x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / arch / x86 / mm / mem_encrypt.c
blob1a53071e2e179c2513d04f6713655af130f75f67
1 /*
2 * AMD Memory Encryption Support
4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #define DISABLE_BRANCH_PROFILING
15 #include <linux/linkage.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/dma-direct.h>
19 #include <linux/swiotlb.h>
20 #include <linux/mem_encrypt.h>
22 #include <asm/tlbflush.h>
23 #include <asm/fixmap.h>
24 #include <asm/setup.h>
25 #include <asm/bootparam.h>
26 #include <asm/set_memory.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 #include <asm/processor-flags.h>
30 #include <asm/msr.h>
31 #include <asm/cmdline.h>
33 #include "mm_internal.h"
35 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
36 static char sme_cmdline_on[] __initdata = "on";
37 static char sme_cmdline_off[] __initdata = "off";
40 * Since SME related variables are set early in the boot process they must
41 * reside in the .data section so as not to be zeroed out when the .bss
42 * section is later cleared.
44 u64 sme_me_mask __section(.data) = 0;
45 EXPORT_SYMBOL(sme_me_mask);
46 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
47 EXPORT_SYMBOL_GPL(sev_enable_key);
49 static bool sev_enabled __section(.data);
51 /* Buffer used for early in-place encryption by BSP, no locking needed */
52 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
55 * This routine does not change the underlying encryption setting of the
56 * page(s) that map this memory. It assumes that eventually the memory is
57 * meant to be accessed as either encrypted or decrypted but the contents
58 * are currently not in the desired state.
60 * This routine follows the steps outlined in the AMD64 Architecture
61 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
63 static void __init __sme_early_enc_dec(resource_size_t paddr,
64 unsigned long size, bool enc)
66 void *src, *dst;
67 size_t len;
69 if (!sme_me_mask)
70 return;
72 wbinvd();
75 * There are limited number of early mapping slots, so map (at most)
76 * one page at time.
78 while (size) {
79 len = min_t(size_t, sizeof(sme_early_buffer), size);
82 * Create mappings for the current and desired format of
83 * the memory. Use a write-protected mapping for the source.
85 src = enc ? early_memremap_decrypted_wp(paddr, len) :
86 early_memremap_encrypted_wp(paddr, len);
88 dst = enc ? early_memremap_encrypted(paddr, len) :
89 early_memremap_decrypted(paddr, len);
92 * If a mapping can't be obtained to perform the operation,
93 * then eventual access of that area in the desired mode
94 * will cause a crash.
96 BUG_ON(!src || !dst);
99 * Use a temporary buffer, of cache-line multiple size, to
100 * avoid data corruption as documented in the APM.
102 memcpy(sme_early_buffer, src, len);
103 memcpy(dst, sme_early_buffer, len);
105 early_memunmap(dst, len);
106 early_memunmap(src, len);
108 paddr += len;
109 size -= len;
113 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
115 __sme_early_enc_dec(paddr, size, true);
118 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
120 __sme_early_enc_dec(paddr, size, false);
123 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
124 bool map)
126 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
127 pmdval_t pmd_flags, pmd;
129 /* Use early_pmd_flags but remove the encryption mask */
130 pmd_flags = __sme_clr(early_pmd_flags);
132 do {
133 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
134 __early_make_pgtable((unsigned long)vaddr, pmd);
136 vaddr += PMD_SIZE;
137 paddr += PMD_SIZE;
138 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
139 } while (size);
141 __native_flush_tlb();
144 void __init sme_unmap_bootdata(char *real_mode_data)
146 struct boot_params *boot_data;
147 unsigned long cmdline_paddr;
149 if (!sme_active())
150 return;
152 /* Get the command line address before unmapping the real_mode_data */
153 boot_data = (struct boot_params *)real_mode_data;
154 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
156 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
158 if (!cmdline_paddr)
159 return;
161 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
164 void __init sme_map_bootdata(char *real_mode_data)
166 struct boot_params *boot_data;
167 unsigned long cmdline_paddr;
169 if (!sme_active())
170 return;
172 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
174 /* Get the command line address after mapping the real_mode_data */
175 boot_data = (struct boot_params *)real_mode_data;
176 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
178 if (!cmdline_paddr)
179 return;
181 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
184 void __init sme_early_init(void)
186 unsigned int i;
188 if (!sme_me_mask)
189 return;
191 early_pmd_flags = __sme_set(early_pmd_flags);
193 __supported_pte_mask = __sme_set(__supported_pte_mask);
195 /* Update the protection map with memory encryption mask */
196 for (i = 0; i < ARRAY_SIZE(protection_map); i++)
197 protection_map[i] = pgprot_encrypted(protection_map[i]);
199 if (sev_active())
200 swiotlb_force = SWIOTLB_FORCE;
203 static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
204 gfp_t gfp, unsigned long attrs)
206 unsigned long dma_mask;
207 unsigned int order;
208 struct page *page;
209 void *vaddr = NULL;
211 dma_mask = dma_alloc_coherent_mask(dev, gfp);
212 order = get_order(size);
215 * Memory will be memset to zero after marking decrypted, so don't
216 * bother clearing it before.
218 gfp &= ~__GFP_ZERO;
220 page = alloc_pages_node(dev_to_node(dev), gfp, order);
221 if (page) {
222 dma_addr_t addr;
225 * Since we will be clearing the encryption bit, check the
226 * mask with it already cleared.
228 addr = __sme_clr(phys_to_dma(dev, page_to_phys(page)));
229 if ((addr + size) > dma_mask) {
230 __free_pages(page, get_order(size));
231 } else {
232 vaddr = page_address(page);
233 *dma_handle = addr;
237 if (!vaddr)
238 vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
240 if (!vaddr)
241 return NULL;
243 /* Clear the SME encryption bit for DMA use if not swiotlb area */
244 if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) {
245 set_memory_decrypted((unsigned long)vaddr, 1 << order);
246 memset(vaddr, 0, PAGE_SIZE << order);
247 *dma_handle = __sme_clr(*dma_handle);
250 return vaddr;
253 static void sev_free(struct device *dev, size_t size, void *vaddr,
254 dma_addr_t dma_handle, unsigned long attrs)
256 /* Set the SME encryption bit for re-use if not swiotlb area */
257 if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle)))
258 set_memory_encrypted((unsigned long)vaddr,
259 1 << get_order(size));
261 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
264 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
266 pgprot_t old_prot, new_prot;
267 unsigned long pfn, pa, size;
268 pte_t new_pte;
270 switch (level) {
271 case PG_LEVEL_4K:
272 pfn = pte_pfn(*kpte);
273 old_prot = pte_pgprot(*kpte);
274 break;
275 case PG_LEVEL_2M:
276 pfn = pmd_pfn(*(pmd_t *)kpte);
277 old_prot = pmd_pgprot(*(pmd_t *)kpte);
278 break;
279 case PG_LEVEL_1G:
280 pfn = pud_pfn(*(pud_t *)kpte);
281 old_prot = pud_pgprot(*(pud_t *)kpte);
282 break;
283 default:
284 return;
287 new_prot = old_prot;
288 if (enc)
289 pgprot_val(new_prot) |= _PAGE_ENC;
290 else
291 pgprot_val(new_prot) &= ~_PAGE_ENC;
293 /* If prot is same then do nothing. */
294 if (pgprot_val(old_prot) == pgprot_val(new_prot))
295 return;
297 pa = pfn << page_level_shift(level);
298 size = page_level_size(level);
301 * We are going to perform in-place en-/decryption and change the
302 * physical page attribute from C=1 to C=0 or vice versa. Flush the
303 * caches to ensure that data gets accessed with the correct C-bit.
305 clflush_cache_range(__va(pa), size);
307 /* Encrypt/decrypt the contents in-place */
308 if (enc)
309 sme_early_encrypt(pa, size);
310 else
311 sme_early_decrypt(pa, size);
313 /* Change the page encryption mask. */
314 new_pte = pfn_pte(pfn, new_prot);
315 set_pte_atomic(kpte, new_pte);
318 static int __init early_set_memory_enc_dec(unsigned long vaddr,
319 unsigned long size, bool enc)
321 unsigned long vaddr_end, vaddr_next;
322 unsigned long psize, pmask;
323 int split_page_size_mask;
324 int level, ret;
325 pte_t *kpte;
327 vaddr_next = vaddr;
328 vaddr_end = vaddr + size;
330 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
331 kpte = lookup_address(vaddr, &level);
332 if (!kpte || pte_none(*kpte)) {
333 ret = 1;
334 goto out;
337 if (level == PG_LEVEL_4K) {
338 __set_clr_pte_enc(kpte, level, enc);
339 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
340 continue;
343 psize = page_level_size(level);
344 pmask = page_level_mask(level);
347 * Check whether we can change the large page in one go.
348 * We request a split when the address is not aligned and
349 * the number of pages to set/clear encryption bit is smaller
350 * than the number of pages in the large page.
352 if (vaddr == (vaddr & pmask) &&
353 ((vaddr_end - vaddr) >= psize)) {
354 __set_clr_pte_enc(kpte, level, enc);
355 vaddr_next = (vaddr & pmask) + psize;
356 continue;
360 * The virtual address is part of a larger page, create the next
361 * level page table mapping (4K or 2M). If it is part of a 2M
362 * page then we request a split of the large page into 4K
363 * chunks. A 1GB large page is split into 2M pages, resp.
365 if (level == PG_LEVEL_2M)
366 split_page_size_mask = 0;
367 else
368 split_page_size_mask = 1 << PG_LEVEL_2M;
370 kernel_physical_mapping_init(__pa(vaddr & pmask),
371 __pa((vaddr_end & pmask) + psize),
372 split_page_size_mask);
375 ret = 0;
377 out:
378 __flush_tlb_all();
379 return ret;
382 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
384 return early_set_memory_enc_dec(vaddr, size, false);
387 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
389 return early_set_memory_enc_dec(vaddr, size, true);
393 * SME and SEV are very similar but they are not the same, so there are
394 * times that the kernel will need to distinguish between SME and SEV. The
395 * sme_active() and sev_active() functions are used for this. When a
396 * distinction isn't needed, the mem_encrypt_active() function can be used.
398 * The trampoline code is a good example for this requirement. Before
399 * paging is activated, SME will access all memory as decrypted, but SEV
400 * will access all memory as encrypted. So, when APs are being brought
401 * up under SME the trampoline area cannot be encrypted, whereas under SEV
402 * the trampoline area must be encrypted.
404 bool sme_active(void)
406 return sme_me_mask && !sev_enabled;
408 EXPORT_SYMBOL(sme_active);
410 bool sev_active(void)
412 return sme_me_mask && sev_enabled;
414 EXPORT_SYMBOL(sev_active);
416 static const struct dma_map_ops sev_dma_ops = {
417 .alloc = sev_alloc,
418 .free = sev_free,
419 .map_page = swiotlb_map_page,
420 .unmap_page = swiotlb_unmap_page,
421 .map_sg = swiotlb_map_sg_attrs,
422 .unmap_sg = swiotlb_unmap_sg_attrs,
423 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
424 .sync_single_for_device = swiotlb_sync_single_for_device,
425 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
426 .sync_sg_for_device = swiotlb_sync_sg_for_device,
427 .mapping_error = swiotlb_dma_mapping_error,
430 /* Architecture __weak replacement functions */
431 void __init mem_encrypt_init(void)
433 if (!sme_me_mask)
434 return;
436 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
437 swiotlb_update_mem_attributes();
440 * With SEV, DMA operations cannot use encryption. New DMA ops
441 * are required in order to mark the DMA areas as decrypted or
442 * to use bounce buffers.
444 if (sev_active())
445 dma_ops = &sev_dma_ops;
448 * With SEV, we need to unroll the rep string I/O instructions.
450 if (sev_active())
451 static_branch_enable(&sev_enable_key);
453 pr_info("AMD %s active\n",
454 sev_active() ? "Secure Encrypted Virtualization (SEV)"
455 : "Secure Memory Encryption (SME)");
458 void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
460 WARN(PAGE_ALIGN(size) != size,
461 "size is not page-aligned (%#lx)\n", size);
463 /* Make the SWIOTLB buffer area decrypted */
464 set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
467 struct sme_populate_pgd_data {
468 void *pgtable_area;
469 pgd_t *pgd;
471 pmdval_t pmd_flags;
472 pteval_t pte_flags;
473 unsigned long paddr;
475 unsigned long vaddr;
476 unsigned long vaddr_end;
479 static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
481 unsigned long pgd_start, pgd_end, pgd_size;
482 pgd_t *pgd_p;
484 pgd_start = ppd->vaddr & PGDIR_MASK;
485 pgd_end = ppd->vaddr_end & PGDIR_MASK;
487 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
489 pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
491 memset(pgd_p, 0, pgd_size);
494 #define PGD_FLAGS _KERNPG_TABLE_NOENC
495 #define P4D_FLAGS _KERNPG_TABLE_NOENC
496 #define PUD_FLAGS _KERNPG_TABLE_NOENC
497 #define PMD_FLAGS _KERNPG_TABLE_NOENC
499 #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
501 #define PMD_FLAGS_DEC PMD_FLAGS_LARGE
502 #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
503 (_PAGE_PAT | _PAGE_PWT))
505 #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
507 #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
509 #define PTE_FLAGS_DEC PTE_FLAGS
510 #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
511 (_PAGE_PAT | _PAGE_PWT))
513 #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
515 static pmd_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
517 pgd_t *pgd_p;
518 p4d_t *p4d_p;
519 pud_t *pud_p;
520 pmd_t *pmd_p;
522 pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
523 if (native_pgd_val(*pgd_p)) {
524 if (IS_ENABLED(CONFIG_X86_5LEVEL))
525 p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
526 else
527 pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
528 } else {
529 pgd_t pgd;
531 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
532 p4d_p = ppd->pgtable_area;
533 memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
534 ppd->pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
536 pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
537 } else {
538 pud_p = ppd->pgtable_area;
539 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
540 ppd->pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
542 pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
544 native_set_pgd(pgd_p, pgd);
547 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
548 p4d_p += p4d_index(ppd->vaddr);
549 if (native_p4d_val(*p4d_p)) {
550 pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
551 } else {
552 p4d_t p4d;
554 pud_p = ppd->pgtable_area;
555 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
556 ppd->pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
558 p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
559 native_set_p4d(p4d_p, p4d);
563 pud_p += pud_index(ppd->vaddr);
564 if (native_pud_val(*pud_p)) {
565 if (native_pud_val(*pud_p) & _PAGE_PSE)
566 return NULL;
568 pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
569 } else {
570 pud_t pud;
572 pmd_p = ppd->pgtable_area;
573 memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
574 ppd->pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
576 pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
577 native_set_pud(pud_p, pud);
580 return pmd_p;
583 static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
585 pmd_t *pmd_p;
587 pmd_p = sme_prepare_pgd(ppd);
588 if (!pmd_p)
589 return;
591 pmd_p += pmd_index(ppd->vaddr);
592 if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
593 native_set_pmd(pmd_p, native_make_pmd(ppd->paddr | ppd->pmd_flags));
596 static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
598 pmd_t *pmd_p;
599 pte_t *pte_p;
601 pmd_p = sme_prepare_pgd(ppd);
602 if (!pmd_p)
603 return;
605 pmd_p += pmd_index(ppd->vaddr);
606 if (native_pmd_val(*pmd_p)) {
607 if (native_pmd_val(*pmd_p) & _PAGE_PSE)
608 return;
610 pte_p = (pte_t *)(native_pmd_val(*pmd_p) & ~PTE_FLAGS_MASK);
611 } else {
612 pmd_t pmd;
614 pte_p = ppd->pgtable_area;
615 memset(pte_p, 0, sizeof(*pte_p) * PTRS_PER_PTE);
616 ppd->pgtable_area += sizeof(*pte_p) * PTRS_PER_PTE;
618 pmd = native_make_pmd((pteval_t)pte_p + PMD_FLAGS);
619 native_set_pmd(pmd_p, pmd);
622 pte_p += pte_index(ppd->vaddr);
623 if (!native_pte_val(*pte_p))
624 native_set_pte(pte_p, native_make_pte(ppd->paddr | ppd->pte_flags));
627 static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
629 while (ppd->vaddr < ppd->vaddr_end) {
630 sme_populate_pgd_large(ppd);
632 ppd->vaddr += PMD_PAGE_SIZE;
633 ppd->paddr += PMD_PAGE_SIZE;
637 static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
639 while (ppd->vaddr < ppd->vaddr_end) {
640 sme_populate_pgd(ppd);
642 ppd->vaddr += PAGE_SIZE;
643 ppd->paddr += PAGE_SIZE;
647 static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
648 pmdval_t pmd_flags, pteval_t pte_flags)
650 unsigned long vaddr_end;
652 ppd->pmd_flags = pmd_flags;
653 ppd->pte_flags = pte_flags;
655 /* Save original end value since we modify the struct value */
656 vaddr_end = ppd->vaddr_end;
658 /* If start is not 2MB aligned, create PTE entries */
659 ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
660 __sme_map_range_pte(ppd);
662 /* Create PMD entries */
663 ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
664 __sme_map_range_pmd(ppd);
666 /* If end is not 2MB aligned, create PTE entries */
667 ppd->vaddr_end = vaddr_end;
668 __sme_map_range_pte(ppd);
671 static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
673 __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
676 static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
678 __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
681 static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
683 __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
686 static unsigned long __init sme_pgtable_calc(unsigned long len)
688 unsigned long p4d_size, pud_size, pmd_size, pte_size;
689 unsigned long total;
692 * Perform a relatively simplistic calculation of the pagetable
693 * entries that are needed. Those mappings will be covered mostly
694 * by 2MB PMD entries so we can conservatively calculate the required
695 * number of P4D, PUD and PMD structures needed to perform the
696 * mappings. For mappings that are not 2MB aligned, PTE mappings
697 * would be needed for the start and end portion of the address range
698 * that fall outside of the 2MB alignment. This results in, at most,
699 * two extra pages to hold PTE entries for each range that is mapped.
700 * Incrementing the count for each covers the case where the addresses
701 * cross entries.
703 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
704 p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
705 p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
706 pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
707 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
708 } else {
709 p4d_size = 0;
710 pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
711 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
713 pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
714 pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
715 pte_size = 2 * sizeof(pte_t) * PTRS_PER_PTE;
717 total = p4d_size + pud_size + pmd_size + pte_size;
720 * Now calculate the added pagetable structures needed to populate
721 * the new pagetables.
723 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
724 p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
725 p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
726 pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
727 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
728 } else {
729 p4d_size = 0;
730 pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
731 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
733 pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
734 pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
736 total += p4d_size + pud_size + pmd_size;
738 return total;
741 void __init __nostackprotector sme_encrypt_kernel(struct boot_params *bp)
743 unsigned long workarea_start, workarea_end, workarea_len;
744 unsigned long execute_start, execute_end, execute_len;
745 unsigned long kernel_start, kernel_end, kernel_len;
746 unsigned long initrd_start, initrd_end, initrd_len;
747 struct sme_populate_pgd_data ppd;
748 unsigned long pgtable_area_len;
749 unsigned long decrypted_base;
751 if (!sme_active())
752 return;
755 * Prepare for encrypting the kernel and initrd by building new
756 * pagetables with the necessary attributes needed to encrypt the
757 * kernel in place.
759 * One range of virtual addresses will map the memory occupied
760 * by the kernel and initrd as encrypted.
762 * Another range of virtual addresses will map the memory occupied
763 * by the kernel and initrd as decrypted and write-protected.
765 * The use of write-protect attribute will prevent any of the
766 * memory from being cached.
769 /* Physical addresses gives us the identity mapped virtual addresses */
770 kernel_start = __pa_symbol(_text);
771 kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
772 kernel_len = kernel_end - kernel_start;
774 initrd_start = 0;
775 initrd_end = 0;
776 initrd_len = 0;
777 #ifdef CONFIG_BLK_DEV_INITRD
778 initrd_len = (unsigned long)bp->hdr.ramdisk_size |
779 ((unsigned long)bp->ext_ramdisk_size << 32);
780 if (initrd_len) {
781 initrd_start = (unsigned long)bp->hdr.ramdisk_image |
782 ((unsigned long)bp->ext_ramdisk_image << 32);
783 initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
784 initrd_len = initrd_end - initrd_start;
786 #endif
788 /* Set the encryption workarea to be immediately after the kernel */
789 workarea_start = kernel_end;
792 * Calculate required number of workarea bytes needed:
793 * executable encryption area size:
794 * stack page (PAGE_SIZE)
795 * encryption routine page (PAGE_SIZE)
796 * intermediate copy buffer (PMD_PAGE_SIZE)
797 * pagetable structures for the encryption of the kernel
798 * pagetable structures for workarea (in case not currently mapped)
800 execute_start = workarea_start;
801 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
802 execute_len = execute_end - execute_start;
805 * One PGD for both encrypted and decrypted mappings and a set of
806 * PUDs and PMDs for each of the encrypted and decrypted mappings.
808 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
809 pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
810 if (initrd_len)
811 pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
813 /* PUDs and PMDs needed in the current pagetables for the workarea */
814 pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
817 * The total workarea includes the executable encryption area and
818 * the pagetable area. The start of the workarea is already 2MB
819 * aligned, align the end of the workarea on a 2MB boundary so that
820 * we don't try to create/allocate PTE entries from the workarea
821 * before it is mapped.
823 workarea_len = execute_len + pgtable_area_len;
824 workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
827 * Set the address to the start of where newly created pagetable
828 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
829 * structures are created when the workarea is added to the current
830 * pagetables and when the new encrypted and decrypted kernel
831 * mappings are populated.
833 ppd.pgtable_area = (void *)execute_end;
836 * Make sure the current pagetable structure has entries for
837 * addressing the workarea.
839 ppd.pgd = (pgd_t *)native_read_cr3_pa();
840 ppd.paddr = workarea_start;
841 ppd.vaddr = workarea_start;
842 ppd.vaddr_end = workarea_end;
843 sme_map_range_decrypted(&ppd);
845 /* Flush the TLB - no globals so cr3 is enough */
846 native_write_cr3(__native_read_cr3());
849 * A new pagetable structure is being built to allow for the kernel
850 * and initrd to be encrypted. It starts with an empty PGD that will
851 * then be populated with new PUDs and PMDs as the encrypted and
852 * decrypted kernel mappings are created.
854 ppd.pgd = ppd.pgtable_area;
855 memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
856 ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
859 * A different PGD index/entry must be used to get different
860 * pagetable entries for the decrypted mapping. Choose the next
861 * PGD index and convert it to a virtual address to be used as
862 * the base of the mapping.
864 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
865 if (initrd_len) {
866 unsigned long check_base;
868 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
869 decrypted_base = max(decrypted_base, check_base);
871 decrypted_base <<= PGDIR_SHIFT;
873 /* Add encrypted kernel (identity) mappings */
874 ppd.paddr = kernel_start;
875 ppd.vaddr = kernel_start;
876 ppd.vaddr_end = kernel_end;
877 sme_map_range_encrypted(&ppd);
879 /* Add decrypted, write-protected kernel (non-identity) mappings */
880 ppd.paddr = kernel_start;
881 ppd.vaddr = kernel_start + decrypted_base;
882 ppd.vaddr_end = kernel_end + decrypted_base;
883 sme_map_range_decrypted_wp(&ppd);
885 if (initrd_len) {
886 /* Add encrypted initrd (identity) mappings */
887 ppd.paddr = initrd_start;
888 ppd.vaddr = initrd_start;
889 ppd.vaddr_end = initrd_end;
890 sme_map_range_encrypted(&ppd);
892 * Add decrypted, write-protected initrd (non-identity) mappings
894 ppd.paddr = initrd_start;
895 ppd.vaddr = initrd_start + decrypted_base;
896 ppd.vaddr_end = initrd_end + decrypted_base;
897 sme_map_range_decrypted_wp(&ppd);
900 /* Add decrypted workarea mappings to both kernel mappings */
901 ppd.paddr = workarea_start;
902 ppd.vaddr = workarea_start;
903 ppd.vaddr_end = workarea_end;
904 sme_map_range_decrypted(&ppd);
906 ppd.paddr = workarea_start;
907 ppd.vaddr = workarea_start + decrypted_base;
908 ppd.vaddr_end = workarea_end + decrypted_base;
909 sme_map_range_decrypted(&ppd);
911 /* Perform the encryption */
912 sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
913 kernel_len, workarea_start, (unsigned long)ppd.pgd);
915 if (initrd_len)
916 sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
917 initrd_len, workarea_start,
918 (unsigned long)ppd.pgd);
921 * At this point we are running encrypted. Remove the mappings for
922 * the decrypted areas - all that is needed for this is to remove
923 * the PGD entry/entries.
925 ppd.vaddr = kernel_start + decrypted_base;
926 ppd.vaddr_end = kernel_end + decrypted_base;
927 sme_clear_pgd(&ppd);
929 if (initrd_len) {
930 ppd.vaddr = initrd_start + decrypted_base;
931 ppd.vaddr_end = initrd_end + decrypted_base;
932 sme_clear_pgd(&ppd);
935 ppd.vaddr = workarea_start + decrypted_base;
936 ppd.vaddr_end = workarea_end + decrypted_base;
937 sme_clear_pgd(&ppd);
939 /* Flush the TLB - no globals so cr3 is enough */
940 native_write_cr3(__native_read_cr3());
943 void __init __nostackprotector sme_enable(struct boot_params *bp)
945 const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
946 unsigned int eax, ebx, ecx, edx;
947 unsigned long feature_mask;
948 bool active_by_default;
949 unsigned long me_mask;
950 char buffer[16];
951 u64 msr;
953 /* Check for the SME/SEV support leaf */
954 eax = 0x80000000;
955 ecx = 0;
956 native_cpuid(&eax, &ebx, &ecx, &edx);
957 if (eax < 0x8000001f)
958 return;
960 #define AMD_SME_BIT BIT(0)
961 #define AMD_SEV_BIT BIT(1)
963 * Set the feature mask (SME or SEV) based on whether we are
964 * running under a hypervisor.
966 eax = 1;
967 ecx = 0;
968 native_cpuid(&eax, &ebx, &ecx, &edx);
969 feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
972 * Check for the SME/SEV feature:
973 * CPUID Fn8000_001F[EAX]
974 * - Bit 0 - Secure Memory Encryption support
975 * - Bit 1 - Secure Encrypted Virtualization support
976 * CPUID Fn8000_001F[EBX]
977 * - Bits 5:0 - Pagetable bit position used to indicate encryption
979 eax = 0x8000001f;
980 ecx = 0;
981 native_cpuid(&eax, &ebx, &ecx, &edx);
982 if (!(eax & feature_mask))
983 return;
985 me_mask = 1UL << (ebx & 0x3f);
987 /* Check if memory encryption is enabled */
988 if (feature_mask == AMD_SME_BIT) {
989 /* For SME, check the SYSCFG MSR */
990 msr = __rdmsr(MSR_K8_SYSCFG);
991 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
992 return;
993 } else {
994 /* For SEV, check the SEV MSR */
995 msr = __rdmsr(MSR_AMD64_SEV);
996 if (!(msr & MSR_AMD64_SEV_ENABLED))
997 return;
999 /* SEV state cannot be controlled by a command line option */
1000 sme_me_mask = me_mask;
1001 sev_enabled = true;
1002 return;
1006 * Fixups have not been applied to phys_base yet and we're running
1007 * identity mapped, so we must obtain the address to the SME command
1008 * line argument data using rip-relative addressing.
1010 asm ("lea sme_cmdline_arg(%%rip), %0"
1011 : "=r" (cmdline_arg)
1012 : "p" (sme_cmdline_arg));
1013 asm ("lea sme_cmdline_on(%%rip), %0"
1014 : "=r" (cmdline_on)
1015 : "p" (sme_cmdline_on));
1016 asm ("lea sme_cmdline_off(%%rip), %0"
1017 : "=r" (cmdline_off)
1018 : "p" (sme_cmdline_off));
1020 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
1021 active_by_default = true;
1022 else
1023 active_by_default = false;
1025 cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
1026 ((u64)bp->ext_cmd_line_ptr << 32));
1028 cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
1030 if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
1031 sme_me_mask = me_mask;
1032 else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
1033 sme_me_mask = 0;
1034 else
1035 sme_me_mask = active_by_default ? me_mask : 0;