x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / arch / x86 / mm / mpx.c
blobe500949bae24534ce7fea11d73bddb2810affa99
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * mpx.c - Memory Protection eXtensions
5 * Copyright (c) 2014, Intel Corporation.
6 * Qiaowei Ren <qiaowei.ren@intel.com>
7 * Dave Hansen <dave.hansen@intel.com>
8 */
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/mm_types.h>
12 #include <linux/syscalls.h>
13 #include <linux/sched/sysctl.h>
15 #include <asm/insn.h>
16 #include <asm/insn-eval.h>
17 #include <asm/mman.h>
18 #include <asm/mmu_context.h>
19 #include <asm/mpx.h>
20 #include <asm/processor.h>
21 #include <asm/fpu/internal.h>
23 #define CREATE_TRACE_POINTS
24 #include <asm/trace/mpx.h>
26 static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
28 if (is_64bit_mm(mm))
29 return MPX_BD_SIZE_BYTES_64;
30 else
31 return MPX_BD_SIZE_BYTES_32;
34 static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
36 if (is_64bit_mm(mm))
37 return MPX_BT_SIZE_BYTES_64;
38 else
39 return MPX_BT_SIZE_BYTES_32;
43 * This is really a simplified "vm_mmap". it only handles MPX
44 * bounds tables (the bounds directory is user-allocated).
46 static unsigned long mpx_mmap(unsigned long len)
48 struct mm_struct *mm = current->mm;
49 unsigned long addr, populate;
51 /* Only bounds table can be allocated here */
52 if (len != mpx_bt_size_bytes(mm))
53 return -EINVAL;
55 down_write(&mm->mmap_sem);
56 addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
57 MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate, NULL);
58 up_write(&mm->mmap_sem);
59 if (populate)
60 mm_populate(addr, populate);
62 return addr;
65 static int mpx_insn_decode(struct insn *insn,
66 struct pt_regs *regs)
68 unsigned char buf[MAX_INSN_SIZE];
69 int x86_64 = !test_thread_flag(TIF_IA32);
70 int not_copied;
71 int nr_copied;
73 not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
74 nr_copied = sizeof(buf) - not_copied;
76 * The decoder _should_ fail nicely if we pass it a short buffer.
77 * But, let's not depend on that implementation detail. If we
78 * did not get anything, just error out now.
80 if (!nr_copied)
81 return -EFAULT;
82 insn_init(insn, buf, nr_copied, x86_64);
83 insn_get_length(insn);
85 * copy_from_user() tries to get as many bytes as we could see in
86 * the largest possible instruction. If the instruction we are
87 * after is shorter than that _and_ we attempt to copy from
88 * something unreadable, we might get a short read. This is OK
89 * as long as the read did not stop in the middle of the
90 * instruction. Check to see if we got a partial instruction.
92 if (nr_copied < insn->length)
93 return -EFAULT;
95 insn_get_opcode(insn);
97 * We only _really_ need to decode bndcl/bndcn/bndcu
98 * Error out on anything else.
100 if (insn->opcode.bytes[0] != 0x0f)
101 goto bad_opcode;
102 if ((insn->opcode.bytes[1] != 0x1a) &&
103 (insn->opcode.bytes[1] != 0x1b))
104 goto bad_opcode;
106 return 0;
107 bad_opcode:
108 return -EINVAL;
112 * If a bounds overflow occurs then a #BR is generated. This
113 * function decodes MPX instructions to get violation address
114 * and set this address into extended struct siginfo.
116 * Note that this is not a super precise way of doing this.
117 * Userspace could have, by the time we get here, written
118 * anything it wants in to the instructions. We can not
119 * trust anything about it. They might not be valid
120 * instructions or might encode invalid registers, etc...
122 * The caller is expected to kfree() the returned siginfo_t.
124 siginfo_t *mpx_generate_siginfo(struct pt_regs *regs)
126 const struct mpx_bndreg_state *bndregs;
127 const struct mpx_bndreg *bndreg;
128 siginfo_t *info = NULL;
129 struct insn insn;
130 uint8_t bndregno;
131 int err;
133 err = mpx_insn_decode(&insn, regs);
134 if (err)
135 goto err_out;
138 * We know at this point that we are only dealing with
139 * MPX instructions.
141 insn_get_modrm(&insn);
142 bndregno = X86_MODRM_REG(insn.modrm.value);
143 if (bndregno > 3) {
144 err = -EINVAL;
145 goto err_out;
147 /* get bndregs field from current task's xsave area */
148 bndregs = get_xsave_field_ptr(XFEATURE_MASK_BNDREGS);
149 if (!bndregs) {
150 err = -EINVAL;
151 goto err_out;
153 /* now go select the individual register in the set of 4 */
154 bndreg = &bndregs->bndreg[bndregno];
156 info = kzalloc(sizeof(*info), GFP_KERNEL);
157 if (!info) {
158 err = -ENOMEM;
159 goto err_out;
162 * The registers are always 64-bit, but the upper 32
163 * bits are ignored in 32-bit mode. Also, note that the
164 * upper bounds are architecturally represented in 1's
165 * complement form.
167 * The 'unsigned long' cast is because the compiler
168 * complains when casting from integers to different-size
169 * pointers.
171 info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
172 info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
173 info->si_addr_lsb = 0;
174 info->si_signo = SIGSEGV;
175 info->si_errno = 0;
176 info->si_code = SEGV_BNDERR;
177 info->si_addr = insn_get_addr_ref(&insn, regs);
179 * We were not able to extract an address from the instruction,
180 * probably because there was something invalid in it.
182 if (info->si_addr == (void __user *)-1) {
183 err = -EINVAL;
184 goto err_out;
186 trace_mpx_bounds_register_exception(info->si_addr, bndreg);
187 return info;
188 err_out:
189 /* info might be NULL, but kfree() handles that */
190 kfree(info);
191 return ERR_PTR(err);
194 static __user void *mpx_get_bounds_dir(void)
196 const struct mpx_bndcsr *bndcsr;
198 if (!cpu_feature_enabled(X86_FEATURE_MPX))
199 return MPX_INVALID_BOUNDS_DIR;
202 * The bounds directory pointer is stored in a register
203 * only accessible if we first do an xsave.
205 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
206 if (!bndcsr)
207 return MPX_INVALID_BOUNDS_DIR;
210 * Make sure the register looks valid by checking the
211 * enable bit.
213 if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
214 return MPX_INVALID_BOUNDS_DIR;
217 * Lastly, mask off the low bits used for configuration
218 * flags, and return the address of the bounds table.
220 return (void __user *)(unsigned long)
221 (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
224 int mpx_enable_management(void)
226 void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
227 struct mm_struct *mm = current->mm;
228 int ret = 0;
231 * runtime in the userspace will be responsible for allocation of
232 * the bounds directory. Then, it will save the base of the bounds
233 * directory into XSAVE/XRSTOR Save Area and enable MPX through
234 * XRSTOR instruction.
236 * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
237 * expected to be relatively expensive. Storing the bounds
238 * directory here means that we do not have to do xsave in the
239 * unmap path; we can just use mm->context.bd_addr instead.
241 bd_base = mpx_get_bounds_dir();
242 down_write(&mm->mmap_sem);
244 /* MPX doesn't support addresses above 47 bits yet. */
245 if (find_vma(mm, DEFAULT_MAP_WINDOW)) {
246 pr_warn_once("%s (%d): MPX cannot handle addresses "
247 "above 47-bits. Disabling.",
248 current->comm, current->pid);
249 ret = -ENXIO;
250 goto out;
252 mm->context.bd_addr = bd_base;
253 if (mm->context.bd_addr == MPX_INVALID_BOUNDS_DIR)
254 ret = -ENXIO;
255 out:
256 up_write(&mm->mmap_sem);
257 return ret;
260 int mpx_disable_management(void)
262 struct mm_struct *mm = current->mm;
264 if (!cpu_feature_enabled(X86_FEATURE_MPX))
265 return -ENXIO;
267 down_write(&mm->mmap_sem);
268 mm->context.bd_addr = MPX_INVALID_BOUNDS_DIR;
269 up_write(&mm->mmap_sem);
270 return 0;
273 static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
274 unsigned long *curval,
275 unsigned long __user *addr,
276 unsigned long old_val, unsigned long new_val)
278 int ret;
280 * user_atomic_cmpxchg_inatomic() actually uses sizeof()
281 * the pointer that we pass to it to figure out how much
282 * data to cmpxchg. We have to be careful here not to
283 * pass a pointer to a 64-bit data type when we only want
284 * a 32-bit copy.
286 if (is_64bit_mm(mm)) {
287 ret = user_atomic_cmpxchg_inatomic(curval,
288 addr, old_val, new_val);
289 } else {
290 u32 uninitialized_var(curval_32);
291 u32 old_val_32 = old_val;
292 u32 new_val_32 = new_val;
293 u32 __user *addr_32 = (u32 __user *)addr;
295 ret = user_atomic_cmpxchg_inatomic(&curval_32,
296 addr_32, old_val_32, new_val_32);
297 *curval = curval_32;
299 return ret;
303 * With 32-bit mode, a bounds directory is 4MB, and the size of each
304 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
305 * and the size of each bounds table is 4MB.
307 static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
309 unsigned long expected_old_val = 0;
310 unsigned long actual_old_val = 0;
311 unsigned long bt_addr;
312 unsigned long bd_new_entry;
313 int ret = 0;
316 * Carve the virtual space out of userspace for the new
317 * bounds table:
319 bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
320 if (IS_ERR((void *)bt_addr))
321 return PTR_ERR((void *)bt_addr);
323 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
325 bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
328 * Go poke the address of the new bounds table in to the
329 * bounds directory entry out in userspace memory. Note:
330 * we may race with another CPU instantiating the same table.
331 * In that case the cmpxchg will see an unexpected
332 * 'actual_old_val'.
334 * This can fault, but that's OK because we do not hold
335 * mmap_sem at this point, unlike some of the other part
336 * of the MPX code that have to pagefault_disable().
338 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry,
339 expected_old_val, bd_new_entry);
340 if (ret)
341 goto out_unmap;
344 * The user_atomic_cmpxchg_inatomic() will only return nonzero
345 * for faults, *not* if the cmpxchg itself fails. Now we must
346 * verify that the cmpxchg itself completed successfully.
349 * We expected an empty 'expected_old_val', but instead found
350 * an apparently valid entry. Assume we raced with another
351 * thread to instantiate this table and desclare succecss.
353 if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
354 ret = 0;
355 goto out_unmap;
358 * We found a non-empty bd_entry but it did not have the
359 * VALID_FLAG set. Return an error which will result in
360 * a SEGV since this probably means that somebody scribbled
361 * some invalid data in to a bounds table.
363 if (expected_old_val != actual_old_val) {
364 ret = -EINVAL;
365 goto out_unmap;
367 trace_mpx_new_bounds_table(bt_addr);
368 return 0;
369 out_unmap:
370 vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
371 return ret;
375 * When a BNDSTX instruction attempts to save bounds to a bounds
376 * table, it will first attempt to look up the table in the
377 * first-level bounds directory. If it does not find a table in
378 * the directory, a #BR is generated and we get here in order to
379 * allocate a new table.
381 * With 32-bit mode, the size of BD is 4MB, and the size of each
382 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
383 * and the size of each bound table is 4MB.
385 static int do_mpx_bt_fault(void)
387 unsigned long bd_entry, bd_base;
388 const struct mpx_bndcsr *bndcsr;
389 struct mm_struct *mm = current->mm;
391 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
392 if (!bndcsr)
393 return -EINVAL;
395 * Mask off the preserve and enable bits
397 bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
399 * The hardware provides the address of the missing or invalid
400 * entry via BNDSTATUS, so we don't have to go look it up.
402 bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
404 * Make sure the directory entry is within where we think
405 * the directory is.
407 if ((bd_entry < bd_base) ||
408 (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
409 return -EINVAL;
411 return allocate_bt(mm, (long __user *)bd_entry);
414 int mpx_handle_bd_fault(void)
417 * Userspace never asked us to manage the bounds tables,
418 * so refuse to help.
420 if (!kernel_managing_mpx_tables(current->mm))
421 return -EINVAL;
423 return do_mpx_bt_fault();
427 * A thin wrapper around get_user_pages(). Returns 0 if the
428 * fault was resolved or -errno if not.
430 static int mpx_resolve_fault(long __user *addr, int write)
432 long gup_ret;
433 int nr_pages = 1;
435 gup_ret = get_user_pages((unsigned long)addr, nr_pages,
436 write ? FOLL_WRITE : 0, NULL, NULL);
438 * get_user_pages() returns number of pages gotten.
439 * 0 means we failed to fault in and get anything,
440 * probably because 'addr' is bad.
442 if (!gup_ret)
443 return -EFAULT;
444 /* Other error, return it */
445 if (gup_ret < 0)
446 return gup_ret;
447 /* must have gup'd a page and gup_ret>0, success */
448 return 0;
451 static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
452 unsigned long bd_entry)
454 unsigned long bt_addr = bd_entry;
455 int align_to_bytes;
457 * Bit 0 in a bt_entry is always the valid bit.
459 bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
461 * Tables are naturally aligned at 8-byte boundaries
462 * on 64-bit and 4-byte boundaries on 32-bit. The
463 * documentation makes it appear that the low bits
464 * are ignored by the hardware, so we do the same.
466 if (is_64bit_mm(mm))
467 align_to_bytes = 8;
468 else
469 align_to_bytes = 4;
470 bt_addr &= ~(align_to_bytes-1);
471 return bt_addr;
475 * We only want to do a 4-byte get_user() on 32-bit. Otherwise,
476 * we might run off the end of the bounds table if we are on
477 * a 64-bit kernel and try to get 8 bytes.
479 static int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
480 long __user *bd_entry_ptr)
482 u32 bd_entry_32;
483 int ret;
485 if (is_64bit_mm(mm))
486 return get_user(*bd_entry_ret, bd_entry_ptr);
489 * Note that get_user() uses the type of the *pointer* to
490 * establish the size of the get, not the destination.
492 ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
493 *bd_entry_ret = bd_entry_32;
494 return ret;
498 * Get the base of bounds tables pointed by specific bounds
499 * directory entry.
501 static int get_bt_addr(struct mm_struct *mm,
502 long __user *bd_entry_ptr,
503 unsigned long *bt_addr_result)
505 int ret;
506 int valid_bit;
507 unsigned long bd_entry;
508 unsigned long bt_addr;
510 if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
511 return -EFAULT;
513 while (1) {
514 int need_write = 0;
516 pagefault_disable();
517 ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
518 pagefault_enable();
519 if (!ret)
520 break;
521 if (ret == -EFAULT)
522 ret = mpx_resolve_fault(bd_entry_ptr, need_write);
524 * If we could not resolve the fault, consider it
525 * userspace's fault and error out.
527 if (ret)
528 return ret;
531 valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
532 bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
535 * When the kernel is managing bounds tables, a bounds directory
536 * entry will either have a valid address (plus the valid bit)
537 * *OR* be completely empty. If we see a !valid entry *and* some
538 * data in the address field, we know something is wrong. This
539 * -EINVAL return will cause a SIGSEGV.
541 if (!valid_bit && bt_addr)
542 return -EINVAL;
544 * Do we have an completely zeroed bt entry? That is OK. It
545 * just means there was no bounds table for this memory. Make
546 * sure to distinguish this from -EINVAL, which will cause
547 * a SEGV.
549 if (!valid_bit)
550 return -ENOENT;
552 *bt_addr_result = bt_addr;
553 return 0;
556 static inline int bt_entry_size_bytes(struct mm_struct *mm)
558 if (is_64bit_mm(mm))
559 return MPX_BT_ENTRY_BYTES_64;
560 else
561 return MPX_BT_ENTRY_BYTES_32;
565 * Take a virtual address and turns it in to the offset in bytes
566 * inside of the bounds table where the bounds table entry
567 * controlling 'addr' can be found.
569 static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
570 unsigned long addr)
572 unsigned long bt_table_nr_entries;
573 unsigned long offset = addr;
575 if (is_64bit_mm(mm)) {
576 /* Bottom 3 bits are ignored on 64-bit */
577 offset >>= 3;
578 bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
579 } else {
580 /* Bottom 2 bits are ignored on 32-bit */
581 offset >>= 2;
582 bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
585 * We know the size of the table in to which we are
586 * indexing, and we have eliminated all the low bits
587 * which are ignored for indexing.
589 * Mask out all the high bits which we do not need
590 * to index in to the table. Note that the tables
591 * are always powers of two so this gives us a proper
592 * mask.
594 offset &= (bt_table_nr_entries-1);
596 * We now have an entry offset in terms of *entries* in
597 * the table. We need to scale it back up to bytes.
599 offset *= bt_entry_size_bytes(mm);
600 return offset;
604 * How much virtual address space does a single bounds
605 * directory entry cover?
607 * Note, we need a long long because 4GB doesn't fit in
608 * to a long on 32-bit.
610 static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
612 unsigned long long virt_space;
613 unsigned long long GB = (1ULL << 30);
616 * This covers 32-bit emulation as well as 32-bit kernels
617 * running on 64-bit hardware.
619 if (!is_64bit_mm(mm))
620 return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
623 * 'x86_virt_bits' returns what the hardware is capable
624 * of, and returns the full >32-bit address space when
625 * running 32-bit kernels on 64-bit hardware.
627 virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
628 return virt_space / MPX_BD_NR_ENTRIES_64;
632 * Free the backing physical pages of bounds table 'bt_addr'.
633 * Assume start...end is within that bounds table.
635 static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
636 unsigned long bt_addr,
637 unsigned long start_mapping, unsigned long end_mapping)
639 struct vm_area_struct *vma;
640 unsigned long addr, len;
641 unsigned long start;
642 unsigned long end;
645 * if we 'end' on a boundary, the offset will be 0 which
646 * is not what we want. Back it up a byte to get the
647 * last bt entry. Then once we have the entry itself,
648 * move 'end' back up by the table entry size.
650 start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
651 end = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
653 * Move end back up by one entry. Among other things
654 * this ensures that it remains page-aligned and does
655 * not screw up zap_page_range()
657 end += bt_entry_size_bytes(mm);
660 * Find the first overlapping vma. If vma->vm_start > start, there
661 * will be a hole in the bounds table. This -EINVAL return will
662 * cause a SIGSEGV.
664 vma = find_vma(mm, start);
665 if (!vma || vma->vm_start > start)
666 return -EINVAL;
669 * A NUMA policy on a VM_MPX VMA could cause this bounds table to
670 * be split. So we need to look across the entire 'start -> end'
671 * range of this bounds table, find all of the VM_MPX VMAs, and
672 * zap only those.
674 addr = start;
675 while (vma && vma->vm_start < end) {
677 * We followed a bounds directory entry down
678 * here. If we find a non-MPX VMA, that's bad,
679 * so stop immediately and return an error. This
680 * probably results in a SIGSEGV.
682 if (!(vma->vm_flags & VM_MPX))
683 return -EINVAL;
685 len = min(vma->vm_end, end) - addr;
686 zap_page_range(vma, addr, len);
687 trace_mpx_unmap_zap(addr, addr+len);
689 vma = vma->vm_next;
690 addr = vma->vm_start;
692 return 0;
695 static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
696 unsigned long addr)
699 * There are several ways to derive the bd offsets. We
700 * use the following approach here:
701 * 1. We know the size of the virtual address space
702 * 2. We know the number of entries in a bounds table
703 * 3. We know that each entry covers a fixed amount of
704 * virtual address space.
705 * So, we can just divide the virtual address by the
706 * virtual space used by one entry to determine which
707 * entry "controls" the given virtual address.
709 if (is_64bit_mm(mm)) {
710 int bd_entry_size = 8; /* 64-bit pointer */
712 * Take the 64-bit addressing hole in to account.
714 addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
715 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
716 } else {
717 int bd_entry_size = 4; /* 32-bit pointer */
719 * 32-bit has no hole so this case needs no mask
721 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
724 * The two return calls above are exact copies. If we
725 * pull out a single copy and put it in here, gcc won't
726 * realize that we're doing a power-of-2 divide and use
727 * shifts. It uses a real divide. If we put them up
728 * there, it manages to figure it out (gcc 4.8.3).
732 static int unmap_entire_bt(struct mm_struct *mm,
733 long __user *bd_entry, unsigned long bt_addr)
735 unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
736 unsigned long uninitialized_var(actual_old_val);
737 int ret;
739 while (1) {
740 int need_write = 1;
741 unsigned long cleared_bd_entry = 0;
743 pagefault_disable();
744 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
745 bd_entry, expected_old_val, cleared_bd_entry);
746 pagefault_enable();
747 if (!ret)
748 break;
749 if (ret == -EFAULT)
750 ret = mpx_resolve_fault(bd_entry, need_write);
752 * If we could not resolve the fault, consider it
753 * userspace's fault and error out.
755 if (ret)
756 return ret;
759 * The cmpxchg was performed, check the results.
761 if (actual_old_val != expected_old_val) {
763 * Someone else raced with us to unmap the table.
764 * That is OK, since we were both trying to do
765 * the same thing. Declare success.
767 if (!actual_old_val)
768 return 0;
770 * Something messed with the bounds directory
771 * entry. We hold mmap_sem for read or write
772 * here, so it could not be a _new_ bounds table
773 * that someone just allocated. Something is
774 * wrong, so pass up the error and SIGSEGV.
776 return -EINVAL;
779 * Note, we are likely being called under do_munmap() already. To
780 * avoid recursion, do_munmap() will check whether it comes
781 * from one bounds table through VM_MPX flag.
783 return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm), NULL);
786 static int try_unmap_single_bt(struct mm_struct *mm,
787 unsigned long start, unsigned long end)
789 struct vm_area_struct *next;
790 struct vm_area_struct *prev;
792 * "bta" == Bounds Table Area: the area controlled by the
793 * bounds table that we are unmapping.
795 unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
796 unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
797 unsigned long uninitialized_var(bt_addr);
798 void __user *bde_vaddr;
799 int ret;
801 * We already unlinked the VMAs from the mm's rbtree so 'start'
802 * is guaranteed to be in a hole. This gets us the first VMA
803 * before the hole in to 'prev' and the next VMA after the hole
804 * in to 'next'.
806 next = find_vma_prev(mm, start, &prev);
808 * Do not count other MPX bounds table VMAs as neighbors.
809 * Although theoretically possible, we do not allow bounds
810 * tables for bounds tables so our heads do not explode.
811 * If we count them as neighbors here, we may end up with
812 * lots of tables even though we have no actual table
813 * entries in use.
815 while (next && (next->vm_flags & VM_MPX))
816 next = next->vm_next;
817 while (prev && (prev->vm_flags & VM_MPX))
818 prev = prev->vm_prev;
820 * We know 'start' and 'end' lie within an area controlled
821 * by a single bounds table. See if there are any other
822 * VMAs controlled by that bounds table. If there are not
823 * then we can "expand" the are we are unmapping to possibly
824 * cover the entire table.
826 next = find_vma_prev(mm, start, &prev);
827 if ((!prev || prev->vm_end <= bta_start_vaddr) &&
828 (!next || next->vm_start >= bta_end_vaddr)) {
830 * No neighbor VMAs controlled by same bounds
831 * table. Try to unmap the whole thing
833 start = bta_start_vaddr;
834 end = bta_end_vaddr;
837 bde_vaddr = mm->context.bd_addr + mpx_get_bd_entry_offset(mm, start);
838 ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
840 * No bounds table there, so nothing to unmap.
842 if (ret == -ENOENT) {
843 ret = 0;
844 return 0;
846 if (ret)
847 return ret;
849 * We are unmapping an entire table. Either because the
850 * unmap that started this whole process was large enough
851 * to cover an entire table, or that the unmap was small
852 * but was the area covered by a bounds table.
854 if ((start == bta_start_vaddr) &&
855 (end == bta_end_vaddr))
856 return unmap_entire_bt(mm, bde_vaddr, bt_addr);
857 return zap_bt_entries_mapping(mm, bt_addr, start, end);
860 static int mpx_unmap_tables(struct mm_struct *mm,
861 unsigned long start, unsigned long end)
863 unsigned long one_unmap_start;
864 trace_mpx_unmap_search(start, end);
866 one_unmap_start = start;
867 while (one_unmap_start < end) {
868 int ret;
869 unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
870 bd_entry_virt_space(mm));
871 unsigned long one_unmap_end = end;
873 * if the end is beyond the current bounds table,
874 * move it back so we only deal with a single one
875 * at a time
877 if (one_unmap_end > next_unmap_start)
878 one_unmap_end = next_unmap_start;
879 ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
880 if (ret)
881 return ret;
883 one_unmap_start = next_unmap_start;
885 return 0;
889 * Free unused bounds tables covered in a virtual address region being
890 * munmap()ed. Assume end > start.
892 * This function will be called by do_munmap(), and the VMAs covering
893 * the virtual address region start...end have already been split if
894 * necessary, and the 'vma' is the first vma in this range (start -> end).
896 void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
897 unsigned long start, unsigned long end)
899 int ret;
902 * Refuse to do anything unless userspace has asked
903 * the kernel to help manage the bounds tables,
905 if (!kernel_managing_mpx_tables(current->mm))
906 return;
908 * This will look across the entire 'start -> end' range,
909 * and find all of the non-VM_MPX VMAs.
911 * To avoid recursion, if a VM_MPX vma is found in the range
912 * (start->end), we will not continue follow-up work. This
913 * recursion represents having bounds tables for bounds tables,
914 * which should not occur normally. Being strict about it here
915 * helps ensure that we do not have an exploitable stack overflow.
917 do {
918 if (vma->vm_flags & VM_MPX)
919 return;
920 vma = vma->vm_next;
921 } while (vma && vma->vm_start < end);
923 ret = mpx_unmap_tables(mm, start, end);
924 if (ret)
925 force_sig(SIGSEGV, current);
928 /* MPX cannot handle addresses above 47 bits yet. */
929 unsigned long mpx_unmapped_area_check(unsigned long addr, unsigned long len,
930 unsigned long flags)
932 if (!kernel_managing_mpx_tables(current->mm))
933 return addr;
934 if (addr + len <= DEFAULT_MAP_WINDOW)
935 return addr;
936 if (flags & MAP_FIXED)
937 return -ENOMEM;
940 * Requested len is larger than the whole area we're allowed to map in.
941 * Resetting hinting address wouldn't do much good -- fail early.
943 if (len > DEFAULT_MAP_WINDOW)
944 return -ENOMEM;
946 /* Look for unmap area within DEFAULT_MAP_WINDOW */
947 return 0;