x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / arch / x86 / crypto / sha512-mb / sha512_mb.c
blob458409b7568d101da21c9a351ca8128108594e54
1 /*
2 * Multi buffer SHA512 algorithm Glue Code
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * Copyright(c) 2016 Intel Corporation.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * Contact Information:
21 * Megha Dey <megha.dey@linux.intel.com>
23 * BSD LICENSE
25 * Copyright(c) 2016 Intel Corporation.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
31 * * Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * * Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in
35 * the documentation and/or other materials provided with the
36 * distribution.
37 * * Neither the name of Intel Corporation nor the names of its
38 * contributors may be used to endorse or promote products derived
39 * from this software without specific prior written permission.
41 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 #include <crypto/internal/hash.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/mm.h>
60 #include <linux/cryptohash.h>
61 #include <linux/types.h>
62 #include <linux/list.h>
63 #include <crypto/scatterwalk.h>
64 #include <crypto/sha.h>
65 #include <crypto/mcryptd.h>
66 #include <crypto/crypto_wq.h>
67 #include <asm/byteorder.h>
68 #include <linux/hardirq.h>
69 #include <asm/fpu/api.h>
70 #include "sha512_mb_ctx.h"
72 #define FLUSH_INTERVAL 1000 /* in usec */
74 static struct mcryptd_alg_state sha512_mb_alg_state;
76 struct sha512_mb_ctx {
77 struct mcryptd_ahash *mcryptd_tfm;
80 static inline struct mcryptd_hash_request_ctx
81 *cast_hash_to_mcryptd_ctx(struct sha512_hash_ctx *hash_ctx)
83 struct ahash_request *areq;
85 areq = container_of((void *) hash_ctx, struct ahash_request, __ctx);
86 return container_of(areq, struct mcryptd_hash_request_ctx, areq);
89 static inline struct ahash_request
90 *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
92 return container_of((void *) ctx, struct ahash_request, __ctx);
95 static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
96 struct ahash_request *areq)
98 rctx->flag = HASH_UPDATE;
101 static asmlinkage void (*sha512_job_mgr_init)(struct sha512_mb_mgr *state);
102 static asmlinkage struct job_sha512* (*sha512_job_mgr_submit)
103 (struct sha512_mb_mgr *state,
104 struct job_sha512 *job);
105 static asmlinkage struct job_sha512* (*sha512_job_mgr_flush)
106 (struct sha512_mb_mgr *state);
107 static asmlinkage struct job_sha512* (*sha512_job_mgr_get_comp_job)
108 (struct sha512_mb_mgr *state);
110 inline void sha512_init_digest(uint64_t *digest)
112 static const uint64_t initial_digest[SHA512_DIGEST_LENGTH] = {
113 SHA512_H0, SHA512_H1, SHA512_H2,
114 SHA512_H3, SHA512_H4, SHA512_H5,
115 SHA512_H6, SHA512_H7 };
116 memcpy(digest, initial_digest, sizeof(initial_digest));
119 inline uint32_t sha512_pad(uint8_t padblock[SHA512_BLOCK_SIZE * 2],
120 uint64_t total_len)
122 uint32_t i = total_len & (SHA512_BLOCK_SIZE - 1);
124 memset(&padblock[i], 0, SHA512_BLOCK_SIZE);
125 padblock[i] = 0x80;
127 i += ((SHA512_BLOCK_SIZE - 1) &
128 (0 - (total_len + SHA512_PADLENGTHFIELD_SIZE + 1)))
129 + 1 + SHA512_PADLENGTHFIELD_SIZE;
131 #if SHA512_PADLENGTHFIELD_SIZE == 16
132 *((uint64_t *) &padblock[i - 16]) = 0;
133 #endif
135 *((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);
137 /* Number of extra blocks to hash */
138 return i >> SHA512_LOG2_BLOCK_SIZE;
141 static struct sha512_hash_ctx *sha512_ctx_mgr_resubmit
142 (struct sha512_ctx_mgr *mgr, struct sha512_hash_ctx *ctx)
144 while (ctx) {
145 if (ctx->status & HASH_CTX_STS_COMPLETE) {
146 /* Clear PROCESSING bit */
147 ctx->status = HASH_CTX_STS_COMPLETE;
148 return ctx;
152 * If the extra blocks are empty, begin hashing what remains
153 * in the user's buffer.
155 if (ctx->partial_block_buffer_length == 0 &&
156 ctx->incoming_buffer_length) {
158 const void *buffer = ctx->incoming_buffer;
159 uint32_t len = ctx->incoming_buffer_length;
160 uint32_t copy_len;
163 * Only entire blocks can be hashed.
164 * Copy remainder to extra blocks buffer.
166 copy_len = len & (SHA512_BLOCK_SIZE-1);
168 if (copy_len) {
169 len -= copy_len;
170 memcpy(ctx->partial_block_buffer,
171 ((const char *) buffer + len),
172 copy_len);
173 ctx->partial_block_buffer_length = copy_len;
176 ctx->incoming_buffer_length = 0;
178 /* len should be a multiple of the block size now */
179 assert((len % SHA512_BLOCK_SIZE) == 0);
181 /* Set len to the number of blocks to be hashed */
182 len >>= SHA512_LOG2_BLOCK_SIZE;
184 if (len) {
186 ctx->job.buffer = (uint8_t *) buffer;
187 ctx->job.len = len;
188 ctx = (struct sha512_hash_ctx *)
189 sha512_job_mgr_submit(&mgr->mgr,
190 &ctx->job);
191 continue;
196 * If the extra blocks are not empty, then we are
197 * either on the last block(s) or we need more
198 * user input before continuing.
200 if (ctx->status & HASH_CTX_STS_LAST) {
202 uint8_t *buf = ctx->partial_block_buffer;
203 uint32_t n_extra_blocks =
204 sha512_pad(buf, ctx->total_length);
206 ctx->status = (HASH_CTX_STS_PROCESSING |
207 HASH_CTX_STS_COMPLETE);
208 ctx->job.buffer = buf;
209 ctx->job.len = (uint32_t) n_extra_blocks;
210 ctx = (struct sha512_hash_ctx *)
211 sha512_job_mgr_submit(&mgr->mgr, &ctx->job);
212 continue;
215 if (ctx)
216 ctx->status = HASH_CTX_STS_IDLE;
217 return ctx;
220 return NULL;
223 static struct sha512_hash_ctx
224 *sha512_ctx_mgr_get_comp_ctx(struct mcryptd_alg_cstate *cstate)
227 * If get_comp_job returns NULL, there are no jobs complete.
228 * If get_comp_job returns a job, verify that it is safe to return to
229 * the user.
230 * If it is not ready, resubmit the job to finish processing.
231 * If sha512_ctx_mgr_resubmit returned a job, it is ready to be
232 * returned.
233 * Otherwise, all jobs currently being managed by the hash_ctx_mgr
234 * still need processing.
236 struct sha512_ctx_mgr *mgr;
237 struct sha512_hash_ctx *ctx;
238 unsigned long flags;
240 mgr = cstate->mgr;
241 spin_lock_irqsave(&cstate->work_lock, flags);
242 ctx = (struct sha512_hash_ctx *)
243 sha512_job_mgr_get_comp_job(&mgr->mgr);
244 ctx = sha512_ctx_mgr_resubmit(mgr, ctx);
245 spin_unlock_irqrestore(&cstate->work_lock, flags);
246 return ctx;
249 static void sha512_ctx_mgr_init(struct sha512_ctx_mgr *mgr)
251 sha512_job_mgr_init(&mgr->mgr);
254 static struct sha512_hash_ctx
255 *sha512_ctx_mgr_submit(struct mcryptd_alg_cstate *cstate,
256 struct sha512_hash_ctx *ctx,
257 const void *buffer,
258 uint32_t len,
259 int flags)
261 struct sha512_ctx_mgr *mgr;
262 unsigned long irqflags;
264 mgr = cstate->mgr;
265 spin_lock_irqsave(&cstate->work_lock, irqflags);
266 if (flags & (~HASH_ENTIRE)) {
268 * User should not pass anything other than FIRST, UPDATE, or
269 * LAST
271 ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
272 goto unlock;
275 if (ctx->status & HASH_CTX_STS_PROCESSING) {
276 /* Cannot submit to a currently processing job. */
277 ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
278 goto unlock;
281 if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) {
282 /* Cannot update a finished job. */
283 ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
284 goto unlock;
288 if (flags & HASH_FIRST) {
289 /* Init digest */
290 sha512_init_digest(ctx->job.result_digest);
292 /* Reset byte counter */
293 ctx->total_length = 0;
295 /* Clear extra blocks */
296 ctx->partial_block_buffer_length = 0;
300 * If we made it here, there were no errors during this call to
301 * submit
303 ctx->error = HASH_CTX_ERROR_NONE;
305 /* Store buffer ptr info from user */
306 ctx->incoming_buffer = buffer;
307 ctx->incoming_buffer_length = len;
310 * Store the user's request flags and mark this ctx as currently being
311 * processed.
313 ctx->status = (flags & HASH_LAST) ?
314 (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
315 HASH_CTX_STS_PROCESSING;
317 /* Advance byte counter */
318 ctx->total_length += len;
321 * If there is anything currently buffered in the extra blocks,
322 * append to it until it contains a whole block.
323 * Or if the user's buffer contains less than a whole block,
324 * append as much as possible to the extra block.
326 if (ctx->partial_block_buffer_length || len < SHA512_BLOCK_SIZE) {
327 /* Compute how many bytes to copy from user buffer into extra
328 * block
330 uint32_t copy_len = SHA512_BLOCK_SIZE -
331 ctx->partial_block_buffer_length;
332 if (len < copy_len)
333 copy_len = len;
335 if (copy_len) {
336 /* Copy and update relevant pointers and counters */
337 memcpy
338 (&ctx->partial_block_buffer[ctx->partial_block_buffer_length],
339 buffer, copy_len);
341 ctx->partial_block_buffer_length += copy_len;
342 ctx->incoming_buffer = (const void *)
343 ((const char *)buffer + copy_len);
344 ctx->incoming_buffer_length = len - copy_len;
347 /* The extra block should never contain more than 1 block
348 * here
350 assert(ctx->partial_block_buffer_length <= SHA512_BLOCK_SIZE);
352 /* If the extra block buffer contains exactly 1 block, it can
353 * be hashed.
355 if (ctx->partial_block_buffer_length >= SHA512_BLOCK_SIZE) {
356 ctx->partial_block_buffer_length = 0;
358 ctx->job.buffer = ctx->partial_block_buffer;
359 ctx->job.len = 1;
360 ctx = (struct sha512_hash_ctx *)
361 sha512_job_mgr_submit(&mgr->mgr, &ctx->job);
365 ctx = sha512_ctx_mgr_resubmit(mgr, ctx);
366 unlock:
367 spin_unlock_irqrestore(&cstate->work_lock, irqflags);
368 return ctx;
371 static struct sha512_hash_ctx *sha512_ctx_mgr_flush(struct mcryptd_alg_cstate *cstate)
373 struct sha512_ctx_mgr *mgr;
374 struct sha512_hash_ctx *ctx;
375 unsigned long flags;
377 mgr = cstate->mgr;
378 spin_lock_irqsave(&cstate->work_lock, flags);
379 while (1) {
380 ctx = (struct sha512_hash_ctx *)
381 sha512_job_mgr_flush(&mgr->mgr);
383 /* If flush returned 0, there are no more jobs in flight. */
384 if (!ctx)
385 break;
388 * If flush returned a job, resubmit the job to finish
389 * processing.
391 ctx = sha512_ctx_mgr_resubmit(mgr, ctx);
394 * If sha512_ctx_mgr_resubmit returned a job, it is ready to
395 * be returned. Otherwise, all jobs currently being managed by
396 * the sha512_ctx_mgr still need processing. Loop.
398 if (ctx)
399 break;
401 spin_unlock_irqrestore(&cstate->work_lock, flags);
402 return ctx;
405 static int sha512_mb_init(struct ahash_request *areq)
407 struct sha512_hash_ctx *sctx = ahash_request_ctx(areq);
409 hash_ctx_init(sctx);
410 sctx->job.result_digest[0] = SHA512_H0;
411 sctx->job.result_digest[1] = SHA512_H1;
412 sctx->job.result_digest[2] = SHA512_H2;
413 sctx->job.result_digest[3] = SHA512_H3;
414 sctx->job.result_digest[4] = SHA512_H4;
415 sctx->job.result_digest[5] = SHA512_H5;
416 sctx->job.result_digest[6] = SHA512_H6;
417 sctx->job.result_digest[7] = SHA512_H7;
418 sctx->total_length = 0;
419 sctx->partial_block_buffer_length = 0;
420 sctx->status = HASH_CTX_STS_IDLE;
422 return 0;
425 static int sha512_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
427 int i;
428 struct sha512_hash_ctx *sctx = ahash_request_ctx(&rctx->areq);
429 __be64 *dst = (__be64 *) rctx->out;
431 for (i = 0; i < 8; ++i)
432 dst[i] = cpu_to_be64(sctx->job.result_digest[i]);
434 return 0;
437 static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
438 struct mcryptd_alg_cstate *cstate, bool flush)
440 int flag = HASH_UPDATE;
441 int nbytes, err = 0;
442 struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
443 struct sha512_hash_ctx *sha_ctx;
445 /* more work ? */
446 while (!(rctx->flag & HASH_DONE)) {
447 nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
448 if (nbytes < 0) {
449 err = nbytes;
450 goto out;
452 /* check if the walk is done */
453 if (crypto_ahash_walk_last(&rctx->walk)) {
454 rctx->flag |= HASH_DONE;
455 if (rctx->flag & HASH_FINAL)
456 flag |= HASH_LAST;
459 sha_ctx = (struct sha512_hash_ctx *)
460 ahash_request_ctx(&rctx->areq);
461 kernel_fpu_begin();
462 sha_ctx = sha512_ctx_mgr_submit(cstate, sha_ctx,
463 rctx->walk.data, nbytes, flag);
464 if (!sha_ctx) {
465 if (flush)
466 sha_ctx = sha512_ctx_mgr_flush(cstate);
468 kernel_fpu_end();
469 if (sha_ctx)
470 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
471 else {
472 rctx = NULL;
473 goto out;
477 /* copy the results */
478 if (rctx->flag & HASH_FINAL)
479 sha512_mb_set_results(rctx);
481 out:
482 *ret_rctx = rctx;
483 return err;
486 static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
487 struct mcryptd_alg_cstate *cstate,
488 int err)
490 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
491 struct sha512_hash_ctx *sha_ctx;
492 struct mcryptd_hash_request_ctx *req_ctx;
493 int ret;
494 unsigned long flags;
496 /* remove from work list */
497 spin_lock_irqsave(&cstate->work_lock, flags);
498 list_del(&rctx->waiter);
499 spin_unlock_irqrestore(&cstate->work_lock, flags);
501 if (irqs_disabled())
502 rctx->complete(&req->base, err);
503 else {
504 local_bh_disable();
505 rctx->complete(&req->base, err);
506 local_bh_enable();
509 /* check to see if there are other jobs that are done */
510 sha_ctx = sha512_ctx_mgr_get_comp_ctx(cstate);
511 while (sha_ctx) {
512 req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
513 ret = sha_finish_walk(&req_ctx, cstate, false);
514 if (req_ctx) {
515 spin_lock_irqsave(&cstate->work_lock, flags);
516 list_del(&req_ctx->waiter);
517 spin_unlock_irqrestore(&cstate->work_lock, flags);
519 req = cast_mcryptd_ctx_to_req(req_ctx);
520 if (irqs_disabled())
521 req_ctx->complete(&req->base, ret);
522 else {
523 local_bh_disable();
524 req_ctx->complete(&req->base, ret);
525 local_bh_enable();
528 sha_ctx = sha512_ctx_mgr_get_comp_ctx(cstate);
531 return 0;
534 static void sha512_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
535 struct mcryptd_alg_cstate *cstate)
537 unsigned long next_flush;
538 unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);
539 unsigned long flags;
541 /* initialize tag */
542 rctx->tag.arrival = jiffies; /* tag the arrival time */
543 rctx->tag.seq_num = cstate->next_seq_num++;
544 next_flush = rctx->tag.arrival + delay;
545 rctx->tag.expire = next_flush;
547 spin_lock_irqsave(&cstate->work_lock, flags);
548 list_add_tail(&rctx->waiter, &cstate->work_list);
549 spin_unlock_irqrestore(&cstate->work_lock, flags);
551 mcryptd_arm_flusher(cstate, delay);
554 static int sha512_mb_update(struct ahash_request *areq)
556 struct mcryptd_hash_request_ctx *rctx =
557 container_of(areq, struct mcryptd_hash_request_ctx,
558 areq);
559 struct mcryptd_alg_cstate *cstate =
560 this_cpu_ptr(sha512_mb_alg_state.alg_cstate);
562 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
563 struct sha512_hash_ctx *sha_ctx;
564 int ret = 0, nbytes;
567 /* sanity check */
568 if (rctx->tag.cpu != smp_processor_id()) {
569 pr_err("mcryptd error: cpu clash\n");
570 goto done;
573 /* need to init context */
574 req_ctx_init(rctx, areq);
576 nbytes = crypto_ahash_walk_first(req, &rctx->walk);
578 if (nbytes < 0) {
579 ret = nbytes;
580 goto done;
583 if (crypto_ahash_walk_last(&rctx->walk))
584 rctx->flag |= HASH_DONE;
586 /* submit */
587 sha_ctx = (struct sha512_hash_ctx *) ahash_request_ctx(areq);
588 sha512_mb_add_list(rctx, cstate);
589 kernel_fpu_begin();
590 sha_ctx = sha512_ctx_mgr_submit(cstate, sha_ctx, rctx->walk.data,
591 nbytes, HASH_UPDATE);
592 kernel_fpu_end();
594 /* check if anything is returned */
595 if (!sha_ctx)
596 return -EINPROGRESS;
598 if (sha_ctx->error) {
599 ret = sha_ctx->error;
600 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
601 goto done;
604 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
605 ret = sha_finish_walk(&rctx, cstate, false);
607 if (!rctx)
608 return -EINPROGRESS;
609 done:
610 sha_complete_job(rctx, cstate, ret);
611 return ret;
614 static int sha512_mb_finup(struct ahash_request *areq)
616 struct mcryptd_hash_request_ctx *rctx =
617 container_of(areq, struct mcryptd_hash_request_ctx,
618 areq);
619 struct mcryptd_alg_cstate *cstate =
620 this_cpu_ptr(sha512_mb_alg_state.alg_cstate);
622 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
623 struct sha512_hash_ctx *sha_ctx;
624 int ret = 0, flag = HASH_UPDATE, nbytes;
626 /* sanity check */
627 if (rctx->tag.cpu != smp_processor_id()) {
628 pr_err("mcryptd error: cpu clash\n");
629 goto done;
632 /* need to init context */
633 req_ctx_init(rctx, areq);
635 nbytes = crypto_ahash_walk_first(req, &rctx->walk);
637 if (nbytes < 0) {
638 ret = nbytes;
639 goto done;
642 if (crypto_ahash_walk_last(&rctx->walk)) {
643 rctx->flag |= HASH_DONE;
644 flag = HASH_LAST;
647 /* submit */
648 rctx->flag |= HASH_FINAL;
649 sha_ctx = (struct sha512_hash_ctx *) ahash_request_ctx(areq);
650 sha512_mb_add_list(rctx, cstate);
652 kernel_fpu_begin();
653 sha_ctx = sha512_ctx_mgr_submit(cstate, sha_ctx, rctx->walk.data,
654 nbytes, flag);
655 kernel_fpu_end();
657 /* check if anything is returned */
658 if (!sha_ctx)
659 return -EINPROGRESS;
661 if (sha_ctx->error) {
662 ret = sha_ctx->error;
663 goto done;
666 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
667 ret = sha_finish_walk(&rctx, cstate, false);
668 if (!rctx)
669 return -EINPROGRESS;
670 done:
671 sha_complete_job(rctx, cstate, ret);
672 return ret;
675 static int sha512_mb_final(struct ahash_request *areq)
677 struct mcryptd_hash_request_ctx *rctx =
678 container_of(areq, struct mcryptd_hash_request_ctx,
679 areq);
680 struct mcryptd_alg_cstate *cstate =
681 this_cpu_ptr(sha512_mb_alg_state.alg_cstate);
683 struct sha512_hash_ctx *sha_ctx;
684 int ret = 0;
685 u8 data;
687 /* sanity check */
688 if (rctx->tag.cpu != smp_processor_id()) {
689 pr_err("mcryptd error: cpu clash\n");
690 goto done;
693 /* need to init context */
694 req_ctx_init(rctx, areq);
696 rctx->flag |= HASH_DONE | HASH_FINAL;
698 sha_ctx = (struct sha512_hash_ctx *) ahash_request_ctx(areq);
699 /* flag HASH_FINAL and 0 data size */
700 sha512_mb_add_list(rctx, cstate);
701 kernel_fpu_begin();
702 sha_ctx = sha512_ctx_mgr_submit(cstate, sha_ctx, &data, 0, HASH_LAST);
703 kernel_fpu_end();
705 /* check if anything is returned */
706 if (!sha_ctx)
707 return -EINPROGRESS;
709 if (sha_ctx->error) {
710 ret = sha_ctx->error;
711 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
712 goto done;
715 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
716 ret = sha_finish_walk(&rctx, cstate, false);
717 if (!rctx)
718 return -EINPROGRESS;
719 done:
720 sha_complete_job(rctx, cstate, ret);
721 return ret;
724 static int sha512_mb_export(struct ahash_request *areq, void *out)
726 struct sha512_hash_ctx *sctx = ahash_request_ctx(areq);
728 memcpy(out, sctx, sizeof(*sctx));
730 return 0;
733 static int sha512_mb_import(struct ahash_request *areq, const void *in)
735 struct sha512_hash_ctx *sctx = ahash_request_ctx(areq);
737 memcpy(sctx, in, sizeof(*sctx));
739 return 0;
742 static int sha512_mb_async_init_tfm(struct crypto_tfm *tfm)
744 struct mcryptd_ahash *mcryptd_tfm;
745 struct sha512_mb_ctx *ctx = crypto_tfm_ctx(tfm);
746 struct mcryptd_hash_ctx *mctx;
748 mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha512-mb",
749 CRYPTO_ALG_INTERNAL,
750 CRYPTO_ALG_INTERNAL);
751 if (IS_ERR(mcryptd_tfm))
752 return PTR_ERR(mcryptd_tfm);
753 mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
754 mctx->alg_state = &sha512_mb_alg_state;
755 ctx->mcryptd_tfm = mcryptd_tfm;
756 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
757 sizeof(struct ahash_request) +
758 crypto_ahash_reqsize(&mcryptd_tfm->base));
760 return 0;
763 static void sha512_mb_async_exit_tfm(struct crypto_tfm *tfm)
765 struct sha512_mb_ctx *ctx = crypto_tfm_ctx(tfm);
767 mcryptd_free_ahash(ctx->mcryptd_tfm);
770 static int sha512_mb_areq_init_tfm(struct crypto_tfm *tfm)
772 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
773 sizeof(struct ahash_request) +
774 sizeof(struct sha512_hash_ctx));
776 return 0;
779 static void sha512_mb_areq_exit_tfm(struct crypto_tfm *tfm)
781 struct sha512_mb_ctx *ctx = crypto_tfm_ctx(tfm);
783 mcryptd_free_ahash(ctx->mcryptd_tfm);
786 static struct ahash_alg sha512_mb_areq_alg = {
787 .init = sha512_mb_init,
788 .update = sha512_mb_update,
789 .final = sha512_mb_final,
790 .finup = sha512_mb_finup,
791 .export = sha512_mb_export,
792 .import = sha512_mb_import,
793 .halg = {
794 .digestsize = SHA512_DIGEST_SIZE,
795 .statesize = sizeof(struct sha512_hash_ctx),
796 .base = {
797 .cra_name = "__sha512-mb",
798 .cra_driver_name = "__intel_sha512-mb",
799 .cra_priority = 100,
801 * use ASYNC flag as some buffers in multi-buffer
802 * algo may not have completed before hashing thread
803 * sleep
805 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
806 CRYPTO_ALG_ASYNC |
807 CRYPTO_ALG_INTERNAL,
808 .cra_blocksize = SHA512_BLOCK_SIZE,
809 .cra_module = THIS_MODULE,
810 .cra_list = LIST_HEAD_INIT
811 (sha512_mb_areq_alg.halg.base.cra_list),
812 .cra_init = sha512_mb_areq_init_tfm,
813 .cra_exit = sha512_mb_areq_exit_tfm,
814 .cra_ctxsize = sizeof(struct sha512_hash_ctx),
819 static int sha512_mb_async_init(struct ahash_request *req)
821 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
822 struct sha512_mb_ctx *ctx = crypto_ahash_ctx(tfm);
823 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
824 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
826 memcpy(mcryptd_req, req, sizeof(*req));
827 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
828 return crypto_ahash_init(mcryptd_req);
831 static int sha512_mb_async_update(struct ahash_request *req)
833 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
835 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
836 struct sha512_mb_ctx *ctx = crypto_ahash_ctx(tfm);
837 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
839 memcpy(mcryptd_req, req, sizeof(*req));
840 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
841 return crypto_ahash_update(mcryptd_req);
844 static int sha512_mb_async_finup(struct ahash_request *req)
846 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
848 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
849 struct sha512_mb_ctx *ctx = crypto_ahash_ctx(tfm);
850 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
852 memcpy(mcryptd_req, req, sizeof(*req));
853 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
854 return crypto_ahash_finup(mcryptd_req);
857 static int sha512_mb_async_final(struct ahash_request *req)
859 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
861 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
862 struct sha512_mb_ctx *ctx = crypto_ahash_ctx(tfm);
863 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
865 memcpy(mcryptd_req, req, sizeof(*req));
866 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
867 return crypto_ahash_final(mcryptd_req);
870 static int sha512_mb_async_digest(struct ahash_request *req)
872 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
873 struct sha512_mb_ctx *ctx = crypto_ahash_ctx(tfm);
874 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
875 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
877 memcpy(mcryptd_req, req, sizeof(*req));
878 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
879 return crypto_ahash_digest(mcryptd_req);
882 static int sha512_mb_async_export(struct ahash_request *req, void *out)
884 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
885 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
886 struct sha512_mb_ctx *ctx = crypto_ahash_ctx(tfm);
887 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
889 memcpy(mcryptd_req, req, sizeof(*req));
890 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
891 return crypto_ahash_export(mcryptd_req, out);
894 static int sha512_mb_async_import(struct ahash_request *req, const void *in)
896 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
897 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
898 struct sha512_mb_ctx *ctx = crypto_ahash_ctx(tfm);
899 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
900 struct crypto_ahash *child = mcryptd_ahash_child(mcryptd_tfm);
901 struct mcryptd_hash_request_ctx *rctx;
902 struct ahash_request *areq;
904 memcpy(mcryptd_req, req, sizeof(*req));
905 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
906 rctx = ahash_request_ctx(mcryptd_req);
908 areq = &rctx->areq;
910 ahash_request_set_tfm(areq, child);
911 ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_SLEEP,
912 rctx->complete, req);
914 return crypto_ahash_import(mcryptd_req, in);
917 static struct ahash_alg sha512_mb_async_alg = {
918 .init = sha512_mb_async_init,
919 .update = sha512_mb_async_update,
920 .final = sha512_mb_async_final,
921 .finup = sha512_mb_async_finup,
922 .digest = sha512_mb_async_digest,
923 .export = sha512_mb_async_export,
924 .import = sha512_mb_async_import,
925 .halg = {
926 .digestsize = SHA512_DIGEST_SIZE,
927 .statesize = sizeof(struct sha512_hash_ctx),
928 .base = {
929 .cra_name = "sha512",
930 .cra_driver_name = "sha512_mb",
931 .cra_priority = 200,
932 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
933 CRYPTO_ALG_ASYNC,
934 .cra_blocksize = SHA512_BLOCK_SIZE,
935 .cra_type = &crypto_ahash_type,
936 .cra_module = THIS_MODULE,
937 .cra_list = LIST_HEAD_INIT
938 (sha512_mb_async_alg.halg.base.cra_list),
939 .cra_init = sha512_mb_async_init_tfm,
940 .cra_exit = sha512_mb_async_exit_tfm,
941 .cra_ctxsize = sizeof(struct sha512_mb_ctx),
942 .cra_alignmask = 0,
947 static unsigned long sha512_mb_flusher(struct mcryptd_alg_cstate *cstate)
949 struct mcryptd_hash_request_ctx *rctx;
950 unsigned long cur_time;
951 unsigned long next_flush = 0;
952 struct sha512_hash_ctx *sha_ctx;
955 cur_time = jiffies;
957 while (!list_empty(&cstate->work_list)) {
958 rctx = list_entry(cstate->work_list.next,
959 struct mcryptd_hash_request_ctx, waiter);
960 if time_before(cur_time, rctx->tag.expire)
961 break;
962 kernel_fpu_begin();
963 sha_ctx = (struct sha512_hash_ctx *)
964 sha512_ctx_mgr_flush(cstate);
965 kernel_fpu_end();
966 if (!sha_ctx) {
967 pr_err("sha512_mb error: nothing got flushed for"
968 " non-empty list\n");
969 break;
971 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
972 sha_finish_walk(&rctx, cstate, true);
973 sha_complete_job(rctx, cstate, 0);
976 if (!list_empty(&cstate->work_list)) {
977 rctx = list_entry(cstate->work_list.next,
978 struct mcryptd_hash_request_ctx, waiter);
979 /* get the hash context and then flush time */
980 next_flush = rctx->tag.expire;
981 mcryptd_arm_flusher(cstate, get_delay(next_flush));
983 return next_flush;
986 static int __init sha512_mb_mod_init(void)
989 int cpu;
990 int err;
991 struct mcryptd_alg_cstate *cpu_state;
993 /* check for dependent cpu features */
994 if (!boot_cpu_has(X86_FEATURE_AVX2) ||
995 !boot_cpu_has(X86_FEATURE_BMI2))
996 return -ENODEV;
998 /* initialize multibuffer structures */
999 sha512_mb_alg_state.alg_cstate =
1000 alloc_percpu(struct mcryptd_alg_cstate);
1002 sha512_job_mgr_init = sha512_mb_mgr_init_avx2;
1003 sha512_job_mgr_submit = sha512_mb_mgr_submit_avx2;
1004 sha512_job_mgr_flush = sha512_mb_mgr_flush_avx2;
1005 sha512_job_mgr_get_comp_job = sha512_mb_mgr_get_comp_job_avx2;
1007 if (!sha512_mb_alg_state.alg_cstate)
1008 return -ENOMEM;
1009 for_each_possible_cpu(cpu) {
1010 cpu_state = per_cpu_ptr(sha512_mb_alg_state.alg_cstate, cpu);
1011 cpu_state->next_flush = 0;
1012 cpu_state->next_seq_num = 0;
1013 cpu_state->flusher_engaged = false;
1014 INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
1015 cpu_state->cpu = cpu;
1016 cpu_state->alg_state = &sha512_mb_alg_state;
1017 cpu_state->mgr = kzalloc(sizeof(struct sha512_ctx_mgr),
1018 GFP_KERNEL);
1019 if (!cpu_state->mgr)
1020 goto err2;
1021 sha512_ctx_mgr_init(cpu_state->mgr);
1022 INIT_LIST_HEAD(&cpu_state->work_list);
1023 spin_lock_init(&cpu_state->work_lock);
1025 sha512_mb_alg_state.flusher = &sha512_mb_flusher;
1027 err = crypto_register_ahash(&sha512_mb_areq_alg);
1028 if (err)
1029 goto err2;
1030 err = crypto_register_ahash(&sha512_mb_async_alg);
1031 if (err)
1032 goto err1;
1035 return 0;
1036 err1:
1037 crypto_unregister_ahash(&sha512_mb_areq_alg);
1038 err2:
1039 for_each_possible_cpu(cpu) {
1040 cpu_state = per_cpu_ptr(sha512_mb_alg_state.alg_cstate, cpu);
1041 kfree(cpu_state->mgr);
1043 free_percpu(sha512_mb_alg_state.alg_cstate);
1044 return -ENODEV;
1047 static void __exit sha512_mb_mod_fini(void)
1049 int cpu;
1050 struct mcryptd_alg_cstate *cpu_state;
1052 crypto_unregister_ahash(&sha512_mb_async_alg);
1053 crypto_unregister_ahash(&sha512_mb_areq_alg);
1054 for_each_possible_cpu(cpu) {
1055 cpu_state = per_cpu_ptr(sha512_mb_alg_state.alg_cstate, cpu);
1056 kfree(cpu_state->mgr);
1058 free_percpu(sha512_mb_alg_state.alg_cstate);
1061 module_init(sha512_mb_mod_init);
1062 module_exit(sha512_mb_mod_fini);
1064 MODULE_LICENSE("GPL");
1065 MODULE_DESCRIPTION("SHA512 Secure Hash Algorithm, multi buffer accelerated");
1067 MODULE_ALIAS("sha512");