x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / arch / powerpc / kvm / powerpc.c
blob403e642c78f5170b81855ef329e7148f454bfa3b
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 * Copyright IBM Corp. 2007
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 #ifdef CONFIG_PPC_PSERIES
43 #include <asm/hvcall.h>
44 #include <asm/plpar_wrappers.h>
45 #endif
47 #include "timing.h"
48 #include "irq.h"
49 #include "../mm/mmu_decl.h"
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
54 struct kvmppc_ops *kvmppc_hv_ops;
55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56 struct kvmppc_ops *kvmppc_pr_ops;
57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
62 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
67 return false;
70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
72 return 1;
76 * Common checks before entering the guest world. Call with interrupts
77 * disabled.
79 * returns:
81 * == 1 if we're ready to go into guest state
82 * <= 0 if we need to go back to the host with return value
84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
86 int r;
88 WARN_ON(irqs_disabled());
89 hard_irq_disable();
91 while (true) {
92 if (need_resched()) {
93 local_irq_enable();
94 cond_resched();
95 hard_irq_disable();
96 continue;
99 if (signal_pending(current)) {
100 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101 vcpu->run->exit_reason = KVM_EXIT_INTR;
102 r = -EINTR;
103 break;
106 vcpu->mode = IN_GUEST_MODE;
109 * Reading vcpu->requests must happen after setting vcpu->mode,
110 * so we don't miss a request because the requester sees
111 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112 * before next entering the guest (and thus doesn't IPI).
113 * This also orders the write to mode from any reads
114 * to the page tables done while the VCPU is running.
115 * Please see the comment in kvm_flush_remote_tlbs.
117 smp_mb();
119 if (kvm_request_pending(vcpu)) {
120 /* Make sure we process requests preemptable */
121 local_irq_enable();
122 trace_kvm_check_requests(vcpu);
123 r = kvmppc_core_check_requests(vcpu);
124 hard_irq_disable();
125 if (r > 0)
126 continue;
127 break;
130 if (kvmppc_core_prepare_to_enter(vcpu)) {
131 /* interrupts got enabled in between, so we
132 are back at square 1 */
133 continue;
136 guest_enter_irqoff();
137 return 1;
140 /* return to host */
141 local_irq_enable();
142 return r;
144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
149 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150 int i;
152 shared->sprg0 = swab64(shared->sprg0);
153 shared->sprg1 = swab64(shared->sprg1);
154 shared->sprg2 = swab64(shared->sprg2);
155 shared->sprg3 = swab64(shared->sprg3);
156 shared->srr0 = swab64(shared->srr0);
157 shared->srr1 = swab64(shared->srr1);
158 shared->dar = swab64(shared->dar);
159 shared->msr = swab64(shared->msr);
160 shared->dsisr = swab32(shared->dsisr);
161 shared->int_pending = swab32(shared->int_pending);
162 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163 shared->sr[i] = swab32(shared->sr[i]);
165 #endif
167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
169 int nr = kvmppc_get_gpr(vcpu, 11);
170 int r;
171 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175 unsigned long r2 = 0;
177 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178 /* 32 bit mode */
179 param1 &= 0xffffffff;
180 param2 &= 0xffffffff;
181 param3 &= 0xffffffff;
182 param4 &= 0xffffffff;
185 switch (nr) {
186 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189 /* Book3S can be little endian, find it out here */
190 int shared_big_endian = true;
191 if (vcpu->arch.intr_msr & MSR_LE)
192 shared_big_endian = false;
193 if (shared_big_endian != vcpu->arch.shared_big_endian)
194 kvmppc_swab_shared(vcpu);
195 vcpu->arch.shared_big_endian = shared_big_endian;
196 #endif
198 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
200 * Older versions of the Linux magic page code had
201 * a bug where they would map their trampoline code
202 * NX. If that's the case, remove !PR NX capability.
204 vcpu->arch.disable_kernel_nx = true;
205 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
208 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
211 #ifdef CONFIG_PPC_64K_PAGES
213 * Make sure our 4k magic page is in the same window of a 64k
214 * page within the guest and within the host's page.
216 if ((vcpu->arch.magic_page_pa & 0xf000) !=
217 ((ulong)vcpu->arch.shared & 0xf000)) {
218 void *old_shared = vcpu->arch.shared;
219 ulong shared = (ulong)vcpu->arch.shared;
220 void *new_shared;
222 shared &= PAGE_MASK;
223 shared |= vcpu->arch.magic_page_pa & 0xf000;
224 new_shared = (void*)shared;
225 memcpy(new_shared, old_shared, 0x1000);
226 vcpu->arch.shared = new_shared;
228 #endif
230 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
232 r = EV_SUCCESS;
233 break;
235 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236 r = EV_SUCCESS;
237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239 #endif
241 /* Second return value is in r4 */
242 break;
243 case EV_HCALL_TOKEN(EV_IDLE):
244 r = EV_SUCCESS;
245 kvm_vcpu_block(vcpu);
246 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247 break;
248 default:
249 r = EV_UNIMPLEMENTED;
250 break;
253 kvmppc_set_gpr(vcpu, 4, r2);
255 return r;
257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
261 int r = false;
263 /* We have to know what CPU to virtualize */
264 if (!vcpu->arch.pvr)
265 goto out;
267 /* PAPR only works with book3s_64 */
268 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269 goto out;
271 /* HV KVM can only do PAPR mode for now */
272 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273 goto out;
275 #ifdef CONFIG_KVM_BOOKE_HV
276 if (!cpu_has_feature(CPU_FTR_EMB_HV))
277 goto out;
278 #endif
280 r = true;
282 out:
283 vcpu->arch.sane = r;
284 return r ? 0 : -EINVAL;
286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
290 enum emulation_result er;
291 int r;
293 er = kvmppc_emulate_loadstore(vcpu);
294 switch (er) {
295 case EMULATE_DONE:
296 /* Future optimization: only reload non-volatiles if they were
297 * actually modified. */
298 r = RESUME_GUEST_NV;
299 break;
300 case EMULATE_AGAIN:
301 r = RESUME_GUEST;
302 break;
303 case EMULATE_DO_MMIO:
304 run->exit_reason = KVM_EXIT_MMIO;
305 /* We must reload nonvolatiles because "update" load/store
306 * instructions modify register state. */
307 /* Future optimization: only reload non-volatiles if they were
308 * actually modified. */
309 r = RESUME_HOST_NV;
310 break;
311 case EMULATE_FAIL:
313 u32 last_inst;
315 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316 /* XXX Deliver Program interrupt to guest. */
317 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318 r = RESUME_HOST;
319 break;
321 default:
322 WARN_ON(1);
323 r = RESUME_GUEST;
326 return r;
328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331 bool data)
333 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334 struct kvmppc_pte pte;
335 int r;
337 vcpu->stat.st++;
339 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340 XLATE_WRITE, &pte);
341 if (r < 0)
342 return r;
344 *eaddr = pte.raddr;
346 if (!pte.may_write)
347 return -EPERM;
349 /* Magic page override */
350 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353 void *magic = vcpu->arch.shared;
354 magic += pte.eaddr & 0xfff;
355 memcpy(magic, ptr, size);
356 return EMULATE_DONE;
359 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360 return EMULATE_DO_MMIO;
362 return EMULATE_DONE;
364 EXPORT_SYMBOL_GPL(kvmppc_st);
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367 bool data)
369 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370 struct kvmppc_pte pte;
371 int rc;
373 vcpu->stat.ld++;
375 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376 XLATE_READ, &pte);
377 if (rc)
378 return rc;
380 *eaddr = pte.raddr;
382 if (!pte.may_read)
383 return -EPERM;
385 if (!data && !pte.may_execute)
386 return -ENOEXEC;
388 /* Magic page override */
389 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392 void *magic = vcpu->arch.shared;
393 magic += pte.eaddr & 0xfff;
394 memcpy(ptr, magic, size);
395 return EMULATE_DONE;
398 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399 return EMULATE_DO_MMIO;
401 return EMULATE_DONE;
403 EXPORT_SYMBOL_GPL(kvmppc_ld);
405 int kvm_arch_hardware_enable(void)
407 return 0;
410 int kvm_arch_hardware_setup(void)
412 return 0;
415 void kvm_arch_check_processor_compat(void *rtn)
417 *(int *)rtn = kvmppc_core_check_processor_compat();
420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
422 struct kvmppc_ops *kvm_ops = NULL;
424 * if we have both HV and PR enabled, default is HV
426 if (type == 0) {
427 if (kvmppc_hv_ops)
428 kvm_ops = kvmppc_hv_ops;
429 else
430 kvm_ops = kvmppc_pr_ops;
431 if (!kvm_ops)
432 goto err_out;
433 } else if (type == KVM_VM_PPC_HV) {
434 if (!kvmppc_hv_ops)
435 goto err_out;
436 kvm_ops = kvmppc_hv_ops;
437 } else if (type == KVM_VM_PPC_PR) {
438 if (!kvmppc_pr_ops)
439 goto err_out;
440 kvm_ops = kvmppc_pr_ops;
441 } else
442 goto err_out;
444 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445 return -ENOENT;
447 kvm->arch.kvm_ops = kvm_ops;
448 return kvmppc_core_init_vm(kvm);
449 err_out:
450 return -EINVAL;
453 bool kvm_arch_has_vcpu_debugfs(void)
455 return false;
458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
460 return 0;
463 void kvm_arch_destroy_vm(struct kvm *kvm)
465 unsigned int i;
466 struct kvm_vcpu *vcpu;
468 #ifdef CONFIG_KVM_XICS
470 * We call kick_all_cpus_sync() to ensure that all
471 * CPUs have executed any pending IPIs before we
472 * continue and free VCPUs structures below.
474 if (is_kvmppc_hv_enabled(kvm))
475 kick_all_cpus_sync();
476 #endif
478 kvm_for_each_vcpu(i, vcpu, kvm)
479 kvm_arch_vcpu_free(vcpu);
481 mutex_lock(&kvm->lock);
482 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483 kvm->vcpus[i] = NULL;
485 atomic_set(&kvm->online_vcpus, 0);
487 kvmppc_core_destroy_vm(kvm);
489 mutex_unlock(&kvm->lock);
491 /* drop the module reference */
492 module_put(kvm->arch.kvm_ops->owner);
495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
497 int r;
498 /* Assume we're using HV mode when the HV module is loaded */
499 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
501 if (kvm) {
503 * Hooray - we know which VM type we're running on. Depend on
504 * that rather than the guess above.
506 hv_enabled = is_kvmppc_hv_enabled(kvm);
509 switch (ext) {
510 #ifdef CONFIG_BOOKE
511 case KVM_CAP_PPC_BOOKE_SREGS:
512 case KVM_CAP_PPC_BOOKE_WATCHDOG:
513 case KVM_CAP_PPC_EPR:
514 #else
515 case KVM_CAP_PPC_SEGSTATE:
516 case KVM_CAP_PPC_HIOR:
517 case KVM_CAP_PPC_PAPR:
518 #endif
519 case KVM_CAP_PPC_UNSET_IRQ:
520 case KVM_CAP_PPC_IRQ_LEVEL:
521 case KVM_CAP_ENABLE_CAP:
522 case KVM_CAP_ENABLE_CAP_VM:
523 case KVM_CAP_ONE_REG:
524 case KVM_CAP_IOEVENTFD:
525 case KVM_CAP_DEVICE_CTRL:
526 case KVM_CAP_IMMEDIATE_EXIT:
527 r = 1;
528 break;
529 case KVM_CAP_PPC_PAIRED_SINGLES:
530 case KVM_CAP_PPC_OSI:
531 case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533 case KVM_CAP_SW_TLB:
534 #endif
535 /* We support this only for PR */
536 r = !hv_enabled;
537 break;
538 #ifdef CONFIG_KVM_MPIC
539 case KVM_CAP_IRQ_MPIC:
540 r = 1;
541 break;
542 #endif
544 #ifdef CONFIG_PPC_BOOK3S_64
545 case KVM_CAP_SPAPR_TCE:
546 case KVM_CAP_SPAPR_TCE_64:
547 /* fallthrough */
548 case KVM_CAP_SPAPR_TCE_VFIO:
549 case KVM_CAP_PPC_RTAS:
550 case KVM_CAP_PPC_FIXUP_HCALL:
551 case KVM_CAP_PPC_ENABLE_HCALL:
552 #ifdef CONFIG_KVM_XICS
553 case KVM_CAP_IRQ_XICS:
554 #endif
555 case KVM_CAP_PPC_GET_CPU_CHAR:
556 r = 1;
557 break;
559 case KVM_CAP_PPC_ALLOC_HTAB:
560 r = hv_enabled;
561 break;
562 #endif /* CONFIG_PPC_BOOK3S_64 */
563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564 case KVM_CAP_PPC_SMT:
565 r = 0;
566 if (kvm) {
567 if (kvm->arch.emul_smt_mode > 1)
568 r = kvm->arch.emul_smt_mode;
569 else
570 r = kvm->arch.smt_mode;
571 } else if (hv_enabled) {
572 if (cpu_has_feature(CPU_FTR_ARCH_300))
573 r = 1;
574 else
575 r = threads_per_subcore;
577 break;
578 case KVM_CAP_PPC_SMT_POSSIBLE:
579 r = 1;
580 if (hv_enabled) {
581 if (!cpu_has_feature(CPU_FTR_ARCH_300))
582 r = ((threads_per_subcore << 1) - 1);
583 else
584 /* P9 can emulate dbells, so allow any mode */
585 r = 8 | 4 | 2 | 1;
587 break;
588 case KVM_CAP_PPC_RMA:
589 r = 0;
590 break;
591 case KVM_CAP_PPC_HWRNG:
592 r = kvmppc_hwrng_present();
593 break;
594 case KVM_CAP_PPC_MMU_RADIX:
595 r = !!(hv_enabled && radix_enabled());
596 break;
597 case KVM_CAP_PPC_MMU_HASH_V3:
598 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599 break;
600 #endif
601 case KVM_CAP_SYNC_MMU:
602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603 r = hv_enabled;
604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605 r = 1;
606 #else
607 r = 0;
608 #endif
609 break;
610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611 case KVM_CAP_PPC_HTAB_FD:
612 r = hv_enabled;
613 break;
614 #endif
615 case KVM_CAP_NR_VCPUS:
617 * Recommending a number of CPUs is somewhat arbitrary; we
618 * return the number of present CPUs for -HV (since a host
619 * will have secondary threads "offline"), and for other KVM
620 * implementations just count online CPUs.
622 if (hv_enabled)
623 r = num_present_cpus();
624 else
625 r = num_online_cpus();
626 break;
627 case KVM_CAP_NR_MEMSLOTS:
628 r = KVM_USER_MEM_SLOTS;
629 break;
630 case KVM_CAP_MAX_VCPUS:
631 r = KVM_MAX_VCPUS;
632 break;
633 #ifdef CONFIG_PPC_BOOK3S_64
634 case KVM_CAP_PPC_GET_SMMU_INFO:
635 r = 1;
636 break;
637 case KVM_CAP_SPAPR_MULTITCE:
638 r = 1;
639 break;
640 case KVM_CAP_SPAPR_RESIZE_HPT:
641 r = !!hv_enabled;
642 break;
643 #endif
644 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
645 case KVM_CAP_PPC_FWNMI:
646 r = hv_enabled;
647 break;
648 #endif
649 case KVM_CAP_PPC_HTM:
650 r = hv_enabled &&
651 (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM_COMP);
652 break;
653 default:
654 r = 0;
655 break;
657 return r;
661 long kvm_arch_dev_ioctl(struct file *filp,
662 unsigned int ioctl, unsigned long arg)
664 return -EINVAL;
667 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
668 struct kvm_memory_slot *dont)
670 kvmppc_core_free_memslot(kvm, free, dont);
673 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
674 unsigned long npages)
676 return kvmppc_core_create_memslot(kvm, slot, npages);
679 int kvm_arch_prepare_memory_region(struct kvm *kvm,
680 struct kvm_memory_slot *memslot,
681 const struct kvm_userspace_memory_region *mem,
682 enum kvm_mr_change change)
684 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
687 void kvm_arch_commit_memory_region(struct kvm *kvm,
688 const struct kvm_userspace_memory_region *mem,
689 const struct kvm_memory_slot *old,
690 const struct kvm_memory_slot *new,
691 enum kvm_mr_change change)
693 kvmppc_core_commit_memory_region(kvm, mem, old, new);
696 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
697 struct kvm_memory_slot *slot)
699 kvmppc_core_flush_memslot(kvm, slot);
702 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
704 struct kvm_vcpu *vcpu;
705 vcpu = kvmppc_core_vcpu_create(kvm, id);
706 if (!IS_ERR(vcpu)) {
707 vcpu->arch.wqp = &vcpu->wq;
708 kvmppc_create_vcpu_debugfs(vcpu, id);
710 return vcpu;
713 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
717 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
719 /* Make sure we're not using the vcpu anymore */
720 hrtimer_cancel(&vcpu->arch.dec_timer);
722 kvmppc_remove_vcpu_debugfs(vcpu);
724 switch (vcpu->arch.irq_type) {
725 case KVMPPC_IRQ_MPIC:
726 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
727 break;
728 case KVMPPC_IRQ_XICS:
729 if (xive_enabled())
730 kvmppc_xive_cleanup_vcpu(vcpu);
731 else
732 kvmppc_xics_free_icp(vcpu);
733 break;
736 kvmppc_core_vcpu_free(vcpu);
739 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
741 kvm_arch_vcpu_free(vcpu);
744 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
746 return kvmppc_core_pending_dec(vcpu);
749 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
751 struct kvm_vcpu *vcpu;
753 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
754 kvmppc_decrementer_func(vcpu);
756 return HRTIMER_NORESTART;
759 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
761 int ret;
763 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
764 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
765 vcpu->arch.dec_expires = get_tb();
767 #ifdef CONFIG_KVM_EXIT_TIMING
768 mutex_init(&vcpu->arch.exit_timing_lock);
769 #endif
770 ret = kvmppc_subarch_vcpu_init(vcpu);
771 return ret;
774 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
776 kvmppc_mmu_destroy(vcpu);
777 kvmppc_subarch_vcpu_uninit(vcpu);
780 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
782 #ifdef CONFIG_BOOKE
784 * vrsave (formerly usprg0) isn't used by Linux, but may
785 * be used by the guest.
787 * On non-booke this is associated with Altivec and
788 * is handled by code in book3s.c.
790 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
791 #endif
792 kvmppc_core_vcpu_load(vcpu, cpu);
795 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
797 kvmppc_core_vcpu_put(vcpu);
798 #ifdef CONFIG_BOOKE
799 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
800 #endif
804 * irq_bypass_add_producer and irq_bypass_del_producer are only
805 * useful if the architecture supports PCI passthrough.
806 * irq_bypass_stop and irq_bypass_start are not needed and so
807 * kvm_ops are not defined for them.
809 bool kvm_arch_has_irq_bypass(void)
811 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
812 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
815 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
816 struct irq_bypass_producer *prod)
818 struct kvm_kernel_irqfd *irqfd =
819 container_of(cons, struct kvm_kernel_irqfd, consumer);
820 struct kvm *kvm = irqfd->kvm;
822 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
823 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
825 return 0;
828 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
829 struct irq_bypass_producer *prod)
831 struct kvm_kernel_irqfd *irqfd =
832 container_of(cons, struct kvm_kernel_irqfd, consumer);
833 struct kvm *kvm = irqfd->kvm;
835 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
836 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
839 #ifdef CONFIG_VSX
840 static inline int kvmppc_get_vsr_dword_offset(int index)
842 int offset;
844 if ((index != 0) && (index != 1))
845 return -1;
847 #ifdef __BIG_ENDIAN
848 offset = index;
849 #else
850 offset = 1 - index;
851 #endif
853 return offset;
856 static inline int kvmppc_get_vsr_word_offset(int index)
858 int offset;
860 if ((index > 3) || (index < 0))
861 return -1;
863 #ifdef __BIG_ENDIAN
864 offset = index;
865 #else
866 offset = 3 - index;
867 #endif
868 return offset;
871 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
872 u64 gpr)
874 union kvmppc_one_reg val;
875 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
876 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
878 if (offset == -1)
879 return;
881 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
882 val.vval = VCPU_VSX_VR(vcpu, index);
883 val.vsxval[offset] = gpr;
884 VCPU_VSX_VR(vcpu, index) = val.vval;
885 } else {
886 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
890 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
891 u64 gpr)
893 union kvmppc_one_reg val;
894 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
896 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
897 val.vval = VCPU_VSX_VR(vcpu, index);
898 val.vsxval[0] = gpr;
899 val.vsxval[1] = gpr;
900 VCPU_VSX_VR(vcpu, index) = val.vval;
901 } else {
902 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
903 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
907 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
908 u32 gpr32)
910 union kvmppc_one_reg val;
911 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
912 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
913 int dword_offset, word_offset;
915 if (offset == -1)
916 return;
918 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
919 val.vval = VCPU_VSX_VR(vcpu, index);
920 val.vsx32val[offset] = gpr32;
921 VCPU_VSX_VR(vcpu, index) = val.vval;
922 } else {
923 dword_offset = offset / 2;
924 word_offset = offset % 2;
925 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
926 val.vsx32val[word_offset] = gpr32;
927 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
930 #endif /* CONFIG_VSX */
932 #ifdef CONFIG_ALTIVEC
933 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
934 u64 gpr)
936 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
937 u32 hi, lo;
938 u32 di;
940 #ifdef __BIG_ENDIAN
941 hi = gpr >> 32;
942 lo = gpr & 0xffffffff;
943 #else
944 lo = gpr >> 32;
945 hi = gpr & 0xffffffff;
946 #endif
948 di = 2 - vcpu->arch.mmio_vmx_copy_nums; /* doubleword index */
949 if (di > 1)
950 return;
952 if (vcpu->arch.mmio_host_swabbed)
953 di = 1 - di;
955 VCPU_VSX_VR(vcpu, index).u[di * 2] = hi;
956 VCPU_VSX_VR(vcpu, index).u[di * 2 + 1] = lo;
958 #endif /* CONFIG_ALTIVEC */
960 #ifdef CONFIG_PPC_FPU
961 static inline u64 sp_to_dp(u32 fprs)
963 u64 fprd;
965 preempt_disable();
966 enable_kernel_fp();
967 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
968 : "fr0");
969 preempt_enable();
970 return fprd;
973 static inline u32 dp_to_sp(u64 fprd)
975 u32 fprs;
977 preempt_disable();
978 enable_kernel_fp();
979 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
980 : "fr0");
981 preempt_enable();
982 return fprs;
985 #else
986 #define sp_to_dp(x) (x)
987 #define dp_to_sp(x) (x)
988 #endif /* CONFIG_PPC_FPU */
990 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
991 struct kvm_run *run)
993 u64 uninitialized_var(gpr);
995 if (run->mmio.len > sizeof(gpr)) {
996 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
997 return;
1000 if (!vcpu->arch.mmio_host_swabbed) {
1001 switch (run->mmio.len) {
1002 case 8: gpr = *(u64 *)run->mmio.data; break;
1003 case 4: gpr = *(u32 *)run->mmio.data; break;
1004 case 2: gpr = *(u16 *)run->mmio.data; break;
1005 case 1: gpr = *(u8 *)run->mmio.data; break;
1007 } else {
1008 switch (run->mmio.len) {
1009 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1010 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1011 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1012 case 1: gpr = *(u8 *)run->mmio.data; break;
1016 /* conversion between single and double precision */
1017 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1018 gpr = sp_to_dp(gpr);
1020 if (vcpu->arch.mmio_sign_extend) {
1021 switch (run->mmio.len) {
1022 #ifdef CONFIG_PPC64
1023 case 4:
1024 gpr = (s64)(s32)gpr;
1025 break;
1026 #endif
1027 case 2:
1028 gpr = (s64)(s16)gpr;
1029 break;
1030 case 1:
1031 gpr = (s64)(s8)gpr;
1032 break;
1036 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1037 case KVM_MMIO_REG_GPR:
1038 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1039 break;
1040 case KVM_MMIO_REG_FPR:
1041 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1042 break;
1043 #ifdef CONFIG_PPC_BOOK3S
1044 case KVM_MMIO_REG_QPR:
1045 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1046 break;
1047 case KVM_MMIO_REG_FQPR:
1048 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1049 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1050 break;
1051 #endif
1052 #ifdef CONFIG_VSX
1053 case KVM_MMIO_REG_VSX:
1054 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1055 kvmppc_set_vsr_dword(vcpu, gpr);
1056 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1057 kvmppc_set_vsr_word(vcpu, gpr);
1058 else if (vcpu->arch.mmio_vsx_copy_type ==
1059 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1060 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1061 break;
1062 #endif
1063 #ifdef CONFIG_ALTIVEC
1064 case KVM_MMIO_REG_VMX:
1065 kvmppc_set_vmx_dword(vcpu, gpr);
1066 break;
1067 #endif
1068 default:
1069 BUG();
1073 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1074 unsigned int rt, unsigned int bytes,
1075 int is_default_endian, int sign_extend)
1077 int idx, ret;
1078 bool host_swabbed;
1080 /* Pity C doesn't have a logical XOR operator */
1081 if (kvmppc_need_byteswap(vcpu)) {
1082 host_swabbed = is_default_endian;
1083 } else {
1084 host_swabbed = !is_default_endian;
1087 if (bytes > sizeof(run->mmio.data)) {
1088 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1089 run->mmio.len);
1092 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1093 run->mmio.len = bytes;
1094 run->mmio.is_write = 0;
1096 vcpu->arch.io_gpr = rt;
1097 vcpu->arch.mmio_host_swabbed = host_swabbed;
1098 vcpu->mmio_needed = 1;
1099 vcpu->mmio_is_write = 0;
1100 vcpu->arch.mmio_sign_extend = sign_extend;
1102 idx = srcu_read_lock(&vcpu->kvm->srcu);
1104 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1105 bytes, &run->mmio.data);
1107 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1109 if (!ret) {
1110 kvmppc_complete_mmio_load(vcpu, run);
1111 vcpu->mmio_needed = 0;
1112 return EMULATE_DONE;
1115 return EMULATE_DO_MMIO;
1118 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1119 unsigned int rt, unsigned int bytes,
1120 int is_default_endian)
1122 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1124 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1126 /* Same as above, but sign extends */
1127 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1128 unsigned int rt, unsigned int bytes,
1129 int is_default_endian)
1131 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1134 #ifdef CONFIG_VSX
1135 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1136 unsigned int rt, unsigned int bytes,
1137 int is_default_endian, int mmio_sign_extend)
1139 enum emulation_result emulated = EMULATE_DONE;
1141 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1142 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1143 return EMULATE_FAIL;
1145 while (vcpu->arch.mmio_vsx_copy_nums) {
1146 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1147 is_default_endian, mmio_sign_extend);
1149 if (emulated != EMULATE_DONE)
1150 break;
1152 vcpu->arch.paddr_accessed += run->mmio.len;
1154 vcpu->arch.mmio_vsx_copy_nums--;
1155 vcpu->arch.mmio_vsx_offset++;
1157 return emulated;
1159 #endif /* CONFIG_VSX */
1161 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1162 u64 val, unsigned int bytes, int is_default_endian)
1164 void *data = run->mmio.data;
1165 int idx, ret;
1166 bool host_swabbed;
1168 /* Pity C doesn't have a logical XOR operator */
1169 if (kvmppc_need_byteswap(vcpu)) {
1170 host_swabbed = is_default_endian;
1171 } else {
1172 host_swabbed = !is_default_endian;
1175 if (bytes > sizeof(run->mmio.data)) {
1176 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1177 run->mmio.len);
1180 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1181 run->mmio.len = bytes;
1182 run->mmio.is_write = 1;
1183 vcpu->mmio_needed = 1;
1184 vcpu->mmio_is_write = 1;
1186 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1187 val = dp_to_sp(val);
1189 /* Store the value at the lowest bytes in 'data'. */
1190 if (!host_swabbed) {
1191 switch (bytes) {
1192 case 8: *(u64 *)data = val; break;
1193 case 4: *(u32 *)data = val; break;
1194 case 2: *(u16 *)data = val; break;
1195 case 1: *(u8 *)data = val; break;
1197 } else {
1198 switch (bytes) {
1199 case 8: *(u64 *)data = swab64(val); break;
1200 case 4: *(u32 *)data = swab32(val); break;
1201 case 2: *(u16 *)data = swab16(val); break;
1202 case 1: *(u8 *)data = val; break;
1206 idx = srcu_read_lock(&vcpu->kvm->srcu);
1208 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1209 bytes, &run->mmio.data);
1211 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1213 if (!ret) {
1214 vcpu->mmio_needed = 0;
1215 return EMULATE_DONE;
1218 return EMULATE_DO_MMIO;
1220 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1222 #ifdef CONFIG_VSX
1223 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1225 u32 dword_offset, word_offset;
1226 union kvmppc_one_reg reg;
1227 int vsx_offset = 0;
1228 int copy_type = vcpu->arch.mmio_vsx_copy_type;
1229 int result = 0;
1231 switch (copy_type) {
1232 case KVMPPC_VSX_COPY_DWORD:
1233 vsx_offset =
1234 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1236 if (vsx_offset == -1) {
1237 result = -1;
1238 break;
1241 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1242 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1243 } else {
1244 reg.vval = VCPU_VSX_VR(vcpu, rs);
1245 *val = reg.vsxval[vsx_offset];
1247 break;
1249 case KVMPPC_VSX_COPY_WORD:
1250 vsx_offset =
1251 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1253 if (vsx_offset == -1) {
1254 result = -1;
1255 break;
1258 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1259 dword_offset = vsx_offset / 2;
1260 word_offset = vsx_offset % 2;
1261 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1262 *val = reg.vsx32val[word_offset];
1263 } else {
1264 reg.vval = VCPU_VSX_VR(vcpu, rs);
1265 *val = reg.vsx32val[vsx_offset];
1267 break;
1269 default:
1270 result = -1;
1271 break;
1274 return result;
1277 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1278 int rs, unsigned int bytes, int is_default_endian)
1280 u64 val;
1281 enum emulation_result emulated = EMULATE_DONE;
1283 vcpu->arch.io_gpr = rs;
1285 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1286 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1287 return EMULATE_FAIL;
1289 while (vcpu->arch.mmio_vsx_copy_nums) {
1290 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1291 return EMULATE_FAIL;
1293 emulated = kvmppc_handle_store(run, vcpu,
1294 val, bytes, is_default_endian);
1296 if (emulated != EMULATE_DONE)
1297 break;
1299 vcpu->arch.paddr_accessed += run->mmio.len;
1301 vcpu->arch.mmio_vsx_copy_nums--;
1302 vcpu->arch.mmio_vsx_offset++;
1305 return emulated;
1308 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1309 struct kvm_run *run)
1311 enum emulation_result emulated = EMULATE_FAIL;
1312 int r;
1314 vcpu->arch.paddr_accessed += run->mmio.len;
1316 if (!vcpu->mmio_is_write) {
1317 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1318 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1319 } else {
1320 emulated = kvmppc_handle_vsx_store(run, vcpu,
1321 vcpu->arch.io_gpr, run->mmio.len, 1);
1324 switch (emulated) {
1325 case EMULATE_DO_MMIO:
1326 run->exit_reason = KVM_EXIT_MMIO;
1327 r = RESUME_HOST;
1328 break;
1329 case EMULATE_FAIL:
1330 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1331 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1332 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1333 r = RESUME_HOST;
1334 break;
1335 default:
1336 r = RESUME_GUEST;
1337 break;
1339 return r;
1341 #endif /* CONFIG_VSX */
1343 #ifdef CONFIG_ALTIVEC
1344 /* handle quadword load access in two halves */
1345 int kvmppc_handle_load128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1346 unsigned int rt, int is_default_endian)
1348 enum emulation_result emulated;
1350 while (vcpu->arch.mmio_vmx_copy_nums) {
1351 emulated = __kvmppc_handle_load(run, vcpu, rt, 8,
1352 is_default_endian, 0);
1354 if (emulated != EMULATE_DONE)
1355 break;
1357 vcpu->arch.paddr_accessed += run->mmio.len;
1358 vcpu->arch.mmio_vmx_copy_nums--;
1361 return emulated;
1364 static inline int kvmppc_get_vmx_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1366 vector128 vrs = VCPU_VSX_VR(vcpu, rs);
1367 u32 di;
1368 u64 w0, w1;
1370 di = 2 - vcpu->arch.mmio_vmx_copy_nums; /* doubleword index */
1371 if (di > 1)
1372 return -1;
1374 if (vcpu->arch.mmio_host_swabbed)
1375 di = 1 - di;
1377 w0 = vrs.u[di * 2];
1378 w1 = vrs.u[di * 2 + 1];
1380 #ifdef __BIG_ENDIAN
1381 *val = (w0 << 32) | w1;
1382 #else
1383 *val = (w1 << 32) | w0;
1384 #endif
1385 return 0;
1388 /* handle quadword store in two halves */
1389 int kvmppc_handle_store128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1390 unsigned int rs, int is_default_endian)
1392 u64 val = 0;
1393 enum emulation_result emulated = EMULATE_DONE;
1395 vcpu->arch.io_gpr = rs;
1397 while (vcpu->arch.mmio_vmx_copy_nums) {
1398 if (kvmppc_get_vmx_data(vcpu, rs, &val) == -1)
1399 return EMULATE_FAIL;
1401 emulated = kvmppc_handle_store(run, vcpu, val, 8,
1402 is_default_endian);
1403 if (emulated != EMULATE_DONE)
1404 break;
1406 vcpu->arch.paddr_accessed += run->mmio.len;
1407 vcpu->arch.mmio_vmx_copy_nums--;
1410 return emulated;
1413 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1414 struct kvm_run *run)
1416 enum emulation_result emulated = EMULATE_FAIL;
1417 int r;
1419 vcpu->arch.paddr_accessed += run->mmio.len;
1421 if (!vcpu->mmio_is_write) {
1422 emulated = kvmppc_handle_load128_by2x64(run, vcpu,
1423 vcpu->arch.io_gpr, 1);
1424 } else {
1425 emulated = kvmppc_handle_store128_by2x64(run, vcpu,
1426 vcpu->arch.io_gpr, 1);
1429 switch (emulated) {
1430 case EMULATE_DO_MMIO:
1431 run->exit_reason = KVM_EXIT_MMIO;
1432 r = RESUME_HOST;
1433 break;
1434 case EMULATE_FAIL:
1435 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1436 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1437 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1438 r = RESUME_HOST;
1439 break;
1440 default:
1441 r = RESUME_GUEST;
1442 break;
1444 return r;
1446 #endif /* CONFIG_ALTIVEC */
1448 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1450 int r = 0;
1451 union kvmppc_one_reg val;
1452 int size;
1454 size = one_reg_size(reg->id);
1455 if (size > sizeof(val))
1456 return -EINVAL;
1458 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1459 if (r == -EINVAL) {
1460 r = 0;
1461 switch (reg->id) {
1462 #ifdef CONFIG_ALTIVEC
1463 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1464 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1465 r = -ENXIO;
1466 break;
1468 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1469 break;
1470 case KVM_REG_PPC_VSCR:
1471 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1472 r = -ENXIO;
1473 break;
1475 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1476 break;
1477 case KVM_REG_PPC_VRSAVE:
1478 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1479 break;
1480 #endif /* CONFIG_ALTIVEC */
1481 default:
1482 r = -EINVAL;
1483 break;
1487 if (r)
1488 return r;
1490 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1491 r = -EFAULT;
1493 return r;
1496 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1498 int r;
1499 union kvmppc_one_reg val;
1500 int size;
1502 size = one_reg_size(reg->id);
1503 if (size > sizeof(val))
1504 return -EINVAL;
1506 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1507 return -EFAULT;
1509 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1510 if (r == -EINVAL) {
1511 r = 0;
1512 switch (reg->id) {
1513 #ifdef CONFIG_ALTIVEC
1514 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1515 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1516 r = -ENXIO;
1517 break;
1519 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1520 break;
1521 case KVM_REG_PPC_VSCR:
1522 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1523 r = -ENXIO;
1524 break;
1526 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1527 break;
1528 case KVM_REG_PPC_VRSAVE:
1529 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1530 r = -ENXIO;
1531 break;
1533 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1534 break;
1535 #endif /* CONFIG_ALTIVEC */
1536 default:
1537 r = -EINVAL;
1538 break;
1542 return r;
1545 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1547 int r;
1549 vcpu_load(vcpu);
1551 if (vcpu->mmio_needed) {
1552 vcpu->mmio_needed = 0;
1553 if (!vcpu->mmio_is_write)
1554 kvmppc_complete_mmio_load(vcpu, run);
1555 #ifdef CONFIG_VSX
1556 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1557 vcpu->arch.mmio_vsx_copy_nums--;
1558 vcpu->arch.mmio_vsx_offset++;
1561 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1562 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1563 if (r == RESUME_HOST) {
1564 vcpu->mmio_needed = 1;
1565 goto out;
1568 #endif
1569 #ifdef CONFIG_ALTIVEC
1570 if (vcpu->arch.mmio_vmx_copy_nums > 0)
1571 vcpu->arch.mmio_vmx_copy_nums--;
1573 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1574 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1575 if (r == RESUME_HOST) {
1576 vcpu->mmio_needed = 1;
1577 goto out;
1580 #endif
1581 } else if (vcpu->arch.osi_needed) {
1582 u64 *gprs = run->osi.gprs;
1583 int i;
1585 for (i = 0; i < 32; i++)
1586 kvmppc_set_gpr(vcpu, i, gprs[i]);
1587 vcpu->arch.osi_needed = 0;
1588 } else if (vcpu->arch.hcall_needed) {
1589 int i;
1591 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1592 for (i = 0; i < 9; ++i)
1593 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1594 vcpu->arch.hcall_needed = 0;
1595 #ifdef CONFIG_BOOKE
1596 } else if (vcpu->arch.epr_needed) {
1597 kvmppc_set_epr(vcpu, run->epr.epr);
1598 vcpu->arch.epr_needed = 0;
1599 #endif
1602 kvm_sigset_activate(vcpu);
1604 if (run->immediate_exit)
1605 r = -EINTR;
1606 else
1607 r = kvmppc_vcpu_run(run, vcpu);
1609 kvm_sigset_deactivate(vcpu);
1611 out:
1612 vcpu_put(vcpu);
1613 return r;
1616 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1618 if (irq->irq == KVM_INTERRUPT_UNSET) {
1619 kvmppc_core_dequeue_external(vcpu);
1620 return 0;
1623 kvmppc_core_queue_external(vcpu, irq);
1625 kvm_vcpu_kick(vcpu);
1627 return 0;
1630 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1631 struct kvm_enable_cap *cap)
1633 int r;
1635 if (cap->flags)
1636 return -EINVAL;
1638 switch (cap->cap) {
1639 case KVM_CAP_PPC_OSI:
1640 r = 0;
1641 vcpu->arch.osi_enabled = true;
1642 break;
1643 case KVM_CAP_PPC_PAPR:
1644 r = 0;
1645 vcpu->arch.papr_enabled = true;
1646 break;
1647 case KVM_CAP_PPC_EPR:
1648 r = 0;
1649 if (cap->args[0])
1650 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1651 else
1652 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1653 break;
1654 #ifdef CONFIG_BOOKE
1655 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1656 r = 0;
1657 vcpu->arch.watchdog_enabled = true;
1658 break;
1659 #endif
1660 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1661 case KVM_CAP_SW_TLB: {
1662 struct kvm_config_tlb cfg;
1663 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1665 r = -EFAULT;
1666 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1667 break;
1669 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1670 break;
1672 #endif
1673 #ifdef CONFIG_KVM_MPIC
1674 case KVM_CAP_IRQ_MPIC: {
1675 struct fd f;
1676 struct kvm_device *dev;
1678 r = -EBADF;
1679 f = fdget(cap->args[0]);
1680 if (!f.file)
1681 break;
1683 r = -EPERM;
1684 dev = kvm_device_from_filp(f.file);
1685 if (dev)
1686 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1688 fdput(f);
1689 break;
1691 #endif
1692 #ifdef CONFIG_KVM_XICS
1693 case KVM_CAP_IRQ_XICS: {
1694 struct fd f;
1695 struct kvm_device *dev;
1697 r = -EBADF;
1698 f = fdget(cap->args[0]);
1699 if (!f.file)
1700 break;
1702 r = -EPERM;
1703 dev = kvm_device_from_filp(f.file);
1704 if (dev) {
1705 if (xive_enabled())
1706 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1707 else
1708 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1711 fdput(f);
1712 break;
1714 #endif /* CONFIG_KVM_XICS */
1715 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1716 case KVM_CAP_PPC_FWNMI:
1717 r = -EINVAL;
1718 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1719 break;
1720 r = 0;
1721 vcpu->kvm->arch.fwnmi_enabled = true;
1722 break;
1723 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1724 default:
1725 r = -EINVAL;
1726 break;
1729 if (!r)
1730 r = kvmppc_sanity_check(vcpu);
1732 return r;
1735 bool kvm_arch_intc_initialized(struct kvm *kvm)
1737 #ifdef CONFIG_KVM_MPIC
1738 if (kvm->arch.mpic)
1739 return true;
1740 #endif
1741 #ifdef CONFIG_KVM_XICS
1742 if (kvm->arch.xics || kvm->arch.xive)
1743 return true;
1744 #endif
1745 return false;
1748 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1749 struct kvm_mp_state *mp_state)
1751 return -EINVAL;
1754 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1755 struct kvm_mp_state *mp_state)
1757 return -EINVAL;
1760 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1761 unsigned int ioctl, unsigned long arg)
1763 struct kvm_vcpu *vcpu = filp->private_data;
1764 void __user *argp = (void __user *)arg;
1766 if (ioctl == KVM_INTERRUPT) {
1767 struct kvm_interrupt irq;
1768 if (copy_from_user(&irq, argp, sizeof(irq)))
1769 return -EFAULT;
1770 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1772 return -ENOIOCTLCMD;
1775 long kvm_arch_vcpu_ioctl(struct file *filp,
1776 unsigned int ioctl, unsigned long arg)
1778 struct kvm_vcpu *vcpu = filp->private_data;
1779 void __user *argp = (void __user *)arg;
1780 long r;
1782 vcpu_load(vcpu);
1784 switch (ioctl) {
1785 case KVM_ENABLE_CAP:
1787 struct kvm_enable_cap cap;
1788 r = -EFAULT;
1789 if (copy_from_user(&cap, argp, sizeof(cap)))
1790 goto out;
1791 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1792 break;
1795 case KVM_SET_ONE_REG:
1796 case KVM_GET_ONE_REG:
1798 struct kvm_one_reg reg;
1799 r = -EFAULT;
1800 if (copy_from_user(&reg, argp, sizeof(reg)))
1801 goto out;
1802 if (ioctl == KVM_SET_ONE_REG)
1803 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1804 else
1805 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1806 break;
1809 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1810 case KVM_DIRTY_TLB: {
1811 struct kvm_dirty_tlb dirty;
1812 r = -EFAULT;
1813 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1814 goto out;
1815 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1816 break;
1818 #endif
1819 default:
1820 r = -EINVAL;
1823 out:
1824 vcpu_put(vcpu);
1825 return r;
1828 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1830 return VM_FAULT_SIGBUS;
1833 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1835 u32 inst_nop = 0x60000000;
1836 #ifdef CONFIG_KVM_BOOKE_HV
1837 u32 inst_sc1 = 0x44000022;
1838 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1839 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1840 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1841 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1842 #else
1843 u32 inst_lis = 0x3c000000;
1844 u32 inst_ori = 0x60000000;
1845 u32 inst_sc = 0x44000002;
1846 u32 inst_imm_mask = 0xffff;
1849 * The hypercall to get into KVM from within guest context is as
1850 * follows:
1852 * lis r0, r0, KVM_SC_MAGIC_R0@h
1853 * ori r0, KVM_SC_MAGIC_R0@l
1854 * sc
1855 * nop
1857 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1858 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1859 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1860 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1861 #endif
1863 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1865 return 0;
1868 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1869 bool line_status)
1871 if (!irqchip_in_kernel(kvm))
1872 return -ENXIO;
1874 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1875 irq_event->irq, irq_event->level,
1876 line_status);
1877 return 0;
1881 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1882 struct kvm_enable_cap *cap)
1884 int r;
1886 if (cap->flags)
1887 return -EINVAL;
1889 switch (cap->cap) {
1890 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1891 case KVM_CAP_PPC_ENABLE_HCALL: {
1892 unsigned long hcall = cap->args[0];
1894 r = -EINVAL;
1895 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1896 cap->args[1] > 1)
1897 break;
1898 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1899 break;
1900 if (cap->args[1])
1901 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1902 else
1903 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1904 r = 0;
1905 break;
1907 case KVM_CAP_PPC_SMT: {
1908 unsigned long mode = cap->args[0];
1909 unsigned long flags = cap->args[1];
1911 r = -EINVAL;
1912 if (kvm->arch.kvm_ops->set_smt_mode)
1913 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1914 break;
1916 #endif
1917 default:
1918 r = -EINVAL;
1919 break;
1922 return r;
1925 #ifdef CONFIG_PPC_BOOK3S_64
1927 * These functions check whether the underlying hardware is safe
1928 * against attacks based on observing the effects of speculatively
1929 * executed instructions, and whether it supplies instructions for
1930 * use in workarounds. The information comes from firmware, either
1931 * via the device tree on powernv platforms or from an hcall on
1932 * pseries platforms.
1934 #ifdef CONFIG_PPC_PSERIES
1935 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1937 struct h_cpu_char_result c;
1938 unsigned long rc;
1940 if (!machine_is(pseries))
1941 return -ENOTTY;
1943 rc = plpar_get_cpu_characteristics(&c);
1944 if (rc == H_SUCCESS) {
1945 cp->character = c.character;
1946 cp->behaviour = c.behaviour;
1947 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1948 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1949 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1950 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1951 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1952 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
1953 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
1954 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1955 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1956 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1957 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1959 return 0;
1961 #else
1962 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1964 return -ENOTTY;
1966 #endif
1968 static inline bool have_fw_feat(struct device_node *fw_features,
1969 const char *state, const char *name)
1971 struct device_node *np;
1972 bool r = false;
1974 np = of_get_child_by_name(fw_features, name);
1975 if (np) {
1976 r = of_property_read_bool(np, state);
1977 of_node_put(np);
1979 return r;
1982 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1984 struct device_node *np, *fw_features;
1985 int r;
1987 memset(cp, 0, sizeof(*cp));
1988 r = pseries_get_cpu_char(cp);
1989 if (r != -ENOTTY)
1990 return r;
1992 np = of_find_node_by_name(NULL, "ibm,opal");
1993 if (np) {
1994 fw_features = of_get_child_by_name(np, "fw-features");
1995 of_node_put(np);
1996 if (!fw_features)
1997 return 0;
1998 if (have_fw_feat(fw_features, "enabled",
1999 "inst-spec-barrier-ori31,31,0"))
2000 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2001 if (have_fw_feat(fw_features, "enabled",
2002 "fw-bcctrl-serialized"))
2003 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2004 if (have_fw_feat(fw_features, "enabled",
2005 "inst-l1d-flush-ori30,30,0"))
2006 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2007 if (have_fw_feat(fw_features, "enabled",
2008 "inst-l1d-flush-trig2"))
2009 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2010 if (have_fw_feat(fw_features, "enabled",
2011 "fw-l1d-thread-split"))
2012 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2013 if (have_fw_feat(fw_features, "enabled",
2014 "fw-count-cache-disabled"))
2015 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2016 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2017 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2018 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2019 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2020 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2021 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2023 if (have_fw_feat(fw_features, "enabled",
2024 "speculation-policy-favor-security"))
2025 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2026 if (!have_fw_feat(fw_features, "disabled",
2027 "needs-l1d-flush-msr-pr-0-to-1"))
2028 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2029 if (!have_fw_feat(fw_features, "disabled",
2030 "needs-spec-barrier-for-bound-checks"))
2031 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2032 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2033 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2034 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2036 of_node_put(fw_features);
2039 return 0;
2041 #endif
2043 long kvm_arch_vm_ioctl(struct file *filp,
2044 unsigned int ioctl, unsigned long arg)
2046 struct kvm *kvm __maybe_unused = filp->private_data;
2047 void __user *argp = (void __user *)arg;
2048 long r;
2050 switch (ioctl) {
2051 case KVM_PPC_GET_PVINFO: {
2052 struct kvm_ppc_pvinfo pvinfo;
2053 memset(&pvinfo, 0, sizeof(pvinfo));
2054 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2055 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2056 r = -EFAULT;
2057 goto out;
2060 break;
2062 case KVM_ENABLE_CAP:
2064 struct kvm_enable_cap cap;
2065 r = -EFAULT;
2066 if (copy_from_user(&cap, argp, sizeof(cap)))
2067 goto out;
2068 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2069 break;
2071 #ifdef CONFIG_SPAPR_TCE_IOMMU
2072 case KVM_CREATE_SPAPR_TCE_64: {
2073 struct kvm_create_spapr_tce_64 create_tce_64;
2075 r = -EFAULT;
2076 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2077 goto out;
2078 if (create_tce_64.flags) {
2079 r = -EINVAL;
2080 goto out;
2082 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2083 goto out;
2085 case KVM_CREATE_SPAPR_TCE: {
2086 struct kvm_create_spapr_tce create_tce;
2087 struct kvm_create_spapr_tce_64 create_tce_64;
2089 r = -EFAULT;
2090 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2091 goto out;
2093 create_tce_64.liobn = create_tce.liobn;
2094 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2095 create_tce_64.offset = 0;
2096 create_tce_64.size = create_tce.window_size >>
2097 IOMMU_PAGE_SHIFT_4K;
2098 create_tce_64.flags = 0;
2099 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2100 goto out;
2102 #endif
2103 #ifdef CONFIG_PPC_BOOK3S_64
2104 case KVM_PPC_GET_SMMU_INFO: {
2105 struct kvm_ppc_smmu_info info;
2106 struct kvm *kvm = filp->private_data;
2108 memset(&info, 0, sizeof(info));
2109 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2110 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2111 r = -EFAULT;
2112 break;
2114 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2115 struct kvm *kvm = filp->private_data;
2117 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2118 break;
2120 case KVM_PPC_CONFIGURE_V3_MMU: {
2121 struct kvm *kvm = filp->private_data;
2122 struct kvm_ppc_mmuv3_cfg cfg;
2124 r = -EINVAL;
2125 if (!kvm->arch.kvm_ops->configure_mmu)
2126 goto out;
2127 r = -EFAULT;
2128 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2129 goto out;
2130 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2131 break;
2133 case KVM_PPC_GET_RMMU_INFO: {
2134 struct kvm *kvm = filp->private_data;
2135 struct kvm_ppc_rmmu_info info;
2137 r = -EINVAL;
2138 if (!kvm->arch.kvm_ops->get_rmmu_info)
2139 goto out;
2140 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2141 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2142 r = -EFAULT;
2143 break;
2145 case KVM_PPC_GET_CPU_CHAR: {
2146 struct kvm_ppc_cpu_char cpuchar;
2148 r = kvmppc_get_cpu_char(&cpuchar);
2149 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2150 r = -EFAULT;
2151 break;
2153 default: {
2154 struct kvm *kvm = filp->private_data;
2155 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2157 #else /* CONFIG_PPC_BOOK3S_64 */
2158 default:
2159 r = -ENOTTY;
2160 #endif
2162 out:
2163 return r;
2166 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2167 static unsigned long nr_lpids;
2169 long kvmppc_alloc_lpid(void)
2171 long lpid;
2173 do {
2174 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2175 if (lpid >= nr_lpids) {
2176 pr_err("%s: No LPIDs free\n", __func__);
2177 return -ENOMEM;
2179 } while (test_and_set_bit(lpid, lpid_inuse));
2181 return lpid;
2183 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2185 void kvmppc_claim_lpid(long lpid)
2187 set_bit(lpid, lpid_inuse);
2189 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2191 void kvmppc_free_lpid(long lpid)
2193 clear_bit(lpid, lpid_inuse);
2195 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2197 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2199 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2200 memset(lpid_inuse, 0, sizeof(lpid_inuse));
2202 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2204 int kvm_arch_init(void *opaque)
2206 return 0;
2209 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);