x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / arch / s390 / include / asm / pgtable.h
blob2d24d33bf188a0957927a6addd8a7eb38a5319f6
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 * Derived from "include/asm-i386/pgtable.h"
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
26 enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
35 static inline void update_page_count(int level, long count)
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
48 #define update_mmu_cache(vma, address, ptep) do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
59 #define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
64 /* TODO: s390 cannot support io_remap_pfn_range... */
66 #define FIRST_USER_ADDRESS 0UL
68 #define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 extern struct page *vmemmap;
91 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
93 extern unsigned long MODULES_VADDR;
94 extern unsigned long MODULES_END;
95 #define MODULES_VADDR MODULES_VADDR
96 #define MODULES_END MODULES_END
97 #define MODULES_LEN (1UL << 31)
99 static inline int is_module_addr(void *addr)
101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 if (addr < (void *)MODULES_VADDR)
103 return 0;
104 if (addr > (void *)MODULES_END)
105 return 0;
106 return 1;
110 * A 64 bit pagetable entry of S390 has following format:
111 * | PFRA |0IPC| OS |
112 * 0000000000111111111122222222223333333333444444444455555555556666
113 * 0123456789012345678901234567890123456789012345678901234567890123
115 * I Page-Invalid Bit: Page is not available for address-translation
116 * P Page-Protection Bit: Store access not possible for page
117 * C Change-bit override: HW is not required to set change bit
119 * A 64 bit segmenttable entry of S390 has following format:
120 * | P-table origin | TT
121 * 0000000000111111111122222222223333333333444444444455555555556666
122 * 0123456789012345678901234567890123456789012345678901234567890123
124 * I Segment-Invalid Bit: Segment is not available for address-translation
125 * C Common-Segment Bit: Segment is not private (PoP 3-30)
126 * P Page-Protection Bit: Store access not possible for page
127 * TT Type 00
129 * A 64 bit region table entry of S390 has following format:
130 * | S-table origin | TF TTTL
131 * 0000000000111111111122222222223333333333444444444455555555556666
132 * 0123456789012345678901234567890123456789012345678901234567890123
134 * I Segment-Invalid Bit: Segment is not available for address-translation
135 * TT Type 01
136 * TF
137 * TL Table length
139 * The 64 bit regiontable origin of S390 has following format:
140 * | region table origon | DTTL
141 * 0000000000111111111122222222223333333333444444444455555555556666
142 * 0123456789012345678901234567890123456789012345678901234567890123
144 * X Space-Switch event:
145 * G Segment-Invalid Bit:
146 * P Private-Space Bit:
147 * S Storage-Alteration:
148 * R Real space
149 * TL Table-Length:
151 * A storage key has the following format:
152 * | ACC |F|R|C|0|
153 * 0 3 4 5 6 7
154 * ACC: access key
155 * F : fetch protection bit
156 * R : referenced bit
157 * C : changed bit
160 /* Hardware bits in the page table entry */
161 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
162 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
163 #define _PAGE_INVALID 0x400 /* HW invalid bit */
164 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
166 /* Software bits in the page table entry */
167 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
168 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
169 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
170 #define _PAGE_READ 0x010 /* SW pte read bit */
171 #define _PAGE_WRITE 0x020 /* SW pte write bit */
172 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
173 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
174 #define __HAVE_ARCH_PTE_SPECIAL
176 #ifdef CONFIG_MEM_SOFT_DIRTY
177 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178 #else
179 #define _PAGE_SOFT_DIRTY 0x000
180 #endif
182 /* Set of bits not changed in pte_modify */
183 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189 * distinguish present from not-present ptes. It is changed only with the page
190 * table lock held.
192 * The following table gives the different possible bit combinations for
193 * the pte hardware and software bits in the last 12 bits of a pte
194 * (. unassigned bit, x don't care, t swap type):
196 * 842100000000
197 * 000084210000
198 * 000000008421
199 * .IR.uswrdy.p
200 * empty .10.00000000
201 * swap .11..ttttt.0
202 * prot-none, clean, old .11.xx0000.1
203 * prot-none, clean, young .11.xx0001.1
204 * prot-none, dirty, old .11.xx0010.1
205 * prot-none, dirty, young .11.xx0011.1
206 * read-only, clean, old .11.xx0100.1
207 * read-only, clean, young .01.xx0101.1
208 * read-only, dirty, old .11.xx0110.1
209 * read-only, dirty, young .01.xx0111.1
210 * read-write, clean, old .11.xx1100.1
211 * read-write, clean, young .01.xx1101.1
212 * read-write, dirty, old .10.xx1110.1
213 * read-write, dirty, young .00.xx1111.1
214 * HW-bits: R read-only, I invalid
215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
216 * u unused, l large
218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
223 /* Bits in the segment/region table address-space-control-element */
224 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
225 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
226 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
227 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
228 #define _ASCE_REAL_SPACE 0x20 /* real space control */
229 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
230 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
231 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
232 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
233 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
234 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
236 /* Bits in the region table entry */
237 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
238 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
239 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
240 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
241 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
242 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
243 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
244 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
245 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
246 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
248 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
255 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
256 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
257 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
258 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
259 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
260 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
262 #ifdef CONFIG_MEM_SOFT_DIRTY
263 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264 #else
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266 #endif
268 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
269 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
271 /* Bits in the segment table entry */
272 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
273 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
274 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
275 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
276 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
277 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
278 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
280 #define _SEGMENT_ENTRY (0)
281 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
283 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
284 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
285 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
286 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
287 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
289 #ifdef CONFIG_MEM_SOFT_DIRTY
290 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
291 #else
292 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
293 #endif
295 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
296 #define _PAGE_ENTRIES 256 /* number of page table entries */
298 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
299 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
301 #define _REGION1_SHIFT 53
302 #define _REGION2_SHIFT 42
303 #define _REGION3_SHIFT 31
304 #define _SEGMENT_SHIFT 20
306 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
307 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
308 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
309 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
310 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
312 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
313 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
314 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
315 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
317 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
318 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
319 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
320 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
322 #define PMD_SHIFT _SEGMENT_SHIFT
323 #define PUD_SHIFT _REGION3_SHIFT
324 #define P4D_SHIFT _REGION2_SHIFT
325 #define PGDIR_SHIFT _REGION1_SHIFT
327 #define PMD_SIZE _SEGMENT_SIZE
328 #define PUD_SIZE _REGION3_SIZE
329 #define P4D_SIZE _REGION2_SIZE
330 #define PGDIR_SIZE _REGION1_SIZE
332 #define PMD_MASK _SEGMENT_MASK
333 #define PUD_MASK _REGION3_MASK
334 #define P4D_MASK _REGION2_MASK
335 #define PGDIR_MASK _REGION1_MASK
337 #define PTRS_PER_PTE _PAGE_ENTRIES
338 #define PTRS_PER_PMD _CRST_ENTRIES
339 #define PTRS_PER_PUD _CRST_ENTRIES
340 #define PTRS_PER_P4D _CRST_ENTRIES
341 #define PTRS_PER_PGD _CRST_ENTRIES
344 * Segment table and region3 table entry encoding
345 * (R = read-only, I = invalid, y = young bit):
346 * dy..R...I...wr
347 * prot-none, clean, old 00..1...1...00
348 * prot-none, clean, young 01..1...1...00
349 * prot-none, dirty, old 10..1...1...00
350 * prot-none, dirty, young 11..1...1...00
351 * read-only, clean, old 00..1...1...01
352 * read-only, clean, young 01..1...0...01
353 * read-only, dirty, old 10..1...1...01
354 * read-only, dirty, young 11..1...0...01
355 * read-write, clean, old 00..1...1...11
356 * read-write, clean, young 01..1...0...11
357 * read-write, dirty, old 10..0...1...11
358 * read-write, dirty, young 11..0...0...11
359 * The segment table origin is used to distinguish empty (origin==0) from
360 * read-write, old segment table entries (origin!=0)
361 * HW-bits: R read-only, I invalid
362 * SW-bits: y young, d dirty, r read, w write
365 /* Page status table bits for virtualization */
366 #define PGSTE_ACC_BITS 0xf000000000000000UL
367 #define PGSTE_FP_BIT 0x0800000000000000UL
368 #define PGSTE_PCL_BIT 0x0080000000000000UL
369 #define PGSTE_HR_BIT 0x0040000000000000UL
370 #define PGSTE_HC_BIT 0x0020000000000000UL
371 #define PGSTE_GR_BIT 0x0004000000000000UL
372 #define PGSTE_GC_BIT 0x0002000000000000UL
373 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
374 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
375 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
377 /* Guest Page State used for virtualization */
378 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
379 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
380 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
381 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
382 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
383 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
384 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
387 * A user page table pointer has the space-switch-event bit, the
388 * private-space-control bit and the storage-alteration-event-control
389 * bit set. A kernel page table pointer doesn't need them.
391 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
392 _ASCE_ALT_EVENT)
395 * Page protection definitions.
397 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
398 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
399 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
400 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
401 _PAGE_INVALID | _PAGE_PROTECT)
402 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
403 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
404 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
405 _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
409 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
411 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
412 _PAGE_PROTECT | _PAGE_NOEXEC)
413 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 _PAGE_YOUNG | _PAGE_DIRTY)
417 * On s390 the page table entry has an invalid bit and a read-only bit.
418 * Read permission implies execute permission and write permission
419 * implies read permission.
421 /*xwr*/
422 #define __P000 PAGE_NONE
423 #define __P001 PAGE_RO
424 #define __P010 PAGE_RO
425 #define __P011 PAGE_RO
426 #define __P100 PAGE_RX
427 #define __P101 PAGE_RX
428 #define __P110 PAGE_RX
429 #define __P111 PAGE_RX
431 #define __S000 PAGE_NONE
432 #define __S001 PAGE_RO
433 #define __S010 PAGE_RW
434 #define __S011 PAGE_RW
435 #define __S100 PAGE_RX
436 #define __S101 PAGE_RX
437 #define __S110 PAGE_RWX
438 #define __S111 PAGE_RWX
441 * Segment entry (large page) protection definitions.
443 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
444 _SEGMENT_ENTRY_PROTECT)
445 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
446 _SEGMENT_ENTRY_READ | \
447 _SEGMENT_ENTRY_NOEXEC)
448 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
449 _SEGMENT_ENTRY_READ)
450 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
451 _SEGMENT_ENTRY_WRITE | \
452 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
454 _SEGMENT_ENTRY_WRITE)
455 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
456 _SEGMENT_ENTRY_LARGE | \
457 _SEGMENT_ENTRY_READ | \
458 _SEGMENT_ENTRY_WRITE | \
459 _SEGMENT_ENTRY_YOUNG | \
460 _SEGMENT_ENTRY_DIRTY | \
461 _SEGMENT_ENTRY_NOEXEC)
462 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
463 _SEGMENT_ENTRY_LARGE | \
464 _SEGMENT_ENTRY_READ | \
465 _SEGMENT_ENTRY_YOUNG | \
466 _SEGMENT_ENTRY_PROTECT | \
467 _SEGMENT_ENTRY_NOEXEC)
470 * Region3 entry (large page) protection definitions.
473 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
474 _REGION3_ENTRY_LARGE | \
475 _REGION3_ENTRY_READ | \
476 _REGION3_ENTRY_WRITE | \
477 _REGION3_ENTRY_YOUNG | \
478 _REGION3_ENTRY_DIRTY | \
479 _REGION_ENTRY_NOEXEC)
480 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
481 _REGION3_ENTRY_LARGE | \
482 _REGION3_ENTRY_READ | \
483 _REGION3_ENTRY_YOUNG | \
484 _REGION_ENTRY_PROTECT | \
485 _REGION_ENTRY_NOEXEC)
487 static inline int mm_has_pgste(struct mm_struct *mm)
489 #ifdef CONFIG_PGSTE
490 if (unlikely(mm->context.has_pgste))
491 return 1;
492 #endif
493 return 0;
496 static inline int mm_alloc_pgste(struct mm_struct *mm)
498 #ifdef CONFIG_PGSTE
499 if (unlikely(mm->context.alloc_pgste))
500 return 1;
501 #endif
502 return 0;
506 * In the case that a guest uses storage keys
507 * faults should no longer be backed by zero pages
509 #define mm_forbids_zeropage mm_has_pgste
510 static inline int mm_use_skey(struct mm_struct *mm)
512 #ifdef CONFIG_PGSTE
513 if (mm->context.use_skey)
514 return 1;
515 #endif
516 return 0;
519 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
521 register unsigned long reg2 asm("2") = old;
522 register unsigned long reg3 asm("3") = new;
523 unsigned long address = (unsigned long)ptr | 1;
525 asm volatile(
526 " csp %0,%3"
527 : "+d" (reg2), "+m" (*ptr)
528 : "d" (reg3), "d" (address)
529 : "cc");
532 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
534 register unsigned long reg2 asm("2") = old;
535 register unsigned long reg3 asm("3") = new;
536 unsigned long address = (unsigned long)ptr | 1;
538 asm volatile(
539 " .insn rre,0xb98a0000,%0,%3"
540 : "+d" (reg2), "+m" (*ptr)
541 : "d" (reg3), "d" (address)
542 : "cc");
545 #define CRDTE_DTT_PAGE 0x00UL
546 #define CRDTE_DTT_SEGMENT 0x10UL
547 #define CRDTE_DTT_REGION3 0x14UL
548 #define CRDTE_DTT_REGION2 0x18UL
549 #define CRDTE_DTT_REGION1 0x1cUL
551 static inline void crdte(unsigned long old, unsigned long new,
552 unsigned long table, unsigned long dtt,
553 unsigned long address, unsigned long asce)
555 register unsigned long reg2 asm("2") = old;
556 register unsigned long reg3 asm("3") = new;
557 register unsigned long reg4 asm("4") = table | dtt;
558 register unsigned long reg5 asm("5") = address;
560 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
561 : "+d" (reg2)
562 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
563 : "memory", "cc");
567 * pgd/p4d/pud/pmd/pte query functions
569 static inline int pgd_folded(pgd_t pgd)
571 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
574 static inline int pgd_present(pgd_t pgd)
576 if (pgd_folded(pgd))
577 return 1;
578 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
581 static inline int pgd_none(pgd_t pgd)
583 if (pgd_folded(pgd))
584 return 0;
585 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
588 static inline int pgd_bad(pgd_t pgd)
591 * With dynamic page table levels the pgd can be a region table
592 * entry or a segment table entry. Check for the bit that are
593 * invalid for either table entry.
595 unsigned long mask =
596 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
597 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
598 return (pgd_val(pgd) & mask) != 0;
601 static inline int p4d_folded(p4d_t p4d)
603 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
606 static inline int p4d_present(p4d_t p4d)
608 if (p4d_folded(p4d))
609 return 1;
610 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
613 static inline int p4d_none(p4d_t p4d)
615 if (p4d_folded(p4d))
616 return 0;
617 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
620 static inline unsigned long p4d_pfn(p4d_t p4d)
622 unsigned long origin_mask;
624 origin_mask = _REGION_ENTRY_ORIGIN;
625 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
628 static inline int pud_folded(pud_t pud)
630 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
633 static inline int pud_present(pud_t pud)
635 if (pud_folded(pud))
636 return 1;
637 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
640 static inline int pud_none(pud_t pud)
642 if (pud_folded(pud))
643 return 0;
644 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
647 static inline int pud_large(pud_t pud)
649 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
650 return 0;
651 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
654 static inline unsigned long pud_pfn(pud_t pud)
656 unsigned long origin_mask;
658 origin_mask = _REGION_ENTRY_ORIGIN;
659 if (pud_large(pud))
660 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
661 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
664 static inline int pmd_large(pmd_t pmd)
666 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
669 static inline int pmd_bad(pmd_t pmd)
671 if (pmd_large(pmd))
672 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
673 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
676 static inline int pud_bad(pud_t pud)
678 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
679 return pmd_bad(__pmd(pud_val(pud)));
680 if (pud_large(pud))
681 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
682 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
685 static inline int p4d_bad(p4d_t p4d)
687 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
688 return pud_bad(__pud(p4d_val(p4d)));
689 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
692 static inline int pmd_present(pmd_t pmd)
694 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
697 static inline int pmd_none(pmd_t pmd)
699 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
702 static inline unsigned long pmd_pfn(pmd_t pmd)
704 unsigned long origin_mask;
706 origin_mask = _SEGMENT_ENTRY_ORIGIN;
707 if (pmd_large(pmd))
708 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
709 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
712 #define pmd_write pmd_write
713 static inline int pmd_write(pmd_t pmd)
715 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
718 static inline int pmd_dirty(pmd_t pmd)
720 int dirty = 1;
721 if (pmd_large(pmd))
722 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
723 return dirty;
726 static inline int pmd_young(pmd_t pmd)
728 int young = 1;
729 if (pmd_large(pmd))
730 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
731 return young;
734 static inline int pte_present(pte_t pte)
736 /* Bit pattern: (pte & 0x001) == 0x001 */
737 return (pte_val(pte) & _PAGE_PRESENT) != 0;
740 static inline int pte_none(pte_t pte)
742 /* Bit pattern: pte == 0x400 */
743 return pte_val(pte) == _PAGE_INVALID;
746 static inline int pte_swap(pte_t pte)
748 /* Bit pattern: (pte & 0x201) == 0x200 */
749 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
750 == _PAGE_PROTECT;
753 static inline int pte_special(pte_t pte)
755 return (pte_val(pte) & _PAGE_SPECIAL);
758 #define __HAVE_ARCH_PTE_SAME
759 static inline int pte_same(pte_t a, pte_t b)
761 return pte_val(a) == pte_val(b);
764 #ifdef CONFIG_NUMA_BALANCING
765 static inline int pte_protnone(pte_t pte)
767 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
770 static inline int pmd_protnone(pmd_t pmd)
772 /* pmd_large(pmd) implies pmd_present(pmd) */
773 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
775 #endif
777 static inline int pte_soft_dirty(pte_t pte)
779 return pte_val(pte) & _PAGE_SOFT_DIRTY;
781 #define pte_swp_soft_dirty pte_soft_dirty
783 static inline pte_t pte_mksoft_dirty(pte_t pte)
785 pte_val(pte) |= _PAGE_SOFT_DIRTY;
786 return pte;
788 #define pte_swp_mksoft_dirty pte_mksoft_dirty
790 static inline pte_t pte_clear_soft_dirty(pte_t pte)
792 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
793 return pte;
795 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
797 static inline int pmd_soft_dirty(pmd_t pmd)
799 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
802 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
804 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
805 return pmd;
808 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
810 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
811 return pmd;
815 * query functions pte_write/pte_dirty/pte_young only work if
816 * pte_present() is true. Undefined behaviour if not..
818 static inline int pte_write(pte_t pte)
820 return (pte_val(pte) & _PAGE_WRITE) != 0;
823 static inline int pte_dirty(pte_t pte)
825 return (pte_val(pte) & _PAGE_DIRTY) != 0;
828 static inline int pte_young(pte_t pte)
830 return (pte_val(pte) & _PAGE_YOUNG) != 0;
833 #define __HAVE_ARCH_PTE_UNUSED
834 static inline int pte_unused(pte_t pte)
836 return pte_val(pte) & _PAGE_UNUSED;
840 * pgd/pmd/pte modification functions
843 static inline void pgd_clear(pgd_t *pgd)
845 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
846 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
849 static inline void p4d_clear(p4d_t *p4d)
851 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
852 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
855 static inline void pud_clear(pud_t *pud)
857 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
858 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
861 static inline void pmd_clear(pmd_t *pmdp)
863 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
866 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
868 pte_val(*ptep) = _PAGE_INVALID;
872 * The following pte modification functions only work if
873 * pte_present() is true. Undefined behaviour if not..
875 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
877 pte_val(pte) &= _PAGE_CHG_MASK;
878 pte_val(pte) |= pgprot_val(newprot);
880 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
881 * has the invalid bit set, clear it again for readable, young pages
883 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
884 pte_val(pte) &= ~_PAGE_INVALID;
886 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
887 * protection bit set, clear it again for writable, dirty pages
889 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
890 pte_val(pte) &= ~_PAGE_PROTECT;
891 return pte;
894 static inline pte_t pte_wrprotect(pte_t pte)
896 pte_val(pte) &= ~_PAGE_WRITE;
897 pte_val(pte) |= _PAGE_PROTECT;
898 return pte;
901 static inline pte_t pte_mkwrite(pte_t pte)
903 pte_val(pte) |= _PAGE_WRITE;
904 if (pte_val(pte) & _PAGE_DIRTY)
905 pte_val(pte) &= ~_PAGE_PROTECT;
906 return pte;
909 static inline pte_t pte_mkclean(pte_t pte)
911 pte_val(pte) &= ~_PAGE_DIRTY;
912 pte_val(pte) |= _PAGE_PROTECT;
913 return pte;
916 static inline pte_t pte_mkdirty(pte_t pte)
918 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
919 if (pte_val(pte) & _PAGE_WRITE)
920 pte_val(pte) &= ~_PAGE_PROTECT;
921 return pte;
924 static inline pte_t pte_mkold(pte_t pte)
926 pte_val(pte) &= ~_PAGE_YOUNG;
927 pte_val(pte) |= _PAGE_INVALID;
928 return pte;
931 static inline pte_t pte_mkyoung(pte_t pte)
933 pte_val(pte) |= _PAGE_YOUNG;
934 if (pte_val(pte) & _PAGE_READ)
935 pte_val(pte) &= ~_PAGE_INVALID;
936 return pte;
939 static inline pte_t pte_mkspecial(pte_t pte)
941 pte_val(pte) |= _PAGE_SPECIAL;
942 return pte;
945 #ifdef CONFIG_HUGETLB_PAGE
946 static inline pte_t pte_mkhuge(pte_t pte)
948 pte_val(pte) |= _PAGE_LARGE;
949 return pte;
951 #endif
953 #define IPTE_GLOBAL 0
954 #define IPTE_LOCAL 1
956 #define IPTE_NODAT 0x400
957 #define IPTE_GUEST_ASCE 0x800
959 static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
960 unsigned long opt, unsigned long asce,
961 int local)
963 unsigned long pto = (unsigned long) ptep;
965 if (__builtin_constant_p(opt) && opt == 0) {
966 /* Invalidation + TLB flush for the pte */
967 asm volatile(
968 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
969 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
970 [m4] "i" (local));
971 return;
974 /* Invalidate ptes with options + TLB flush of the ptes */
975 opt = opt | (asce & _ASCE_ORIGIN);
976 asm volatile(
977 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
978 : [r2] "+a" (address), [r3] "+a" (opt)
979 : [r1] "a" (pto), [m4] "i" (local) : "memory");
982 static inline void __ptep_ipte_range(unsigned long address, int nr,
983 pte_t *ptep, int local)
985 unsigned long pto = (unsigned long) ptep;
987 /* Invalidate a range of ptes + TLB flush of the ptes */
988 do {
989 asm volatile(
990 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
991 : [r2] "+a" (address), [r3] "+a" (nr)
992 : [r1] "a" (pto), [m4] "i" (local) : "memory");
993 } while (nr != 255);
997 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
998 * both clear the TLB for the unmapped pte. The reason is that
999 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1000 * to modify an active pte. The sequence is
1001 * 1) ptep_get_and_clear
1002 * 2) set_pte_at
1003 * 3) flush_tlb_range
1004 * On s390 the tlb needs to get flushed with the modification of the pte
1005 * if the pte is active. The only way how this can be implemented is to
1006 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1007 * is a nop.
1009 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1010 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1012 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1013 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1014 unsigned long addr, pte_t *ptep)
1016 pte_t pte = *ptep;
1018 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1019 return pte_young(pte);
1022 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1023 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1024 unsigned long address, pte_t *ptep)
1026 return ptep_test_and_clear_young(vma, address, ptep);
1029 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1030 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1031 unsigned long addr, pte_t *ptep)
1033 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1036 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1037 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1038 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
1040 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1041 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1042 unsigned long addr, pte_t *ptep)
1044 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1048 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1049 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1050 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1051 * cannot be accessed while the batched unmap is running. In this case
1052 * full==1 and a simple pte_clear is enough. See tlb.h.
1054 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1055 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1056 unsigned long addr,
1057 pte_t *ptep, int full)
1059 if (full) {
1060 pte_t pte = *ptep;
1061 *ptep = __pte(_PAGE_INVALID);
1062 return pte;
1064 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1067 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1068 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1069 unsigned long addr, pte_t *ptep)
1071 pte_t pte = *ptep;
1073 if (pte_write(pte))
1074 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1077 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1078 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1079 unsigned long addr, pte_t *ptep,
1080 pte_t entry, int dirty)
1082 if (pte_same(*ptep, entry))
1083 return 0;
1084 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1085 return 1;
1089 * Additional functions to handle KVM guest page tables
1091 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1092 pte_t *ptep, pte_t entry);
1093 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1094 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1095 pte_t *ptep, unsigned long bits);
1096 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1097 pte_t *ptep, int prot, unsigned long bit);
1098 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1099 pte_t *ptep , int reset);
1100 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1101 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1102 pte_t *sptep, pte_t *tptep, pte_t pte);
1103 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1105 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1106 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1107 unsigned char key, bool nq);
1108 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1109 unsigned char key, unsigned char *oldkey,
1110 bool nq, bool mr, bool mc);
1111 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1112 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1113 unsigned char *key);
1115 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1116 unsigned long bits, unsigned long value);
1117 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1118 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1119 unsigned long *oldpte, unsigned long *oldpgste);
1122 * Certain architectures need to do special things when PTEs
1123 * within a page table are directly modified. Thus, the following
1124 * hook is made available.
1126 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1127 pte_t *ptep, pte_t entry)
1129 if (!MACHINE_HAS_NX)
1130 pte_val(entry) &= ~_PAGE_NOEXEC;
1131 if (pte_present(entry))
1132 pte_val(entry) &= ~_PAGE_UNUSED;
1133 if (mm_has_pgste(mm))
1134 ptep_set_pte_at(mm, addr, ptep, entry);
1135 else
1136 *ptep = entry;
1140 * Conversion functions: convert a page and protection to a page entry,
1141 * and a page entry and page directory to the page they refer to.
1143 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1145 pte_t __pte;
1146 pte_val(__pte) = physpage + pgprot_val(pgprot);
1147 return pte_mkyoung(__pte);
1150 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1152 unsigned long physpage = page_to_phys(page);
1153 pte_t __pte = mk_pte_phys(physpage, pgprot);
1155 if (pte_write(__pte) && PageDirty(page))
1156 __pte = pte_mkdirty(__pte);
1157 return __pte;
1160 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1161 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1162 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1163 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1164 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1166 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1167 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1169 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1170 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1171 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1172 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1174 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1176 p4d_t *p4d = (p4d_t *) pgd;
1178 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1179 p4d = (p4d_t *) pgd_deref(*pgd);
1180 return p4d + p4d_index(address);
1183 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1185 pud_t *pud = (pud_t *) p4d;
1187 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1188 pud = (pud_t *) p4d_deref(*p4d);
1189 return pud + pud_index(address);
1192 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1194 pmd_t *pmd = (pmd_t *) pud;
1196 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1197 pmd = (pmd_t *) pud_deref(*pud);
1198 return pmd + pmd_index(address);
1201 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1202 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1203 #define pte_page(x) pfn_to_page(pte_pfn(x))
1205 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1206 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1207 #define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
1209 /* Find an entry in the lowest level page table.. */
1210 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1211 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1212 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1213 #define pte_unmap(pte) do { } while (0)
1215 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1217 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1218 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1219 return pmd;
1222 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1224 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1225 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1226 return pmd;
1227 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1228 return pmd;
1231 static inline pmd_t pmd_mkclean(pmd_t pmd)
1233 if (pmd_large(pmd)) {
1234 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1235 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1237 return pmd;
1240 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1242 if (pmd_large(pmd)) {
1243 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1244 _SEGMENT_ENTRY_SOFT_DIRTY;
1245 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1246 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1248 return pmd;
1251 static inline pud_t pud_wrprotect(pud_t pud)
1253 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1254 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1255 return pud;
1258 static inline pud_t pud_mkwrite(pud_t pud)
1260 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1261 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1262 return pud;
1263 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1264 return pud;
1267 static inline pud_t pud_mkclean(pud_t pud)
1269 if (pud_large(pud)) {
1270 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1271 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1273 return pud;
1276 static inline pud_t pud_mkdirty(pud_t pud)
1278 if (pud_large(pud)) {
1279 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1280 _REGION3_ENTRY_SOFT_DIRTY;
1281 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1282 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1284 return pud;
1287 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1288 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1291 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1292 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1294 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1295 return pgprot_val(SEGMENT_NONE);
1296 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1297 return pgprot_val(SEGMENT_RO);
1298 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1299 return pgprot_val(SEGMENT_RX);
1300 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1301 return pgprot_val(SEGMENT_RW);
1302 return pgprot_val(SEGMENT_RWX);
1305 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1307 if (pmd_large(pmd)) {
1308 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1309 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1310 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1312 return pmd;
1315 static inline pmd_t pmd_mkold(pmd_t pmd)
1317 if (pmd_large(pmd)) {
1318 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1319 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1321 return pmd;
1324 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1326 if (pmd_large(pmd)) {
1327 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1328 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1329 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1330 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1331 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1332 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1333 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1334 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1335 return pmd;
1337 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1338 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1339 return pmd;
1342 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1344 pmd_t __pmd;
1345 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1346 return __pmd;
1349 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1351 static inline void __pmdp_csp(pmd_t *pmdp)
1353 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1354 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1357 #define IDTE_GLOBAL 0
1358 #define IDTE_LOCAL 1
1360 #define IDTE_PTOA 0x0800
1361 #define IDTE_NODAT 0x1000
1362 #define IDTE_GUEST_ASCE 0x2000
1364 static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1365 unsigned long opt, unsigned long asce,
1366 int local)
1368 unsigned long sto;
1370 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1371 if (__builtin_constant_p(opt) && opt == 0) {
1372 /* flush without guest asce */
1373 asm volatile(
1374 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1375 : "+m" (*pmdp)
1376 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1377 [m4] "i" (local)
1378 : "cc" );
1379 } else {
1380 /* flush with guest asce */
1381 asm volatile(
1382 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1383 : "+m" (*pmdp)
1384 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1385 [r3] "a" (asce), [m4] "i" (local)
1386 : "cc" );
1390 static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1391 unsigned long opt, unsigned long asce,
1392 int local)
1394 unsigned long r3o;
1396 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1397 r3o |= _ASCE_TYPE_REGION3;
1398 if (__builtin_constant_p(opt) && opt == 0) {
1399 /* flush without guest asce */
1400 asm volatile(
1401 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1402 : "+m" (*pudp)
1403 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1404 [m4] "i" (local)
1405 : "cc");
1406 } else {
1407 /* flush with guest asce */
1408 asm volatile(
1409 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1410 : "+m" (*pudp)
1411 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1412 [r3] "a" (asce), [m4] "i" (local)
1413 : "cc" );
1417 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1418 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1419 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1421 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1423 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1424 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1425 pgtable_t pgtable);
1427 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1428 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1430 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1431 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1432 unsigned long addr, pmd_t *pmdp,
1433 pmd_t entry, int dirty)
1435 VM_BUG_ON(addr & ~HPAGE_MASK);
1437 entry = pmd_mkyoung(entry);
1438 if (dirty)
1439 entry = pmd_mkdirty(entry);
1440 if (pmd_val(*pmdp) == pmd_val(entry))
1441 return 0;
1442 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1443 return 1;
1446 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1447 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1448 unsigned long addr, pmd_t *pmdp)
1450 pmd_t pmd = *pmdp;
1452 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1453 return pmd_young(pmd);
1456 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1457 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1458 unsigned long addr, pmd_t *pmdp)
1460 VM_BUG_ON(addr & ~HPAGE_MASK);
1461 return pmdp_test_and_clear_young(vma, addr, pmdp);
1464 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1465 pmd_t *pmdp, pmd_t entry)
1467 if (!MACHINE_HAS_NX)
1468 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1469 *pmdp = entry;
1472 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1474 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1475 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1476 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1477 return pmd;
1480 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1481 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1482 unsigned long addr, pmd_t *pmdp)
1484 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1487 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1488 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1489 unsigned long addr,
1490 pmd_t *pmdp, int full)
1492 if (full) {
1493 pmd_t pmd = *pmdp;
1494 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1495 return pmd;
1497 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1500 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1501 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1502 unsigned long addr, pmd_t *pmdp)
1504 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1507 #define __HAVE_ARCH_PMDP_INVALIDATE
1508 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1509 unsigned long addr, pmd_t *pmdp)
1511 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1513 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1516 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1517 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1518 unsigned long addr, pmd_t *pmdp)
1520 pmd_t pmd = *pmdp;
1522 if (pmd_write(pmd))
1523 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1526 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1527 unsigned long address,
1528 pmd_t *pmdp)
1530 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1532 #define pmdp_collapse_flush pmdp_collapse_flush
1534 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1535 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1537 static inline int pmd_trans_huge(pmd_t pmd)
1539 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1542 #define has_transparent_hugepage has_transparent_hugepage
1543 static inline int has_transparent_hugepage(void)
1545 return MACHINE_HAS_EDAT1 ? 1 : 0;
1547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1550 * 64 bit swap entry format:
1551 * A page-table entry has some bits we have to treat in a special way.
1552 * Bits 52 and bit 55 have to be zero, otherwise a specification
1553 * exception will occur instead of a page translation exception. The
1554 * specification exception has the bad habit not to store necessary
1555 * information in the lowcore.
1556 * Bits 54 and 63 are used to indicate the page type.
1557 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1558 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1559 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1560 * for the offset.
1561 * | offset |01100|type |00|
1562 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1563 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1566 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1567 #define __SWP_OFFSET_SHIFT 12
1568 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1569 #define __SWP_TYPE_SHIFT 2
1571 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1573 pte_t pte;
1575 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1576 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1577 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1578 return pte;
1581 static inline unsigned long __swp_type(swp_entry_t entry)
1583 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1586 static inline unsigned long __swp_offset(swp_entry_t entry)
1588 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1591 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1593 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1596 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1597 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1599 #define kern_addr_valid(addr) (1)
1601 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1602 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1603 extern int s390_enable_sie(void);
1604 extern int s390_enable_skey(void);
1605 extern void s390_reset_cmma(struct mm_struct *mm);
1607 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1608 #define HAVE_ARCH_UNMAPPED_AREA
1609 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1612 * No page table caches to initialise
1614 static inline void pgtable_cache_init(void) { }
1615 static inline void check_pgt_cache(void) { }
1617 #include <asm-generic/pgtable.h>
1619 #endif /* _S390_PAGE_H */