1 // SPDX-License-Identifier: GPL-2.0
2 /* Support for MMIO probes.
3 * Benfit many code from kprobes
4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
5 * 2007 Alexander Eichner
6 * 2008 Pekka Paalanen <pq@iki.fi>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/list.h>
12 #include <linux/rculist.h>
13 #include <linux/spinlock.h>
14 #include <linux/hash.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/uaccess.h>
18 #include <linux/ptrace.h>
19 #include <linux/preempt.h>
20 #include <linux/percpu.h>
21 #include <linux/kdebug.h>
22 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <linux/errno.h>
28 #include <asm/debugreg.h>
29 #include <linux/mmiotrace.h>
31 #define KMMIO_PAGE_HASH_BITS 4
32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
34 struct kmmio_fault_page
{
35 struct list_head list
;
36 struct kmmio_fault_page
*release_next
;
37 unsigned long addr
; /* the requested address */
38 pteval_t old_presence
; /* page presence prior to arming */
42 * Number of times this page has been registered as a part
43 * of a probe. If zero, page is disarmed and this may be freed.
44 * Used only by writers (RCU) and post_kmmio_handler().
45 * Protected by kmmio_lock, when linked into kmmio_page_table.
49 bool scheduled_for_release
;
52 struct kmmio_delayed_release
{
54 struct kmmio_fault_page
*release_list
;
57 struct kmmio_context
{
58 struct kmmio_fault_page
*fpage
;
59 struct kmmio_probe
*probe
;
60 unsigned long saved_flags
;
65 static DEFINE_SPINLOCK(kmmio_lock
);
67 /* Protected by kmmio_lock */
68 unsigned int kmmio_count
;
70 /* Read-protected by RCU, write-protected by kmmio_lock. */
71 static struct list_head kmmio_page_table
[KMMIO_PAGE_TABLE_SIZE
];
72 static LIST_HEAD(kmmio_probes
);
74 static struct list_head
*kmmio_page_list(unsigned long addr
)
77 pte_t
*pte
= lookup_address(addr
, &l
);
81 addr
&= page_level_mask(l
);
83 return &kmmio_page_table
[hash_long(addr
, KMMIO_PAGE_HASH_BITS
)];
86 /* Accessed per-cpu */
87 static DEFINE_PER_CPU(struct kmmio_context
, kmmio_ctx
);
90 * this is basically a dynamic stabbing problem:
91 * Could use the existing prio tree code or
92 * Possible better implementations:
93 * The Interval Skip List: A Data Structure for Finding All Intervals That
94 * Overlap a Point (might be simple)
95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
97 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
98 static struct kmmio_probe
*get_kmmio_probe(unsigned long addr
)
100 struct kmmio_probe
*p
;
101 list_for_each_entry_rcu(p
, &kmmio_probes
, list
) {
102 if (addr
>= p
->addr
&& addr
< (p
->addr
+ p
->len
))
108 /* You must be holding RCU read lock. */
109 static struct kmmio_fault_page
*get_kmmio_fault_page(unsigned long addr
)
111 struct list_head
*head
;
112 struct kmmio_fault_page
*f
;
114 pte_t
*pte
= lookup_address(addr
, &l
);
118 addr
&= page_level_mask(l
);
119 head
= kmmio_page_list(addr
);
120 list_for_each_entry_rcu(f
, head
, list
) {
127 static void clear_pmd_presence(pmd_t
*pmd
, bool clear
, pmdval_t
*old
)
129 pmdval_t v
= pmd_val(*pmd
);
131 *old
= v
& _PAGE_PRESENT
;
133 } else /* presume this has been called with clear==true previously */
135 set_pmd(pmd
, __pmd(v
));
138 static void clear_pte_presence(pte_t
*pte
, bool clear
, pteval_t
*old
)
140 pteval_t v
= pte_val(*pte
);
142 *old
= v
& _PAGE_PRESENT
;
144 } else /* presume this has been called with clear==true previously */
146 set_pte_atomic(pte
, __pte(v
));
149 static int clear_page_presence(struct kmmio_fault_page
*f
, bool clear
)
152 pte_t
*pte
= lookup_address(f
->addr
, &level
);
155 pr_err("no pte for addr 0x%08lx\n", f
->addr
);
161 clear_pmd_presence((pmd_t
*)pte
, clear
, &f
->old_presence
);
164 clear_pte_presence(pte
, clear
, &f
->old_presence
);
167 pr_err("unexpected page level 0x%x.\n", level
);
171 __flush_tlb_one_kernel(f
->addr
);
176 * Mark the given page as not present. Access to it will trigger a fault.
178 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
179 * protection is ignored here. RCU read lock is assumed held, so the struct
180 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
181 * that double arming the same virtual address (page) cannot occur.
183 * Double disarming on the other hand is allowed, and may occur when a fault
184 * and mmiotrace shutdown happen simultaneously.
186 static int arm_kmmio_fault_page(struct kmmio_fault_page
*f
)
189 WARN_ONCE(f
->armed
, KERN_ERR
pr_fmt("kmmio page already armed.\n"));
191 pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
192 f
->addr
, f
->count
, !!f
->old_presence
);
194 ret
= clear_page_presence(f
, true);
195 WARN_ONCE(ret
< 0, KERN_ERR
pr_fmt("arming at 0x%08lx failed.\n"),
201 /** Restore the given page to saved presence state. */
202 static void disarm_kmmio_fault_page(struct kmmio_fault_page
*f
)
204 int ret
= clear_page_presence(f
, false);
206 KERN_ERR
"kmmio disarming at 0x%08lx failed.\n", f
->addr
);
211 * This is being called from do_page_fault().
213 * We may be in an interrupt or a critical section. Also prefecthing may
214 * trigger a page fault. We may be in the middle of process switch.
215 * We cannot take any locks, because we could be executing especially
216 * within a kmmio critical section.
218 * Local interrupts are disabled, so preemption cannot happen.
219 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
222 * Interrupts are disabled on entry as trap3 is an interrupt gate
223 * and they remain disabled throughout this function.
225 int kmmio_handler(struct pt_regs
*regs
, unsigned long addr
)
227 struct kmmio_context
*ctx
;
228 struct kmmio_fault_page
*faultpage
;
229 int ret
= 0; /* default to fault not handled */
230 unsigned long page_base
= addr
;
232 pte_t
*pte
= lookup_address(addr
, &l
);
235 page_base
&= page_level_mask(l
);
238 * Preemption is now disabled to prevent process switch during
239 * single stepping. We can only handle one active kmmio trace
240 * per cpu, so ensure that we finish it before something else
241 * gets to run. We also hold the RCU read lock over single
242 * stepping to avoid looking up the probe and kmmio_fault_page
248 faultpage
= get_kmmio_fault_page(page_base
);
251 * Either this page fault is not caused by kmmio, or
252 * another CPU just pulled the kmmio probe from under
253 * our feet. The latter case should not be possible.
258 ctx
= &get_cpu_var(kmmio_ctx
);
260 if (page_base
== ctx
->addr
) {
262 * A second fault on the same page means some other
263 * condition needs handling by do_page_fault(), the
264 * page really not being present is the most common.
266 pr_debug("secondary hit for 0x%08lx CPU %d.\n",
267 addr
, smp_processor_id());
269 if (!faultpage
->old_presence
)
270 pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
271 addr
, smp_processor_id());
274 * Prevent overwriting already in-flight context.
275 * This should not happen, let's hope disarming at
276 * least prevents a panic.
278 pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
279 smp_processor_id(), addr
);
280 pr_emerg("previous hit was at 0x%08lx.\n", ctx
->addr
);
281 disarm_kmmio_fault_page(faultpage
);
287 ctx
->fpage
= faultpage
;
288 ctx
->probe
= get_kmmio_probe(page_base
);
289 ctx
->saved_flags
= (regs
->flags
& (X86_EFLAGS_TF
| X86_EFLAGS_IF
));
290 ctx
->addr
= page_base
;
292 if (ctx
->probe
&& ctx
->probe
->pre_handler
)
293 ctx
->probe
->pre_handler(ctx
->probe
, regs
, addr
);
296 * Enable single-stepping and disable interrupts for the faulting
297 * context. Local interrupts must not get enabled during stepping.
299 regs
->flags
|= X86_EFLAGS_TF
;
300 regs
->flags
&= ~X86_EFLAGS_IF
;
302 /* Now we set present bit in PTE and single step. */
303 disarm_kmmio_fault_page(ctx
->fpage
);
306 * If another cpu accesses the same page while we are stepping,
307 * the access will not be caught. It will simply succeed and the
308 * only downside is we lose the event. If this becomes a problem,
309 * the user should drop to single cpu before tracing.
312 put_cpu_var(kmmio_ctx
);
313 return 1; /* fault handled */
316 put_cpu_var(kmmio_ctx
);
319 preempt_enable_no_resched();
324 * Interrupts are disabled on entry as trap1 is an interrupt gate
325 * and they remain disabled throughout this function.
326 * This must always get called as the pair to kmmio_handler().
328 static int post_kmmio_handler(unsigned long condition
, struct pt_regs
*regs
)
331 struct kmmio_context
*ctx
= &get_cpu_var(kmmio_ctx
);
335 * debug traps without an active context are due to either
336 * something external causing them (f.e. using a debugger while
337 * mmio tracing enabled), or erroneous behaviour
339 pr_warning("unexpected debug trap on CPU %d.\n",
344 if (ctx
->probe
&& ctx
->probe
->post_handler
)
345 ctx
->probe
->post_handler(ctx
->probe
, condition
, regs
);
347 /* Prevent racing against release_kmmio_fault_page(). */
348 spin_lock(&kmmio_lock
);
349 if (ctx
->fpage
->count
)
350 arm_kmmio_fault_page(ctx
->fpage
);
351 spin_unlock(&kmmio_lock
);
353 regs
->flags
&= ~X86_EFLAGS_TF
;
354 regs
->flags
|= ctx
->saved_flags
;
356 /* These were acquired in kmmio_handler(). */
360 preempt_enable_no_resched();
363 * if somebody else is singlestepping across a probe point, flags
364 * will have TF set, in which case, continue the remaining processing
365 * of do_debug, as if this is not a probe hit.
367 if (!(regs
->flags
& X86_EFLAGS_TF
))
370 put_cpu_var(kmmio_ctx
);
374 /* You must be holding kmmio_lock. */
375 static int add_kmmio_fault_page(unsigned long addr
)
377 struct kmmio_fault_page
*f
;
379 f
= get_kmmio_fault_page(addr
);
382 arm_kmmio_fault_page(f
);
387 f
= kzalloc(sizeof(*f
), GFP_ATOMIC
);
394 if (arm_kmmio_fault_page(f
)) {
399 list_add_rcu(&f
->list
, kmmio_page_list(f
->addr
));
404 /* You must be holding kmmio_lock. */
405 static void release_kmmio_fault_page(unsigned long addr
,
406 struct kmmio_fault_page
**release_list
)
408 struct kmmio_fault_page
*f
;
410 f
= get_kmmio_fault_page(addr
);
415 BUG_ON(f
->count
< 0);
417 disarm_kmmio_fault_page(f
);
418 if (!f
->scheduled_for_release
) {
419 f
->release_next
= *release_list
;
421 f
->scheduled_for_release
= true;
427 * With page-unaligned ioremaps, one or two armed pages may contain
428 * addresses from outside the intended mapping. Events for these addresses
429 * are currently silently dropped. The events may result only from programming
430 * mistakes by accessing addresses before the beginning or past the end of a
433 int register_kmmio_probe(struct kmmio_probe
*p
)
437 unsigned long size
= 0;
438 unsigned long addr
= p
->addr
& PAGE_MASK
;
439 const unsigned long size_lim
= p
->len
+ (p
->addr
& ~PAGE_MASK
);
443 spin_lock_irqsave(&kmmio_lock
, flags
);
444 if (get_kmmio_probe(addr
)) {
449 pte
= lookup_address(addr
, &l
);
456 list_add_rcu(&p
->list
, &kmmio_probes
);
457 while (size
< size_lim
) {
458 if (add_kmmio_fault_page(addr
+ size
))
459 pr_err("Unable to set page fault.\n");
460 size
+= page_level_size(l
);
463 spin_unlock_irqrestore(&kmmio_lock
, flags
);
465 * XXX: What should I do here?
466 * Here was a call to global_flush_tlb(), but it does not exist
467 * anymore. It seems it's not needed after all.
471 EXPORT_SYMBOL(register_kmmio_probe
);
473 static void rcu_free_kmmio_fault_pages(struct rcu_head
*head
)
475 struct kmmio_delayed_release
*dr
= container_of(
477 struct kmmio_delayed_release
,
479 struct kmmio_fault_page
*f
= dr
->release_list
;
481 struct kmmio_fault_page
*next
= f
->release_next
;
489 static void remove_kmmio_fault_pages(struct rcu_head
*head
)
491 struct kmmio_delayed_release
*dr
=
492 container_of(head
, struct kmmio_delayed_release
, rcu
);
493 struct kmmio_fault_page
*f
= dr
->release_list
;
494 struct kmmio_fault_page
**prevp
= &dr
->release_list
;
497 spin_lock_irqsave(&kmmio_lock
, flags
);
500 list_del_rcu(&f
->list
);
501 prevp
= &f
->release_next
;
503 *prevp
= f
->release_next
;
504 f
->release_next
= NULL
;
505 f
->scheduled_for_release
= false;
509 spin_unlock_irqrestore(&kmmio_lock
, flags
);
511 /* This is the real RCU destroy call. */
512 call_rcu(&dr
->rcu
, rcu_free_kmmio_fault_pages
);
516 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
517 * sure that the callbacks will not be called anymore. Only after that
518 * you may actually release your struct kmmio_probe.
520 * Unregistering a kmmio fault page has three steps:
521 * 1. release_kmmio_fault_page()
522 * Disarm the page, wait a grace period to let all faults finish.
523 * 2. remove_kmmio_fault_pages()
524 * Remove the pages from kmmio_page_table.
525 * 3. rcu_free_kmmio_fault_pages()
526 * Actually free the kmmio_fault_page structs as with RCU.
528 void unregister_kmmio_probe(struct kmmio_probe
*p
)
531 unsigned long size
= 0;
532 unsigned long addr
= p
->addr
& PAGE_MASK
;
533 const unsigned long size_lim
= p
->len
+ (p
->addr
& ~PAGE_MASK
);
534 struct kmmio_fault_page
*release_list
= NULL
;
535 struct kmmio_delayed_release
*drelease
;
539 pte
= lookup_address(addr
, &l
);
543 spin_lock_irqsave(&kmmio_lock
, flags
);
544 while (size
< size_lim
) {
545 release_kmmio_fault_page(addr
+ size
, &release_list
);
546 size
+= page_level_size(l
);
548 list_del_rcu(&p
->list
);
550 spin_unlock_irqrestore(&kmmio_lock
, flags
);
555 drelease
= kmalloc(sizeof(*drelease
), GFP_ATOMIC
);
557 pr_crit("leaking kmmio_fault_page objects.\n");
560 drelease
->release_list
= release_list
;
563 * This is not really RCU here. We have just disarmed a set of
564 * pages so that they cannot trigger page faults anymore. However,
565 * we cannot remove the pages from kmmio_page_table,
566 * because a probe hit might be in flight on another CPU. The
567 * pages are collected into a list, and they will be removed from
568 * kmmio_page_table when it is certain that no probe hit related to
569 * these pages can be in flight. RCU grace period sounds like a
572 * If we removed the pages too early, kmmio page fault handler might
573 * not find the respective kmmio_fault_page and determine it's not
574 * a kmmio fault, when it actually is. This would lead to madness.
576 call_rcu(&drelease
->rcu
, remove_kmmio_fault_pages
);
578 EXPORT_SYMBOL(unregister_kmmio_probe
);
581 kmmio_die_notifier(struct notifier_block
*nb
, unsigned long val
, void *args
)
583 struct die_args
*arg
= args
;
584 unsigned long* dr6_p
= (unsigned long *)ERR_PTR(arg
->err
);
586 if (val
== DIE_DEBUG
&& (*dr6_p
& DR_STEP
))
587 if (post_kmmio_handler(*dr6_p
, arg
->regs
) == 1) {
589 * Reset the BS bit in dr6 (pointed by args->err) to
590 * denote completion of processing
599 static struct notifier_block nb_die
= {
600 .notifier_call
= kmmio_die_notifier
607 for (i
= 0; i
< KMMIO_PAGE_TABLE_SIZE
; i
++)
608 INIT_LIST_HEAD(&kmmio_page_table
[i
]);
610 return register_die_notifier(&nb_die
);
613 void kmmio_cleanup(void)
617 unregister_die_notifier(&nb_die
);
618 for (i
= 0; i
< KMMIO_PAGE_TABLE_SIZE
; i
++) {
619 WARN_ONCE(!list_empty(&kmmio_page_table
[i
]),
620 KERN_ERR
"kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");