1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/moduleloader.h>
3 #include <linux/workqueue.h>
4 #include <linux/netdevice.h>
5 #include <linux/filter.h>
6 #include <linux/cache.h>
7 #include <linux/if_vlan.h>
9 #include <asm/cacheflush.h>
10 #include <asm/ptrace.h>
12 #include "bpf_jit_32.h"
14 static inline bool is_simm13(unsigned int value
)
16 return value
+ 0x1000 < 0x2000;
19 #define SEEN_DATAREF 1 /* might call external helpers */
20 #define SEEN_XREG 2 /* ebx is used */
21 #define SEEN_MEM 4 /* use mem[] for temporary storage */
23 #define S13(X) ((X) & 0x1fff)
24 #define IMMED 0x00002000
25 #define RD(X) ((X) << 25)
26 #define RS1(X) ((X) << 14)
28 #define OP(X) ((X) << 30)
29 #define OP2(X) ((X) << 22)
30 #define OP3(X) ((X) << 19)
31 #define COND(X) ((X) << 25)
33 #define F2(X, Y) (OP(X) | OP2(Y))
34 #define F3(X, Y) (OP(X) | OP3(Y))
36 #define CONDN COND(0x0)
37 #define CONDE COND(0x1)
38 #define CONDLE COND(0x2)
39 #define CONDL COND(0x3)
40 #define CONDLEU COND(0x4)
41 #define CONDCS COND(0x5)
42 #define CONDNEG COND(0x6)
43 #define CONDVC COND(0x7)
44 #define CONDA COND(0x8)
45 #define CONDNE COND(0x9)
46 #define CONDG COND(0xa)
47 #define CONDGE COND(0xb)
48 #define CONDGU COND(0xc)
49 #define CONDCC COND(0xd)
50 #define CONDPOS COND(0xe)
51 #define CONDVS COND(0xf)
53 #define CONDGEU CONDCC
56 #define WDISP22(X) (((X) >> 2) & 0x3fffff)
58 #define BA (F2(0, 2) | CONDA)
59 #define BGU (F2(0, 2) | CONDGU)
60 #define BLEU (F2(0, 2) | CONDLEU)
61 #define BGEU (F2(0, 2) | CONDGEU)
62 #define BLU (F2(0, 2) | CONDLU)
63 #define BE (F2(0, 2) | CONDE)
64 #define BNE (F2(0, 2) | CONDNE)
68 #define SETHI(K, REG) \
69 (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
70 #define OR_LO(K, REG) \
71 (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
73 #define ADD F3(2, 0x00)
74 #define AND F3(2, 0x01)
75 #define ANDCC F3(2, 0x11)
76 #define OR F3(2, 0x02)
77 #define XOR F3(2, 0x03)
78 #define SUB F3(2, 0x04)
79 #define SUBCC F3(2, 0x14)
80 #define MUL F3(2, 0x0a) /* umul */
81 #define DIV F3(2, 0x0e) /* udiv */
82 #define SLL F3(2, 0x25)
83 #define SRL F3(2, 0x26)
84 #define JMPL F3(2, 0x38)
86 #define BR F2(0, 0x01)
87 #define RD_Y F3(2, 0x28)
88 #define WR_Y F3(2, 0x30)
90 #define LD32 F3(3, 0x00)
91 #define LD8 F3(3, 0x01)
92 #define LD16 F3(3, 0x02)
93 #define LD64 F3(3, 0x0b)
94 #define ST32 F3(3, 0x04)
97 #define BASE_STACKFRAME 96
99 #define LD32I (LD32 | IMMED)
100 #define LD8I (LD8 | IMMED)
101 #define LD16I (LD16 | IMMED)
102 #define LD64I (LD64 | IMMED)
103 #define LDPTRI (LDPTR | IMMED)
104 #define ST32I (ST32 | IMMED)
108 *prog++ = SETHI(0, G0); \
112 do { /* sub %g0, r_A, r_A */ \
113 *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
116 #define emit_reg_move(FROM, TO) \
117 do { /* or %g0, FROM, TO */ \
118 *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
121 #define emit_clear(REG) \
122 do { /* or %g0, %g0, REG */ \
123 *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
126 #define emit_set_const(K, REG) \
127 do { /* sethi %hi(K), REG */ \
128 *prog++ = SETHI(K, REG); \
129 /* or REG, %lo(K), REG */ \
130 *prog++ = OR_LO(K, REG); \
137 #define emit_alu_X(OPCODE) \
140 *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
149 * sethi %hi(K), r_TMP
150 * or r_TMP, %lo(K), r_TMP
153 * depending upon whether K fits in a signed 13-bit
154 * immediate instruction field. Emit nothing if K
157 #define emit_alu_K(OPCODE, K) \
159 if (K || OPCODE == AND || OPCODE == MUL) { \
160 unsigned int _insn = OPCODE; \
161 _insn |= RS1(r_A) | RD(r_A); \
162 if (is_simm13(K)) { \
163 *prog++ = _insn | IMMED | S13(K); \
165 emit_set_const(K, r_TMP); \
166 *prog++ = _insn | RS2(r_TMP); \
171 #define emit_loadimm(K, DEST) \
173 if (is_simm13(K)) { \
174 /* or %g0, K, DEST */ \
175 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
177 emit_set_const(K, DEST); \
181 #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
182 do { unsigned int _off = offsetof(STRUCT, FIELD); \
183 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
184 *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
187 #define emit_load32(BASE, STRUCT, FIELD, DEST) \
188 do { unsigned int _off = offsetof(STRUCT, FIELD); \
189 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
190 *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
193 #define emit_load16(BASE, STRUCT, FIELD, DEST) \
194 do { unsigned int _off = offsetof(STRUCT, FIELD); \
195 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
196 *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
199 #define __emit_load8(BASE, STRUCT, FIELD, DEST) \
200 do { unsigned int _off = offsetof(STRUCT, FIELD); \
201 *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
204 #define emit_load8(BASE, STRUCT, FIELD, DEST) \
205 do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
206 __emit_load8(BASE, STRUCT, FIELD, DEST); \
211 #define emit_ldmem(OFF, DEST) \
212 do { *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST); \
215 #define emit_stmem(OFF, SRC) \
216 do { *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC); \
220 #define emit_load_cpu(REG) \
221 emit_load32(G6, struct thread_info, cpu, REG)
223 #define emit_load_cpu(REG) emit_clear(REG)
226 #define emit_skb_loadptr(FIELD, DEST) \
227 emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
228 #define emit_skb_load32(FIELD, DEST) \
229 emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
230 #define emit_skb_load16(FIELD, DEST) \
231 emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
232 #define __emit_skb_load8(FIELD, DEST) \
233 __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
234 #define emit_skb_load8(FIELD, DEST) \
235 emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
237 #define emit_jmpl(BASE, IMM_OFF, LREG) \
238 *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
240 #define emit_call(FUNC) \
241 do { void *_here = image + addrs[i] - 8; \
242 unsigned int _off = (void *)(FUNC) - _here; \
243 *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
247 #define emit_branch(BR_OPC, DEST) \
248 do { unsigned int _here = addrs[i] - 8; \
249 *prog++ = BR_OPC | WDISP22((DEST) - _here); \
252 #define emit_branch_off(BR_OPC, OFF) \
253 do { *prog++ = BR_OPC | WDISP22(OFF); \
256 #define emit_jump(DEST) emit_branch(BA, DEST)
258 #define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
259 #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
261 #define emit_cmp(R1, R2) \
262 *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
264 #define emit_cmpi(R1, IMM) \
265 *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
267 #define emit_btst(R1, R2) \
268 *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
270 #define emit_btsti(R1, IMM) \
271 *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
273 #define emit_sub(R1, R2, R3) \
274 *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
276 #define emit_subi(R1, IMM, R3) \
277 *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
279 #define emit_add(R1, R2, R3) \
280 *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
282 #define emit_addi(R1, IMM, R3) \
283 *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
285 #define emit_and(R1, R2, R3) \
286 *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
288 #define emit_andi(R1, IMM, R3) \
289 *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
291 #define emit_alloc_stack(SZ) \
292 *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
294 #define emit_release_stack(SZ) \
295 *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
297 /* A note about branch offset calculations. The addrs[] array,
298 * indexed by BPF instruction, records the address after all the
299 * sparc instructions emitted for that BPF instruction.
301 * The most common case is to emit a branch at the end of such
302 * a code sequence. So this would be two instructions, the
303 * branch and it's delay slot.
305 * Therefore by default the branch emitters calculate the branch
308 * destination - (addrs[i] - 8)
310 * This "addrs[i] - 8" is the address of the branch itself or
311 * what "." would be in assembler notation. The "8" part is
312 * how we take into consideration the branch and it's delay
313 * slot mentioned above.
315 * Sometimes we need to emit a branch earlier in the code
316 * sequence. And in these situations we adjust "destination"
317 * to accommodate this difference. For example, if we needed
318 * to emit a branch (and it's delay slot) right before the
319 * final instruction emitted for a BPF opcode, we'd use
320 * "destination + 4" instead of just plain "destination" above.
322 * This is why you see all of these funny emit_branch() and
323 * emit_jump() calls with adjusted offsets.
326 void bpf_jit_compile(struct bpf_prog
*fp
)
328 unsigned int cleanup_addr
, proglen
, oldproglen
= 0;
329 u32 temp
[8], *prog
, *func
, seen
= 0, pass
;
330 const struct sock_filter
*filter
= fp
->insns
;
331 int i
, flen
= fp
->len
, pc_ret0
= -1;
338 addrs
= kmalloc(flen
* sizeof(*addrs
), GFP_KERNEL
);
342 /* Before first pass, make a rough estimation of addrs[]
343 * each bpf instruction is translated to less than 64 bytes
345 for (proglen
= 0, i
= 0; i
< flen
; i
++) {
349 cleanup_addr
= proglen
; /* epilogue address */
351 for (pass
= 0; pass
< 10; pass
++) {
352 u8 seen_or_pass0
= (pass
== 0) ? (SEEN_XREG
| SEEN_DATAREF
| SEEN_MEM
) : seen
;
354 /* no prologue/epilogue for trivial filters (RET something) */
360 if (seen_or_pass0
& SEEN_MEM
) {
361 unsigned int sz
= BASE_STACKFRAME
;
362 sz
+= BPF_MEMWORDS
* sizeof(u32
);
363 emit_alloc_stack(sz
);
366 /* Make sure we dont leek kernel memory. */
367 if (seen_or_pass0
& SEEN_XREG
)
370 /* If this filter needs to access skb data,
371 * load %o4 and %o5 with:
372 * %o4 = skb->len - skb->data_len
374 * And also back up %o7 into r_saved_O7 so we can
375 * invoke the stubs using 'call'.
377 if (seen_or_pass0
& SEEN_DATAREF
) {
378 emit_load32(r_SKB
, struct sk_buff
, len
, r_HEADLEN
);
379 emit_load32(r_SKB
, struct sk_buff
, data_len
, r_TMP
);
380 emit_sub(r_HEADLEN
, r_TMP
, r_HEADLEN
);
381 emit_loadptr(r_SKB
, struct sk_buff
, data
, r_SKB_DATA
);
384 emit_reg_move(O7
, r_saved_O7
);
386 /* Make sure we dont leak kernel information to the user. */
387 if (bpf_needs_clear_a(&filter
[0]))
388 emit_clear(r_A
); /* A = 0 */
390 for (i
= 0; i
< flen
; i
++) {
391 unsigned int K
= filter
[i
].k
;
392 unsigned int t_offset
;
393 unsigned int f_offset
;
395 u16 code
= bpf_anc_helper(&filter
[i
]);
399 case BPF_ALU
| BPF_ADD
| BPF_X
: /* A += X; */
402 case BPF_ALU
| BPF_ADD
| BPF_K
: /* A += K; */
405 case BPF_ALU
| BPF_SUB
| BPF_X
: /* A -= X; */
408 case BPF_ALU
| BPF_SUB
| BPF_K
: /* A -= K */
411 case BPF_ALU
| BPF_AND
| BPF_X
: /* A &= X */
414 case BPF_ALU
| BPF_AND
| BPF_K
: /* A &= K */
417 case BPF_ALU
| BPF_OR
| BPF_X
: /* A |= X */
420 case BPF_ALU
| BPF_OR
| BPF_K
: /* A |= K */
423 case BPF_ANC
| SKF_AD_ALU_XOR_X
: /* A ^= X; */
424 case BPF_ALU
| BPF_XOR
| BPF_X
:
427 case BPF_ALU
| BPF_XOR
| BPF_K
: /* A ^= K */
430 case BPF_ALU
| BPF_LSH
| BPF_X
: /* A <<= X */
433 case BPF_ALU
| BPF_LSH
| BPF_K
: /* A <<= K */
436 case BPF_ALU
| BPF_RSH
| BPF_X
: /* A >>= X */
439 case BPF_ALU
| BPF_RSH
| BPF_K
: /* A >>= K */
442 case BPF_ALU
| BPF_MUL
| BPF_X
: /* A *= X; */
445 case BPF_ALU
| BPF_MUL
| BPF_K
: /* A *= K */
448 case BPF_ALU
| BPF_DIV
| BPF_K
: /* A /= K with K != 0*/
452 /* The Sparc v8 architecture requires
453 * three instructions between a %y
454 * register write and the first use.
461 case BPF_ALU
| BPF_DIV
| BPF_X
: /* A /= X; */
464 t_offset
= addrs
[pc_ret0
- 1];
465 emit_branch(BE
, t_offset
+ 20);
466 emit_nop(); /* delay slot */
468 emit_branch_off(BNE
, 16);
470 emit_jump(cleanup_addr
+ 20);
474 /* The Sparc v8 architecture requires
475 * three instructions between a %y
476 * register write and the first use.
483 case BPF_ALU
| BPF_NEG
:
486 case BPF_RET
| BPF_K
:
492 emit_loadimm(K
, r_A
);
495 case BPF_RET
| BPF_A
:
498 emit_jump(cleanup_addr
);
502 if (seen_or_pass0
& SEEN_MEM
) {
503 unsigned int sz
= BASE_STACKFRAME
;
504 sz
+= BPF_MEMWORDS
* sizeof(u32
);
505 emit_release_stack(sz
);
508 /* jmpl %r_saved_O7 + 8, %g0 */
509 emit_jmpl(r_saved_O7
, 8, G0
);
510 emit_reg_move(r_A
, O0
); /* delay slot */
512 case BPF_MISC
| BPF_TAX
:
514 emit_reg_move(r_A
, r_X
);
516 case BPF_MISC
| BPF_TXA
:
518 emit_reg_move(r_X
, r_A
);
520 case BPF_ANC
| SKF_AD_CPU
:
523 case BPF_ANC
| SKF_AD_PROTOCOL
:
524 emit_skb_load16(protocol
, r_A
);
526 case BPF_ANC
| SKF_AD_PKTTYPE
:
527 __emit_skb_load8(__pkt_type_offset
, r_A
);
528 emit_andi(r_A
, PKT_TYPE_MAX
, r_A
);
531 case BPF_ANC
| SKF_AD_IFINDEX
:
532 emit_skb_loadptr(dev
, r_A
);
534 emit_branch(BE_PTR
, cleanup_addr
+ 4);
536 emit_load32(r_A
, struct net_device
, ifindex
, r_A
);
538 case BPF_ANC
| SKF_AD_MARK
:
539 emit_skb_load32(mark
, r_A
);
541 case BPF_ANC
| SKF_AD_QUEUE
:
542 emit_skb_load16(queue_mapping
, r_A
);
544 case BPF_ANC
| SKF_AD_HATYPE
:
545 emit_skb_loadptr(dev
, r_A
);
547 emit_branch(BE_PTR
, cleanup_addr
+ 4);
549 emit_load16(r_A
, struct net_device
, type
, r_A
);
551 case BPF_ANC
| SKF_AD_RXHASH
:
552 emit_skb_load32(hash
, r_A
);
554 case BPF_ANC
| SKF_AD_VLAN_TAG
:
555 case BPF_ANC
| SKF_AD_VLAN_TAG_PRESENT
:
556 emit_skb_load16(vlan_tci
, r_A
);
557 if (code
!= (BPF_ANC
| SKF_AD_VLAN_TAG
)) {
559 emit_andi(r_A
, 1, r_A
);
561 emit_loadimm(~VLAN_TAG_PRESENT
, r_TMP
);
562 emit_and(r_A
, r_TMP
, r_A
);
565 case BPF_LD
| BPF_W
| BPF_LEN
:
566 emit_skb_load32(len
, r_A
);
568 case BPF_LDX
| BPF_W
| BPF_LEN
:
569 emit_skb_load32(len
, r_X
);
571 case BPF_LD
| BPF_IMM
:
572 emit_loadimm(K
, r_A
);
574 case BPF_LDX
| BPF_IMM
:
575 emit_loadimm(K
, r_X
);
577 case BPF_LD
| BPF_MEM
:
579 emit_ldmem(K
* 4, r_A
);
581 case BPF_LDX
| BPF_MEM
:
582 seen
|= SEEN_MEM
| SEEN_XREG
;
583 emit_ldmem(K
* 4, r_X
);
587 emit_stmem(K
* 4, r_A
);
590 seen
|= SEEN_MEM
| SEEN_XREG
;
591 emit_stmem(K
* 4, r_X
);
594 #define CHOOSE_LOAD_FUNC(K, func) \
595 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
597 case BPF_LD
| BPF_W
| BPF_ABS
:
598 func
= CHOOSE_LOAD_FUNC(K
, bpf_jit_load_word
);
599 common_load
: seen
|= SEEN_DATAREF
;
600 emit_loadimm(K
, r_OFF
);
603 case BPF_LD
| BPF_H
| BPF_ABS
:
604 func
= CHOOSE_LOAD_FUNC(K
, bpf_jit_load_half
);
606 case BPF_LD
| BPF_B
| BPF_ABS
:
607 func
= CHOOSE_LOAD_FUNC(K
, bpf_jit_load_byte
);
609 case BPF_LDX
| BPF_B
| BPF_MSH
:
610 func
= CHOOSE_LOAD_FUNC(K
, bpf_jit_load_byte_msh
);
612 case BPF_LD
| BPF_W
| BPF_IND
:
613 func
= bpf_jit_load_word
;
614 common_load_ind
: seen
|= SEEN_DATAREF
| SEEN_XREG
;
617 emit_addi(r_X
, K
, r_OFF
);
619 emit_loadimm(K
, r_TMP
);
620 emit_add(r_X
, r_TMP
, r_OFF
);
623 emit_reg_move(r_X
, r_OFF
);
627 case BPF_LD
| BPF_H
| BPF_IND
:
628 func
= bpf_jit_load_half
;
629 goto common_load_ind
;
630 case BPF_LD
| BPF_B
| BPF_IND
:
631 func
= bpf_jit_load_byte
;
632 goto common_load_ind
;
633 case BPF_JMP
| BPF_JA
:
634 emit_jump(addrs
[i
+ K
]);
638 #define COND_SEL(CODE, TOP, FOP) \
644 COND_SEL(BPF_JMP
| BPF_JGT
| BPF_K
, BGU
, BLEU
);
645 COND_SEL(BPF_JMP
| BPF_JGE
| BPF_K
, BGEU
, BLU
);
646 COND_SEL(BPF_JMP
| BPF_JEQ
| BPF_K
, BE
, BNE
);
647 COND_SEL(BPF_JMP
| BPF_JSET
| BPF_K
, BNE
, BE
);
648 COND_SEL(BPF_JMP
| BPF_JGT
| BPF_X
, BGU
, BLEU
);
649 COND_SEL(BPF_JMP
| BPF_JGE
| BPF_X
, BGEU
, BLU
);
650 COND_SEL(BPF_JMP
| BPF_JEQ
| BPF_X
, BE
, BNE
);
651 COND_SEL(BPF_JMP
| BPF_JSET
| BPF_X
, BNE
, BE
);
653 cond_branch
: f_offset
= addrs
[i
+ filter
[i
].jf
];
654 t_offset
= addrs
[i
+ filter
[i
].jt
];
656 /* same targets, can avoid doing the test :) */
657 if (filter
[i
].jt
== filter
[i
].jf
) {
664 case BPF_JMP
| BPF_JGT
| BPF_X
:
665 case BPF_JMP
| BPF_JGE
| BPF_X
:
666 case BPF_JMP
| BPF_JEQ
| BPF_X
:
670 case BPF_JMP
| BPF_JSET
| BPF_X
:
674 case BPF_JMP
| BPF_JEQ
| BPF_K
:
675 case BPF_JMP
| BPF_JGT
| BPF_K
:
676 case BPF_JMP
| BPF_JGE
| BPF_K
:
680 emit_loadimm(K
, r_TMP
);
681 emit_cmp(r_A
, r_TMP
);
684 case BPF_JMP
| BPF_JSET
| BPF_K
:
688 emit_loadimm(K
, r_TMP
);
689 emit_btst(r_A
, r_TMP
);
693 if (filter
[i
].jt
!= 0) {
696 emit_branch(t_op
, t_offset
);
697 emit_nop(); /* delay slot */
704 emit_branch(f_op
, f_offset
);
705 emit_nop(); /* delay slot */
709 /* hmm, too complex filter, give up with jit compiler */
712 ilen
= (void *) prog
- (void *) temp
;
714 if (unlikely(proglen
+ ilen
> oldproglen
)) {
715 pr_err("bpb_jit_compile fatal error\n");
717 module_memfree(image
);
720 memcpy(image
+ proglen
, temp
, ilen
);
726 /* last bpf instruction is always a RET :
727 * use it to give the cleanup instruction(s) addr
729 cleanup_addr
= proglen
- 8; /* jmpl; mov r_A,%o0; */
730 if (seen_or_pass0
& SEEN_MEM
)
731 cleanup_addr
-= 4; /* add %sp, X, %sp; */
734 if (proglen
!= oldproglen
)
735 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
736 proglen
, oldproglen
);
739 if (proglen
== oldproglen
) {
740 image
= module_alloc(proglen
);
744 oldproglen
= proglen
;
747 if (bpf_jit_enable
> 1)
748 bpf_jit_dump(flen
, proglen
, pass
+ 1, image
);
751 fp
->bpf_func
= (void *)image
;
759 void bpf_jit_free(struct bpf_prog
*fp
)
762 module_memfree(fp
->bpf_func
);
764 bpf_prog_unlock_free(fp
);