1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/file.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * ext4 fs regular file handling primitives
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
19 * (jj@sunsite.ms.mff.cuni.cz)
22 #include <linux/time.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
33 #include "ext4_jbd2.h"
38 static ssize_t
ext4_dax_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
40 struct inode
*inode
= file_inode(iocb
->ki_filp
);
43 if (!inode_trylock_shared(inode
)) {
44 if (iocb
->ki_flags
& IOCB_NOWAIT
)
46 inode_lock_shared(inode
);
49 * Recheck under inode lock - at this point we are sure it cannot
53 inode_unlock_shared(inode
);
54 /* Fallback to buffered IO in case we cannot support DAX */
55 return generic_file_read_iter(iocb
, to
);
57 ret
= dax_iomap_rw(iocb
, to
, &ext4_iomap_ops
);
58 inode_unlock_shared(inode
);
60 file_accessed(iocb
->ki_filp
);
65 static ssize_t
ext4_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
67 if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb
->ki_filp
)->i_sb
))))
70 if (!iov_iter_count(to
))
71 return 0; /* skip atime */
74 if (IS_DAX(file_inode(iocb
->ki_filp
)))
75 return ext4_dax_read_iter(iocb
, to
);
77 return generic_file_read_iter(iocb
, to
);
81 * Called when an inode is released. Note that this is different
82 * from ext4_file_open: open gets called at every open, but release
83 * gets called only when /all/ the files are closed.
85 static int ext4_release_file(struct inode
*inode
, struct file
*filp
)
87 if (ext4_test_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
)) {
88 ext4_alloc_da_blocks(inode
);
89 ext4_clear_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
91 /* if we are the last writer on the inode, drop the block reservation */
92 if ((filp
->f_mode
& FMODE_WRITE
) &&
93 (atomic_read(&inode
->i_writecount
) == 1) &&
94 !EXT4_I(inode
)->i_reserved_data_blocks
)
96 down_write(&EXT4_I(inode
)->i_data_sem
);
97 ext4_discard_preallocations(inode
);
98 up_write(&EXT4_I(inode
)->i_data_sem
);
100 if (is_dx(inode
) && filp
->private_data
)
101 ext4_htree_free_dir_info(filp
->private_data
);
106 static void ext4_unwritten_wait(struct inode
*inode
)
108 wait_queue_head_t
*wq
= ext4_ioend_wq(inode
);
110 wait_event(*wq
, (atomic_read(&EXT4_I(inode
)->i_unwritten
) == 0));
114 * This tests whether the IO in question is block-aligned or not.
115 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
116 * are converted to written only after the IO is complete. Until they are
117 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
118 * it needs to zero out portions of the start and/or end block. If 2 AIO
119 * threads are at work on the same unwritten block, they must be synchronized
120 * or one thread will zero the other's data, causing corruption.
123 ext4_unaligned_aio(struct inode
*inode
, struct iov_iter
*from
, loff_t pos
)
125 struct super_block
*sb
= inode
->i_sb
;
126 int blockmask
= sb
->s_blocksize
- 1;
128 if (pos
>= i_size_read(inode
))
131 if ((pos
| iov_iter_alignment(from
)) & blockmask
)
137 /* Is IO overwriting allocated and initialized blocks? */
138 static bool ext4_overwrite_io(struct inode
*inode
, loff_t pos
, loff_t len
)
140 struct ext4_map_blocks map
;
141 unsigned int blkbits
= inode
->i_blkbits
;
144 if (pos
+ len
> i_size_read(inode
))
147 map
.m_lblk
= pos
>> blkbits
;
148 map
.m_len
= EXT4_MAX_BLOCKS(len
, pos
, blkbits
);
151 err
= ext4_map_blocks(NULL
, inode
, &map
, 0);
153 * 'err==len' means that all of the blocks have been preallocated,
154 * regardless of whether they have been initialized or not. To exclude
155 * unwritten extents, we need to check m_flags.
157 return err
== blklen
&& (map
.m_flags
& EXT4_MAP_MAPPED
);
160 static ssize_t
ext4_write_checks(struct kiocb
*iocb
, struct iov_iter
*from
)
162 struct inode
*inode
= file_inode(iocb
->ki_filp
);
165 ret
= generic_write_checks(iocb
, from
);
169 * If we have encountered a bitmap-format file, the size limit
170 * is smaller than s_maxbytes, which is for extent-mapped files.
172 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
173 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
175 if (iocb
->ki_pos
>= sbi
->s_bitmap_maxbytes
)
177 iov_iter_truncate(from
, sbi
->s_bitmap_maxbytes
- iocb
->ki_pos
);
179 return iov_iter_count(from
);
184 ext4_dax_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
186 struct inode
*inode
= file_inode(iocb
->ki_filp
);
189 if (!inode_trylock(inode
)) {
190 if (iocb
->ki_flags
& IOCB_NOWAIT
)
194 ret
= ext4_write_checks(iocb
, from
);
197 ret
= file_remove_privs(iocb
->ki_filp
);
200 ret
= file_update_time(iocb
->ki_filp
);
204 ret
= dax_iomap_rw(iocb
, from
, &ext4_iomap_ops
);
208 ret
= generic_write_sync(iocb
, ret
);
214 ext4_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
216 struct inode
*inode
= file_inode(iocb
->ki_filp
);
217 int o_direct
= iocb
->ki_flags
& IOCB_DIRECT
;
218 int unaligned_aio
= 0;
222 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
227 return ext4_dax_write_iter(iocb
, from
);
229 if (!o_direct
&& (iocb
->ki_flags
& IOCB_NOWAIT
))
232 if (!inode_trylock(inode
)) {
233 if (iocb
->ki_flags
& IOCB_NOWAIT
)
238 ret
= ext4_write_checks(iocb
, from
);
243 * Unaligned direct AIO must be serialized among each other as zeroing
244 * of partial blocks of two competing unaligned AIOs can result in data
247 if (o_direct
&& ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
) &&
248 !is_sync_kiocb(iocb
) &&
249 ext4_unaligned_aio(inode
, from
, iocb
->ki_pos
)) {
251 ext4_unwritten_wait(inode
);
254 iocb
->private = &overwrite
;
255 /* Check whether we do a DIO overwrite or not */
256 if (o_direct
&& !unaligned_aio
) {
257 if (ext4_overwrite_io(inode
, iocb
->ki_pos
, iov_iter_count(from
))) {
258 if (ext4_should_dioread_nolock(inode
))
260 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
266 ret
= __generic_file_write_iter(iocb
, from
);
270 ret
= generic_write_sync(iocb
, ret
);
280 static int ext4_dax_huge_fault(struct vm_fault
*vmf
,
281 enum page_entry_size pe_size
)
283 int result
, error
= 0;
285 handle_t
*handle
= NULL
;
286 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
287 struct super_block
*sb
= inode
->i_sb
;
290 * We have to distinguish real writes from writes which will result in a
291 * COW page; COW writes should *not* poke the journal (the file will not
292 * be changed). Doing so would cause unintended failures when mounted
295 * We check for VM_SHARED rather than vmf->cow_page since the latter is
296 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
297 * other sizes, dax_iomap_fault will handle splitting / fallback so that
298 * we eventually come back with a COW page.
300 bool write
= (vmf
->flags
& FAULT_FLAG_WRITE
) &&
301 (vmf
->vma
->vm_flags
& VM_SHARED
);
305 sb_start_pagefault(sb
);
306 file_update_time(vmf
->vma
->vm_file
);
307 down_read(&EXT4_I(inode
)->i_mmap_sem
);
309 handle
= ext4_journal_start_sb(sb
, EXT4_HT_WRITE_PAGE
,
310 EXT4_DATA_TRANS_BLOCKS(sb
));
311 if (IS_ERR(handle
)) {
312 up_read(&EXT4_I(inode
)->i_mmap_sem
);
313 sb_end_pagefault(sb
);
314 return VM_FAULT_SIGBUS
;
317 down_read(&EXT4_I(inode
)->i_mmap_sem
);
319 result
= dax_iomap_fault(vmf
, pe_size
, &pfn
, &error
, &ext4_iomap_ops
);
321 ext4_journal_stop(handle
);
323 if ((result
& VM_FAULT_ERROR
) && error
== -ENOSPC
&&
324 ext4_should_retry_alloc(sb
, &retries
))
326 /* Handling synchronous page fault? */
327 if (result
& VM_FAULT_NEEDDSYNC
)
328 result
= dax_finish_sync_fault(vmf
, pe_size
, pfn
);
329 up_read(&EXT4_I(inode
)->i_mmap_sem
);
330 sb_end_pagefault(sb
);
332 up_read(&EXT4_I(inode
)->i_mmap_sem
);
338 static int ext4_dax_fault(struct vm_fault
*vmf
)
340 return ext4_dax_huge_fault(vmf
, PE_SIZE_PTE
);
343 static const struct vm_operations_struct ext4_dax_vm_ops
= {
344 .fault
= ext4_dax_fault
,
345 .huge_fault
= ext4_dax_huge_fault
,
346 .page_mkwrite
= ext4_dax_fault
,
347 .pfn_mkwrite
= ext4_dax_fault
,
350 #define ext4_dax_vm_ops ext4_file_vm_ops
353 static const struct vm_operations_struct ext4_file_vm_ops
= {
354 .fault
= ext4_filemap_fault
,
355 .map_pages
= filemap_map_pages
,
356 .page_mkwrite
= ext4_page_mkwrite
,
359 static int ext4_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
361 struct inode
*inode
= file
->f_mapping
->host
;
363 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
367 * We don't support synchronous mappings for non-DAX files. At least
368 * until someone comes with a sensible use case.
370 if (!IS_DAX(file_inode(file
)) && (vma
->vm_flags
& VM_SYNC
))
374 if (IS_DAX(file_inode(file
))) {
375 vma
->vm_ops
= &ext4_dax_vm_ops
;
376 vma
->vm_flags
|= VM_MIXEDMAP
| VM_HUGEPAGE
;
378 vma
->vm_ops
= &ext4_file_vm_ops
;
383 static int ext4_file_open(struct inode
* inode
, struct file
* filp
)
385 struct super_block
*sb
= inode
->i_sb
;
386 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
387 struct vfsmount
*mnt
= filp
->f_path
.mnt
;
392 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
395 if (unlikely(!(sbi
->s_mount_flags
& EXT4_MF_MNTDIR_SAMPLED
) &&
397 sbi
->s_mount_flags
|= EXT4_MF_MNTDIR_SAMPLED
;
399 * Sample where the filesystem has been mounted and
400 * store it in the superblock for sysadmin convenience
401 * when trying to sort through large numbers of block
402 * devices or filesystem images.
404 memset(buf
, 0, sizeof(buf
));
406 path
.dentry
= mnt
->mnt_root
;
407 cp
= d_path(&path
, buf
, sizeof(buf
));
412 handle
= ext4_journal_start_sb(sb
, EXT4_HT_MISC
, 1);
414 return PTR_ERR(handle
);
415 BUFFER_TRACE(sbi
->s_sbh
, "get_write_access");
416 err
= ext4_journal_get_write_access(handle
, sbi
->s_sbh
);
418 ext4_journal_stop(handle
);
421 strlcpy(sbi
->s_es
->s_last_mounted
, cp
,
422 sizeof(sbi
->s_es
->s_last_mounted
));
423 ext4_handle_dirty_super(handle
, sb
);
424 ext4_journal_stop(handle
);
428 ret
= fscrypt_file_open(inode
, filp
);
433 * Set up the jbd2_inode if we are opening the inode for
434 * writing and the journal is present
436 if (filp
->f_mode
& FMODE_WRITE
) {
437 ret
= ext4_inode_attach_jinode(inode
);
442 filp
->f_mode
|= FMODE_NOWAIT
;
443 return dquot_file_open(inode
, filp
);
447 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
448 * by calling generic_file_llseek_size() with the appropriate maxbytes
451 loff_t
ext4_llseek(struct file
*file
, loff_t offset
, int whence
)
453 struct inode
*inode
= file
->f_mapping
->host
;
456 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
457 maxbytes
= EXT4_SB(inode
->i_sb
)->s_bitmap_maxbytes
;
459 maxbytes
= inode
->i_sb
->s_maxbytes
;
463 return generic_file_llseek_size(file
, offset
, whence
,
464 maxbytes
, i_size_read(inode
));
466 inode_lock_shared(inode
);
467 offset
= iomap_seek_hole(inode
, offset
, &ext4_iomap_ops
);
468 inode_unlock_shared(inode
);
471 inode_lock_shared(inode
);
472 offset
= iomap_seek_data(inode
, offset
, &ext4_iomap_ops
);
473 inode_unlock_shared(inode
);
479 return vfs_setpos(file
, offset
, maxbytes
);
482 const struct file_operations ext4_file_operations
= {
483 .llseek
= ext4_llseek
,
484 .read_iter
= ext4_file_read_iter
,
485 .write_iter
= ext4_file_write_iter
,
486 .unlocked_ioctl
= ext4_ioctl
,
488 .compat_ioctl
= ext4_compat_ioctl
,
490 .mmap
= ext4_file_mmap
,
491 .mmap_supported_flags
= MAP_SYNC
,
492 .open
= ext4_file_open
,
493 .release
= ext4_release_file
,
494 .fsync
= ext4_sync_file
,
495 .get_unmapped_area
= thp_get_unmapped_area
,
496 .splice_read
= generic_file_splice_read
,
497 .splice_write
= iter_file_splice_write
,
498 .fallocate
= ext4_fallocate
,
501 const struct inode_operations ext4_file_inode_operations
= {
502 .setattr
= ext4_setattr
,
503 .getattr
= ext4_file_getattr
,
504 .listxattr
= ext4_listxattr
,
505 .get_acl
= ext4_get_acl
,
506 .set_acl
= ext4_set_acl
,
507 .fiemap
= ext4_fiemap
,