2 * DMA coherent memory allocation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
9 * Copyright (C) 2002 - 2005 Tensilica Inc.
10 * Copyright (C) 2015 Cadence Design Systems Inc.
12 * Based on version for i386.
14 * Chris Zankel <chris@zankel.net>
15 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
18 #include <linux/dma-contiguous.h>
19 #include <linux/gfp.h>
20 #include <linux/highmem.h>
22 #include <linux/module.h>
23 #include <linux/pci.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <asm/cacheflush.h>
29 static void do_cache_op(dma_addr_t dma_handle
, size_t size
,
30 void (*fn
)(unsigned long, unsigned long))
32 unsigned long off
= dma_handle
& (PAGE_SIZE
- 1);
33 unsigned long pfn
= PFN_DOWN(dma_handle
);
34 struct page
*page
= pfn_to_page(pfn
);
36 if (!PageHighMem(page
))
37 fn((unsigned long)bus_to_virt(dma_handle
), size
);
40 size_t sz
= min_t(size_t, size
, PAGE_SIZE
- off
);
41 void *vaddr
= kmap_atomic(page
);
43 fn((unsigned long)vaddr
+ off
, sz
);
51 static void xtensa_sync_single_for_cpu(struct device
*dev
,
52 dma_addr_t dma_handle
, size_t size
,
53 enum dma_data_direction dir
)
56 case DMA_BIDIRECTIONAL
:
58 do_cache_op(dma_handle
, size
, __invalidate_dcache_range
);
70 static void xtensa_sync_single_for_device(struct device
*dev
,
71 dma_addr_t dma_handle
, size_t size
,
72 enum dma_data_direction dir
)
75 case DMA_BIDIRECTIONAL
:
77 if (XCHAL_DCACHE_IS_WRITEBACK
)
78 do_cache_op(dma_handle
, size
, __flush_dcache_range
);
90 static void xtensa_sync_sg_for_cpu(struct device
*dev
,
91 struct scatterlist
*sg
, int nents
,
92 enum dma_data_direction dir
)
94 struct scatterlist
*s
;
97 for_each_sg(sg
, s
, nents
, i
) {
98 xtensa_sync_single_for_cpu(dev
, sg_dma_address(s
),
103 static void xtensa_sync_sg_for_device(struct device
*dev
,
104 struct scatterlist
*sg
, int nents
,
105 enum dma_data_direction dir
)
107 struct scatterlist
*s
;
110 for_each_sg(sg
, s
, nents
, i
) {
111 xtensa_sync_single_for_device(dev
, sg_dma_address(s
),
117 * Note: We assume that the full memory space is always mapped to 'kseg'
118 * Otherwise we have to use page attributes (not implemented).
121 static void *xtensa_dma_alloc(struct device
*dev
, size_t size
,
122 dma_addr_t
*handle
, gfp_t flag
,
126 unsigned long uncached
= 0;
127 unsigned long count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
128 struct page
*page
= NULL
;
130 /* ignore region speicifiers */
132 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
);
134 if (dev
== NULL
|| (dev
->coherent_dma_mask
< 0xffffffff))
137 if (gfpflags_allow_blocking(flag
))
138 page
= dma_alloc_from_contiguous(dev
, count
, get_order(size
),
142 page
= alloc_pages(flag
, get_order(size
));
147 ret
= (unsigned long)page_address(page
);
149 /* We currently don't support coherent memory outside KSEG */
151 BUG_ON(ret
< XCHAL_KSEG_CACHED_VADDR
||
152 ret
> XCHAL_KSEG_CACHED_VADDR
+ XCHAL_KSEG_SIZE
- 1);
154 uncached
= ret
+ XCHAL_KSEG_BYPASS_VADDR
- XCHAL_KSEG_CACHED_VADDR
;
155 *handle
= virt_to_bus((void *)ret
);
156 __invalidate_dcache_range(ret
, size
);
158 return (void *)uncached
;
161 static void xtensa_dma_free(struct device
*dev
, size_t size
, void *vaddr
,
162 dma_addr_t dma_handle
, unsigned long attrs
)
164 unsigned long addr
= (unsigned long)vaddr
+
165 XCHAL_KSEG_CACHED_VADDR
- XCHAL_KSEG_BYPASS_VADDR
;
166 struct page
*page
= virt_to_page(addr
);
167 unsigned long count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
169 BUG_ON(addr
< XCHAL_KSEG_CACHED_VADDR
||
170 addr
> XCHAL_KSEG_CACHED_VADDR
+ XCHAL_KSEG_SIZE
- 1);
172 if (!dma_release_from_contiguous(dev
, page
, count
))
173 __free_pages(page
, get_order(size
));
176 static dma_addr_t
xtensa_map_page(struct device
*dev
, struct page
*page
,
177 unsigned long offset
, size_t size
,
178 enum dma_data_direction dir
,
181 dma_addr_t dma_handle
= page_to_phys(page
) + offset
;
183 if (!(attrs
& DMA_ATTR_SKIP_CPU_SYNC
))
184 xtensa_sync_single_for_device(dev
, dma_handle
, size
, dir
);
189 static void xtensa_unmap_page(struct device
*dev
, dma_addr_t dma_handle
,
190 size_t size
, enum dma_data_direction dir
,
193 if (!(attrs
& DMA_ATTR_SKIP_CPU_SYNC
))
194 xtensa_sync_single_for_cpu(dev
, dma_handle
, size
, dir
);
197 static int xtensa_map_sg(struct device
*dev
, struct scatterlist
*sg
,
198 int nents
, enum dma_data_direction dir
,
201 struct scatterlist
*s
;
204 for_each_sg(sg
, s
, nents
, i
) {
205 s
->dma_address
= xtensa_map_page(dev
, sg_page(s
), s
->offset
,
206 s
->length
, dir
, attrs
);
211 static void xtensa_unmap_sg(struct device
*dev
,
212 struct scatterlist
*sg
, int nents
,
213 enum dma_data_direction dir
,
216 struct scatterlist
*s
;
219 for_each_sg(sg
, s
, nents
, i
) {
220 xtensa_unmap_page(dev
, sg_dma_address(s
),
221 sg_dma_len(s
), dir
, attrs
);
225 int xtensa_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
230 const struct dma_map_ops xtensa_dma_map_ops
= {
231 .alloc
= xtensa_dma_alloc
,
232 .free
= xtensa_dma_free
,
233 .map_page
= xtensa_map_page
,
234 .unmap_page
= xtensa_unmap_page
,
235 .map_sg
= xtensa_map_sg
,
236 .unmap_sg
= xtensa_unmap_sg
,
237 .sync_single_for_cpu
= xtensa_sync_single_for_cpu
,
238 .sync_single_for_device
= xtensa_sync_single_for_device
,
239 .sync_sg_for_cpu
= xtensa_sync_sg_for_cpu
,
240 .sync_sg_for_device
= xtensa_sync_sg_for_device
,
241 .mapping_error
= xtensa_dma_mapping_error
,
243 EXPORT_SYMBOL(xtensa_dma_map_ops
);
245 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
247 static int __init
xtensa_dma_init(void)
249 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
252 fs_initcall(xtensa_dma_init
);