permission(pp
, key
);
404 gpte
->may_execute
= gpte
->may_read
&& !(gr
& (HPTE_R_N
| HPTE_R_G
));
406 /* Storage key permission check for POWER7 */
407 if (data
&& virtmode
) {
408 int amrfield
= hpte_get_skey_perm(gr
, vcpu
->arch
.amr
);
415 /* Get the guest physical address */
416 gpte
->raddr
= kvmppc_mmu_get_real_addr(v
, gr
, eaddr
);
421 * Quick test for whether an instruction is a load or a store.
422 * If the instruction is a load or a store, then this will indicate
423 * which it is, at least on server processors. (Embedded processors
424 * have some external PID instructions that don't follow the rule
425 * embodied here.) If the instruction isn't a load or store, then
426 * this doesn't return anything useful.
428 static int instruction_is_store(unsigned int instr
)
433 if ((instr
& 0xfc000000) == 0x7c000000)
434 mask
= 0x100; /* major opcode 31 */
435 return (instr
& mask
) != 0;
438 int kvmppc_hv_emulate_mmio(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
439 unsigned long gpa
, gva_t ea
, int is_store
)
444 * If we fail, we just return to the guest and try executing it again.
446 if (kvmppc_get_last_inst(vcpu
, INST_GENERIC
, &last_inst
) !=
451 * WARNING: We do not know for sure whether the instruction we just
452 * read from memory is the same that caused the fault in the first
453 * place. If the instruction we read is neither an load or a store,
454 * then it can't access memory, so we don't need to worry about
455 * enforcing access permissions. So, assuming it is a load or
456 * store, we just check that its direction (load or store) is
457 * consistent with the original fault, since that's what we
458 * checked the access permissions against. If there is a mismatch
459 * we just return and retry the instruction.
462 if (instruction_is_store(last_inst
) != !!is_store
)
466 * Emulated accesses are emulated by looking at the hash for
467 * translation once, then performing the access later. The
468 * translation could be invalidated in the meantime in which
469 * point performing the subsequent memory access on the old
470 * physical address could possibly be a security hole for the
471 * guest (but not the host).
473 * This is less of an issue for MMIO stores since they aren't
474 * globally visible. It could be an issue for MMIO loads to
475 * a certain extent but we'll ignore it for now.
478 vcpu
->arch
.paddr_accessed
= gpa
;
479 vcpu
->arch
.vaddr_accessed
= ea
;
480 return kvmppc_emulate_mmio(run
, vcpu
);
483 int kvmppc_book3s_hv_page_fault(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
484 unsigned long ea
, unsigned long dsisr
)
486 struct kvm
*kvm
= vcpu
->kvm
;
487 unsigned long hpte
[3], r
;
488 unsigned long hnow_v
, hnow_r
;
490 unsigned long mmu_seq
, psize
, pte_size
;
491 unsigned long gpa_base
, gfn_base
;
492 unsigned long gpa
, gfn
, hva
, pfn
;
493 struct kvm_memory_slot
*memslot
;
495 struct revmap_entry
*rev
;
496 struct page
*page
, *pages
[1];
497 long index
, ret
, npages
;
499 unsigned int writing
, write_ok
;
500 struct vm_area_struct
*vma
;
501 unsigned long rcbits
;
504 if (kvm_is_radix(kvm
))
505 return kvmppc_book3s_radix_page_fault(run
, vcpu
, ea
, dsisr
);
508 * Real-mode code has already searched the HPT and found the
509 * entry we're interested in. Lock the entry and check that
510 * it hasn't changed. If it has, just return and re-execute the
513 if (ea
!= vcpu
->arch
.pgfault_addr
)
516 if (vcpu
->arch
.pgfault_cache
) {
517 mmio_update
= atomic64_read(&kvm
->arch
.mmio_update
);
518 if (mmio_update
== vcpu
->arch
.pgfault_cache
->mmio_update
) {
519 r
= vcpu
->arch
.pgfault_cache
->rpte
;
520 psize
= kvmppc_actual_pgsz(vcpu
->arch
.pgfault_hpte
[0],
522 gpa_base
= r
& HPTE_R_RPN
& ~(psize
- 1);
523 gfn_base
= gpa_base
>> PAGE_SHIFT
;
524 gpa
= gpa_base
| (ea
& (psize
- 1));
525 return kvmppc_hv_emulate_mmio(run
, vcpu
, gpa
, ea
,
526 dsisr
& DSISR_ISSTORE
);
529 index
= vcpu
->arch
.pgfault_index
;
530 hptep
= (__be64
*)(kvm
->arch
.hpt
.virt
+ (index
<< 4));
531 rev
= &kvm
->arch
.hpt
.rev
[index
];
533 while (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
))
535 hpte
[0] = be64_to_cpu(hptep
[0]) & ~HPTE_V_HVLOCK
;
536 hpte
[1] = be64_to_cpu(hptep
[1]);
537 hpte
[2] = r
= rev
->guest_rpte
;
538 unlock_hpte(hptep
, hpte
[0]);
541 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
542 hpte
[0] = hpte_new_to_old_v(hpte
[0], hpte
[1]);
543 hpte
[1] = hpte_new_to_old_r(hpte
[1]);
545 if (hpte
[0] != vcpu
->arch
.pgfault_hpte
[0] ||
546 hpte
[1] != vcpu
->arch
.pgfault_hpte
[1])
549 /* Translate the logical address and get the page */
550 psize
= kvmppc_actual_pgsz(hpte
[0], r
);
551 gpa_base
= r
& HPTE_R_RPN
& ~(psize
- 1);
552 gfn_base
= gpa_base
>> PAGE_SHIFT
;
553 gpa
= gpa_base
| (ea
& (psize
- 1));
554 gfn
= gpa
>> PAGE_SHIFT
;
555 memslot
= gfn_to_memslot(kvm
, gfn
);
557 trace_kvm_page_fault_enter(vcpu
, hpte
, memslot
, ea
, dsisr
);
559 /* No memslot means it's an emulated MMIO region */
560 if (!memslot
|| (memslot
->flags
& KVM_MEMSLOT_INVALID
))
561 return kvmppc_hv_emulate_mmio(run
, vcpu
, gpa
, ea
,
562 dsisr
& DSISR_ISSTORE
);
565 * This should never happen, because of the slot_is_aligned()
566 * check in kvmppc_do_h_enter().
568 if (gfn_base
< memslot
->base_gfn
)
571 /* used to check for invalidations in progress */
572 mmu_seq
= kvm
->mmu_notifier_seq
;
579 pte_size
= PAGE_SIZE
;
580 writing
= (dsisr
& DSISR_ISSTORE
) != 0;
581 /* If writing != 0, then the HPTE must allow writing, if we get here */
583 hva
= gfn_to_hva_memslot(memslot
, gfn
);
584 npages
= get_user_pages_fast(hva
, 1, writing
, pages
);
586 /* Check if it's an I/O mapping */
587 down_read(¤t
->mm
->mmap_sem
);
588 vma
= find_vma(current
->mm
, hva
);
589 if (vma
&& vma
->vm_start
<= hva
&& hva
+ psize
<= vma
->vm_end
&&
590 (vma
->vm_flags
& VM_PFNMAP
)) {
591 pfn
= vma
->vm_pgoff
+
592 ((hva
- vma
->vm_start
) >> PAGE_SHIFT
);
594 is_ci
= pte_ci(__pte((pgprot_val(vma
->vm_page_prot
))));
595 write_ok
= vma
->vm_flags
& VM_WRITE
;
597 up_read(¤t
->mm
->mmap_sem
);
602 pfn
= page_to_pfn(page
);
603 if (PageHuge(page
)) {
604 page
= compound_head(page
);
605 pte_size
<<= compound_order(page
);
607 /* if the guest wants write access, see if that is OK */
608 if (!writing
&& hpte_is_writable(r
)) {
612 * We need to protect against page table destruction
613 * hugepage split and collapse.
615 local_irq_save(flags
);
616 ptep
= find_current_mm_pte(current
->mm
->pgd
,
619 pte
= kvmppc_read_update_linux_pte(ptep
, 1);
620 if (__pte_write(pte
))
623 local_irq_restore(flags
);
627 if (psize
> pte_size
)
630 /* Check WIMG vs. the actual page we're accessing */
631 if (!hpte_cache_flags_ok(r
, is_ci
)) {
635 * Allow guest to map emulated device memory as
636 * uncacheable, but actually make it cacheable.
638 r
= (r
& ~(HPTE_R_W
|HPTE_R_I
|HPTE_R_G
)) | HPTE_R_M
;
642 * Set the HPTE to point to pfn.
643 * Since the pfn is at PAGE_SIZE granularity, make sure we
644 * don't mask out lower-order bits if psize < PAGE_SIZE.
646 if (psize
< PAGE_SIZE
)
648 r
= (r
& HPTE_R_KEY_HI
) | (r
& ~(HPTE_R_PP0
- psize
)) |
649 ((pfn
<< PAGE_SHIFT
) & ~(psize
- 1));
650 if (hpte_is_writable(r
) && !write_ok
)
651 r
= hpte_make_readonly(r
);
654 while (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
))
656 hnow_v
= be64_to_cpu(hptep
[0]);
657 hnow_r
= be64_to_cpu(hptep
[1]);
658 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
659 hnow_v
= hpte_new_to_old_v(hnow_v
, hnow_r
);
660 hnow_r
= hpte_new_to_old_r(hnow_r
);
664 * If the HPT is being resized, don't update the HPTE,
665 * instead let the guest retry after the resize operation is complete.
666 * The synchronization for mmu_ready test vs. set is provided
669 if (!kvm
->arch
.mmu_ready
)
672 if ((hnow_v
& ~HPTE_V_HVLOCK
) != hpte
[0] || hnow_r
!= hpte
[1] ||
673 rev
->guest_rpte
!= hpte
[2])
674 /* HPTE has been changed under us; let the guest retry */
676 hpte
[0] = (hpte
[0] & ~HPTE_V_ABSENT
) | HPTE_V_VALID
;
678 /* Always put the HPTE in the rmap chain for the page base address */
679 rmap
= &memslot
->arch
.rmap
[gfn_base
- memslot
->base_gfn
];
682 /* Check if we might have been invalidated; let the guest retry if so */
684 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
)) {
689 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
690 rcbits
= *rmap
>> KVMPPC_RMAP_RC_SHIFT
;
691 r
&= rcbits
| ~(HPTE_R_R
| HPTE_R_C
);
693 if (be64_to_cpu(hptep
[0]) & HPTE_V_VALID
) {
694 /* HPTE was previously valid, so we need to invalidate it */
696 hptep
[0] |= cpu_to_be64(HPTE_V_ABSENT
);
697 kvmppc_invalidate_hpte(kvm
, hptep
, index
);
698 /* don't lose previous R and C bits */
699 r
|= be64_to_cpu(hptep
[1]) & (HPTE_R_R
| HPTE_R_C
);
701 kvmppc_add_revmap_chain(kvm
, rev
, rmap
, index
, 0);
704 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
705 r
= hpte_old_to_new_r(hpte
[0], r
);
706 hpte
[0] = hpte_old_to_new_v(hpte
[0]);
708 hptep
[1] = cpu_to_be64(r
);
710 __unlock_hpte(hptep
, hpte
[0]);
711 asm volatile("ptesync" : : : "memory");
713 if (page
&& hpte_is_writable(r
))
717 trace_kvm_page_fault_exit(vcpu
, hpte
, ret
);
721 * We drop pages[0] here, not page because page might
722 * have been set to the head page of a compound, but
723 * we have to drop the reference on the correct tail
724 * page to match the get inside gup()
731 __unlock_hpte(hptep
, be64_to_cpu(hptep
[0]));
736 void kvmppc_rmap_reset(struct kvm
*kvm
)
738 struct kvm_memslots
*slots
;
739 struct kvm_memory_slot
*memslot
;
742 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
743 slots
= kvm_memslots(kvm
);
744 kvm_for_each_memslot(memslot
, slots
) {
746 * This assumes it is acceptable to lose reference and
747 * change bits across a reset.
749 memset(memslot
->arch
.rmap
, 0,
750 memslot
->npages
* sizeof(*memslot
->arch
.rmap
));
752 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
755 typedef int (*hva_handler_fn
)(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
758 static int kvm_handle_hva_range(struct kvm
*kvm
,
761 hva_handler_fn handler
)
765 struct kvm_memslots
*slots
;
766 struct kvm_memory_slot
*memslot
;
768 slots
= kvm_memslots(kvm
);
769 kvm_for_each_memslot(memslot
, slots
) {
770 unsigned long hva_start
, hva_end
;
773 hva_start
= max(start
, memslot
->userspace_addr
);
774 hva_end
= min(end
, memslot
->userspace_addr
+
775 (memslot
->npages
<< PAGE_SHIFT
));
776 if (hva_start
>= hva_end
)
779 * {gfn(page) | page intersects with [hva_start, hva_end)} =
780 * {gfn, gfn+1, ..., gfn_end-1}.
782 gfn
= hva_to_gfn_memslot(hva_start
, memslot
);
783 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
785 for (; gfn
< gfn_end
; ++gfn
) {
786 ret
= handler(kvm
, memslot
, gfn
);
794 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
795 hva_handler_fn handler
)
797 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, handler
);
800 /* Must be called with both HPTE and rmap locked */
801 static void kvmppc_unmap_hpte(struct kvm
*kvm
, unsigned long i
,
802 struct kvm_memory_slot
*memslot
,
803 unsigned long *rmapp
, unsigned long gfn
)
805 __be64
*hptep
= (__be64
*) (kvm
->arch
.hpt
.virt
+ (i
<< 4));
806 struct revmap_entry
*rev
= kvm
->arch
.hpt
.rev
;
808 unsigned long ptel
, psize
, rcbits
;
812 /* chain is now empty */
813 *rmapp
&= ~(KVMPPC_RMAP_PRESENT
| KVMPPC_RMAP_INDEX
);
815 /* remove i from chain */
819 rev
[i
].forw
= rev
[i
].back
= i
;
820 *rmapp
= (*rmapp
& ~KVMPPC_RMAP_INDEX
) | j
;
823 /* Now check and modify the HPTE */
824 ptel
= rev
[i
].guest_rpte
;
825 psize
= kvmppc_actual_pgsz(be64_to_cpu(hptep
[0]), ptel
);
826 if ((be64_to_cpu(hptep
[0]) & HPTE_V_VALID
) &&
827 hpte_rpn(ptel
, psize
) == gfn
) {
828 hptep
[0] |= cpu_to_be64(HPTE_V_ABSENT
);
829 kvmppc_invalidate_hpte(kvm
, hptep
, i
);
830 hptep
[1] &= ~cpu_to_be64(HPTE_R_KEY_HI
| HPTE_R_KEY_LO
);
831 /* Harvest R and C */
832 rcbits
= be64_to_cpu(hptep
[1]) & (HPTE_R_R
| HPTE_R_C
);
833 *rmapp
|= rcbits
<< KVMPPC_RMAP_RC_SHIFT
;
834 if ((rcbits
& HPTE_R_C
) && memslot
->dirty_bitmap
)
835 kvmppc_update_dirty_map(memslot
, gfn
, psize
);
836 if (rcbits
& ~rev
[i
].guest_rpte
) {
837 rev
[i
].guest_rpte
= ptel
| rcbits
;
838 note_hpte_modification(kvm
, &rev
[i
]);
843 static int kvm_unmap_rmapp(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
848 unsigned long *rmapp
;
850 rmapp
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
853 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
859 * To avoid an ABBA deadlock with the HPTE lock bit,
860 * we can't spin on the HPTE lock while holding the
863 i
= *rmapp
& KVMPPC_RMAP_INDEX
;
864 hptep
= (__be64
*) (kvm
->arch
.hpt
.virt
+ (i
<< 4));
865 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
866 /* unlock rmap before spinning on the HPTE lock */
868 while (be64_to_cpu(hptep
[0]) & HPTE_V_HVLOCK
)
873 kvmppc_unmap_hpte(kvm
, i
, memslot
, rmapp
, gfn
);
875 __unlock_hpte(hptep
, be64_to_cpu(hptep
[0]));
880 int kvm_unmap_hva_hv(struct kvm
*kvm
, unsigned long hva
)
882 hva_handler_fn handler
;
884 handler
= kvm_is_radix(kvm
) ? kvm_unmap_radix
: kvm_unmap_rmapp
;
885 kvm_handle_hva(kvm
, hva
, handler
);
889 int kvm_unmap_hva_range_hv(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
891 hva_handler_fn handler
;
893 handler
= kvm_is_radix(kvm
) ? kvm_unmap_radix
: kvm_unmap_rmapp
;
894 kvm_handle_hva_range(kvm
, start
, end
, handler
);
898 void kvmppc_core_flush_memslot_hv(struct kvm
*kvm
,
899 struct kvm_memory_slot
*memslot
)
903 unsigned long *rmapp
;
905 gfn
= memslot
->base_gfn
;
906 rmapp
= memslot
->arch
.rmap
;
907 for (n
= memslot
->npages
; n
; --n
, ++gfn
) {
908 if (kvm_is_radix(kvm
)) {
909 kvm_unmap_radix(kvm
, memslot
, gfn
);
913 * Testing the present bit without locking is OK because
914 * the memslot has been marked invalid already, and hence
915 * no new HPTEs referencing this page can be created,
916 * thus the present bit can't go from 0 to 1.
918 if (*rmapp
& KVMPPC_RMAP_PRESENT
)
919 kvm_unmap_rmapp(kvm
, memslot
, gfn
);
924 static int kvm_age_rmapp(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
927 struct revmap_entry
*rev
= kvm
->arch
.hpt
.rev
;
928 unsigned long head
, i
, j
;
931 unsigned long *rmapp
;
933 rmapp
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
936 if (*rmapp
& KVMPPC_RMAP_REFERENCED
) {
937 *rmapp
&= ~KVMPPC_RMAP_REFERENCED
;
940 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
945 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
947 hptep
= (__be64
*) (kvm
->arch
.hpt
.virt
+ (i
<< 4));
950 /* If this HPTE isn't referenced, ignore it */
951 if (!(be64_to_cpu(hptep
[1]) & HPTE_R_R
))
954 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
955 /* unlock rmap before spinning on the HPTE lock */
957 while (be64_to_cpu(hptep
[0]) & HPTE_V_HVLOCK
)
962 /* Now check and modify the HPTE */
963 if ((be64_to_cpu(hptep
[0]) & HPTE_V_VALID
) &&
964 (be64_to_cpu(hptep
[1]) & HPTE_R_R
)) {
965 kvmppc_clear_ref_hpte(kvm
, hptep
, i
);
966 if (!(rev
[i
].guest_rpte
& HPTE_R_R
)) {
967 rev
[i
].guest_rpte
|= HPTE_R_R
;
968 note_hpte_modification(kvm
, &rev
[i
]);
972 __unlock_hpte(hptep
, be64_to_cpu(hptep
[0]));
973 } while ((i
= j
) != head
);
979 int kvm_age_hva_hv(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
981 hva_handler_fn handler
;
983 handler
= kvm_is_radix(kvm
) ? kvm_age_radix
: kvm_age_rmapp
;
984 return kvm_handle_hva_range(kvm
, start
, end
, handler
);
987 static int kvm_test_age_rmapp(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
990 struct revmap_entry
*rev
= kvm
->arch
.hpt
.rev
;
991 unsigned long head
, i
, j
;
994 unsigned long *rmapp
;
996 rmapp
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
997 if (*rmapp
& KVMPPC_RMAP_REFERENCED
)
1001 if (*rmapp
& KVMPPC_RMAP_REFERENCED
)
1004 if (*rmapp
& KVMPPC_RMAP_PRESENT
) {
1005 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
1007 hp
= (unsigned long *)(kvm
->arch
.hpt
.virt
+ (i
<< 4));
1009 if (be64_to_cpu(hp
[1]) & HPTE_R_R
)
1011 } while ((i
= j
) != head
);
1020 int kvm_test_age_hva_hv(struct kvm
*kvm
, unsigned long hva
)
1022 hva_handler_fn handler
;
1024 handler
= kvm_is_radix(kvm
) ? kvm_test_age_radix
: kvm_test_age_rmapp
;
1025 return kvm_handle_hva(kvm
, hva
, handler
);
1028 void kvm_set_spte_hva_hv(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1030 hva_handler_fn handler
;
1032 handler
= kvm_is_radix(kvm
) ? kvm_unmap_radix
: kvm_unmap_rmapp
;
1033 kvm_handle_hva(kvm
, hva
, handler
);
1036 static int vcpus_running(struct kvm
*kvm
)
1038 return atomic_read(&kvm
->arch
.vcpus_running
) != 0;
1042 * Returns the number of system pages that are dirty.
1043 * This can be more than 1 if we find a huge-page HPTE.
1045 static int kvm_test_clear_dirty_npages(struct kvm
*kvm
, unsigned long *rmapp
)
1047 struct revmap_entry
*rev
= kvm
->arch
.hpt
.rev
;
1048 unsigned long head
, i
, j
;
1052 int npages_dirty
= 0;
1056 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
1058 return npages_dirty
;
1061 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
1063 unsigned long hptep1
;
1064 hptep
= (__be64
*) (kvm
->arch
.hpt
.virt
+ (i
<< 4));
1068 * Checking the C (changed) bit here is racy since there
1069 * is no guarantee about when the hardware writes it back.
1070 * If the HPTE is not writable then it is stable since the
1071 * page can't be written to, and we would have done a tlbie
1072 * (which forces the hardware to complete any writeback)
1073 * when making the HPTE read-only.
1074 * If vcpus are running then this call is racy anyway
1075 * since the page could get dirtied subsequently, so we
1076 * expect there to be a further call which would pick up
1077 * any delayed C bit writeback.
1078 * Otherwise we need to do the tlbie even if C==0 in
1079 * order to pick up any delayed writeback of C.
1081 hptep1
= be64_to_cpu(hptep
[1]);
1082 if (!(hptep1
& HPTE_R_C
) &&
1083 (!hpte_is_writable(hptep1
) || vcpus_running(kvm
)))
1086 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
1087 /* unlock rmap before spinning on the HPTE lock */
1089 while (hptep
[0] & cpu_to_be64(HPTE_V_HVLOCK
))
1094 /* Now check and modify the HPTE */
1095 if (!(hptep
[0] & cpu_to_be64(HPTE_V_VALID
))) {
1096 __unlock_hpte(hptep
, be64_to_cpu(hptep
[0]));
1100 /* need to make it temporarily absent so C is stable */
1101 hptep
[0] |= cpu_to_be64(HPTE_V_ABSENT
);
1102 kvmppc_invalidate_hpte(kvm
, hptep
, i
);
1103 v
= be64_to_cpu(hptep
[0]);
1104 r
= be64_to_cpu(hptep
[1]);
1106 hptep
[1] = cpu_to_be64(r
& ~HPTE_R_C
);
1107 if (!(rev
[i
].guest_rpte
& HPTE_R_C
)) {
1108 rev
[i
].guest_rpte
|= HPTE_R_C
;
1109 note_hpte_modification(kvm
, &rev
[i
]);
1111 n
= kvmppc_actual_pgsz(v
, r
);
1112 n
= (n
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1113 if (n
> npages_dirty
)
1117 v
&= ~HPTE_V_ABSENT
;
1119 __unlock_hpte(hptep
, v
);
1120 } while ((i
= j
) != head
);
1123 return npages_dirty
;
1126 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa
*vpa
,
1127 struct kvm_memory_slot
*memslot
,
1132 if (!vpa
->dirty
|| !vpa
->pinned_addr
)
1134 gfn
= vpa
->gpa
>> PAGE_SHIFT
;
1135 if (gfn
< memslot
->base_gfn
||
1136 gfn
>= memslot
->base_gfn
+ memslot
->npages
)
1141 __set_bit_le(gfn
- memslot
->base_gfn
, map
);
1144 long kvmppc_hv_get_dirty_log_hpt(struct kvm
*kvm
,
1145 struct kvm_memory_slot
*memslot
, unsigned long *map
)
1148 unsigned long *rmapp
;
1151 rmapp
= memslot
->arch
.rmap
;
1152 for (i
= 0; i
< memslot
->npages
; ++i
) {
1153 int npages
= kvm_test_clear_dirty_npages(kvm
, rmapp
);
1155 * Note that if npages > 0 then i must be a multiple of npages,
1156 * since we always put huge-page HPTEs in the rmap chain
1157 * corresponding to their page base address.
1160 set_dirty_bits(map
, i
, npages
);
1167 void *kvmppc_pin_guest_page(struct kvm
*kvm
, unsigned long gpa
,
1168 unsigned long *nb_ret
)
1170 struct kvm_memory_slot
*memslot
;
1171 unsigned long gfn
= gpa
>> PAGE_SHIFT
;
1172 struct page
*page
, *pages
[1];
1174 unsigned long hva
, offset
;
1177 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
1178 memslot
= gfn_to_memslot(kvm
, gfn
);
1179 if (!memslot
|| (memslot
->flags
& KVM_MEMSLOT_INVALID
))
1181 hva
= gfn_to_hva_memslot(memslot
, gfn
);
1182 npages
= get_user_pages_fast(hva
, 1, 1, pages
);
1186 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1188 offset
= gpa
& (PAGE_SIZE
- 1);
1190 *nb_ret
= PAGE_SIZE
- offset
;
1191 return page_address(page
) + offset
;
1194 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1198 void kvmppc_unpin_guest_page(struct kvm
*kvm
, void *va
, unsigned long gpa
,
1201 struct page
*page
= virt_to_page(va
);
1202 struct kvm_memory_slot
*memslot
;
1211 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1212 gfn
= gpa
>> PAGE_SHIFT
;
1213 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
1214 memslot
= gfn_to_memslot(kvm
, gfn
);
1215 if (memslot
&& memslot
->dirty_bitmap
)
1216 set_bit_le(gfn
- memslot
->base_gfn
, memslot
->dirty_bitmap
);
1217 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1223 static int resize_hpt_allocate(struct kvm_resize_hpt
*resize
)
1227 rc
= kvmppc_allocate_hpt(&resize
->hpt
, resize
->order
);
1231 resize_hpt_debug(resize
, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1237 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt
*resize
,
1240 struct kvm
*kvm
= resize
->kvm
;
1241 struct kvm_hpt_info
*old
= &kvm
->arch
.hpt
;
1242 struct kvm_hpt_info
*new = &resize
->hpt
;
1243 unsigned long old_hash_mask
= (1ULL << (old
->order
- 7)) - 1;
1244 unsigned long new_hash_mask
= (1ULL << (new->order
- 7)) - 1;
1245 __be64
*hptep
, *new_hptep
;
1246 unsigned long vpte
, rpte
, guest_rpte
;
1248 struct revmap_entry
*rev
;
1249 unsigned long apsize
, avpn
, pteg
, hash
;
1250 unsigned long new_idx
, new_pteg
, replace_vpte
;
1253 hptep
= (__be64
*)(old
->virt
+ (idx
<< 4));
1255 /* Guest is stopped, so new HPTEs can't be added or faulted
1256 * in, only unmapped or altered by host actions. So, it's
1257 * safe to check this before we take the HPTE lock */
1258 vpte
= be64_to_cpu(hptep
[0]);
1259 if (!(vpte
& HPTE_V_VALID
) && !(vpte
& HPTE_V_ABSENT
))
1260 return 0; /* nothing to do */
1262 while (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
))
1265 vpte
= be64_to_cpu(hptep
[0]);
1268 if (!(vpte
& HPTE_V_VALID
) && !(vpte
& HPTE_V_ABSENT
))
1272 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
1273 rpte
= be64_to_cpu(hptep
[1]);
1274 vpte
= hpte_new_to_old_v(vpte
, rpte
);
1278 rev
= &old
->rev
[idx
];
1279 guest_rpte
= rev
->guest_rpte
;
1282 apsize
= kvmppc_actual_pgsz(vpte
, guest_rpte
);
1286 if (vpte
& HPTE_V_VALID
) {
1287 unsigned long gfn
= hpte_rpn(guest_rpte
, apsize
);
1288 int srcu_idx
= srcu_read_lock(&kvm
->srcu
);
1289 struct kvm_memory_slot
*memslot
=
1290 __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1293 unsigned long *rmapp
;
1294 rmapp
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
1297 kvmppc_unmap_hpte(kvm
, idx
, memslot
, rmapp
, gfn
);
1301 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1304 /* Reload PTE after unmap */
1305 vpte
= be64_to_cpu(hptep
[0]);
1306 BUG_ON(vpte
& HPTE_V_VALID
);
1307 BUG_ON(!(vpte
& HPTE_V_ABSENT
));
1310 if (!(vpte
& HPTE_V_BOLTED
))
1313 rpte
= be64_to_cpu(hptep
[1]);
1315 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
1316 vpte
= hpte_new_to_old_v(vpte
, rpte
);
1317 rpte
= hpte_new_to_old_r(rpte
);
1320 pshift
= kvmppc_hpte_base_page_shift(vpte
, rpte
);
1321 avpn
= HPTE_V_AVPN_VAL(vpte
) & ~(((1ul << pshift
) - 1) >> 23);
1322 pteg
= idx
/ HPTES_PER_GROUP
;
1323 if (vpte
& HPTE_V_SECONDARY
)
1326 if (!(vpte
& HPTE_V_1TB_SEG
)) {
1327 unsigned long offset
, vsid
;
1329 /* We only have 28 - 23 bits of offset in avpn */
1330 offset
= (avpn
& 0x1f) << 23;
1332 /* We can find more bits from the pteg value */
1334 offset
|= ((vsid
^ pteg
) & old_hash_mask
) << pshift
;
1336 hash
= vsid
^ (offset
>> pshift
);
1338 unsigned long offset
, vsid
;
1340 /* We only have 40 - 23 bits of seg_off in avpn */
1341 offset
= (avpn
& 0x1ffff) << 23;
1344 offset
|= ((vsid
^ (vsid
<< 25) ^ pteg
) & old_hash_mask
) << pshift
;
1346 hash
= vsid
^ (vsid
<< 25) ^ (offset
>> pshift
);
1349 new_pteg
= hash
& new_hash_mask
;
1350 if (vpte
& HPTE_V_SECONDARY
)
1351 new_pteg
= ~hash
& new_hash_mask
;
1353 new_idx
= new_pteg
* HPTES_PER_GROUP
+ (idx
% HPTES_PER_GROUP
);
1354 new_hptep
= (__be64
*)(new->virt
+ (new_idx
<< 4));
1356 replace_vpte
= be64_to_cpu(new_hptep
[0]);
1357 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
1358 unsigned long replace_rpte
= be64_to_cpu(new_hptep
[1]);
1359 replace_vpte
= hpte_new_to_old_v(replace_vpte
, replace_rpte
);
1362 if (replace_vpte
& (HPTE_V_VALID
| HPTE_V_ABSENT
)) {
1363 BUG_ON(new->order
>= old
->order
);
1365 if (replace_vpte
& HPTE_V_BOLTED
) {
1366 if (vpte
& HPTE_V_BOLTED
)
1367 /* Bolted collision, nothing we can do */
1369 /* Discard the new HPTE */
1373 /* Discard the previous HPTE */
1376 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
1377 rpte
= hpte_old_to_new_r(vpte
, rpte
);
1378 vpte
= hpte_old_to_new_v(vpte
);
1381 new_hptep
[1] = cpu_to_be64(rpte
);
1382 new->rev
[new_idx
].guest_rpte
= guest_rpte
;
1383 /* No need for a barrier, since new HPT isn't active */
1384 new_hptep
[0] = cpu_to_be64(vpte
);
1385 unlock_hpte(new_hptep
, vpte
);
1388 unlock_hpte(hptep
, vpte
);
1392 static int resize_hpt_rehash(struct kvm_resize_hpt
*resize
)
1394 struct kvm
*kvm
= resize
->kvm
;
1398 for (i
= 0; i
< kvmppc_hpt_npte(&kvm
->arch
.hpt
); i
++) {
1399 rc
= resize_hpt_rehash_hpte(resize
, i
);
1407 static void resize_hpt_pivot(struct kvm_resize_hpt
*resize
)
1409 struct kvm
*kvm
= resize
->kvm
;
1410 struct kvm_hpt_info hpt_tmp
;
1412 /* Exchange the pending tables in the resize structure with
1413 * the active tables */
1415 resize_hpt_debug(resize
, "resize_hpt_pivot()\n");
1417 spin_lock(&kvm
->mmu_lock
);
1418 asm volatile("ptesync" : : : "memory");
1420 hpt_tmp
= kvm
->arch
.hpt
;
1421 kvmppc_set_hpt(kvm
, &resize
->hpt
);
1422 resize
->hpt
= hpt_tmp
;
1424 spin_unlock(&kvm
->mmu_lock
);
1426 synchronize_srcu_expedited(&kvm
->srcu
);
1428 if (cpu_has_feature(CPU_FTR_ARCH_300
))
1429 kvmppc_setup_partition_table(kvm
);
1431 resize_hpt_debug(resize
, "resize_hpt_pivot() done\n");
1434 static void resize_hpt_release(struct kvm
*kvm
, struct kvm_resize_hpt
*resize
)
1436 if (WARN_ON(!mutex_is_locked(&kvm
->lock
)))
1442 if (resize
->error
!= -EBUSY
) {
1443 if (resize
->hpt
.virt
)
1444 kvmppc_free_hpt(&resize
->hpt
);
1448 if (kvm
->arch
.resize_hpt
== resize
)
1449 kvm
->arch
.resize_hpt
= NULL
;
1452 static void resize_hpt_prepare_work(struct work_struct
*work
)
1454 struct kvm_resize_hpt
*resize
= container_of(work
,
1455 struct kvm_resize_hpt
,
1457 struct kvm
*kvm
= resize
->kvm
;
1460 if (WARN_ON(resize
->error
!= -EBUSY
))
1463 mutex_lock(&kvm
->lock
);
1465 /* Request is still current? */
1466 if (kvm
->arch
.resize_hpt
== resize
) {
1467 /* We may request large allocations here:
1468 * do not sleep with kvm->lock held for a while.
1470 mutex_unlock(&kvm
->lock
);
1472 resize_hpt_debug(resize
, "resize_hpt_prepare_work(): order = %d\n",
1475 err
= resize_hpt_allocate(resize
);
1477 /* We have strict assumption about -EBUSY
1478 * when preparing for HPT resize.
1480 if (WARN_ON(err
== -EBUSY
))
1483 mutex_lock(&kvm
->lock
);
1484 /* It is possible that kvm->arch.resize_hpt != resize
1485 * after we grab kvm->lock again.
1489 resize
->error
= err
;
1491 if (kvm
->arch
.resize_hpt
!= resize
)
1492 resize_hpt_release(kvm
, resize
);
1494 mutex_unlock(&kvm
->lock
);
1497 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm
*kvm
,
1498 struct kvm_ppc_resize_hpt
*rhpt
)
1500 unsigned long flags
= rhpt
->flags
;
1501 unsigned long shift
= rhpt
->shift
;
1502 struct kvm_resize_hpt
*resize
;
1505 if (flags
!= 0 || kvm_is_radix(kvm
))
1508 if (shift
&& ((shift
< 18) || (shift
> 46)))
1511 mutex_lock(&kvm
->lock
);
1513 resize
= kvm
->arch
.resize_hpt
;
1516 if (resize
->order
== shift
) {
1517 /* Suitable resize in progress? */
1518 ret
= resize
->error
;
1520 ret
= 100; /* estimated time in ms */
1522 resize_hpt_release(kvm
, resize
);
1527 /* not suitable, cancel it */
1528 resize_hpt_release(kvm
, resize
);
1533 goto out
; /* nothing to do */
1535 /* start new resize */
1537 resize
= kzalloc(sizeof(*resize
), GFP_KERNEL
);
1543 resize
->error
= -EBUSY
;
1544 resize
->order
= shift
;
1546 INIT_WORK(&resize
->work
, resize_hpt_prepare_work
);
1547 kvm
->arch
.resize_hpt
= resize
;
1549 schedule_work(&resize
->work
);
1551 ret
= 100; /* estimated time in ms */
1554 mutex_unlock(&kvm
->lock
);
1558 static void resize_hpt_boot_vcpu(void *opaque
)
1560 /* Nothing to do, just force a KVM exit */
1563 long kvm_vm_ioctl_resize_hpt_commit(struct kvm
*kvm
,
1564 struct kvm_ppc_resize_hpt
*rhpt
)
1566 unsigned long flags
= rhpt
->flags
;
1567 unsigned long shift
= rhpt
->shift
;
1568 struct kvm_resize_hpt
*resize
;
1571 if (flags
!= 0 || kvm_is_radix(kvm
))
1574 if (shift
&& ((shift
< 18) || (shift
> 46)))
1577 mutex_lock(&kvm
->lock
);
1579 resize
= kvm
->arch
.resize_hpt
;
1581 /* This shouldn't be possible */
1583 if (WARN_ON(!kvm
->arch
.mmu_ready
))
1586 /* Stop VCPUs from running while we mess with the HPT */
1587 kvm
->arch
.mmu_ready
= 0;
1590 /* Boot all CPUs out of the guest so they re-read
1592 on_each_cpu(resize_hpt_boot_vcpu
, NULL
, 1);
1595 if (!resize
|| (resize
->order
!= shift
))
1598 ret
= resize
->error
;
1602 ret
= resize_hpt_rehash(resize
);
1606 resize_hpt_pivot(resize
);
1609 /* Let VCPUs run again */
1610 kvm
->arch
.mmu_ready
= 1;
1613 resize_hpt_release(kvm
, resize
);
1614 mutex_unlock(&kvm
->lock
);
1619 * Functions for reading and writing the hash table via reads and
1620 * writes on a file descriptor.
1622 * Reads return the guest view of the hash table, which has to be
1623 * pieced together from the real hash table and the guest_rpte
1624 * values in the revmap array.
1626 * On writes, each HPTE written is considered in turn, and if it
1627 * is valid, it is written to the HPT as if an H_ENTER with the
1628 * exact flag set was done. When the invalid count is non-zero
1629 * in the header written to the stream, the kernel will make
1630 * sure that that many HPTEs are invalid, and invalidate them
1634 struct kvm_htab_ctx
{
1635 unsigned long index
;
1636 unsigned long flags
;
1641 #define HPTE_SIZE (2 * sizeof(unsigned long))
1644 * Returns 1 if this HPT entry has been modified or has pending
1647 static int hpte_dirty(struct revmap_entry
*revp
, __be64
*hptp
)
1649 unsigned long rcbits_unset
;
1651 if (revp
->guest_rpte
& HPTE_GR_MODIFIED
)
1654 /* Also need to consider changes in reference and changed bits */
1655 rcbits_unset
= ~revp
->guest_rpte
& (HPTE_R_R
| HPTE_R_C
);
1656 if ((be64_to_cpu(hptp
[0]) & HPTE_V_VALID
) &&
1657 (be64_to_cpu(hptp
[1]) & rcbits_unset
))
1663 static long record_hpte(unsigned long flags
, __be64
*hptp
,
1664 unsigned long *hpte
, struct revmap_entry
*revp
,
1665 int want_valid
, int first_pass
)
1667 unsigned long v
, r
, hr
;
1668 unsigned long rcbits_unset
;
1672 /* Unmodified entries are uninteresting except on the first pass */
1673 dirty
= hpte_dirty(revp
, hptp
);
1674 if (!first_pass
&& !dirty
)
1678 if (be64_to_cpu(hptp
[0]) & (HPTE_V_VALID
| HPTE_V_ABSENT
)) {
1680 if ((flags
& KVM_GET_HTAB_BOLTED_ONLY
) &&
1681 !(be64_to_cpu(hptp
[0]) & HPTE_V_BOLTED
))
1684 if (valid
!= want_valid
)
1688 if (valid
|| dirty
) {
1689 /* lock the HPTE so it's stable and read it */
1691 while (!try_lock_hpte(hptp
, HPTE_V_HVLOCK
))
1693 v
= be64_to_cpu(hptp
[0]);
1694 hr
= be64_to_cpu(hptp
[1]);
1695 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
1696 v
= hpte_new_to_old_v(v
, hr
);
1697 hr
= hpte_new_to_old_r(hr
);
1700 /* re-evaluate valid and dirty from synchronized HPTE value */
1701 valid
= !!(v
& HPTE_V_VALID
);
1702 dirty
= !!(revp
->guest_rpte
& HPTE_GR_MODIFIED
);
1704 /* Harvest R and C into guest view if necessary */
1705 rcbits_unset
= ~revp
->guest_rpte
& (HPTE_R_R
| HPTE_R_C
);
1706 if (valid
&& (rcbits_unset
& hr
)) {
1707 revp
->guest_rpte
|= (hr
&
1708 (HPTE_R_R
| HPTE_R_C
)) | HPTE_GR_MODIFIED
;
1712 if (v
& HPTE_V_ABSENT
) {
1713 v
&= ~HPTE_V_ABSENT
;
1717 if ((flags
& KVM_GET_HTAB_BOLTED_ONLY
) && !(v
& HPTE_V_BOLTED
))
1720 r
= revp
->guest_rpte
;
1721 /* only clear modified if this is the right sort of entry */
1722 if (valid
== want_valid
&& dirty
) {
1723 r
&= ~HPTE_GR_MODIFIED
;
1724 revp
->guest_rpte
= r
;
1726 unlock_hpte(hptp
, be64_to_cpu(hptp
[0]));
1728 if (!(valid
== want_valid
&& (first_pass
|| dirty
)))
1731 hpte
[0] = cpu_to_be64(v
);
1732 hpte
[1] = cpu_to_be64(r
);
1736 static ssize_t
kvm_htab_read(struct file
*file
, char __user
*buf
,
1737 size_t count
, loff_t
*ppos
)
1739 struct kvm_htab_ctx
*ctx
= file
->private_data
;
1740 struct kvm
*kvm
= ctx
->kvm
;
1741 struct kvm_get_htab_header hdr
;
1743 struct revmap_entry
*revp
;
1744 unsigned long i
, nb
, nw
;
1745 unsigned long __user
*lbuf
;
1746 struct kvm_get_htab_header __user
*hptr
;
1747 unsigned long flags
;
1749 unsigned long hpte
[2];
1751 if (!access_ok(VERIFY_WRITE
, buf
, count
))
1753 if (kvm_is_radix(kvm
))
1756 first_pass
= ctx
->first_pass
;
1760 hptp
= (__be64
*)(kvm
->arch
.hpt
.virt
+ (i
* HPTE_SIZE
));
1761 revp
= kvm
->arch
.hpt
.rev
+ i
;
1762 lbuf
= (unsigned long __user
*)buf
;
1765 while (nb
+ sizeof(hdr
) + HPTE_SIZE
< count
) {
1766 /* Initialize header */
1767 hptr
= (struct kvm_get_htab_header __user
*)buf
;
1772 lbuf
= (unsigned long __user
*)(buf
+ sizeof(hdr
));
1774 /* Skip uninteresting entries, i.e. clean on not-first pass */
1776 while (i
< kvmppc_hpt_npte(&kvm
->arch
.hpt
) &&
1777 !hpte_dirty(revp
, hptp
)) {
1785 /* Grab a series of valid entries */
1786 while (i
< kvmppc_hpt_npte(&kvm
->arch
.hpt
) &&
1787 hdr
.n_valid
< 0xffff &&
1788 nb
+ HPTE_SIZE
< count
&&
1789 record_hpte(flags
, hptp
, hpte
, revp
, 1, first_pass
)) {
1790 /* valid entry, write it out */
1792 if (__put_user(hpte
[0], lbuf
) ||
1793 __put_user(hpte
[1], lbuf
+ 1))
1801 /* Now skip invalid entries while we can */
1802 while (i
< kvmppc_hpt_npte(&kvm
->arch
.hpt
) &&
1803 hdr
.n_invalid
< 0xffff &&
1804 record_hpte(flags
, hptp
, hpte
, revp
, 0, first_pass
)) {
1805 /* found an invalid entry */
1812 if (hdr
.n_valid
|| hdr
.n_invalid
) {
1813 /* write back the header */
1814 if (__copy_to_user(hptr
, &hdr
, sizeof(hdr
)))
1817 buf
= (char __user
*)lbuf
;
1822 /* Check if we've wrapped around the hash table */
1823 if (i
>= kvmppc_hpt_npte(&kvm
->arch
.hpt
)) {
1825 ctx
->first_pass
= 0;
1835 static ssize_t
kvm_htab_write(struct file
*file
, const char __user
*buf
,
1836 size_t count
, loff_t
*ppos
)
1838 struct kvm_htab_ctx
*ctx
= file
->private_data
;
1839 struct kvm
*kvm
= ctx
->kvm
;
1840 struct kvm_get_htab_header hdr
;
1843 unsigned long __user
*lbuf
;
1845 unsigned long tmp
[2];
1851 if (!access_ok(VERIFY_READ
, buf
, count
))
1853 if (kvm_is_radix(kvm
))
1856 /* lock out vcpus from running while we're doing this */
1857 mutex_lock(&kvm
->lock
);
1858 mmu_ready
= kvm
->arch
.mmu_ready
;
1860 kvm
->arch
.mmu_ready
= 0; /* temporarily */
1861 /* order mmu_ready vs. vcpus_running */
1863 if (atomic_read(&kvm
->arch
.vcpus_running
)) {
1864 kvm
->arch
.mmu_ready
= 1;
1865 mutex_unlock(&kvm
->lock
);
1871 for (nb
= 0; nb
+ sizeof(hdr
) <= count
; ) {
1873 if (__copy_from_user(&hdr
, buf
, sizeof(hdr
)))
1877 if (nb
+ hdr
.n_valid
* HPTE_SIZE
> count
)
1885 if (i
>= kvmppc_hpt_npte(&kvm
->arch
.hpt
) ||
1886 i
+ hdr
.n_valid
+ hdr
.n_invalid
> kvmppc_hpt_npte(&kvm
->arch
.hpt
))
1889 hptp
= (__be64
*)(kvm
->arch
.hpt
.virt
+ (i
* HPTE_SIZE
));
1890 lbuf
= (unsigned long __user
*)buf
;
1891 for (j
= 0; j
< hdr
.n_valid
; ++j
) {
1896 if (__get_user(hpte_v
, lbuf
) ||
1897 __get_user(hpte_r
, lbuf
+ 1))
1899 v
= be64_to_cpu(hpte_v
);
1900 r
= be64_to_cpu(hpte_r
);
1902 if (!(v
& HPTE_V_VALID
))
1904 pshift
= kvmppc_hpte_base_page_shift(v
, r
);
1910 if (be64_to_cpu(hptp
[0]) & (HPTE_V_VALID
| HPTE_V_ABSENT
))
1911 kvmppc_do_h_remove(kvm
, 0, i
, 0, tmp
);
1913 ret
= kvmppc_virtmode_do_h_enter(kvm
, H_EXACT
, i
, v
, r
,
1915 if (ret
!= H_SUCCESS
) {
1916 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1917 "r=%lx\n", ret
, i
, v
, r
);
1920 if (!mmu_ready
&& is_vrma_hpte(v
)) {
1921 unsigned long senc
, lpcr
;
1923 senc
= slb_pgsize_encoding(1ul << pshift
);
1924 kvm
->arch
.vrma_slb_v
= senc
| SLB_VSID_B_1T
|
1925 (VRMA_VSID
<< SLB_VSID_SHIFT_1T
);
1926 if (!cpu_has_feature(CPU_FTR_ARCH_300
)) {
1927 lpcr
= senc
<< (LPCR_VRMASD_SH
- 4);
1928 kvmppc_update_lpcr(kvm
, lpcr
,
1931 kvmppc_setup_partition_table(kvm
);
1939 for (j
= 0; j
< hdr
.n_invalid
; ++j
) {
1940 if (be64_to_cpu(hptp
[0]) & (HPTE_V_VALID
| HPTE_V_ABSENT
))
1941 kvmppc_do_h_remove(kvm
, 0, i
, 0, tmp
);
1949 /* Order HPTE updates vs. mmu_ready */
1951 kvm
->arch
.mmu_ready
= mmu_ready
;
1952 mutex_unlock(&kvm
->lock
);
1959 static int kvm_htab_release(struct inode
*inode
, struct file
*filp
)
1961 struct kvm_htab_ctx
*ctx
= filp
->private_data
;
1963 filp
->private_data
= NULL
;
1964 if (!(ctx
->flags
& KVM_GET_HTAB_WRITE
))
1965 atomic_dec(&ctx
->kvm
->arch
.hpte_mod_interest
);
1966 kvm_put_kvm(ctx
->kvm
);
1971 static const struct file_operations kvm_htab_fops
= {
1972 .read
= kvm_htab_read
,
1973 .write
= kvm_htab_write
,
1974 .llseek
= default_llseek
,
1975 .release
= kvm_htab_release
,
1978 int kvm_vm_ioctl_get_htab_fd(struct kvm
*kvm
, struct kvm_get_htab_fd
*ghf
)
1981 struct kvm_htab_ctx
*ctx
;
1984 /* reject flags we don't recognize */
1985 if (ghf
->flags
& ~(KVM_GET_HTAB_BOLTED_ONLY
| KVM_GET_HTAB_WRITE
))
1987 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
1992 ctx
->index
= ghf
->start_index
;
1993 ctx
->flags
= ghf
->flags
;
1994 ctx
->first_pass
= 1;
1996 rwflag
= (ghf
->flags
& KVM_GET_HTAB_WRITE
) ? O_WRONLY
: O_RDONLY
;
1997 ret
= anon_inode_getfd("kvm-htab", &kvm_htab_fops
, ctx
, rwflag
| O_CLOEXEC
);
2004 if (rwflag
== O_RDONLY
) {
2005 mutex_lock(&kvm
->slots_lock
);
2006 atomic_inc(&kvm
->arch
.hpte_mod_interest
);
2007 /* make sure kvmppc_do_h_enter etc. see the increment */
2008 synchronize_srcu_expedited(&kvm
->srcu
);
2009 mutex_unlock(&kvm
->slots_lock
);
2015 struct debugfs_htab_state
{
2018 unsigned long hpt_index
;
2024 static int debugfs_htab_open(struct inode
*inode
, struct file
*file
)
2026 struct kvm
*kvm
= inode
->i_private
;
2027 struct debugfs_htab_state
*p
;
2029 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2035 mutex_init(&p
->mutex
);
2036 file
->private_data
= p
;
2038 return nonseekable_open(inode
, file
);
2041 static int debugfs_htab_release(struct inode
*inode
, struct file
*file
)
2043 struct debugfs_htab_state
*p
= file
->private_data
;
2045 kvm_put_kvm(p
->kvm
);
2050 static ssize_t
debugfs_htab_read(struct file
*file
, char __user
*buf
,
2051 size_t len
, loff_t
*ppos
)
2053 struct debugfs_htab_state
*p
= file
->private_data
;
2056 unsigned long v
, hr
, gr
;
2061 if (kvm_is_radix(kvm
))
2064 ret
= mutex_lock_interruptible(&p
->mutex
);
2068 if (p
->chars_left
) {
2072 r
= copy_to_user(buf
, p
->buf
+ p
->buf_index
, n
);
2087 hptp
= (__be64
*)(kvm
->arch
.hpt
.virt
+ (i
* HPTE_SIZE
));
2088 for (; len
!= 0 && i
< kvmppc_hpt_npte(&kvm
->arch
.hpt
);
2090 if (!(be64_to_cpu(hptp
[0]) & (HPTE_V_VALID
| HPTE_V_ABSENT
)))
2093 /* lock the HPTE so it's stable and read it */
2095 while (!try_lock_hpte(hptp
, HPTE_V_HVLOCK
))
2097 v
= be64_to_cpu(hptp
[0]) & ~HPTE_V_HVLOCK
;
2098 hr
= be64_to_cpu(hptp
[1]);
2099 gr
= kvm
->arch
.hpt
.rev
[i
].guest_rpte
;
2100 unlock_hpte(hptp
, v
);
2103 if (!(v
& (HPTE_V_VALID
| HPTE_V_ABSENT
)))
2106 n
= scnprintf(p
->buf
, sizeof(p
->buf
),
2107 "%6lx %.16lx %.16lx %.16lx\n",
2112 r
= copy_to_user(buf
, p
->buf
, n
);
2128 mutex_unlock(&p
->mutex
);
2132 static ssize_t
debugfs_htab_write(struct file
*file
, const char __user
*buf
,
2133 size_t len
, loff_t
*ppos
)
2138 static const struct file_operations debugfs_htab_fops
= {
2139 .owner
= THIS_MODULE
,
2140 .open
= debugfs_htab_open
,
2141 .release
= debugfs_htab_release
,
2142 .read
= debugfs_htab_read
,
2143 .write
= debugfs_htab_write
,
2144 .llseek
= generic_file_llseek
,
2147 void kvmppc_mmu_debugfs_init(struct kvm
*kvm
)
2149 kvm
->arch
.htab_dentry
= debugfs_create_file("htab", 0400,
2150 kvm
->arch
.debugfs_dir
, kvm
,
2151 &debugfs_htab_fops
);
2154 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu
*vcpu
)
2156 struct kvmppc_mmu
*mmu
= &vcpu
->arch
.mmu
;
2158 vcpu
->arch
.slb_nr
= 32; /* POWER7/POWER8 */
2160 mmu
->xlate
= kvmppc_mmu_book3s_64_hv_xlate
;
2161 mmu
->reset_msr
= kvmppc_mmu_book3s_64_hv_reset_msr
;
2163 vcpu
->arch
.hflags
|= BOOK3S_HFLAG_SLB
;