x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / arch / powerpc / kvm / book3s_64_mmu_radix.c
blob0c854816e653e25238f87c1cf9c44a8ed911df44
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7 */
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
14 #include <asm/kvm_ppc.h>
15 #include <asm/kvm_book3s.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18 #include <asm/pgtable.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
23 * Supported radix tree geometry.
24 * Like p9, we support either 5 or 9 bits at the first (lowest) level,
25 * for a page size of 64k or 4k.
27 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
29 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
30 struct kvmppc_pte *gpte, bool data, bool iswrite)
32 struct kvm *kvm = vcpu->kvm;
33 u32 pid;
34 int ret, level, ps;
35 __be64 prte, rpte;
36 unsigned long ptbl;
37 unsigned long root, pte, index;
38 unsigned long rts, bits, offset;
39 unsigned long gpa;
40 unsigned long proc_tbl_size;
42 /* Work out effective PID */
43 switch (eaddr >> 62) {
44 case 0:
45 pid = vcpu->arch.pid;
46 break;
47 case 3:
48 pid = 0;
49 break;
50 default:
51 return -EINVAL;
53 proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
54 if (pid * 16 >= proc_tbl_size)
55 return -EINVAL;
57 /* Read partition table to find root of tree for effective PID */
58 ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
59 ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
60 if (ret)
61 return ret;
63 root = be64_to_cpu(prte);
64 rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
65 ((root & RTS2_MASK) >> RTS2_SHIFT);
66 bits = root & RPDS_MASK;
67 root = root & RPDB_MASK;
69 /* P9 DD1 interprets RTS (radix tree size) differently */
70 offset = rts + 31;
71 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
72 offset -= 3;
74 /* current implementations only support 52-bit space */
75 if (offset != 52)
76 return -EINVAL;
78 for (level = 3; level >= 0; --level) {
79 if (level && bits != p9_supported_radix_bits[level])
80 return -EINVAL;
81 if (level == 0 && !(bits == 5 || bits == 9))
82 return -EINVAL;
83 offset -= bits;
84 index = (eaddr >> offset) & ((1UL << bits) - 1);
85 /* check that low bits of page table base are zero */
86 if (root & ((1UL << (bits + 3)) - 1))
87 return -EINVAL;
88 ret = kvm_read_guest(kvm, root + index * 8,
89 &rpte, sizeof(rpte));
90 if (ret)
91 return ret;
92 pte = __be64_to_cpu(rpte);
93 if (!(pte & _PAGE_PRESENT))
94 return -ENOENT;
95 if (pte & _PAGE_PTE)
96 break;
97 bits = pte & 0x1f;
98 root = pte & 0x0fffffffffffff00ul;
100 /* need a leaf at lowest level; 512GB pages not supported */
101 if (level < 0 || level == 3)
102 return -EINVAL;
104 /* offset is now log base 2 of the page size */
105 gpa = pte & 0x01fffffffffff000ul;
106 if (gpa & ((1ul << offset) - 1))
107 return -EINVAL;
108 gpa += eaddr & ((1ul << offset) - 1);
109 for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
110 if (offset == mmu_psize_defs[ps].shift)
111 break;
112 gpte->page_size = ps;
114 gpte->eaddr = eaddr;
115 gpte->raddr = gpa;
117 /* Work out permissions */
118 gpte->may_read = !!(pte & _PAGE_READ);
119 gpte->may_write = !!(pte & _PAGE_WRITE);
120 gpte->may_execute = !!(pte & _PAGE_EXEC);
121 if (kvmppc_get_msr(vcpu) & MSR_PR) {
122 if (pte & _PAGE_PRIVILEGED) {
123 gpte->may_read = 0;
124 gpte->may_write = 0;
125 gpte->may_execute = 0;
127 } else {
128 if (!(pte & _PAGE_PRIVILEGED)) {
129 /* Check AMR/IAMR to see if strict mode is in force */
130 if (vcpu->arch.amr & (1ul << 62))
131 gpte->may_read = 0;
132 if (vcpu->arch.amr & (1ul << 63))
133 gpte->may_write = 0;
134 if (vcpu->arch.iamr & (1ul << 62))
135 gpte->may_execute = 0;
139 return 0;
142 #ifdef CONFIG_PPC_64K_PAGES
143 #define MMU_BASE_PSIZE MMU_PAGE_64K
144 #else
145 #define MMU_BASE_PSIZE MMU_PAGE_4K
146 #endif
148 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
149 unsigned int pshift)
151 int psize = MMU_BASE_PSIZE;
153 if (pshift >= PMD_SHIFT)
154 psize = MMU_PAGE_2M;
155 addr &= ~0xfffUL;
156 addr |= mmu_psize_defs[psize].ap << 5;
157 asm volatile("ptesync": : :"memory");
158 asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
159 : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
160 asm volatile("ptesync": : :"memory");
163 unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
164 unsigned long clr, unsigned long set,
165 unsigned long addr, unsigned int shift)
167 unsigned long old = 0;
169 if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
170 pte_present(*ptep)) {
171 /* have to invalidate it first */
172 old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
173 kvmppc_radix_tlbie_page(kvm, addr, shift);
174 set |= _PAGE_PRESENT;
175 old &= _PAGE_PRESENT;
177 return __radix_pte_update(ptep, clr, set) | old;
180 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
181 pte_t *ptep, pte_t pte)
183 radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
186 static struct kmem_cache *kvm_pte_cache;
188 static pte_t *kvmppc_pte_alloc(void)
190 return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
193 static void kvmppc_pte_free(pte_t *ptep)
195 kmem_cache_free(kvm_pte_cache, ptep);
198 static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
199 unsigned int level, unsigned long mmu_seq)
201 pgd_t *pgd;
202 pud_t *pud, *new_pud = NULL;
203 pmd_t *pmd, *new_pmd = NULL;
204 pte_t *ptep, *new_ptep = NULL;
205 unsigned long old;
206 int ret;
208 /* Traverse the guest's 2nd-level tree, allocate new levels needed */
209 pgd = kvm->arch.pgtable + pgd_index(gpa);
210 pud = NULL;
211 if (pgd_present(*pgd))
212 pud = pud_offset(pgd, gpa);
213 else
214 new_pud = pud_alloc_one(kvm->mm, gpa);
216 pmd = NULL;
217 if (pud && pud_present(*pud))
218 pmd = pmd_offset(pud, gpa);
219 else
220 new_pmd = pmd_alloc_one(kvm->mm, gpa);
222 if (level == 0 && !(pmd && pmd_present(*pmd)))
223 new_ptep = kvmppc_pte_alloc();
225 /* Check if we might have been invalidated; let the guest retry if so */
226 spin_lock(&kvm->mmu_lock);
227 ret = -EAGAIN;
228 if (mmu_notifier_retry(kvm, mmu_seq))
229 goto out_unlock;
231 /* Now traverse again under the lock and change the tree */
232 ret = -ENOMEM;
233 if (pgd_none(*pgd)) {
234 if (!new_pud)
235 goto out_unlock;
236 pgd_populate(kvm->mm, pgd, new_pud);
237 new_pud = NULL;
239 pud = pud_offset(pgd, gpa);
240 if (pud_none(*pud)) {
241 if (!new_pmd)
242 goto out_unlock;
243 pud_populate(kvm->mm, pud, new_pmd);
244 new_pmd = NULL;
246 pmd = pmd_offset(pud, gpa);
247 if (pmd_large(*pmd)) {
248 /* Someone else has instantiated a large page here; retry */
249 ret = -EAGAIN;
250 goto out_unlock;
252 if (level == 1 && !pmd_none(*pmd)) {
254 * There's a page table page here, but we wanted
255 * to install a large page. Tell the caller and let
256 * it try installing a normal page if it wants.
258 ret = -EBUSY;
259 goto out_unlock;
261 if (level == 0) {
262 if (pmd_none(*pmd)) {
263 if (!new_ptep)
264 goto out_unlock;
265 pmd_populate(kvm->mm, pmd, new_ptep);
266 new_ptep = NULL;
268 ptep = pte_offset_kernel(pmd, gpa);
269 if (pte_present(*ptep)) {
270 /* PTE was previously valid, so invalidate it */
271 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
272 0, gpa, 0);
273 kvmppc_radix_tlbie_page(kvm, gpa, 0);
274 if (old & _PAGE_DIRTY)
275 mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
277 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
278 } else {
279 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
281 ret = 0;
283 out_unlock:
284 spin_unlock(&kvm->mmu_lock);
285 if (new_pud)
286 pud_free(kvm->mm, new_pud);
287 if (new_pmd)
288 pmd_free(kvm->mm, new_pmd);
289 if (new_ptep)
290 kvmppc_pte_free(new_ptep);
291 return ret;
294 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
295 unsigned long ea, unsigned long dsisr)
297 struct kvm *kvm = vcpu->kvm;
298 unsigned long mmu_seq, pte_size;
299 unsigned long gpa, gfn, hva, pfn;
300 struct kvm_memory_slot *memslot;
301 struct page *page = NULL, *pages[1];
302 long ret, npages, ok;
303 unsigned int writing;
304 struct vm_area_struct *vma;
305 unsigned long flags;
306 pte_t pte, *ptep;
307 unsigned long pgflags;
308 unsigned int shift, level;
310 /* Check for unusual errors */
311 if (dsisr & DSISR_UNSUPP_MMU) {
312 pr_err("KVM: Got unsupported MMU fault\n");
313 return -EFAULT;
315 if (dsisr & DSISR_BADACCESS) {
316 /* Reflect to the guest as DSI */
317 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
318 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
319 return RESUME_GUEST;
322 /* Translate the logical address and get the page */
323 gpa = vcpu->arch.fault_gpa & ~0xfffUL;
324 gpa &= ~0xF000000000000000ul;
325 gfn = gpa >> PAGE_SHIFT;
326 if (!(dsisr & DSISR_PRTABLE_FAULT))
327 gpa |= ea & 0xfff;
328 memslot = gfn_to_memslot(kvm, gfn);
330 /* No memslot means it's an emulated MMIO region */
331 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
332 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
333 DSISR_SET_RC)) {
335 * Bad address in guest page table tree, or other
336 * unusual error - reflect it to the guest as DSI.
338 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
339 return RESUME_GUEST;
341 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
342 dsisr & DSISR_ISSTORE);
345 /* used to check for invalidations in progress */
346 mmu_seq = kvm->mmu_notifier_seq;
347 smp_rmb();
349 writing = (dsisr & DSISR_ISSTORE) != 0;
350 hva = gfn_to_hva_memslot(memslot, gfn);
351 if (dsisr & DSISR_SET_RC) {
353 * Need to set an R or C bit in the 2nd-level tables;
354 * if the relevant bits aren't already set in the linux
355 * page tables, fall through to do the gup_fast to
356 * set them in the linux page tables too.
358 ok = 0;
359 pgflags = _PAGE_ACCESSED;
360 if (writing)
361 pgflags |= _PAGE_DIRTY;
362 local_irq_save(flags);
363 ptep = find_current_mm_pte(current->mm->pgd, hva, NULL, NULL);
364 if (ptep) {
365 pte = READ_ONCE(*ptep);
366 if (pte_present(pte) &&
367 (pte_val(pte) & pgflags) == pgflags)
368 ok = 1;
370 local_irq_restore(flags);
371 if (ok) {
372 spin_lock(&kvm->mmu_lock);
373 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
374 spin_unlock(&kvm->mmu_lock);
375 return RESUME_GUEST;
378 * We are walking the secondary page table here. We can do this
379 * without disabling irq.
381 ptep = __find_linux_pte(kvm->arch.pgtable,
382 gpa, NULL, &shift);
383 if (ptep && pte_present(*ptep)) {
384 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
385 gpa, shift);
386 spin_unlock(&kvm->mmu_lock);
387 return RESUME_GUEST;
389 spin_unlock(&kvm->mmu_lock);
393 ret = -EFAULT;
394 pfn = 0;
395 pte_size = PAGE_SIZE;
396 pgflags = _PAGE_READ | _PAGE_EXEC;
397 level = 0;
398 npages = get_user_pages_fast(hva, 1, writing, pages);
399 if (npages < 1) {
400 /* Check if it's an I/O mapping */
401 down_read(&current->mm->mmap_sem);
402 vma = find_vma(current->mm, hva);
403 if (vma && vma->vm_start <= hva && hva < vma->vm_end &&
404 (vma->vm_flags & VM_PFNMAP)) {
405 pfn = vma->vm_pgoff +
406 ((hva - vma->vm_start) >> PAGE_SHIFT);
407 pgflags = pgprot_val(vma->vm_page_prot);
409 up_read(&current->mm->mmap_sem);
410 if (!pfn)
411 return -EFAULT;
412 } else {
413 page = pages[0];
414 pfn = page_to_pfn(page);
415 if (PageHuge(page)) {
416 page = compound_head(page);
417 pte_size <<= compound_order(page);
418 /* See if we can insert a 2MB large-page PTE here */
419 if (pte_size >= PMD_SIZE &&
420 (gpa & PMD_MASK & PAGE_MASK) ==
421 (hva & PMD_MASK & PAGE_MASK)) {
422 level = 1;
423 pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
426 /* See if we can provide write access */
427 if (writing) {
429 * We assume gup_fast has set dirty on the host PTE.
431 pgflags |= _PAGE_WRITE;
432 } else {
433 local_irq_save(flags);
434 ptep = find_current_mm_pte(current->mm->pgd,
435 hva, NULL, NULL);
436 if (ptep && pte_write(*ptep) && pte_dirty(*ptep))
437 pgflags |= _PAGE_WRITE;
438 local_irq_restore(flags);
443 * Compute the PTE value that we need to insert.
445 pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED;
446 if (pgflags & _PAGE_WRITE)
447 pgflags |= _PAGE_DIRTY;
448 pte = pfn_pte(pfn, __pgprot(pgflags));
450 /* Allocate space in the tree and write the PTE */
451 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
452 if (ret == -EBUSY) {
454 * There's already a PMD where wanted to install a large page;
455 * for now, fall back to installing a small page.
457 level = 0;
458 pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1);
459 pte = pfn_pte(pfn, __pgprot(pgflags));
460 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
462 if (ret == 0 || ret == -EAGAIN)
463 ret = RESUME_GUEST;
465 if (page) {
467 * We drop pages[0] here, not page because page might
468 * have been set to the head page of a compound, but
469 * we have to drop the reference on the correct tail
470 * page to match the get inside gup()
472 put_page(pages[0]);
474 return ret;
477 /* Called with kvm->lock held */
478 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
479 unsigned long gfn)
481 pte_t *ptep;
482 unsigned long gpa = gfn << PAGE_SHIFT;
483 unsigned int shift;
484 unsigned long old;
486 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
487 if (ptep && pte_present(*ptep)) {
488 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0,
489 gpa, shift);
490 kvmppc_radix_tlbie_page(kvm, gpa, shift);
491 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) {
492 unsigned long npages = 1;
493 if (shift)
494 npages = 1ul << (shift - PAGE_SHIFT);
495 kvmppc_update_dirty_map(memslot, gfn, npages);
498 return 0;
501 /* Called with kvm->lock held */
502 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
503 unsigned long gfn)
505 pte_t *ptep;
506 unsigned long gpa = gfn << PAGE_SHIFT;
507 unsigned int shift;
508 int ref = 0;
510 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
511 if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
512 kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
513 gpa, shift);
514 /* XXX need to flush tlb here? */
515 ref = 1;
517 return ref;
520 /* Called with kvm->lock held */
521 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
522 unsigned long gfn)
524 pte_t *ptep;
525 unsigned long gpa = gfn << PAGE_SHIFT;
526 unsigned int shift;
527 int ref = 0;
529 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
530 if (ptep && pte_present(*ptep) && pte_young(*ptep))
531 ref = 1;
532 return ref;
535 /* Returns the number of PAGE_SIZE pages that are dirty */
536 static int kvm_radix_test_clear_dirty(struct kvm *kvm,
537 struct kvm_memory_slot *memslot, int pagenum)
539 unsigned long gfn = memslot->base_gfn + pagenum;
540 unsigned long gpa = gfn << PAGE_SHIFT;
541 pte_t *ptep;
542 unsigned int shift;
543 int ret = 0;
545 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
546 if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
547 ret = 1;
548 if (shift)
549 ret = 1 << (shift - PAGE_SHIFT);
550 kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
551 gpa, shift);
552 kvmppc_radix_tlbie_page(kvm, gpa, shift);
554 return ret;
557 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
558 struct kvm_memory_slot *memslot, unsigned long *map)
560 unsigned long i, j;
561 int npages;
563 for (i = 0; i < memslot->npages; i = j) {
564 npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
567 * Note that if npages > 0 then i must be a multiple of npages,
568 * since huge pages are only used to back the guest at guest
569 * real addresses that are a multiple of their size.
570 * Since we have at most one PTE covering any given guest
571 * real address, if npages > 1 we can skip to i + npages.
573 j = i + 1;
574 if (npages) {
575 set_dirty_bits(map, i, npages);
576 j = i + npages;
579 return 0;
582 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
583 int psize, int *indexp)
585 if (!mmu_psize_defs[psize].shift)
586 return;
587 info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
588 (mmu_psize_defs[psize].ap << 29);
589 ++(*indexp);
592 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
594 int i;
596 if (!radix_enabled())
597 return -EINVAL;
598 memset(info, 0, sizeof(*info));
600 /* 4k page size */
601 info->geometries[0].page_shift = 12;
602 info->geometries[0].level_bits[0] = 9;
603 for (i = 1; i < 4; ++i)
604 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
605 /* 64k page size */
606 info->geometries[1].page_shift = 16;
607 for (i = 0; i < 4; ++i)
608 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
610 i = 0;
611 add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
612 add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
613 add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
614 add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
616 return 0;
619 int kvmppc_init_vm_radix(struct kvm *kvm)
621 kvm->arch.pgtable = pgd_alloc(kvm->mm);
622 if (!kvm->arch.pgtable)
623 return -ENOMEM;
624 return 0;
627 void kvmppc_free_radix(struct kvm *kvm)
629 unsigned long ig, iu, im;
630 pte_t *pte;
631 pmd_t *pmd;
632 pud_t *pud;
633 pgd_t *pgd;
635 if (!kvm->arch.pgtable)
636 return;
637 pgd = kvm->arch.pgtable;
638 for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
639 if (!pgd_present(*pgd))
640 continue;
641 pud = pud_offset(pgd, 0);
642 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
643 if (!pud_present(*pud))
644 continue;
645 pmd = pmd_offset(pud, 0);
646 for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
647 if (pmd_huge(*pmd)) {
648 pmd_clear(pmd);
649 continue;
651 if (!pmd_present(*pmd))
652 continue;
653 pte = pte_offset_map(pmd, 0);
654 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
655 kvmppc_pte_free(pte);
656 pmd_clear(pmd);
658 pmd_free(kvm->mm, pmd_offset(pud, 0));
659 pud_clear(pud);
661 pud_free(kvm->mm, pud_offset(pgd, 0));
662 pgd_clear(pgd);
664 pgd_free(kvm->mm, kvm->arch.pgtable);
665 kvm->arch.pgtable = NULL;
668 static void pte_ctor(void *addr)
670 memset(addr, 0, PTE_TABLE_SIZE);
673 int kvmppc_radix_init(void)
675 unsigned long size = sizeof(void *) << PTE_INDEX_SIZE;
677 kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
678 if (!kvm_pte_cache)
679 return -ENOMEM;
680 return 0;
683 void kvmppc_radix_exit(void)
685 kmem_cache_destroy(kvm_pte_cache);