x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / arch / x86 / kernel / tsc.c
blobfb430273841023fd1ebf3507440cd5510f37b012
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
30 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
31 EXPORT_SYMBOL(cpu_khz);
33 unsigned int __read_mostly tsc_khz;
34 EXPORT_SYMBOL(tsc_khz);
37 * TSC can be unstable due to cpufreq or due to unsynced TSCs
39 static int __read_mostly tsc_unstable;
41 /* native_sched_clock() is called before tsc_init(), so
42 we must start with the TSC soft disabled to prevent
43 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
44 static int __read_mostly tsc_disabled = -1;
46 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
48 int tsc_clocksource_reliable;
50 static u32 art_to_tsc_numerator;
51 static u32 art_to_tsc_denominator;
52 static u64 art_to_tsc_offset;
53 struct clocksource *art_related_clocksource;
55 struct cyc2ns {
56 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
57 seqcount_t seq; /* 32 + 4 = 36 */
59 }; /* fits one cacheline */
61 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
63 void cyc2ns_read_begin(struct cyc2ns_data *data)
65 int seq, idx;
67 preempt_disable_notrace();
69 do {
70 seq = this_cpu_read(cyc2ns.seq.sequence);
71 idx = seq & 1;
73 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
74 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
75 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
77 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
80 void cyc2ns_read_end(void)
82 preempt_enable_notrace();
86 * Accelerators for sched_clock()
87 * convert from cycles(64bits) => nanoseconds (64bits)
88 * basic equation:
89 * ns = cycles / (freq / ns_per_sec)
90 * ns = cycles * (ns_per_sec / freq)
91 * ns = cycles * (10^9 / (cpu_khz * 10^3))
92 * ns = cycles * (10^6 / cpu_khz)
94 * Then we use scaling math (suggested by george@mvista.com) to get:
95 * ns = cycles * (10^6 * SC / cpu_khz) / SC
96 * ns = cycles * cyc2ns_scale / SC
98 * And since SC is a constant power of two, we can convert the div
99 * into a shift. The larger SC is, the more accurate the conversion, but
100 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
101 * (64-bit result) can be used.
103 * We can use khz divisor instead of mhz to keep a better precision.
104 * (mathieu.desnoyers@polymtl.ca)
106 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
109 static void cyc2ns_data_init(struct cyc2ns_data *data)
111 data->cyc2ns_mul = 0;
112 data->cyc2ns_shift = 0;
113 data->cyc2ns_offset = 0;
116 static void __init cyc2ns_init(int cpu)
118 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
120 cyc2ns_data_init(&c2n->data[0]);
121 cyc2ns_data_init(&c2n->data[1]);
123 seqcount_init(&c2n->seq);
126 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
128 struct cyc2ns_data data;
129 unsigned long long ns;
131 cyc2ns_read_begin(&data);
133 ns = data.cyc2ns_offset;
134 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
136 cyc2ns_read_end();
138 return ns;
141 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
143 unsigned long long ns_now;
144 struct cyc2ns_data data;
145 struct cyc2ns *c2n;
146 unsigned long flags;
148 local_irq_save(flags);
149 sched_clock_idle_sleep_event();
151 if (!khz)
152 goto done;
154 ns_now = cycles_2_ns(tsc_now);
157 * Compute a new multiplier as per the above comment and ensure our
158 * time function is continuous; see the comment near struct
159 * cyc2ns_data.
161 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
162 NSEC_PER_MSEC, 0);
165 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
166 * not expected to be greater than 31 due to the original published
167 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
168 * value) - refer perf_event_mmap_page documentation in perf_event.h.
170 if (data.cyc2ns_shift == 32) {
171 data.cyc2ns_shift = 31;
172 data.cyc2ns_mul >>= 1;
175 data.cyc2ns_offset = ns_now -
176 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
178 c2n = per_cpu_ptr(&cyc2ns, cpu);
180 raw_write_seqcount_latch(&c2n->seq);
181 c2n->data[0] = data;
182 raw_write_seqcount_latch(&c2n->seq);
183 c2n->data[1] = data;
185 done:
186 sched_clock_idle_wakeup_event();
187 local_irq_restore(flags);
191 * Scheduler clock - returns current time in nanosec units.
193 u64 native_sched_clock(void)
195 if (static_branch_likely(&__use_tsc)) {
196 u64 tsc_now = rdtsc();
198 /* return the value in ns */
199 return cycles_2_ns(tsc_now);
203 * Fall back to jiffies if there's no TSC available:
204 * ( But note that we still use it if the TSC is marked
205 * unstable. We do this because unlike Time Of Day,
206 * the scheduler clock tolerates small errors and it's
207 * very important for it to be as fast as the platform
208 * can achieve it. )
211 /* No locking but a rare wrong value is not a big deal: */
212 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
216 * Generate a sched_clock if you already have a TSC value.
218 u64 native_sched_clock_from_tsc(u64 tsc)
220 return cycles_2_ns(tsc);
223 /* We need to define a real function for sched_clock, to override the
224 weak default version */
225 #ifdef CONFIG_PARAVIRT
226 unsigned long long sched_clock(void)
228 return paravirt_sched_clock();
231 bool using_native_sched_clock(void)
233 return pv_time_ops.sched_clock == native_sched_clock;
235 #else
236 unsigned long long
237 sched_clock(void) __attribute__((alias("native_sched_clock")));
239 bool using_native_sched_clock(void) { return true; }
240 #endif
242 int check_tsc_unstable(void)
244 return tsc_unstable;
246 EXPORT_SYMBOL_GPL(check_tsc_unstable);
248 #ifdef CONFIG_X86_TSC
249 int __init notsc_setup(char *str)
251 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
252 tsc_disabled = 1;
253 return 1;
255 #else
257 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
258 * in cpu/common.c
260 int __init notsc_setup(char *str)
262 setup_clear_cpu_cap(X86_FEATURE_TSC);
263 return 1;
265 #endif
267 __setup("notsc", notsc_setup);
269 static int no_sched_irq_time;
271 static int __init tsc_setup(char *str)
273 if (!strcmp(str, "reliable"))
274 tsc_clocksource_reliable = 1;
275 if (!strncmp(str, "noirqtime", 9))
276 no_sched_irq_time = 1;
277 if (!strcmp(str, "unstable"))
278 mark_tsc_unstable("boot parameter");
279 return 1;
282 __setup("tsc=", tsc_setup);
284 #define MAX_RETRIES 5
285 #define SMI_TRESHOLD 50000
288 * Read TSC and the reference counters. Take care of SMI disturbance
290 static u64 tsc_read_refs(u64 *p, int hpet)
292 u64 t1, t2;
293 int i;
295 for (i = 0; i < MAX_RETRIES; i++) {
296 t1 = get_cycles();
297 if (hpet)
298 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
299 else
300 *p = acpi_pm_read_early();
301 t2 = get_cycles();
302 if ((t2 - t1) < SMI_TRESHOLD)
303 return t2;
305 return ULLONG_MAX;
309 * Calculate the TSC frequency from HPET reference
311 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
313 u64 tmp;
315 if (hpet2 < hpet1)
316 hpet2 += 0x100000000ULL;
317 hpet2 -= hpet1;
318 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
319 do_div(tmp, 1000000);
320 do_div(deltatsc, tmp);
322 return (unsigned long) deltatsc;
326 * Calculate the TSC frequency from PMTimer reference
328 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
330 u64 tmp;
332 if (!pm1 && !pm2)
333 return ULONG_MAX;
335 if (pm2 < pm1)
336 pm2 += (u64)ACPI_PM_OVRRUN;
337 pm2 -= pm1;
338 tmp = pm2 * 1000000000LL;
339 do_div(tmp, PMTMR_TICKS_PER_SEC);
340 do_div(deltatsc, tmp);
342 return (unsigned long) deltatsc;
345 #define CAL_MS 10
346 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
347 #define CAL_PIT_LOOPS 1000
349 #define CAL2_MS 50
350 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
351 #define CAL2_PIT_LOOPS 5000
355 * Try to calibrate the TSC against the Programmable
356 * Interrupt Timer and return the frequency of the TSC
357 * in kHz.
359 * Return ULONG_MAX on failure to calibrate.
361 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
363 u64 tsc, t1, t2, delta;
364 unsigned long tscmin, tscmax;
365 int pitcnt;
367 if (!has_legacy_pic()) {
369 * Relies on tsc_early_delay_calibrate() to have given us semi
370 * usable udelay(), wait for the same 50ms we would have with
371 * the PIT loop below.
373 udelay(10 * USEC_PER_MSEC);
374 udelay(10 * USEC_PER_MSEC);
375 udelay(10 * USEC_PER_MSEC);
376 udelay(10 * USEC_PER_MSEC);
377 udelay(10 * USEC_PER_MSEC);
378 return ULONG_MAX;
381 /* Set the Gate high, disable speaker */
382 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
385 * Setup CTC channel 2* for mode 0, (interrupt on terminal
386 * count mode), binary count. Set the latch register to 50ms
387 * (LSB then MSB) to begin countdown.
389 outb(0xb0, 0x43);
390 outb(latch & 0xff, 0x42);
391 outb(latch >> 8, 0x42);
393 tsc = t1 = t2 = get_cycles();
395 pitcnt = 0;
396 tscmax = 0;
397 tscmin = ULONG_MAX;
398 while ((inb(0x61) & 0x20) == 0) {
399 t2 = get_cycles();
400 delta = t2 - tsc;
401 tsc = t2;
402 if ((unsigned long) delta < tscmin)
403 tscmin = (unsigned int) delta;
404 if ((unsigned long) delta > tscmax)
405 tscmax = (unsigned int) delta;
406 pitcnt++;
410 * Sanity checks:
412 * If we were not able to read the PIT more than loopmin
413 * times, then we have been hit by a massive SMI
415 * If the maximum is 10 times larger than the minimum,
416 * then we got hit by an SMI as well.
418 if (pitcnt < loopmin || tscmax > 10 * tscmin)
419 return ULONG_MAX;
421 /* Calculate the PIT value */
422 delta = t2 - t1;
423 do_div(delta, ms);
424 return delta;
428 * This reads the current MSB of the PIT counter, and
429 * checks if we are running on sufficiently fast and
430 * non-virtualized hardware.
432 * Our expectations are:
434 * - the PIT is running at roughly 1.19MHz
436 * - each IO is going to take about 1us on real hardware,
437 * but we allow it to be much faster (by a factor of 10) or
438 * _slightly_ slower (ie we allow up to a 2us read+counter
439 * update - anything else implies a unacceptably slow CPU
440 * or PIT for the fast calibration to work.
442 * - with 256 PIT ticks to read the value, we have 214us to
443 * see the same MSB (and overhead like doing a single TSC
444 * read per MSB value etc).
446 * - We're doing 2 reads per loop (LSB, MSB), and we expect
447 * them each to take about a microsecond on real hardware.
448 * So we expect a count value of around 100. But we'll be
449 * generous, and accept anything over 50.
451 * - if the PIT is stuck, and we see *many* more reads, we
452 * return early (and the next caller of pit_expect_msb()
453 * then consider it a failure when they don't see the
454 * next expected value).
456 * These expectations mean that we know that we have seen the
457 * transition from one expected value to another with a fairly
458 * high accuracy, and we didn't miss any events. We can thus
459 * use the TSC value at the transitions to calculate a pretty
460 * good value for the TSC frequencty.
462 static inline int pit_verify_msb(unsigned char val)
464 /* Ignore LSB */
465 inb(0x42);
466 return inb(0x42) == val;
469 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
471 int count;
472 u64 tsc = 0, prev_tsc = 0;
474 for (count = 0; count < 50000; count++) {
475 if (!pit_verify_msb(val))
476 break;
477 prev_tsc = tsc;
478 tsc = get_cycles();
480 *deltap = get_cycles() - prev_tsc;
481 *tscp = tsc;
484 * We require _some_ success, but the quality control
485 * will be based on the error terms on the TSC values.
487 return count > 5;
491 * How many MSB values do we want to see? We aim for
492 * a maximum error rate of 500ppm (in practice the
493 * real error is much smaller), but refuse to spend
494 * more than 50ms on it.
496 #define MAX_QUICK_PIT_MS 50
497 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
499 static unsigned long quick_pit_calibrate(void)
501 int i;
502 u64 tsc, delta;
503 unsigned long d1, d2;
505 if (!has_legacy_pic())
506 return 0;
508 /* Set the Gate high, disable speaker */
509 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
512 * Counter 2, mode 0 (one-shot), binary count
514 * NOTE! Mode 2 decrements by two (and then the
515 * output is flipped each time, giving the same
516 * final output frequency as a decrement-by-one),
517 * so mode 0 is much better when looking at the
518 * individual counts.
520 outb(0xb0, 0x43);
522 /* Start at 0xffff */
523 outb(0xff, 0x42);
524 outb(0xff, 0x42);
527 * The PIT starts counting at the next edge, so we
528 * need to delay for a microsecond. The easiest way
529 * to do that is to just read back the 16-bit counter
530 * once from the PIT.
532 pit_verify_msb(0);
534 if (pit_expect_msb(0xff, &tsc, &d1)) {
535 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
536 if (!pit_expect_msb(0xff-i, &delta, &d2))
537 break;
539 delta -= tsc;
542 * Extrapolate the error and fail fast if the error will
543 * never be below 500 ppm.
545 if (i == 1 &&
546 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
547 return 0;
550 * Iterate until the error is less than 500 ppm
552 if (d1+d2 >= delta >> 11)
553 continue;
556 * Check the PIT one more time to verify that
557 * all TSC reads were stable wrt the PIT.
559 * This also guarantees serialization of the
560 * last cycle read ('d2') in pit_expect_msb.
562 if (!pit_verify_msb(0xfe - i))
563 break;
564 goto success;
567 pr_info("Fast TSC calibration failed\n");
568 return 0;
570 success:
572 * Ok, if we get here, then we've seen the
573 * MSB of the PIT decrement 'i' times, and the
574 * error has shrunk to less than 500 ppm.
576 * As a result, we can depend on there not being
577 * any odd delays anywhere, and the TSC reads are
578 * reliable (within the error).
580 * kHz = ticks / time-in-seconds / 1000;
581 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
582 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
584 delta *= PIT_TICK_RATE;
585 do_div(delta, i*256*1000);
586 pr_info("Fast TSC calibration using PIT\n");
587 return delta;
591 * native_calibrate_tsc
592 * Determine TSC frequency via CPUID, else return 0.
594 unsigned long native_calibrate_tsc(void)
596 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
597 unsigned int crystal_khz;
599 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
600 return 0;
602 if (boot_cpu_data.cpuid_level < 0x15)
603 return 0;
605 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
607 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
608 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
610 if (ebx_numerator == 0 || eax_denominator == 0)
611 return 0;
613 crystal_khz = ecx_hz / 1000;
615 if (crystal_khz == 0) {
616 switch (boot_cpu_data.x86_model) {
617 case INTEL_FAM6_SKYLAKE_MOBILE:
618 case INTEL_FAM6_SKYLAKE_DESKTOP:
619 case INTEL_FAM6_KABYLAKE_MOBILE:
620 case INTEL_FAM6_KABYLAKE_DESKTOP:
621 crystal_khz = 24000; /* 24.0 MHz */
622 break;
623 case INTEL_FAM6_ATOM_DENVERTON:
624 crystal_khz = 25000; /* 25.0 MHz */
625 break;
626 case INTEL_FAM6_ATOM_GOLDMONT:
627 crystal_khz = 19200; /* 19.2 MHz */
628 break;
632 if (crystal_khz == 0)
633 return 0;
635 * TSC frequency determined by CPUID is a "hardware reported"
636 * frequency and is the most accurate one so far we have. This
637 * is considered a known frequency.
639 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
642 * For Atom SoCs TSC is the only reliable clocksource.
643 * Mark TSC reliable so no watchdog on it.
645 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
646 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
648 return crystal_khz * ebx_numerator / eax_denominator;
651 static unsigned long cpu_khz_from_cpuid(void)
653 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
655 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
656 return 0;
658 if (boot_cpu_data.cpuid_level < 0x16)
659 return 0;
661 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
663 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
665 return eax_base_mhz * 1000;
669 * native_calibrate_cpu - calibrate the cpu on boot
671 unsigned long native_calibrate_cpu(void)
673 u64 tsc1, tsc2, delta, ref1, ref2;
674 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
675 unsigned long flags, latch, ms, fast_calibrate;
676 int hpet = is_hpet_enabled(), i, loopmin;
678 fast_calibrate = cpu_khz_from_cpuid();
679 if (fast_calibrate)
680 return fast_calibrate;
682 fast_calibrate = cpu_khz_from_msr();
683 if (fast_calibrate)
684 return fast_calibrate;
686 local_irq_save(flags);
687 fast_calibrate = quick_pit_calibrate();
688 local_irq_restore(flags);
689 if (fast_calibrate)
690 return fast_calibrate;
693 * Run 5 calibration loops to get the lowest frequency value
694 * (the best estimate). We use two different calibration modes
695 * here:
697 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
698 * load a timeout of 50ms. We read the time right after we
699 * started the timer and wait until the PIT count down reaches
700 * zero. In each wait loop iteration we read the TSC and check
701 * the delta to the previous read. We keep track of the min
702 * and max values of that delta. The delta is mostly defined
703 * by the IO time of the PIT access, so we can detect when a
704 * SMI/SMM disturbance happened between the two reads. If the
705 * maximum time is significantly larger than the minimum time,
706 * then we discard the result and have another try.
708 * 2) Reference counter. If available we use the HPET or the
709 * PMTIMER as a reference to check the sanity of that value.
710 * We use separate TSC readouts and check inside of the
711 * reference read for a SMI/SMM disturbance. We dicard
712 * disturbed values here as well. We do that around the PIT
713 * calibration delay loop as we have to wait for a certain
714 * amount of time anyway.
717 /* Preset PIT loop values */
718 latch = CAL_LATCH;
719 ms = CAL_MS;
720 loopmin = CAL_PIT_LOOPS;
722 for (i = 0; i < 3; i++) {
723 unsigned long tsc_pit_khz;
726 * Read the start value and the reference count of
727 * hpet/pmtimer when available. Then do the PIT
728 * calibration, which will take at least 50ms, and
729 * read the end value.
731 local_irq_save(flags);
732 tsc1 = tsc_read_refs(&ref1, hpet);
733 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
734 tsc2 = tsc_read_refs(&ref2, hpet);
735 local_irq_restore(flags);
737 /* Pick the lowest PIT TSC calibration so far */
738 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
740 /* hpet or pmtimer available ? */
741 if (ref1 == ref2)
742 continue;
744 /* Check, whether the sampling was disturbed by an SMI */
745 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
746 continue;
748 tsc2 = (tsc2 - tsc1) * 1000000LL;
749 if (hpet)
750 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
751 else
752 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
754 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
756 /* Check the reference deviation */
757 delta = ((u64) tsc_pit_min) * 100;
758 do_div(delta, tsc_ref_min);
761 * If both calibration results are inside a 10% window
762 * then we can be sure, that the calibration
763 * succeeded. We break out of the loop right away. We
764 * use the reference value, as it is more precise.
766 if (delta >= 90 && delta <= 110) {
767 pr_info("PIT calibration matches %s. %d loops\n",
768 hpet ? "HPET" : "PMTIMER", i + 1);
769 return tsc_ref_min;
773 * Check whether PIT failed more than once. This
774 * happens in virtualized environments. We need to
775 * give the virtual PC a slightly longer timeframe for
776 * the HPET/PMTIMER to make the result precise.
778 if (i == 1 && tsc_pit_min == ULONG_MAX) {
779 latch = CAL2_LATCH;
780 ms = CAL2_MS;
781 loopmin = CAL2_PIT_LOOPS;
786 * Now check the results.
788 if (tsc_pit_min == ULONG_MAX) {
789 /* PIT gave no useful value */
790 pr_warn("Unable to calibrate against PIT\n");
792 /* We don't have an alternative source, disable TSC */
793 if (!hpet && !ref1 && !ref2) {
794 pr_notice("No reference (HPET/PMTIMER) available\n");
795 return 0;
798 /* The alternative source failed as well, disable TSC */
799 if (tsc_ref_min == ULONG_MAX) {
800 pr_warn("HPET/PMTIMER calibration failed\n");
801 return 0;
804 /* Use the alternative source */
805 pr_info("using %s reference calibration\n",
806 hpet ? "HPET" : "PMTIMER");
808 return tsc_ref_min;
811 /* We don't have an alternative source, use the PIT calibration value */
812 if (!hpet && !ref1 && !ref2) {
813 pr_info("Using PIT calibration value\n");
814 return tsc_pit_min;
817 /* The alternative source failed, use the PIT calibration value */
818 if (tsc_ref_min == ULONG_MAX) {
819 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
820 return tsc_pit_min;
824 * The calibration values differ too much. In doubt, we use
825 * the PIT value as we know that there are PMTIMERs around
826 * running at double speed. At least we let the user know:
828 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
829 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
830 pr_info("Using PIT calibration value\n");
831 return tsc_pit_min;
834 void recalibrate_cpu_khz(void)
836 #ifndef CONFIG_SMP
837 unsigned long cpu_khz_old = cpu_khz;
839 if (!boot_cpu_has(X86_FEATURE_TSC))
840 return;
842 cpu_khz = x86_platform.calibrate_cpu();
843 tsc_khz = x86_platform.calibrate_tsc();
844 if (tsc_khz == 0)
845 tsc_khz = cpu_khz;
846 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
847 cpu_khz = tsc_khz;
848 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
849 cpu_khz_old, cpu_khz);
850 #endif
853 EXPORT_SYMBOL(recalibrate_cpu_khz);
856 static unsigned long long cyc2ns_suspend;
858 void tsc_save_sched_clock_state(void)
860 if (!sched_clock_stable())
861 return;
863 cyc2ns_suspend = sched_clock();
867 * Even on processors with invariant TSC, TSC gets reset in some the
868 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
869 * arbitrary value (still sync'd across cpu's) during resume from such sleep
870 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
871 * that sched_clock() continues from the point where it was left off during
872 * suspend.
874 void tsc_restore_sched_clock_state(void)
876 unsigned long long offset;
877 unsigned long flags;
878 int cpu;
880 if (!sched_clock_stable())
881 return;
883 local_irq_save(flags);
886 * We're coming out of suspend, there's no concurrency yet; don't
887 * bother being nice about the RCU stuff, just write to both
888 * data fields.
891 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
892 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
894 offset = cyc2ns_suspend - sched_clock();
896 for_each_possible_cpu(cpu) {
897 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
898 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
901 local_irq_restore(flags);
904 #ifdef CONFIG_CPU_FREQ
905 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
906 * changes.
908 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
909 * not that important because current Opteron setups do not support
910 * scaling on SMP anyroads.
912 * Should fix up last_tsc too. Currently gettimeofday in the
913 * first tick after the change will be slightly wrong.
916 static unsigned int ref_freq;
917 static unsigned long loops_per_jiffy_ref;
918 static unsigned long tsc_khz_ref;
920 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
921 void *data)
923 struct cpufreq_freqs *freq = data;
924 unsigned long *lpj;
926 lpj = &boot_cpu_data.loops_per_jiffy;
927 #ifdef CONFIG_SMP
928 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
929 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
930 #endif
932 if (!ref_freq) {
933 ref_freq = freq->old;
934 loops_per_jiffy_ref = *lpj;
935 tsc_khz_ref = tsc_khz;
937 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
938 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
939 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
941 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
942 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
943 mark_tsc_unstable("cpufreq changes");
945 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
948 return 0;
951 static struct notifier_block time_cpufreq_notifier_block = {
952 .notifier_call = time_cpufreq_notifier
955 static int __init cpufreq_register_tsc_scaling(void)
957 if (!boot_cpu_has(X86_FEATURE_TSC))
958 return 0;
959 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
960 return 0;
961 cpufreq_register_notifier(&time_cpufreq_notifier_block,
962 CPUFREQ_TRANSITION_NOTIFIER);
963 return 0;
966 core_initcall(cpufreq_register_tsc_scaling);
968 #endif /* CONFIG_CPU_FREQ */
970 #define ART_CPUID_LEAF (0x15)
971 #define ART_MIN_DENOMINATOR (1)
975 * If ART is present detect the numerator:denominator to convert to TSC
977 static void __init detect_art(void)
979 unsigned int unused[2];
981 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
982 return;
985 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
986 * and the TSC counter resets must not occur asynchronously.
988 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
989 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
990 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
991 tsc_async_resets)
992 return;
994 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
995 &art_to_tsc_numerator, unused, unused+1);
997 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
998 return;
1000 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1002 /* Make this sticky over multiple CPU init calls */
1003 setup_force_cpu_cap(X86_FEATURE_ART);
1007 /* clocksource code */
1009 static void tsc_resume(struct clocksource *cs)
1011 tsc_verify_tsc_adjust(true);
1015 * We used to compare the TSC to the cycle_last value in the clocksource
1016 * structure to avoid a nasty time-warp. This can be observed in a
1017 * very small window right after one CPU updated cycle_last under
1018 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1019 * is smaller than the cycle_last reference value due to a TSC which
1020 * is slighty behind. This delta is nowhere else observable, but in
1021 * that case it results in a forward time jump in the range of hours
1022 * due to the unsigned delta calculation of the time keeping core
1023 * code, which is necessary to support wrapping clocksources like pm
1024 * timer.
1026 * This sanity check is now done in the core timekeeping code.
1027 * checking the result of read_tsc() - cycle_last for being negative.
1028 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1030 static u64 read_tsc(struct clocksource *cs)
1032 return (u64)rdtsc_ordered();
1035 static void tsc_cs_mark_unstable(struct clocksource *cs)
1037 if (tsc_unstable)
1038 return;
1040 tsc_unstable = 1;
1041 if (using_native_sched_clock())
1042 clear_sched_clock_stable();
1043 disable_sched_clock_irqtime();
1044 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1047 static void tsc_cs_tick_stable(struct clocksource *cs)
1049 if (tsc_unstable)
1050 return;
1052 if (using_native_sched_clock())
1053 sched_clock_tick_stable();
1057 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1059 static struct clocksource clocksource_tsc_early = {
1060 .name = "tsc-early",
1061 .rating = 299,
1062 .read = read_tsc,
1063 .mask = CLOCKSOURCE_MASK(64),
1064 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1065 CLOCK_SOURCE_MUST_VERIFY,
1066 .archdata = { .vclock_mode = VCLOCK_TSC },
1067 .resume = tsc_resume,
1068 .mark_unstable = tsc_cs_mark_unstable,
1069 .tick_stable = tsc_cs_tick_stable,
1073 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1074 * this one will immediately take over. We will only register if TSC has
1075 * been found good.
1077 static struct clocksource clocksource_tsc = {
1078 .name = "tsc",
1079 .rating = 300,
1080 .read = read_tsc,
1081 .mask = CLOCKSOURCE_MASK(64),
1082 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1083 CLOCK_SOURCE_VALID_FOR_HRES |
1084 CLOCK_SOURCE_MUST_VERIFY,
1085 .archdata = { .vclock_mode = VCLOCK_TSC },
1086 .resume = tsc_resume,
1087 .mark_unstable = tsc_cs_mark_unstable,
1088 .tick_stable = tsc_cs_tick_stable,
1091 void mark_tsc_unstable(char *reason)
1093 if (tsc_unstable)
1094 return;
1096 tsc_unstable = 1;
1097 if (using_native_sched_clock())
1098 clear_sched_clock_stable();
1099 disable_sched_clock_irqtime();
1100 pr_info("Marking TSC unstable due to %s\n", reason);
1101 /* Change only the rating, when not registered */
1102 if (clocksource_tsc.mult) {
1103 clocksource_mark_unstable(&clocksource_tsc);
1104 } else {
1105 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1106 clocksource_tsc.rating = 0;
1110 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1112 static void __init check_system_tsc_reliable(void)
1114 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1115 if (is_geode_lx()) {
1116 /* RTSC counts during suspend */
1117 #define RTSC_SUSP 0x100
1118 unsigned long res_low, res_high;
1120 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1121 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1122 if (res_low & RTSC_SUSP)
1123 tsc_clocksource_reliable = 1;
1125 #endif
1126 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1127 tsc_clocksource_reliable = 1;
1131 * Make an educated guess if the TSC is trustworthy and synchronized
1132 * over all CPUs.
1134 int unsynchronized_tsc(void)
1136 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1137 return 1;
1139 #ifdef CONFIG_SMP
1140 if (apic_is_clustered_box())
1141 return 1;
1142 #endif
1144 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1145 return 0;
1147 if (tsc_clocksource_reliable)
1148 return 0;
1150 * Intel systems are normally all synchronized.
1151 * Exceptions must mark TSC as unstable:
1153 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1154 /* assume multi socket systems are not synchronized: */
1155 if (num_possible_cpus() > 1)
1156 return 1;
1159 return 0;
1163 * Convert ART to TSC given numerator/denominator found in detect_art()
1165 struct system_counterval_t convert_art_to_tsc(u64 art)
1167 u64 tmp, res, rem;
1169 rem = do_div(art, art_to_tsc_denominator);
1171 res = art * art_to_tsc_numerator;
1172 tmp = rem * art_to_tsc_numerator;
1174 do_div(tmp, art_to_tsc_denominator);
1175 res += tmp + art_to_tsc_offset;
1177 return (struct system_counterval_t) {.cs = art_related_clocksource,
1178 .cycles = res};
1180 EXPORT_SYMBOL(convert_art_to_tsc);
1182 static void tsc_refine_calibration_work(struct work_struct *work);
1183 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1185 * tsc_refine_calibration_work - Further refine tsc freq calibration
1186 * @work - ignored.
1188 * This functions uses delayed work over a period of a
1189 * second to further refine the TSC freq value. Since this is
1190 * timer based, instead of loop based, we don't block the boot
1191 * process while this longer calibration is done.
1193 * If there are any calibration anomalies (too many SMIs, etc),
1194 * or the refined calibration is off by 1% of the fast early
1195 * calibration, we throw out the new calibration and use the
1196 * early calibration.
1198 static void tsc_refine_calibration_work(struct work_struct *work)
1200 static u64 tsc_start = -1, ref_start;
1201 static int hpet;
1202 u64 tsc_stop, ref_stop, delta;
1203 unsigned long freq;
1204 int cpu;
1206 /* Don't bother refining TSC on unstable systems */
1207 if (tsc_unstable)
1208 return;
1211 * Since the work is started early in boot, we may be
1212 * delayed the first time we expire. So set the workqueue
1213 * again once we know timers are working.
1215 if (tsc_start == -1) {
1217 * Only set hpet once, to avoid mixing hardware
1218 * if the hpet becomes enabled later.
1220 hpet = is_hpet_enabled();
1221 schedule_delayed_work(&tsc_irqwork, HZ);
1222 tsc_start = tsc_read_refs(&ref_start, hpet);
1223 return;
1226 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1228 /* hpet or pmtimer available ? */
1229 if (ref_start == ref_stop)
1230 goto out;
1232 /* Check, whether the sampling was disturbed by an SMI */
1233 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1234 goto out;
1236 delta = tsc_stop - tsc_start;
1237 delta *= 1000000LL;
1238 if (hpet)
1239 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1240 else
1241 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1243 /* Make sure we're within 1% */
1244 if (abs(tsc_khz - freq) > tsc_khz/100)
1245 goto out;
1247 tsc_khz = freq;
1248 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1249 (unsigned long)tsc_khz / 1000,
1250 (unsigned long)tsc_khz % 1000);
1252 /* Inform the TSC deadline clockevent devices about the recalibration */
1253 lapic_update_tsc_freq();
1255 /* Update the sched_clock() rate to match the clocksource one */
1256 for_each_possible_cpu(cpu)
1257 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1259 out:
1260 if (tsc_unstable)
1261 return;
1263 if (boot_cpu_has(X86_FEATURE_ART))
1264 art_related_clocksource = &clocksource_tsc;
1265 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1266 clocksource_unregister(&clocksource_tsc_early);
1270 static int __init init_tsc_clocksource(void)
1272 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1273 return 0;
1275 if (check_tsc_unstable())
1276 return 0;
1278 if (tsc_clocksource_reliable)
1279 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1281 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1282 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1285 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1286 * the refined calibration and directly register it as a clocksource.
1288 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1289 if (boot_cpu_has(X86_FEATURE_ART))
1290 art_related_clocksource = &clocksource_tsc;
1291 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1292 clocksource_unregister(&clocksource_tsc_early);
1293 return 0;
1296 schedule_delayed_work(&tsc_irqwork, 0);
1297 return 0;
1300 * We use device_initcall here, to ensure we run after the hpet
1301 * is fully initialized, which may occur at fs_initcall time.
1303 device_initcall(init_tsc_clocksource);
1305 void __init tsc_early_delay_calibrate(void)
1307 unsigned long lpj;
1309 if (!boot_cpu_has(X86_FEATURE_TSC))
1310 return;
1312 cpu_khz = x86_platform.calibrate_cpu();
1313 tsc_khz = x86_platform.calibrate_tsc();
1315 tsc_khz = tsc_khz ? : cpu_khz;
1316 if (!tsc_khz)
1317 return;
1319 lpj = tsc_khz * 1000;
1320 do_div(lpj, HZ);
1321 loops_per_jiffy = lpj;
1324 void __init tsc_init(void)
1326 u64 lpj, cyc;
1327 int cpu;
1329 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1330 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1331 return;
1334 cpu_khz = x86_platform.calibrate_cpu();
1335 tsc_khz = x86_platform.calibrate_tsc();
1338 * Trust non-zero tsc_khz as authorative,
1339 * and use it to sanity check cpu_khz,
1340 * which will be off if system timer is off.
1342 if (tsc_khz == 0)
1343 tsc_khz = cpu_khz;
1344 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1345 cpu_khz = tsc_khz;
1347 if (!tsc_khz) {
1348 mark_tsc_unstable("could not calculate TSC khz");
1349 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1350 return;
1353 pr_info("Detected %lu.%03lu MHz processor\n",
1354 (unsigned long)cpu_khz / 1000,
1355 (unsigned long)cpu_khz % 1000);
1357 if (cpu_khz != tsc_khz) {
1358 pr_info("Detected %lu.%03lu MHz TSC",
1359 (unsigned long)tsc_khz / 1000,
1360 (unsigned long)tsc_khz % 1000);
1363 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1364 tsc_store_and_check_tsc_adjust(true);
1367 * Secondary CPUs do not run through tsc_init(), so set up
1368 * all the scale factors for all CPUs, assuming the same
1369 * speed as the bootup CPU. (cpufreq notifiers will fix this
1370 * up if their speed diverges)
1372 cyc = rdtsc();
1373 for_each_possible_cpu(cpu) {
1374 cyc2ns_init(cpu);
1375 set_cyc2ns_scale(tsc_khz, cpu, cyc);
1378 if (tsc_disabled > 0)
1379 return;
1381 /* now allow native_sched_clock() to use rdtsc */
1383 tsc_disabled = 0;
1384 static_branch_enable(&__use_tsc);
1386 if (!no_sched_irq_time)
1387 enable_sched_clock_irqtime();
1389 lpj = ((u64)tsc_khz * 1000);
1390 do_div(lpj, HZ);
1391 lpj_fine = lpj;
1393 use_tsc_delay();
1395 check_system_tsc_reliable();
1397 if (unsynchronized_tsc()) {
1398 mark_tsc_unstable("TSCs unsynchronized");
1399 return;
1402 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1403 detect_art();
1406 #ifdef CONFIG_SMP
1408 * If we have a constant TSC and are using the TSC for the delay loop,
1409 * we can skip clock calibration if another cpu in the same socket has already
1410 * been calibrated. This assumes that CONSTANT_TSC applies to all
1411 * cpus in the socket - this should be a safe assumption.
1413 unsigned long calibrate_delay_is_known(void)
1415 int sibling, cpu = smp_processor_id();
1416 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1417 const struct cpumask *mask = topology_core_cpumask(cpu);
1419 if (tsc_disabled || !constant_tsc || !mask)
1420 return 0;
1422 sibling = cpumask_any_but(mask, cpu);
1423 if (sibling < nr_cpu_ids)
1424 return cpu_data(sibling).loops_per_jiffy;
1425 return 0;
1427 #endif