2 * Re-map IO memory to kernel address space so that we can access it.
3 * This is needed for high PCI addresses that aren't mapped in the
4 * 640k-1MB IO memory area on PC's
6 * (C) Copyright 1995 1996 Linus Torvalds
9 #include <linux/bootmem.h>
10 #include <linux/init.h>
12 #include <linux/ioport.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mmiotrace.h>
16 #include <linux/mem_encrypt.h>
17 #include <linux/efi.h>
19 #include <asm/set_memory.h>
20 #include <asm/e820/api.h>
21 #include <asm/fixmap.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/pgalloc.h>
26 #include <asm/setup.h>
30 struct ioremap_mem_flags
{
36 * Fix up the linear direct mapping of the kernel to avoid cache attribute
39 int ioremap_change_attr(unsigned long vaddr
, unsigned long size
,
40 enum page_cache_mode pcm
)
42 unsigned long nrpages
= size
>> PAGE_SHIFT
;
46 case _PAGE_CACHE_MODE_UC
:
48 err
= _set_memory_uc(vaddr
, nrpages
);
50 case _PAGE_CACHE_MODE_WC
:
51 err
= _set_memory_wc(vaddr
, nrpages
);
53 case _PAGE_CACHE_MODE_WT
:
54 err
= _set_memory_wt(vaddr
, nrpages
);
56 case _PAGE_CACHE_MODE_WB
:
57 err
= _set_memory_wb(vaddr
, nrpages
);
64 static bool __ioremap_check_ram(struct resource
*res
)
66 unsigned long start_pfn
, stop_pfn
;
69 if ((res
->flags
& IORESOURCE_SYSTEM_RAM
) != IORESOURCE_SYSTEM_RAM
)
72 start_pfn
= (res
->start
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
73 stop_pfn
= (res
->end
+ 1) >> PAGE_SHIFT
;
74 if (stop_pfn
> start_pfn
) {
75 for (i
= 0; i
< (stop_pfn
- start_pfn
); ++i
)
76 if (pfn_valid(start_pfn
+ i
) &&
77 !PageReserved(pfn_to_page(start_pfn
+ i
)))
84 static int __ioremap_check_desc_other(struct resource
*res
)
86 return (res
->desc
!= IORES_DESC_NONE
);
89 static int __ioremap_res_check(struct resource
*res
, void *arg
)
91 struct ioremap_mem_flags
*flags
= arg
;
93 if (!flags
->system_ram
)
94 flags
->system_ram
= __ioremap_check_ram(res
);
96 if (!flags
->desc_other
)
97 flags
->desc_other
= __ioremap_check_desc_other(res
);
99 return flags
->system_ram
&& flags
->desc_other
;
103 * To avoid multiple resource walks, this function walks resources marked as
104 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
105 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
107 static void __ioremap_check_mem(resource_size_t addr
, unsigned long size
,
108 struct ioremap_mem_flags
*flags
)
113 end
= start
+ size
- 1;
114 memset(flags
, 0, sizeof(*flags
));
116 walk_mem_res(start
, end
, flags
, __ioremap_res_check
);
120 * Remap an arbitrary physical address space into the kernel virtual
121 * address space. It transparently creates kernel huge I/O mapping when
122 * the physical address is aligned by a huge page size (1GB or 2MB) and
123 * the requested size is at least the huge page size.
125 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
126 * Therefore, the mapping code falls back to use a smaller page toward 4KB
127 * when a mapping range is covered by non-WB type of MTRRs.
129 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
130 * have to convert them into an offset in a page-aligned mapping, but the
131 * caller shouldn't need to know that small detail.
133 static void __iomem
*__ioremap_caller(resource_size_t phys_addr
,
134 unsigned long size
, enum page_cache_mode pcm
, void *caller
)
136 unsigned long offset
, vaddr
;
137 resource_size_t last_addr
;
138 const resource_size_t unaligned_phys_addr
= phys_addr
;
139 const unsigned long unaligned_size
= size
;
140 struct ioremap_mem_flags mem_flags
;
141 struct vm_struct
*area
;
142 enum page_cache_mode new_pcm
;
145 void __iomem
*ret_addr
;
147 /* Don't allow wraparound or zero size */
148 last_addr
= phys_addr
+ size
- 1;
149 if (!size
|| last_addr
< phys_addr
)
152 if (!phys_addr_valid(phys_addr
)) {
153 printk(KERN_WARNING
"ioremap: invalid physical address %llx\n",
154 (unsigned long long)phys_addr
);
159 __ioremap_check_mem(phys_addr
, size
, &mem_flags
);
162 * Don't allow anybody to remap normal RAM that we're using..
164 if (mem_flags
.system_ram
) {
165 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
166 &phys_addr
, &last_addr
);
171 * Mappings have to be page-aligned
173 offset
= phys_addr
& ~PAGE_MASK
;
174 phys_addr
&= PHYSICAL_PAGE_MASK
;
175 size
= PAGE_ALIGN(last_addr
+1) - phys_addr
;
177 retval
= reserve_memtype(phys_addr
, (u64
)phys_addr
+ size
,
180 printk(KERN_ERR
"ioremap reserve_memtype failed %d\n", retval
);
184 if (pcm
!= new_pcm
) {
185 if (!is_new_memtype_allowed(phys_addr
, size
, pcm
, new_pcm
)) {
187 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
188 (unsigned long long)phys_addr
,
189 (unsigned long long)(phys_addr
+ size
),
191 goto err_free_memtype
;
197 * If the page being mapped is in memory and SEV is active then
198 * make sure the memory encryption attribute is enabled in the
201 prot
= PAGE_KERNEL_IO
;
202 if (sev_active() && mem_flags
.desc_other
)
203 prot
= pgprot_encrypted(prot
);
206 case _PAGE_CACHE_MODE_UC
:
208 prot
= __pgprot(pgprot_val(prot
) |
209 cachemode2protval(_PAGE_CACHE_MODE_UC
));
211 case _PAGE_CACHE_MODE_UC_MINUS
:
212 prot
= __pgprot(pgprot_val(prot
) |
213 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS
));
215 case _PAGE_CACHE_MODE_WC
:
216 prot
= __pgprot(pgprot_val(prot
) |
217 cachemode2protval(_PAGE_CACHE_MODE_WC
));
219 case _PAGE_CACHE_MODE_WT
:
220 prot
= __pgprot(pgprot_val(prot
) |
221 cachemode2protval(_PAGE_CACHE_MODE_WT
));
223 case _PAGE_CACHE_MODE_WB
:
230 area
= get_vm_area_caller(size
, VM_IOREMAP
, caller
);
232 goto err_free_memtype
;
233 area
->phys_addr
= phys_addr
;
234 vaddr
= (unsigned long) area
->addr
;
236 if (kernel_map_sync_memtype(phys_addr
, size
, pcm
))
239 if (ioremap_page_range(vaddr
, vaddr
+ size
, phys_addr
, prot
))
242 ret_addr
= (void __iomem
*) (vaddr
+ offset
);
243 mmiotrace_ioremap(unaligned_phys_addr
, unaligned_size
, ret_addr
);
246 * Check if the request spans more than any BAR in the iomem resource
249 if (iomem_map_sanity_check(unaligned_phys_addr
, unaligned_size
))
250 pr_warn("caller %pS mapping multiple BARs\n", caller
);
256 free_memtype(phys_addr
, phys_addr
+ size
);
261 * ioremap_nocache - map bus memory into CPU space
262 * @phys_addr: bus address of the memory
263 * @size: size of the resource to map
265 * ioremap_nocache performs a platform specific sequence of operations to
266 * make bus memory CPU accessible via the readb/readw/readl/writeb/
267 * writew/writel functions and the other mmio helpers. The returned
268 * address is not guaranteed to be usable directly as a virtual
271 * This version of ioremap ensures that the memory is marked uncachable
272 * on the CPU as well as honouring existing caching rules from things like
273 * the PCI bus. Note that there are other caches and buffers on many
274 * busses. In particular driver authors should read up on PCI writes
276 * It's useful if some control registers are in such an area and
277 * write combining or read caching is not desirable:
279 * Must be freed with iounmap.
281 void __iomem
*ioremap_nocache(resource_size_t phys_addr
, unsigned long size
)
284 * Ideally, this should be:
285 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
287 * Till we fix all X drivers to use ioremap_wc(), we will use
288 * UC MINUS. Drivers that are certain they need or can already
289 * be converted over to strong UC can use ioremap_uc().
291 enum page_cache_mode pcm
= _PAGE_CACHE_MODE_UC_MINUS
;
293 return __ioremap_caller(phys_addr
, size
, pcm
,
294 __builtin_return_address(0));
296 EXPORT_SYMBOL(ioremap_nocache
);
299 * ioremap_uc - map bus memory into CPU space as strongly uncachable
300 * @phys_addr: bus address of the memory
301 * @size: size of the resource to map
303 * ioremap_uc performs a platform specific sequence of operations to
304 * make bus memory CPU accessible via the readb/readw/readl/writeb/
305 * writew/writel functions and the other mmio helpers. The returned
306 * address is not guaranteed to be usable directly as a virtual
309 * This version of ioremap ensures that the memory is marked with a strong
310 * preference as completely uncachable on the CPU when possible. For non-PAT
311 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
312 * systems this will set the PAT entry for the pages as strong UC. This call
313 * will honor existing caching rules from things like the PCI bus. Note that
314 * there are other caches and buffers on many busses. In particular driver
315 * authors should read up on PCI writes.
317 * It's useful if some control registers are in such an area and
318 * write combining or read caching is not desirable:
320 * Must be freed with iounmap.
322 void __iomem
*ioremap_uc(resource_size_t phys_addr
, unsigned long size
)
324 enum page_cache_mode pcm
= _PAGE_CACHE_MODE_UC
;
326 return __ioremap_caller(phys_addr
, size
, pcm
,
327 __builtin_return_address(0));
329 EXPORT_SYMBOL_GPL(ioremap_uc
);
332 * ioremap_wc - map memory into CPU space write combined
333 * @phys_addr: bus address of the memory
334 * @size: size of the resource to map
336 * This version of ioremap ensures that the memory is marked write combining.
337 * Write combining allows faster writes to some hardware devices.
339 * Must be freed with iounmap.
341 void __iomem
*ioremap_wc(resource_size_t phys_addr
, unsigned long size
)
343 return __ioremap_caller(phys_addr
, size
, _PAGE_CACHE_MODE_WC
,
344 __builtin_return_address(0));
346 EXPORT_SYMBOL(ioremap_wc
);
349 * ioremap_wt - map memory into CPU space write through
350 * @phys_addr: bus address of the memory
351 * @size: size of the resource to map
353 * This version of ioremap ensures that the memory is marked write through.
354 * Write through stores data into memory while keeping the cache up-to-date.
356 * Must be freed with iounmap.
358 void __iomem
*ioremap_wt(resource_size_t phys_addr
, unsigned long size
)
360 return __ioremap_caller(phys_addr
, size
, _PAGE_CACHE_MODE_WT
,
361 __builtin_return_address(0));
363 EXPORT_SYMBOL(ioremap_wt
);
365 void __iomem
*ioremap_cache(resource_size_t phys_addr
, unsigned long size
)
367 return __ioremap_caller(phys_addr
, size
, _PAGE_CACHE_MODE_WB
,
368 __builtin_return_address(0));
370 EXPORT_SYMBOL(ioremap_cache
);
372 void __iomem
*ioremap_prot(resource_size_t phys_addr
, unsigned long size
,
373 unsigned long prot_val
)
375 return __ioremap_caller(phys_addr
, size
,
376 pgprot2cachemode(__pgprot(prot_val
)),
377 __builtin_return_address(0));
379 EXPORT_SYMBOL(ioremap_prot
);
382 * iounmap - Free a IO remapping
383 * @addr: virtual address from ioremap_*
385 * Caller must ensure there is only one unmapping for the same pointer.
387 void iounmap(volatile void __iomem
*addr
)
389 struct vm_struct
*p
, *o
;
391 if ((void __force
*)addr
<= high_memory
)
395 * The PCI/ISA range special-casing was removed from __ioremap()
396 * so this check, in theory, can be removed. However, there are
397 * cases where iounmap() is called for addresses not obtained via
398 * ioremap() (vga16fb for example). Add a warning so that these
399 * cases can be caught and fixed.
401 if ((void __force
*)addr
>= phys_to_virt(ISA_START_ADDRESS
) &&
402 (void __force
*)addr
< phys_to_virt(ISA_END_ADDRESS
)) {
403 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
407 mmiotrace_iounmap(addr
);
409 addr
= (volatile void __iomem
*)
410 (PAGE_MASK
& (unsigned long __force
)addr
);
412 /* Use the vm area unlocked, assuming the caller
413 ensures there isn't another iounmap for the same address
414 in parallel. Reuse of the virtual address is prevented by
415 leaving it in the global lists until we're done with it.
416 cpa takes care of the direct mappings. */
417 p
= find_vm_area((void __force
*)addr
);
420 printk(KERN_ERR
"iounmap: bad address %p\n", addr
);
425 free_memtype(p
->phys_addr
, p
->phys_addr
+ get_vm_area_size(p
));
427 /* Finally remove it */
428 o
= remove_vm_area((void __force
*)addr
);
429 BUG_ON(p
!= o
|| o
== NULL
);
432 EXPORT_SYMBOL(iounmap
);
434 int __init
arch_ioremap_pud_supported(void)
437 return boot_cpu_has(X86_FEATURE_GBPAGES
);
443 int __init
arch_ioremap_pmd_supported(void)
445 return boot_cpu_has(X86_FEATURE_PSE
);
449 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
452 void *xlate_dev_mem_ptr(phys_addr_t phys
)
454 unsigned long start
= phys
& PAGE_MASK
;
455 unsigned long offset
= phys
& ~PAGE_MASK
;
458 /* memremap() maps if RAM, otherwise falls back to ioremap() */
459 vaddr
= memremap(start
, PAGE_SIZE
, MEMREMAP_WB
);
461 /* Only add the offset on success and return NULL if memremap() failed */
468 void unxlate_dev_mem_ptr(phys_addr_t phys
, void *addr
)
470 memunmap((void *)((unsigned long)addr
& PAGE_MASK
));
474 * Examine the physical address to determine if it is an area of memory
475 * that should be mapped decrypted. If the memory is not part of the
476 * kernel usable area it was accessed and created decrypted, so these
477 * areas should be mapped decrypted. And since the encryption key can
478 * change across reboots, persistent memory should also be mapped
481 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
482 * only persistent memory should be mapped decrypted.
484 static bool memremap_should_map_decrypted(resource_size_t phys_addr
,
490 * Check if the address is part of a persistent memory region.
491 * This check covers areas added by E820, EFI and ACPI.
493 is_pmem
= region_intersects(phys_addr
, size
, IORESOURCE_MEM
,
494 IORES_DESC_PERSISTENT_MEMORY
);
495 if (is_pmem
!= REGION_DISJOINT
)
499 * Check if the non-volatile attribute is set for an EFI
502 if (efi_enabled(EFI_BOOT
)) {
503 switch (efi_mem_type(phys_addr
)) {
504 case EFI_RESERVED_TYPE
:
505 if (efi_mem_attributes(phys_addr
) & EFI_MEMORY_NV
)
513 /* Check if the address is outside kernel usable area */
514 switch (e820__get_entry_type(phys_addr
, phys_addr
+ size
- 1)) {
515 case E820_TYPE_RESERVED
:
518 case E820_TYPE_UNUSABLE
:
519 /* For SEV, these areas are encrypted */
534 * Examine the physical address to determine if it is EFI data. Check
535 * it against the boot params structure and EFI tables and memory types.
537 static bool memremap_is_efi_data(resource_size_t phys_addr
,
542 /* Check if the address is part of EFI boot/runtime data */
543 if (!efi_enabled(EFI_BOOT
))
546 paddr
= boot_params
.efi_info
.efi_memmap_hi
;
548 paddr
|= boot_params
.efi_info
.efi_memmap
;
549 if (phys_addr
== paddr
)
552 paddr
= boot_params
.efi_info
.efi_systab_hi
;
554 paddr
|= boot_params
.efi_info
.efi_systab
;
555 if (phys_addr
== paddr
)
558 if (efi_is_table_address(phys_addr
))
561 switch (efi_mem_type(phys_addr
)) {
562 case EFI_BOOT_SERVICES_DATA
:
563 case EFI_RUNTIME_SERVICES_DATA
:
573 * Examine the physical address to determine if it is boot data by checking
574 * it against the boot params setup_data chain.
576 static bool memremap_is_setup_data(resource_size_t phys_addr
,
579 struct setup_data
*data
;
580 u64 paddr
, paddr_next
;
582 paddr
= boot_params
.hdr
.setup_data
;
586 if (phys_addr
== paddr
)
589 data
= memremap(paddr
, sizeof(*data
),
590 MEMREMAP_WB
| MEMREMAP_DEC
);
592 paddr_next
= data
->next
;
597 if ((phys_addr
> paddr
) && (phys_addr
< (paddr
+ len
)))
607 * Examine the physical address to determine if it is boot data by checking
608 * it against the boot params setup_data chain (early boot version).
610 static bool __init
early_memremap_is_setup_data(resource_size_t phys_addr
,
613 struct setup_data
*data
;
614 u64 paddr
, paddr_next
;
616 paddr
= boot_params
.hdr
.setup_data
;
620 if (phys_addr
== paddr
)
623 data
= early_memremap_decrypted(paddr
, sizeof(*data
));
625 paddr_next
= data
->next
;
628 early_memunmap(data
, sizeof(*data
));
630 if ((phys_addr
> paddr
) && (phys_addr
< (paddr
+ len
)))
640 * Architecture function to determine if RAM remap is allowed. By default, a
641 * RAM remap will map the data as encrypted. Determine if a RAM remap should
642 * not be done so that the data will be mapped decrypted.
644 bool arch_memremap_can_ram_remap(resource_size_t phys_addr
, unsigned long size
,
647 if (!mem_encrypt_active())
650 if (flags
& MEMREMAP_ENC
)
653 if (flags
& MEMREMAP_DEC
)
657 if (memremap_is_setup_data(phys_addr
, size
) ||
658 memremap_is_efi_data(phys_addr
, size
))
662 return !memremap_should_map_decrypted(phys_addr
, size
);
666 * Architecture override of __weak function to adjust the protection attributes
667 * used when remapping memory. By default, early_memremap() will map the data
668 * as encrypted. Determine if an encrypted mapping should not be done and set
669 * the appropriate protection attributes.
671 pgprot_t __init
early_memremap_pgprot_adjust(resource_size_t phys_addr
,
677 if (!mem_encrypt_active())
680 encrypted_prot
= true;
683 if (early_memremap_is_setup_data(phys_addr
, size
) ||
684 memremap_is_efi_data(phys_addr
, size
))
685 encrypted_prot
= false;
688 if (encrypted_prot
&& memremap_should_map_decrypted(phys_addr
, size
))
689 encrypted_prot
= false;
691 return encrypted_prot
? pgprot_encrypted(prot
)
692 : pgprot_decrypted(prot
);
695 bool phys_mem_access_encrypted(unsigned long phys_addr
, unsigned long size
)
697 return arch_memremap_can_ram_remap(phys_addr
, size
, 0);
700 #ifdef CONFIG_ARCH_USE_MEMREMAP_PROT
701 /* Remap memory with encryption */
702 void __init
*early_memremap_encrypted(resource_size_t phys_addr
,
705 return early_memremap_prot(phys_addr
, size
, __PAGE_KERNEL_ENC
);
709 * Remap memory with encryption and write-protected - cannot be called
710 * before pat_init() is called
712 void __init
*early_memremap_encrypted_wp(resource_size_t phys_addr
,
715 /* Be sure the write-protect PAT entry is set for write-protect */
716 if (__pte2cachemode_tbl
[_PAGE_CACHE_MODE_WP
] != _PAGE_CACHE_MODE_WP
)
719 return early_memremap_prot(phys_addr
, size
, __PAGE_KERNEL_ENC_WP
);
722 /* Remap memory without encryption */
723 void __init
*early_memremap_decrypted(resource_size_t phys_addr
,
726 return early_memremap_prot(phys_addr
, size
, __PAGE_KERNEL_NOENC
);
730 * Remap memory without encryption and write-protected - cannot be called
731 * before pat_init() is called
733 void __init
*early_memremap_decrypted_wp(resource_size_t phys_addr
,
736 /* Be sure the write-protect PAT entry is set for write-protect */
737 if (__pte2cachemode_tbl
[_PAGE_CACHE_MODE_WP
] != _PAGE_CACHE_MODE_WP
)
740 return early_memremap_prot(phys_addr
, size
, __PAGE_KERNEL_NOENC_WP
);
742 #endif /* CONFIG_ARCH_USE_MEMREMAP_PROT */
744 static pte_t bm_pte
[PAGE_SIZE
/sizeof(pte_t
)] __page_aligned_bss
;
746 static inline pmd_t
* __init
early_ioremap_pmd(unsigned long addr
)
748 /* Don't assume we're using swapper_pg_dir at this point */
749 pgd_t
*base
= __va(read_cr3_pa());
750 pgd_t
*pgd
= &base
[pgd_index(addr
)];
751 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
752 pud_t
*pud
= pud_offset(p4d
, addr
);
753 pmd_t
*pmd
= pmd_offset(pud
, addr
);
758 static inline pte_t
* __init
early_ioremap_pte(unsigned long addr
)
760 return &bm_pte
[pte_index(addr
)];
763 bool __init
is_early_ioremap_ptep(pte_t
*ptep
)
765 return ptep
>= &bm_pte
[0] && ptep
< &bm_pte
[PAGE_SIZE
/sizeof(pte_t
)];
768 void __init
early_ioremap_init(void)
773 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE
) & ((1 << PMD_SHIFT
) - 1));
775 WARN_ON((fix_to_virt(0) + PAGE_SIZE
) & ((1 << PMD_SHIFT
) - 1));
778 early_ioremap_setup();
780 pmd
= early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN
));
781 memset(bm_pte
, 0, sizeof(bm_pte
));
782 pmd_populate_kernel(&init_mm
, pmd
, bm_pte
);
785 * The boot-ioremap range spans multiple pmds, for which
786 * we are not prepared:
788 #define __FIXADDR_TOP (-PAGE_SIZE)
789 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN
) >> PMD_SHIFT
)
790 != (__fix_to_virt(FIX_BTMAP_END
) >> PMD_SHIFT
));
792 if (pmd
!= early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END
))) {
794 printk(KERN_WARNING
"pmd %p != %p\n",
795 pmd
, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END
)));
796 printk(KERN_WARNING
"fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
797 fix_to_virt(FIX_BTMAP_BEGIN
));
798 printk(KERN_WARNING
"fix_to_virt(FIX_BTMAP_END): %08lx\n",
799 fix_to_virt(FIX_BTMAP_END
));
801 printk(KERN_WARNING
"FIX_BTMAP_END: %d\n", FIX_BTMAP_END
);
802 printk(KERN_WARNING
"FIX_BTMAP_BEGIN: %d\n",
807 void __init
__early_set_fixmap(enum fixed_addresses idx
,
808 phys_addr_t phys
, pgprot_t flags
)
810 unsigned long addr
= __fix_to_virt(idx
);
813 if (idx
>= __end_of_fixed_addresses
) {
817 pte
= early_ioremap_pte(addr
);
819 if (pgprot_val(flags
))
820 set_pte(pte
, pfn_pte(phys
>> PAGE_SHIFT
, flags
));
822 pte_clear(&init_mm
, addr
, pte
);
823 __flush_tlb_one_kernel(addr
);