1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
21 #include <asm/traps.h> /* dotraplinkage, ... */
22 #include <asm/pgalloc.h> /* pgd_*(), ... */
23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
24 #include <asm/vsyscall.h> /* emulate_vsyscall */
25 #include <asm/vm86.h> /* struct vm86 */
26 #include <asm/mmu_context.h> /* vma_pkey() */
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
32 * Returns 0 if mmiotrace is disabled, or if the fault is not
33 * handled by mmiotrace:
35 static nokprobe_inline
int
36 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
38 if (unlikely(is_kmmio_active()))
39 if (kmmio_handler(regs
, addr
) == 1)
44 static nokprobe_inline
int kprobes_fault(struct pt_regs
*regs
)
48 /* kprobe_running() needs smp_processor_id() */
49 if (kprobes_built_in() && !user_mode(regs
)) {
51 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
64 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65 * Check that here and ignore it.
69 * Sometimes the CPU reports invalid exceptions on prefetch.
70 * Check that here and ignore it.
72 * Opcode checker based on code by Richard Brunner.
75 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
76 unsigned char opcode
, int *prefetch
)
78 unsigned char instr_hi
= opcode
& 0xf0;
79 unsigned char instr_lo
= opcode
& 0x0f;
85 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 * In X86_64 long mode, the CPU will signal invalid
87 * opcode if some of these prefixes are present so
88 * X86_64 will never get here anyway
90 return ((instr_lo
& 7) == 0x6);
94 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 * Need to figure out under what instruction mode the
96 * instruction was issued. Could check the LDT for lm,
97 * but for now it's good enough to assume that long
98 * mode only uses well known segments or kernel.
100 return (!user_mode(regs
) || user_64bit_mode(regs
));
103 /* 0x64 thru 0x67 are valid prefixes in all modes. */
104 return (instr_lo
& 0xC) == 0x4;
106 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 return !instr_lo
|| (instr_lo
>>1) == 1;
109 /* Prefetch instruction is 0x0F0D or 0x0F18 */
110 if (probe_kernel_address(instr
, opcode
))
113 *prefetch
= (instr_lo
== 0xF) &&
114 (opcode
== 0x0D || opcode
== 0x18);
122 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
124 unsigned char *max_instr
;
125 unsigned char *instr
;
129 * If it was a exec (instruction fetch) fault on NX page, then
130 * do not ignore the fault:
132 if (error_code
& X86_PF_INSTR
)
135 instr
= (void *)convert_ip_to_linear(current
, regs
);
136 max_instr
= instr
+ 15;
138 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE_MAX
)
141 while (instr
< max_instr
) {
142 unsigned char opcode
;
144 if (probe_kernel_address(instr
, opcode
))
149 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
156 * A protection key fault means that the PKRU value did not allow
157 * access to some PTE. Userspace can figure out what PKRU was
158 * from the XSAVE state, and this function fills out a field in
159 * siginfo so userspace can discover which protection key was set
162 * If we get here, we know that the hardware signaled a X86_PF_PK
163 * fault and that there was a VMA once we got in the fault
164 * handler. It does *not* guarantee that the VMA we find here
165 * was the one that we faulted on.
167 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
168 * 2. T1 : set PKRU to deny access to pkey=4, touches page
170 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171 * 5. T1 : enters fault handler, takes mmap_sem, etc...
172 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
173 * faulted on a pte with its pkey=4.
175 static void fill_sig_info_pkey(int si_signo
, int si_code
, siginfo_t
*info
,
178 /* This is effectively an #ifdef */
179 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
182 /* Fault not from Protection Keys: nothing to do */
183 if ((si_code
!= SEGV_PKUERR
) || (si_signo
!= SIGSEGV
))
186 * force_sig_info_fault() is called from a number of
187 * contexts, some of which have a VMA and some of which
188 * do not. The X86_PF_PK handing happens after we have a
189 * valid VMA, so we should never reach this without a
193 WARN_ONCE(1, "PKU fault with no VMA passed in");
198 * si_pkey should be thought of as a strong hint, but not
199 * absolutely guranteed to be 100% accurate because of
200 * the race explained above.
202 info
->si_pkey
= *pkey
;
206 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
207 struct task_struct
*tsk
, u32
*pkey
, int fault
)
212 info
.si_signo
= si_signo
;
214 info
.si_code
= si_code
;
215 info
.si_addr
= (void __user
*)address
;
216 if (fault
& VM_FAULT_HWPOISON_LARGE
)
217 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
218 if (fault
& VM_FAULT_HWPOISON
)
220 info
.si_addr_lsb
= lsb
;
222 fill_sig_info_pkey(si_signo
, si_code
, &info
, pkey
);
224 force_sig_info(si_signo
, &info
, tsk
);
227 DEFINE_SPINLOCK(pgd_lock
);
231 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
233 unsigned index
= pgd_index(address
);
240 pgd_k
= init_mm
.pgd
+ index
;
242 if (!pgd_present(*pgd_k
))
246 * set_pgd(pgd, *pgd_k); here would be useless on PAE
247 * and redundant with the set_pmd() on non-PAE. As would
250 p4d
= p4d_offset(pgd
, address
);
251 p4d_k
= p4d_offset(pgd_k
, address
);
252 if (!p4d_present(*p4d_k
))
255 pud
= pud_offset(p4d
, address
);
256 pud_k
= pud_offset(p4d_k
, address
);
257 if (!pud_present(*pud_k
))
260 pmd
= pmd_offset(pud
, address
);
261 pmd_k
= pmd_offset(pud_k
, address
);
262 if (!pmd_present(*pmd_k
))
265 if (!pmd_present(*pmd
))
266 set_pmd(pmd
, *pmd_k
);
268 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
273 void vmalloc_sync_all(void)
275 unsigned long address
;
277 if (SHARED_KERNEL_PMD
)
280 for (address
= VMALLOC_START
& PMD_MASK
;
281 address
>= TASK_SIZE_MAX
&& address
< FIXADDR_TOP
;
282 address
+= PMD_SIZE
) {
285 spin_lock(&pgd_lock
);
286 list_for_each_entry(page
, &pgd_list
, lru
) {
287 spinlock_t
*pgt_lock
;
290 /* the pgt_lock only for Xen */
291 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
294 ret
= vmalloc_sync_one(page_address(page
), address
);
295 spin_unlock(pgt_lock
);
300 spin_unlock(&pgd_lock
);
307 * Handle a fault on the vmalloc or module mapping area
309 static noinline
int vmalloc_fault(unsigned long address
)
311 unsigned long pgd_paddr
;
315 /* Make sure we are in vmalloc area: */
316 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
319 WARN_ON_ONCE(in_nmi());
322 * Synchronize this task's top level page-table
323 * with the 'reference' page table.
325 * Do _not_ use "current" here. We might be inside
326 * an interrupt in the middle of a task switch..
328 pgd_paddr
= read_cr3_pa();
329 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
333 if (pmd_huge(*pmd_k
))
336 pte_k
= pte_offset_kernel(pmd_k
, address
);
337 if (!pte_present(*pte_k
))
342 NOKPROBE_SYMBOL(vmalloc_fault
);
345 * Did it hit the DOS screen memory VA from vm86 mode?
348 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
349 struct task_struct
*tsk
)
354 if (!v8086_mode(regs
) || !tsk
->thread
.vm86
)
357 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
359 tsk
->thread
.vm86
->screen_bitmap
|= 1 << bit
;
363 static bool low_pfn(unsigned long pfn
)
365 return pfn
< max_low_pfn
;
368 static void dump_pagetable(unsigned long address
)
370 pgd_t
*base
= __va(read_cr3_pa());
371 pgd_t
*pgd
= &base
[pgd_index(address
)];
377 #ifdef CONFIG_X86_PAE
378 pr_info("*pdpt = %016Lx ", pgd_val(*pgd
));
379 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
381 #define pr_pde pr_cont
383 #define pr_pde pr_info
385 p4d
= p4d_offset(pgd
, address
);
386 pud
= pud_offset(p4d
, address
);
387 pmd
= pmd_offset(pud
, address
);
388 pr_pde("*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
392 * We must not directly access the pte in the highpte
393 * case if the page table is located in highmem.
394 * And let's rather not kmap-atomic the pte, just in case
395 * it's allocated already:
397 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
400 pte
= pte_offset_kernel(pmd
, address
);
401 pr_cont("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
406 #else /* CONFIG_X86_64: */
408 void vmalloc_sync_all(void)
410 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
416 * Handle a fault on the vmalloc area
418 static noinline
int vmalloc_fault(unsigned long address
)
420 pgd_t
*pgd
, *pgd_ref
;
421 p4d_t
*p4d
, *p4d_ref
;
422 pud_t
*pud
, *pud_ref
;
423 pmd_t
*pmd
, *pmd_ref
;
424 pte_t
*pte
, *pte_ref
;
426 /* Make sure we are in vmalloc area: */
427 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
430 WARN_ON_ONCE(in_nmi());
433 * Copy kernel mappings over when needed. This can also
434 * happen within a race in page table update. In the later
437 pgd
= (pgd_t
*)__va(read_cr3_pa()) + pgd_index(address
);
438 pgd_ref
= pgd_offset_k(address
);
439 if (pgd_none(*pgd_ref
))
442 if (CONFIG_PGTABLE_LEVELS
> 4) {
443 if (pgd_none(*pgd
)) {
444 set_pgd(pgd
, *pgd_ref
);
445 arch_flush_lazy_mmu_mode();
447 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
451 /* With 4-level paging, copying happens on the p4d level. */
452 p4d
= p4d_offset(pgd
, address
);
453 p4d_ref
= p4d_offset(pgd_ref
, address
);
454 if (p4d_none(*p4d_ref
))
457 if (p4d_none(*p4d
) && CONFIG_PGTABLE_LEVELS
== 4) {
458 set_p4d(p4d
, *p4d_ref
);
459 arch_flush_lazy_mmu_mode();
461 BUG_ON(p4d_pfn(*p4d
) != p4d_pfn(*p4d_ref
));
465 * Below here mismatches are bugs because these lower tables
468 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS
< 4);
470 pud
= pud_offset(p4d
, address
);
471 pud_ref
= pud_offset(p4d_ref
, address
);
472 if (pud_none(*pud_ref
))
475 if (pud_none(*pud
) || pud_pfn(*pud
) != pud_pfn(*pud_ref
))
481 pmd
= pmd_offset(pud
, address
);
482 pmd_ref
= pmd_offset(pud_ref
, address
);
483 if (pmd_none(*pmd_ref
))
486 if (pmd_none(*pmd
) || pmd_pfn(*pmd
) != pmd_pfn(*pmd_ref
))
492 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
493 if (!pte_present(*pte_ref
))
496 pte
= pte_offset_kernel(pmd
, address
);
499 * Don't use pte_page here, because the mappings can point
500 * outside mem_map, and the NUMA hash lookup cannot handle
503 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
508 NOKPROBE_SYMBOL(vmalloc_fault
);
510 #ifdef CONFIG_CPU_SUP_AMD
511 static const char errata93_warning
[] =
513 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
514 "******* Working around it, but it may cause SEGVs or burn power.\n"
515 "******* Please consider a BIOS update.\n"
516 "******* Disabling USB legacy in the BIOS may also help.\n";
520 * No vm86 mode in 64-bit mode:
523 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
524 struct task_struct
*tsk
)
528 static int bad_address(void *p
)
532 return probe_kernel_address((unsigned long *)p
, dummy
);
535 static void dump_pagetable(unsigned long address
)
537 pgd_t
*base
= __va(read_cr3_pa());
538 pgd_t
*pgd
= base
+ pgd_index(address
);
544 if (bad_address(pgd
))
547 pr_info("PGD %lx ", pgd_val(*pgd
));
549 if (!pgd_present(*pgd
))
552 p4d
= p4d_offset(pgd
, address
);
553 if (bad_address(p4d
))
556 pr_cont("P4D %lx ", p4d_val(*p4d
));
557 if (!p4d_present(*p4d
) || p4d_large(*p4d
))
560 pud
= pud_offset(p4d
, address
);
561 if (bad_address(pud
))
564 pr_cont("PUD %lx ", pud_val(*pud
));
565 if (!pud_present(*pud
) || pud_large(*pud
))
568 pmd
= pmd_offset(pud
, address
);
569 if (bad_address(pmd
))
572 pr_cont("PMD %lx ", pmd_val(*pmd
));
573 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
576 pte
= pte_offset_kernel(pmd
, address
);
577 if (bad_address(pte
))
580 pr_cont("PTE %lx", pte_val(*pte
));
588 #endif /* CONFIG_X86_64 */
591 * Workaround for K8 erratum #93 & buggy BIOS.
593 * BIOS SMM functions are required to use a specific workaround
594 * to avoid corruption of the 64bit RIP register on C stepping K8.
596 * A lot of BIOS that didn't get tested properly miss this.
598 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
599 * Try to work around it here.
601 * Note we only handle faults in kernel here.
602 * Does nothing on 32-bit.
604 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
606 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
607 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
608 || boot_cpu_data
.x86
!= 0xf)
611 if (address
!= regs
->ip
)
614 if ((address
>> 32) != 0)
617 address
|= 0xffffffffUL
<< 32;
618 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
619 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
620 printk_once(errata93_warning
);
629 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
630 * to illegal addresses >4GB.
632 * We catch this in the page fault handler because these addresses
633 * are not reachable. Just detect this case and return. Any code
634 * segment in LDT is compatibility mode.
636 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
639 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
645 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
647 #ifdef CONFIG_X86_F00F_BUG
651 * Pentium F0 0F C7 C8 bug workaround:
653 if (boot_cpu_has_bug(X86_BUG_F00F
)) {
654 nr
= (address
- idt_descr
.address
) >> 3;
657 do_invalid_op(regs
, 0);
665 static const char nx_warning
[] = KERN_CRIT
666 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
667 static const char smep_warning
[] = KERN_CRIT
668 "unable to execute userspace code (SMEP?) (uid: %d)\n";
671 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
672 unsigned long address
)
674 if (!oops_may_print())
677 if (error_code
& X86_PF_INSTR
) {
682 pgd
= __va(read_cr3_pa());
683 pgd
+= pgd_index(address
);
685 pte
= lookup_address_in_pgd(pgd
, address
, &level
);
687 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
688 printk(nx_warning
, from_kuid(&init_user_ns
, current_uid()));
689 if (pte
&& pte_present(*pte
) && pte_exec(*pte
) &&
690 (pgd_flags(*pgd
) & _PAGE_USER
) &&
691 (__read_cr4() & X86_CR4_SMEP
))
692 printk(smep_warning
, from_kuid(&init_user_ns
, current_uid()));
695 printk(KERN_ALERT
"BUG: unable to handle kernel ");
696 if (address
< PAGE_SIZE
)
697 printk(KERN_CONT
"NULL pointer dereference");
699 printk(KERN_CONT
"paging request");
701 printk(KERN_CONT
" at %px\n", (void *) address
);
702 printk(KERN_ALERT
"IP: %pS\n", (void *)regs
->ip
);
704 dump_pagetable(address
);
708 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
709 unsigned long address
)
711 struct task_struct
*tsk
;
715 flags
= oops_begin();
719 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
721 dump_pagetable(address
);
723 tsk
->thread
.cr2
= address
;
724 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
725 tsk
->thread
.error_code
= error_code
;
727 if (__die("Bad pagetable", regs
, error_code
))
730 oops_end(flags
, regs
, sig
);
734 no_context(struct pt_regs
*regs
, unsigned long error_code
,
735 unsigned long address
, int signal
, int si_code
)
737 struct task_struct
*tsk
= current
;
741 /* Are we prepared to handle this kernel fault? */
742 if (fixup_exception(regs
, X86_TRAP_PF
)) {
744 * Any interrupt that takes a fault gets the fixup. This makes
745 * the below recursive fault logic only apply to a faults from
752 * Per the above we're !in_interrupt(), aka. task context.
754 * In this case we need to make sure we're not recursively
755 * faulting through the emulate_vsyscall() logic.
757 if (current
->thread
.sig_on_uaccess_err
&& signal
) {
758 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
759 tsk
->thread
.error_code
= error_code
| X86_PF_USER
;
760 tsk
->thread
.cr2
= address
;
762 /* XXX: hwpoison faults will set the wrong code. */
763 force_sig_info_fault(signal
, si_code
, address
,
768 * Barring that, we can do the fixup and be happy.
773 #ifdef CONFIG_VMAP_STACK
775 * Stack overflow? During boot, we can fault near the initial
776 * stack in the direct map, but that's not an overflow -- check
777 * that we're in vmalloc space to avoid this.
779 if (is_vmalloc_addr((void *)address
) &&
780 (((unsigned long)tsk
->stack
- 1 - address
< PAGE_SIZE
) ||
781 address
- ((unsigned long)tsk
->stack
+ THREAD_SIZE
) < PAGE_SIZE
)) {
782 unsigned long stack
= this_cpu_read(orig_ist
.ist
[DOUBLEFAULT_STACK
]) - sizeof(void *);
784 * We're likely to be running with very little stack space
785 * left. It's plausible that we'd hit this condition but
786 * double-fault even before we get this far, in which case
787 * we're fine: the double-fault handler will deal with it.
789 * We don't want to make it all the way into the oops code
790 * and then double-fault, though, because we're likely to
791 * break the console driver and lose most of the stack dump.
793 asm volatile ("movq %[stack], %%rsp\n\t"
794 "call handle_stack_overflow\n\t"
796 : ASM_CALL_CONSTRAINT
797 : "D" ("kernel stack overflow (page fault)"),
798 "S" (regs
), "d" (address
),
799 [stack
] "rm" (stack
));
807 * Valid to do another page fault here, because if this fault
808 * had been triggered by is_prefetch fixup_exception would have
813 * Hall of shame of CPU/BIOS bugs.
815 if (is_prefetch(regs
, error_code
, address
))
818 if (is_errata93(regs
, address
))
822 * Oops. The kernel tried to access some bad page. We'll have to
823 * terminate things with extreme prejudice:
825 flags
= oops_begin();
827 show_fault_oops(regs
, error_code
, address
);
829 if (task_stack_end_corrupted(tsk
))
830 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
832 tsk
->thread
.cr2
= address
;
833 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
834 tsk
->thread
.error_code
= error_code
;
837 if (__die("Oops", regs
, error_code
))
840 /* Executive summary in case the body of the oops scrolled away */
841 printk(KERN_DEFAULT
"CR2: %016lx\n", address
);
843 oops_end(flags
, regs
, sig
);
847 * Print out info about fatal segfaults, if the show_unhandled_signals
851 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
852 unsigned long address
, struct task_struct
*tsk
)
854 if (!unhandled_signal(tsk
, SIGSEGV
))
857 if (!printk_ratelimit())
860 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
861 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
862 tsk
->comm
, task_pid_nr(tsk
), address
,
863 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
865 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
867 printk(KERN_CONT
"\n");
871 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
872 unsigned long address
, u32
*pkey
, int si_code
)
874 struct task_struct
*tsk
= current
;
876 /* User mode accesses just cause a SIGSEGV */
877 if (error_code
& X86_PF_USER
) {
879 * It's possible to have interrupts off here:
884 * Valid to do another page fault here because this one came
887 if (is_prefetch(regs
, error_code
, address
))
890 if (is_errata100(regs
, address
))
895 * Instruction fetch faults in the vsyscall page might need
898 if (unlikely((error_code
& X86_PF_INSTR
) &&
899 ((address
& ~0xfff) == VSYSCALL_ADDR
))) {
900 if (emulate_vsyscall(regs
, address
))
906 * To avoid leaking information about the kernel page table
907 * layout, pretend that user-mode accesses to kernel addresses
908 * are always protection faults.
910 if (address
>= TASK_SIZE_MAX
)
911 error_code
|= X86_PF_PROT
;
913 if (likely(show_unhandled_signals
))
914 show_signal_msg(regs
, error_code
, address
, tsk
);
916 tsk
->thread
.cr2
= address
;
917 tsk
->thread
.error_code
= error_code
;
918 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
920 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
, pkey
, 0);
925 if (is_f00f_bug(regs
, address
))
928 no_context(regs
, error_code
, address
, SIGSEGV
, si_code
);
932 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
933 unsigned long address
, u32
*pkey
)
935 __bad_area_nosemaphore(regs
, error_code
, address
, pkey
, SEGV_MAPERR
);
939 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
940 unsigned long address
, struct vm_area_struct
*vma
, int si_code
)
942 struct mm_struct
*mm
= current
->mm
;
946 pkey
= vma_pkey(vma
);
949 * Something tried to access memory that isn't in our memory map..
950 * Fix it, but check if it's kernel or user first..
952 up_read(&mm
->mmap_sem
);
954 __bad_area_nosemaphore(regs
, error_code
, address
,
955 (vma
) ? &pkey
: NULL
, si_code
);
959 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
961 __bad_area(regs
, error_code
, address
, NULL
, SEGV_MAPERR
);
964 static inline bool bad_area_access_from_pkeys(unsigned long error_code
,
965 struct vm_area_struct
*vma
)
967 /* This code is always called on the current mm */
968 bool foreign
= false;
970 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
972 if (error_code
& X86_PF_PK
)
974 /* this checks permission keys on the VMA: */
975 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
976 (error_code
& X86_PF_INSTR
), foreign
))
982 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
983 unsigned long address
, struct vm_area_struct
*vma
)
986 * This OSPKE check is not strictly necessary at runtime.
987 * But, doing it this way allows compiler optimizations
988 * if pkeys are compiled out.
990 if (bad_area_access_from_pkeys(error_code
, vma
))
991 __bad_area(regs
, error_code
, address
, vma
, SEGV_PKUERR
);
993 __bad_area(regs
, error_code
, address
, vma
, SEGV_ACCERR
);
997 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
998 u32
*pkey
, unsigned int fault
)
1000 struct task_struct
*tsk
= current
;
1001 int code
= BUS_ADRERR
;
1003 /* Kernel mode? Handle exceptions or die: */
1004 if (!(error_code
& X86_PF_USER
)) {
1005 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1009 /* User-space => ok to do another page fault: */
1010 if (is_prefetch(regs
, error_code
, address
))
1013 tsk
->thread
.cr2
= address
;
1014 tsk
->thread
.error_code
= error_code
;
1015 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
1017 #ifdef CONFIG_MEMORY_FAILURE
1018 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
1020 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1021 tsk
->comm
, tsk
->pid
, address
);
1022 code
= BUS_MCEERR_AR
;
1025 force_sig_info_fault(SIGBUS
, code
, address
, tsk
, pkey
, fault
);
1028 static noinline
void
1029 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
1030 unsigned long address
, u32
*pkey
, unsigned int fault
)
1032 if (fatal_signal_pending(current
) && !(error_code
& X86_PF_USER
)) {
1033 no_context(regs
, error_code
, address
, 0, 0);
1037 if (fault
& VM_FAULT_OOM
) {
1038 /* Kernel mode? Handle exceptions or die: */
1039 if (!(error_code
& X86_PF_USER
)) {
1040 no_context(regs
, error_code
, address
,
1041 SIGSEGV
, SEGV_MAPERR
);
1046 * We ran out of memory, call the OOM killer, and return the
1047 * userspace (which will retry the fault, or kill us if we got
1050 pagefault_out_of_memory();
1052 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
1053 VM_FAULT_HWPOISON_LARGE
))
1054 do_sigbus(regs
, error_code
, address
, pkey
, fault
);
1055 else if (fault
& VM_FAULT_SIGSEGV
)
1056 bad_area_nosemaphore(regs
, error_code
, address
, pkey
);
1062 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
1064 if ((error_code
& X86_PF_WRITE
) && !pte_write(*pte
))
1067 if ((error_code
& X86_PF_INSTR
) && !pte_exec(*pte
))
1070 * Note: We do not do lazy flushing on protection key
1071 * changes, so no spurious fault will ever set X86_PF_PK.
1073 if ((error_code
& X86_PF_PK
))
1080 * Handle a spurious fault caused by a stale TLB entry.
1082 * This allows us to lazily refresh the TLB when increasing the
1083 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1084 * eagerly is very expensive since that implies doing a full
1085 * cross-processor TLB flush, even if no stale TLB entries exist
1086 * on other processors.
1088 * Spurious faults may only occur if the TLB contains an entry with
1089 * fewer permission than the page table entry. Non-present (P = 0)
1090 * and reserved bit (R = 1) faults are never spurious.
1092 * There are no security implications to leaving a stale TLB when
1093 * increasing the permissions on a page.
1095 * Returns non-zero if a spurious fault was handled, zero otherwise.
1097 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1098 * (Optional Invalidation).
1101 spurious_fault(unsigned long error_code
, unsigned long address
)
1111 * Only writes to RO or instruction fetches from NX may cause
1114 * These could be from user or supervisor accesses but the TLB
1115 * is only lazily flushed after a kernel mapping protection
1116 * change, so user accesses are not expected to cause spurious
1119 if (error_code
!= (X86_PF_WRITE
| X86_PF_PROT
) &&
1120 error_code
!= (X86_PF_INSTR
| X86_PF_PROT
))
1123 pgd
= init_mm
.pgd
+ pgd_index(address
);
1124 if (!pgd_present(*pgd
))
1127 p4d
= p4d_offset(pgd
, address
);
1128 if (!p4d_present(*p4d
))
1131 if (p4d_large(*p4d
))
1132 return spurious_fault_check(error_code
, (pte_t
*) p4d
);
1134 pud
= pud_offset(p4d
, address
);
1135 if (!pud_present(*pud
))
1138 if (pud_large(*pud
))
1139 return spurious_fault_check(error_code
, (pte_t
*) pud
);
1141 pmd
= pmd_offset(pud
, address
);
1142 if (!pmd_present(*pmd
))
1145 if (pmd_large(*pmd
))
1146 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
1148 pte
= pte_offset_kernel(pmd
, address
);
1149 if (!pte_present(*pte
))
1152 ret
= spurious_fault_check(error_code
, pte
);
1157 * Make sure we have permissions in PMD.
1158 * If not, then there's a bug in the page tables:
1160 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
1161 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
1165 NOKPROBE_SYMBOL(spurious_fault
);
1167 int show_unhandled_signals
= 1;
1170 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
1172 /* This is only called for the current mm, so: */
1173 bool foreign
= false;
1176 * Read or write was blocked by protection keys. This is
1177 * always an unconditional error and can never result in
1178 * a follow-up action to resolve the fault, like a COW.
1180 if (error_code
& X86_PF_PK
)
1184 * Make sure to check the VMA so that we do not perform
1185 * faults just to hit a X86_PF_PK as soon as we fill in a
1188 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
1189 (error_code
& X86_PF_INSTR
), foreign
))
1192 if (error_code
& X86_PF_WRITE
) {
1193 /* write, present and write, not present: */
1194 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1199 /* read, present: */
1200 if (unlikely(error_code
& X86_PF_PROT
))
1203 /* read, not present: */
1204 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
1210 static int fault_in_kernel_space(unsigned long address
)
1212 return address
>= TASK_SIZE_MAX
;
1215 static inline bool smap_violation(int error_code
, struct pt_regs
*regs
)
1217 if (!IS_ENABLED(CONFIG_X86_SMAP
))
1220 if (!static_cpu_has(X86_FEATURE_SMAP
))
1223 if (error_code
& X86_PF_USER
)
1226 if (!user_mode(regs
) && (regs
->flags
& X86_EFLAGS_AC
))
1233 * This routine handles page faults. It determines the address,
1234 * and the problem, and then passes it off to one of the appropriate
1237 static noinline
void
1238 __do_page_fault(struct pt_regs
*regs
, unsigned long error_code
,
1239 unsigned long address
)
1241 struct vm_area_struct
*vma
;
1242 struct task_struct
*tsk
;
1243 struct mm_struct
*mm
;
1244 int fault
, major
= 0;
1245 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1252 * Detect and handle instructions that would cause a page fault for
1253 * both a tracked kernel page and a userspace page.
1255 prefetchw(&mm
->mmap_sem
);
1257 if (unlikely(kmmio_fault(regs
, address
)))
1261 * We fault-in kernel-space virtual memory on-demand. The
1262 * 'reference' page table is init_mm.pgd.
1264 * NOTE! We MUST NOT take any locks for this case. We may
1265 * be in an interrupt or a critical region, and should
1266 * only copy the information from the master page table,
1269 * This verifies that the fault happens in kernel space
1270 * (error_code & 4) == 0, and that the fault was not a
1271 * protection error (error_code & 9) == 0.
1273 if (unlikely(fault_in_kernel_space(address
))) {
1274 if (!(error_code
& (X86_PF_RSVD
| X86_PF_USER
| X86_PF_PROT
))) {
1275 if (vmalloc_fault(address
) >= 0)
1279 /* Can handle a stale RO->RW TLB: */
1280 if (spurious_fault(error_code
, address
))
1283 /* kprobes don't want to hook the spurious faults: */
1284 if (kprobes_fault(regs
))
1287 * Don't take the mm semaphore here. If we fixup a prefetch
1288 * fault we could otherwise deadlock:
1290 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1295 /* kprobes don't want to hook the spurious faults: */
1296 if (unlikely(kprobes_fault(regs
)))
1299 if (unlikely(error_code
& X86_PF_RSVD
))
1300 pgtable_bad(regs
, error_code
, address
);
1302 if (unlikely(smap_violation(error_code
, regs
))) {
1303 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1308 * If we're in an interrupt, have no user context or are running
1309 * in a region with pagefaults disabled then we must not take the fault
1311 if (unlikely(faulthandler_disabled() || !mm
)) {
1312 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1317 * It's safe to allow irq's after cr2 has been saved and the
1318 * vmalloc fault has been handled.
1320 * User-mode registers count as a user access even for any
1321 * potential system fault or CPU buglet:
1323 if (user_mode(regs
)) {
1325 error_code
|= X86_PF_USER
;
1326 flags
|= FAULT_FLAG_USER
;
1328 if (regs
->flags
& X86_EFLAGS_IF
)
1332 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1334 if (error_code
& X86_PF_WRITE
)
1335 flags
|= FAULT_FLAG_WRITE
;
1336 if (error_code
& X86_PF_INSTR
)
1337 flags
|= FAULT_FLAG_INSTRUCTION
;
1340 * When running in the kernel we expect faults to occur only to
1341 * addresses in user space. All other faults represent errors in
1342 * the kernel and should generate an OOPS. Unfortunately, in the
1343 * case of an erroneous fault occurring in a code path which already
1344 * holds mmap_sem we will deadlock attempting to validate the fault
1345 * against the address space. Luckily the kernel only validly
1346 * references user space from well defined areas of code, which are
1347 * listed in the exceptions table.
1349 * As the vast majority of faults will be valid we will only perform
1350 * the source reference check when there is a possibility of a
1351 * deadlock. Attempt to lock the address space, if we cannot we then
1352 * validate the source. If this is invalid we can skip the address
1353 * space check, thus avoiding the deadlock:
1355 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1356 if (!(error_code
& X86_PF_USER
) &&
1357 !search_exception_tables(regs
->ip
)) {
1358 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1362 down_read(&mm
->mmap_sem
);
1365 * The above down_read_trylock() might have succeeded in
1366 * which case we'll have missed the might_sleep() from
1372 vma
= find_vma(mm
, address
);
1373 if (unlikely(!vma
)) {
1374 bad_area(regs
, error_code
, address
);
1377 if (likely(vma
->vm_start
<= address
))
1379 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1380 bad_area(regs
, error_code
, address
);
1383 if (error_code
& X86_PF_USER
) {
1385 * Accessing the stack below %sp is always a bug.
1386 * The large cushion allows instructions like enter
1387 * and pusha to work. ("enter $65535, $31" pushes
1388 * 32 pointers and then decrements %sp by 65535.)
1390 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1391 bad_area(regs
, error_code
, address
);
1395 if (unlikely(expand_stack(vma
, address
))) {
1396 bad_area(regs
, error_code
, address
);
1401 * Ok, we have a good vm_area for this memory access, so
1402 * we can handle it..
1405 if (unlikely(access_error(error_code
, vma
))) {
1406 bad_area_access_error(regs
, error_code
, address
, vma
);
1411 * If for any reason at all we couldn't handle the fault,
1412 * make sure we exit gracefully rather than endlessly redo
1413 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1414 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1416 * Note that handle_userfault() may also release and reacquire mmap_sem
1417 * (and not return with VM_FAULT_RETRY), when returning to userland to
1418 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1419 * (potentially after handling any pending signal during the return to
1420 * userland). The return to userland is identified whenever
1421 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1422 * Thus we have to be careful about not touching vma after handling the
1423 * fault, so we read the pkey beforehand.
1425 pkey
= vma_pkey(vma
);
1426 fault
= handle_mm_fault(vma
, address
, flags
);
1427 major
|= fault
& VM_FAULT_MAJOR
;
1430 * If we need to retry the mmap_sem has already been released,
1431 * and if there is a fatal signal pending there is no guarantee
1432 * that we made any progress. Handle this case first.
1434 if (unlikely(fault
& VM_FAULT_RETRY
)) {
1435 /* Retry at most once */
1436 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1437 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1438 flags
|= FAULT_FLAG_TRIED
;
1439 if (!fatal_signal_pending(tsk
))
1443 /* User mode? Just return to handle the fatal exception */
1444 if (flags
& FAULT_FLAG_USER
)
1447 /* Not returning to user mode? Handle exceptions or die: */
1448 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1452 up_read(&mm
->mmap_sem
);
1453 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1454 mm_fault_error(regs
, error_code
, address
, &pkey
, fault
);
1459 * Major/minor page fault accounting. If any of the events
1460 * returned VM_FAULT_MAJOR, we account it as a major fault.
1464 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
1467 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
1470 check_v8086_mode(regs
, address
, tsk
);
1472 NOKPROBE_SYMBOL(__do_page_fault
);
1474 static nokprobe_inline
void
1475 trace_page_fault_entries(unsigned long address
, struct pt_regs
*regs
,
1476 unsigned long error_code
)
1478 if (user_mode(regs
))
1479 trace_page_fault_user(address
, regs
, error_code
);
1481 trace_page_fault_kernel(address
, regs
, error_code
);
1485 * We must have this function blacklisted from kprobes, tagged with notrace
1486 * and call read_cr2() before calling anything else. To avoid calling any
1487 * kind of tracing machinery before we've observed the CR2 value.
1489 * exception_{enter,exit}() contains all sorts of tracepoints.
1491 dotraplinkage
void notrace
1492 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1494 unsigned long address
= read_cr2(); /* Get the faulting address */
1495 enum ctx_state prev_state
;
1497 prev_state
= exception_enter();
1498 if (trace_pagefault_enabled())
1499 trace_page_fault_entries(address
, regs
, error_code
);
1501 __do_page_fault(regs
, error_code
, address
);
1502 exception_exit(prev_state
);
1504 NOKPROBE_SYMBOL(do_page_fault
);