x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / fs / ntfs / inode.c
blob1c1ee489284b7028d2e373fb93aa25328bc7db64
1 /**
2 * inode.c - NTFS kernel inode handling.
4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
44 /**
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
55 * Return 1 if the attributes match and 0 if not.
57 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
58 * allowed to sleep.
60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
62 ntfs_inode *ni;
64 if (vi->i_ino != na->mft_no)
65 return 0;
66 ni = NTFS_I(vi);
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na->type != AT_UNUSED))
71 return 0;
72 } else {
73 /* A fake inode describing an attribute. */
74 if (ni->type != na->type)
75 return 0;
76 if (ni->name_len != na->name_len)
77 return 0;
78 if (na->name_len && memcmp(ni->name, na->name,
79 na->name_len * sizeof(ntfschar)))
80 return 0;
82 /* Match! */
83 return 1;
86 /**
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
99 * Return 0 on success and -errno on error.
101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
106 ntfs_inode *ni = NTFS_I(vi);
108 vi->i_ino = na->mft_no;
110 ni->type = na->type;
111 if (na->type == AT_INDEX_ALLOCATION)
112 NInoSetMstProtected(ni);
114 ni->name = na->name;
115 ni->name_len = na->name_len;
117 /* If initializing a normal inode, we are done. */
118 if (likely(na->type == AT_UNUSED)) {
119 BUG_ON(na->name);
120 BUG_ON(na->name_len);
121 return 0;
124 /* It is a fake inode. */
125 NInoSetAttr(ni);
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
132 * absolutely tiny.
134 if (na->name_len && na->name != I30) {
135 unsigned int i;
137 BUG_ON(!na->name);
138 i = na->name_len * sizeof(ntfschar);
139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 if (!ni->name)
141 return -ENOMEM;
142 memcpy(ni->name, na->name, i);
143 ni->name[na->name_len] = 0;
145 return 0;
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 struct inode *vi);
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
172 struct inode *vi;
173 int err;
174 ntfs_attr na;
176 na.mft_no = mft_no;
177 na.type = AT_UNUSED;
178 na.name = NULL;
179 na.name_len = 0;
181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 (set_t)ntfs_init_locked_inode, &na);
183 if (unlikely(!vi))
184 return ERR_PTR(-ENOMEM);
186 err = 0;
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi->i_state & I_NEW) {
190 err = ntfs_read_locked_inode(vi);
191 unlock_new_inode(vi);
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
197 if (unlikely(err == -ENOMEM)) {
198 iput(vi);
199 vi = ERR_PTR(err);
201 return vi;
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 ntfschar *name, u32 name_len)
230 struct inode *vi;
231 int err;
232 ntfs_attr na;
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type == AT_INDEX_ALLOCATION);
237 na.mft_no = base_vi->i_ino;
238 na.type = type;
239 na.name = name;
240 na.name_len = name_len;
242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 (set_t)ntfs_init_locked_inode, &na);
244 if (unlikely(!vi))
245 return ERR_PTR(-ENOMEM);
247 err = 0;
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi->i_state & I_NEW) {
251 err = ntfs_read_locked_attr_inode(base_vi, vi);
252 unlock_new_inode(vi);
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
257 * inodes elsewhere.
259 if (unlikely(err)) {
260 iput(vi);
261 vi = ERR_PTR(err);
263 return vi;
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
274 * inode @base_vi.
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 u32 name_len)
288 struct inode *vi;
289 int err;
290 ntfs_attr na;
292 na.mft_no = base_vi->i_ino;
293 na.type = AT_INDEX_ALLOCATION;
294 na.name = name;
295 na.name_len = name_len;
297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 (set_t)ntfs_init_locked_inode, &na);
299 if (unlikely(!vi))
300 return ERR_PTR(-ENOMEM);
302 err = 0;
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi->i_state & I_NEW) {
306 err = ntfs_read_locked_index_inode(base_vi, vi);
307 unlock_new_inode(vi);
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
312 * inodes elsewhere.
314 if (unlikely(err)) {
315 iput(vi);
316 vi = ERR_PTR(err);
318 return vi;
321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
323 ntfs_inode *ni;
325 ntfs_debug("Entering.");
326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 if (likely(ni != NULL)) {
328 ni->state = 0;
329 return VFS_I(ni);
331 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 return NULL;
335 static void ntfs_i_callback(struct rcu_head *head)
337 struct inode *inode = container_of(head, struct inode, i_rcu);
338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
341 void ntfs_destroy_big_inode(struct inode *inode)
343 ntfs_inode *ni = NTFS_I(inode);
345 ntfs_debug("Entering.");
346 BUG_ON(ni->page);
347 if (!atomic_dec_and_test(&ni->count))
348 BUG();
349 call_rcu(&inode->i_rcu, ntfs_i_callback);
352 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
354 ntfs_inode *ni;
356 ntfs_debug("Entering.");
357 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
358 if (likely(ni != NULL)) {
359 ni->state = 0;
360 return ni;
362 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
363 return NULL;
366 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
368 ntfs_debug("Entering.");
369 BUG_ON(ni->page);
370 if (!atomic_dec_and_test(&ni->count))
371 BUG();
372 kmem_cache_free(ntfs_inode_cache, ni);
376 * The attribute runlist lock has separate locking rules from the
377 * normal runlist lock, so split the two lock-classes:
379 static struct lock_class_key attr_list_rl_lock_class;
382 * __ntfs_init_inode - initialize ntfs specific part of an inode
383 * @sb: super block of mounted volume
384 * @ni: freshly allocated ntfs inode which to initialize
386 * Initialize an ntfs inode to defaults.
388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389 * untouched. Make sure to initialize them elsewhere.
391 * Return zero on success and -ENOMEM on error.
393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
395 ntfs_debug("Entering.");
396 rwlock_init(&ni->size_lock);
397 ni->initialized_size = ni->allocated_size = 0;
398 ni->seq_no = 0;
399 atomic_set(&ni->count, 1);
400 ni->vol = NTFS_SB(sb);
401 ntfs_init_runlist(&ni->runlist);
402 mutex_init(&ni->mrec_lock);
403 ni->page = NULL;
404 ni->page_ofs = 0;
405 ni->attr_list_size = 0;
406 ni->attr_list = NULL;
407 ntfs_init_runlist(&ni->attr_list_rl);
408 lockdep_set_class(&ni->attr_list_rl.lock,
409 &attr_list_rl_lock_class);
410 ni->itype.index.block_size = 0;
411 ni->itype.index.vcn_size = 0;
412 ni->itype.index.collation_rule = 0;
413 ni->itype.index.block_size_bits = 0;
414 ni->itype.index.vcn_size_bits = 0;
415 mutex_init(&ni->extent_lock);
416 ni->nr_extents = 0;
417 ni->ext.base_ntfs_ino = NULL;
421 * Extent inodes get MFT-mapped in a nested way, while the base inode
422 * is still mapped. Teach this nesting to the lock validator by creating
423 * a separate class for nested inode's mrec_lock's:
425 static struct lock_class_key extent_inode_mrec_lock_key;
427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
428 unsigned long mft_no)
430 ntfs_inode *ni = ntfs_alloc_extent_inode();
432 ntfs_debug("Entering.");
433 if (likely(ni != NULL)) {
434 __ntfs_init_inode(sb, ni);
435 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
436 ni->mft_no = mft_no;
437 ni->type = AT_UNUSED;
438 ni->name = NULL;
439 ni->name_len = 0;
441 return ni;
445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446 * @ctx: initialized attribute search context
448 * Search all file name attributes in the inode described by the attribute
449 * search context @ctx and check if any of the names are in the $Extend system
450 * directory.
452 * Return values:
453 * 1: file is in $Extend directory
454 * 0: file is not in $Extend directory
455 * -errno: failed to determine if the file is in the $Extend directory
457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
459 int nr_links, err;
461 /* Restart search. */
462 ntfs_attr_reinit_search_ctx(ctx);
464 /* Get number of hard links. */
465 nr_links = le16_to_cpu(ctx->mrec->link_count);
467 /* Loop through all hard links. */
468 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
469 ctx))) {
470 FILE_NAME_ATTR *file_name_attr;
471 ATTR_RECORD *attr = ctx->attr;
472 u8 *p, *p2;
474 nr_links--;
476 * Maximum sanity checking as we are called on an inode that
477 * we suspect might be corrupt.
479 p = (u8*)attr + le32_to_cpu(attr->length);
480 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
481 le32_to_cpu(ctx->mrec->bytes_in_use)) {
482 err_corrupt_attr:
483 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
484 "attribute. You should run chkdsk.");
485 return -EIO;
487 if (attr->non_resident) {
488 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
489 "name. You should run chkdsk.");
490 return -EIO;
492 if (attr->flags) {
493 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
494 "invalid flags. You should run "
495 "chkdsk.");
496 return -EIO;
498 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
499 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
500 "name. You should run chkdsk.");
501 return -EIO;
503 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
504 le16_to_cpu(attr->data.resident.value_offset));
505 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
506 if (p2 < (u8*)attr || p2 > p)
507 goto err_corrupt_attr;
508 /* This attribute is ok, but is it in the $Extend directory? */
509 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
510 return 1; /* YES, it's an extended system file. */
512 if (unlikely(err != -ENOENT))
513 return err;
514 if (unlikely(nr_links)) {
515 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
516 "doesn't match number of name attributes. You "
517 "should run chkdsk.");
518 return -EIO;
520 return 0; /* NO, it is not an extended system file. */
524 * ntfs_read_locked_inode - read an inode from its device
525 * @vi: inode to read
527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528 * described by @vi into memory from the device.
530 * The only fields in @vi that we need to/can look at when the function is
531 * called are i_sb, pointing to the mounted device's super block, and i_ino,
532 * the number of the inode to load.
534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535 * for reading and sets up the necessary @vi fields as well as initializing
536 * the ntfs inode.
538 * Q: What locks are held when the function is called?
539 * A: i_state has I_NEW set, hence the inode is locked, also
540 * i_count is set to 1, so it is not going to go away
541 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
542 * is allowed to write to them. We should of course be honouring them but
543 * we need to do that using the IS_* macros defined in include/linux/fs.h.
544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
546 * Return 0 on success and -errno on error. In the error case, the inode will
547 * have had make_bad_inode() executed on it.
549 static int ntfs_read_locked_inode(struct inode *vi)
551 ntfs_volume *vol = NTFS_SB(vi->i_sb);
552 ntfs_inode *ni;
553 struct inode *bvi;
554 MFT_RECORD *m;
555 ATTR_RECORD *a;
556 STANDARD_INFORMATION *si;
557 ntfs_attr_search_ctx *ctx;
558 int err = 0;
560 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
562 /* Setup the generic vfs inode parts now. */
563 vi->i_uid = vol->uid;
564 vi->i_gid = vol->gid;
565 vi->i_mode = 0;
568 * Initialize the ntfs specific part of @vi special casing
569 * FILE_MFT which we need to do at mount time.
571 if (vi->i_ino != FILE_MFT)
572 ntfs_init_big_inode(vi);
573 ni = NTFS_I(vi);
575 m = map_mft_record(ni);
576 if (IS_ERR(m)) {
577 err = PTR_ERR(m);
578 goto err_out;
580 ctx = ntfs_attr_get_search_ctx(ni, m);
581 if (!ctx) {
582 err = -ENOMEM;
583 goto unm_err_out;
586 if (!(m->flags & MFT_RECORD_IN_USE)) {
587 ntfs_error(vi->i_sb, "Inode is not in use!");
588 goto unm_err_out;
590 if (m->base_mft_record) {
591 ntfs_error(vi->i_sb, "Inode is an extent inode!");
592 goto unm_err_out;
595 /* Transfer information from mft record into vfs and ntfs inodes. */
596 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
599 * FIXME: Keep in mind that link_count is two for files which have both
600 * a long file name and a short file name as separate entries, so if
601 * we are hiding short file names this will be too high. Either we need
602 * to account for the short file names by subtracting them or we need
603 * to make sure we delete files even though i_nlink is not zero which
604 * might be tricky due to vfs interactions. Need to think about this
605 * some more when implementing the unlink command.
607 set_nlink(vi, le16_to_cpu(m->link_count));
609 * FIXME: Reparse points can have the directory bit set even though
610 * they would be S_IFLNK. Need to deal with this further below when we
611 * implement reparse points / symbolic links but it will do for now.
612 * Also if not a directory, it could be something else, rather than
613 * a regular file. But again, will do for now.
615 /* Everyone gets all permissions. */
616 vi->i_mode |= S_IRWXUGO;
617 /* If read-only, no one gets write permissions. */
618 if (IS_RDONLY(vi))
619 vi->i_mode &= ~S_IWUGO;
620 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
621 vi->i_mode |= S_IFDIR;
623 * Apply the directory permissions mask set in the mount
624 * options.
626 vi->i_mode &= ~vol->dmask;
627 /* Things break without this kludge! */
628 if (vi->i_nlink > 1)
629 set_nlink(vi, 1);
630 } else {
631 vi->i_mode |= S_IFREG;
632 /* Apply the file permissions mask set in the mount options. */
633 vi->i_mode &= ~vol->fmask;
636 * Find the standard information attribute in the mft record. At this
637 * stage we haven't setup the attribute list stuff yet, so this could
638 * in fact fail if the standard information is in an extent record, but
639 * I don't think this actually ever happens.
641 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
642 ctx);
643 if (unlikely(err)) {
644 if (err == -ENOENT) {
646 * TODO: We should be performing a hot fix here (if the
647 * recover mount option is set) by creating a new
648 * attribute.
650 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
651 "is missing.");
653 goto unm_err_out;
655 a = ctx->attr;
656 /* Get the standard information attribute value. */
657 si = (STANDARD_INFORMATION*)((u8*)a +
658 le16_to_cpu(a->data.resident.value_offset));
660 /* Transfer information from the standard information into vi. */
662 * Note: The i_?times do not quite map perfectly onto the NTFS times,
663 * but they are close enough, and in the end it doesn't really matter
664 * that much...
667 * mtime is the last change of the data within the file. Not changed
668 * when only metadata is changed, e.g. a rename doesn't affect mtime.
670 vi->i_mtime = ntfs2utc(si->last_data_change_time);
672 * ctime is the last change of the metadata of the file. This obviously
673 * always changes, when mtime is changed. ctime can be changed on its
674 * own, mtime is then not changed, e.g. when a file is renamed.
676 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
678 * Last access to the data within the file. Not changed during a rename
679 * for example but changed whenever the file is written to.
681 vi->i_atime = ntfs2utc(si->last_access_time);
683 /* Find the attribute list attribute if present. */
684 ntfs_attr_reinit_search_ctx(ctx);
685 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
686 if (err) {
687 if (unlikely(err != -ENOENT)) {
688 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
689 "attribute.");
690 goto unm_err_out;
692 } else /* if (!err) */ {
693 if (vi->i_ino == FILE_MFT)
694 goto skip_attr_list_load;
695 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
696 NInoSetAttrList(ni);
697 a = ctx->attr;
698 if (a->flags & ATTR_COMPRESSION_MASK) {
699 ntfs_error(vi->i_sb, "Attribute list attribute is "
700 "compressed.");
701 goto unm_err_out;
703 if (a->flags & ATTR_IS_ENCRYPTED ||
704 a->flags & ATTR_IS_SPARSE) {
705 if (a->non_resident) {
706 ntfs_error(vi->i_sb, "Non-resident attribute "
707 "list attribute is encrypted/"
708 "sparse.");
709 goto unm_err_out;
711 ntfs_warning(vi->i_sb, "Resident attribute list "
712 "attribute in inode 0x%lx is marked "
713 "encrypted/sparse which is not true. "
714 "However, Windows allows this and "
715 "chkdsk does not detect or correct it "
716 "so we will just ignore the invalid "
717 "flags and pretend they are not set.",
718 vi->i_ino);
720 /* Now allocate memory for the attribute list. */
721 ni->attr_list_size = (u32)ntfs_attr_size(a);
722 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
723 if (!ni->attr_list) {
724 ntfs_error(vi->i_sb, "Not enough memory to allocate "
725 "buffer for attribute list.");
726 err = -ENOMEM;
727 goto unm_err_out;
729 if (a->non_resident) {
730 NInoSetAttrListNonResident(ni);
731 if (a->data.non_resident.lowest_vcn) {
732 ntfs_error(vi->i_sb, "Attribute list has non "
733 "zero lowest_vcn.");
734 goto unm_err_out;
737 * Setup the runlist. No need for locking as we have
738 * exclusive access to the inode at this time.
740 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
741 a, NULL);
742 if (IS_ERR(ni->attr_list_rl.rl)) {
743 err = PTR_ERR(ni->attr_list_rl.rl);
744 ni->attr_list_rl.rl = NULL;
745 ntfs_error(vi->i_sb, "Mapping pairs "
746 "decompression failed.");
747 goto unm_err_out;
749 /* Now load the attribute list. */
750 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
751 ni->attr_list, ni->attr_list_size,
752 sle64_to_cpu(a->data.non_resident.
753 initialized_size)))) {
754 ntfs_error(vi->i_sb, "Failed to load "
755 "attribute list attribute.");
756 goto unm_err_out;
758 } else /* if (!a->non_resident) */ {
759 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
760 + le32_to_cpu(
761 a->data.resident.value_length) >
762 (u8*)ctx->mrec + vol->mft_record_size) {
763 ntfs_error(vi->i_sb, "Corrupt attribute list "
764 "in inode.");
765 goto unm_err_out;
767 /* Now copy the attribute list. */
768 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
769 a->data.resident.value_offset),
770 le32_to_cpu(
771 a->data.resident.value_length));
774 skip_attr_list_load:
776 * If an attribute list is present we now have the attribute list value
777 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
779 if (S_ISDIR(vi->i_mode)) {
780 loff_t bvi_size;
781 ntfs_inode *bni;
782 INDEX_ROOT *ir;
783 u8 *ir_end, *index_end;
785 /* It is a directory, find index root attribute. */
786 ntfs_attr_reinit_search_ctx(ctx);
787 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
788 0, NULL, 0, ctx);
789 if (unlikely(err)) {
790 if (err == -ENOENT) {
791 // FIXME: File is corrupt! Hot-fix with empty
792 // index root attribute if recovery option is
793 // set.
794 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
795 "is missing.");
797 goto unm_err_out;
799 a = ctx->attr;
800 /* Set up the state. */
801 if (unlikely(a->non_resident)) {
802 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
803 "resident.");
804 goto unm_err_out;
806 /* Ensure the attribute name is placed before the value. */
807 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
808 le16_to_cpu(a->data.resident.value_offset)))) {
809 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
810 "placed after the attribute value.");
811 goto unm_err_out;
814 * Compressed/encrypted index root just means that the newly
815 * created files in that directory should be created compressed/
816 * encrypted. However index root cannot be both compressed and
817 * encrypted.
819 if (a->flags & ATTR_COMPRESSION_MASK)
820 NInoSetCompressed(ni);
821 if (a->flags & ATTR_IS_ENCRYPTED) {
822 if (a->flags & ATTR_COMPRESSION_MASK) {
823 ntfs_error(vi->i_sb, "Found encrypted and "
824 "compressed attribute.");
825 goto unm_err_out;
827 NInoSetEncrypted(ni);
829 if (a->flags & ATTR_IS_SPARSE)
830 NInoSetSparse(ni);
831 ir = (INDEX_ROOT*)((u8*)a +
832 le16_to_cpu(a->data.resident.value_offset));
833 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
834 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
835 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
836 "corrupt.");
837 goto unm_err_out;
839 index_end = (u8*)&ir->index +
840 le32_to_cpu(ir->index.index_length);
841 if (index_end > ir_end) {
842 ntfs_error(vi->i_sb, "Directory index is corrupt.");
843 goto unm_err_out;
845 if (ir->type != AT_FILE_NAME) {
846 ntfs_error(vi->i_sb, "Indexed attribute is not "
847 "$FILE_NAME.");
848 goto unm_err_out;
850 if (ir->collation_rule != COLLATION_FILE_NAME) {
851 ntfs_error(vi->i_sb, "Index collation rule is not "
852 "COLLATION_FILE_NAME.");
853 goto unm_err_out;
855 ni->itype.index.collation_rule = ir->collation_rule;
856 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
857 if (ni->itype.index.block_size &
858 (ni->itype.index.block_size - 1)) {
859 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
860 "power of two.",
861 ni->itype.index.block_size);
862 goto unm_err_out;
864 if (ni->itype.index.block_size > PAGE_SIZE) {
865 ntfs_error(vi->i_sb, "Index block size (%u) > "
866 "PAGE_SIZE (%ld) is not "
867 "supported. Sorry.",
868 ni->itype.index.block_size,
869 PAGE_SIZE);
870 err = -EOPNOTSUPP;
871 goto unm_err_out;
873 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
874 ntfs_error(vi->i_sb, "Index block size (%u) < "
875 "NTFS_BLOCK_SIZE (%i) is not "
876 "supported. Sorry.",
877 ni->itype.index.block_size,
878 NTFS_BLOCK_SIZE);
879 err = -EOPNOTSUPP;
880 goto unm_err_out;
882 ni->itype.index.block_size_bits =
883 ffs(ni->itype.index.block_size) - 1;
884 /* Determine the size of a vcn in the directory index. */
885 if (vol->cluster_size <= ni->itype.index.block_size) {
886 ni->itype.index.vcn_size = vol->cluster_size;
887 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
888 } else {
889 ni->itype.index.vcn_size = vol->sector_size;
890 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
893 /* Setup the index allocation attribute, even if not present. */
894 NInoSetMstProtected(ni);
895 ni->type = AT_INDEX_ALLOCATION;
896 ni->name = I30;
897 ni->name_len = 4;
899 if (!(ir->index.flags & LARGE_INDEX)) {
900 /* No index allocation. */
901 vi->i_size = ni->initialized_size =
902 ni->allocated_size = 0;
903 /* We are done with the mft record, so we release it. */
904 ntfs_attr_put_search_ctx(ctx);
905 unmap_mft_record(ni);
906 m = NULL;
907 ctx = NULL;
908 goto skip_large_dir_stuff;
909 } /* LARGE_INDEX: Index allocation present. Setup state. */
910 NInoSetIndexAllocPresent(ni);
911 /* Find index allocation attribute. */
912 ntfs_attr_reinit_search_ctx(ctx);
913 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
914 CASE_SENSITIVE, 0, NULL, 0, ctx);
915 if (unlikely(err)) {
916 if (err == -ENOENT)
917 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
918 "attribute is not present but "
919 "$INDEX_ROOT indicated it is.");
920 else
921 ntfs_error(vi->i_sb, "Failed to lookup "
922 "$INDEX_ALLOCATION "
923 "attribute.");
924 goto unm_err_out;
926 a = ctx->attr;
927 if (!a->non_resident) {
928 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
929 "is resident.");
930 goto unm_err_out;
933 * Ensure the attribute name is placed before the mapping pairs
934 * array.
936 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
937 le16_to_cpu(
938 a->data.non_resident.mapping_pairs_offset)))) {
939 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
940 "is placed after the mapping pairs "
941 "array.");
942 goto unm_err_out;
944 if (a->flags & ATTR_IS_ENCRYPTED) {
945 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
946 "is encrypted.");
947 goto unm_err_out;
949 if (a->flags & ATTR_IS_SPARSE) {
950 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
951 "is sparse.");
952 goto unm_err_out;
954 if (a->flags & ATTR_COMPRESSION_MASK) {
955 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
956 "is compressed.");
957 goto unm_err_out;
959 if (a->data.non_resident.lowest_vcn) {
960 ntfs_error(vi->i_sb, "First extent of "
961 "$INDEX_ALLOCATION attribute has non "
962 "zero lowest_vcn.");
963 goto unm_err_out;
965 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
966 ni->initialized_size = sle64_to_cpu(
967 a->data.non_resident.initialized_size);
968 ni->allocated_size = sle64_to_cpu(
969 a->data.non_resident.allocated_size);
971 * We are done with the mft record, so we release it. Otherwise
972 * we would deadlock in ntfs_attr_iget().
974 ntfs_attr_put_search_ctx(ctx);
975 unmap_mft_record(ni);
976 m = NULL;
977 ctx = NULL;
978 /* Get the index bitmap attribute inode. */
979 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
980 if (IS_ERR(bvi)) {
981 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
982 err = PTR_ERR(bvi);
983 goto unm_err_out;
985 bni = NTFS_I(bvi);
986 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
987 NInoSparse(bni)) {
988 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
989 "and/or encrypted and/or sparse.");
990 goto iput_unm_err_out;
992 /* Consistency check bitmap size vs. index allocation size. */
993 bvi_size = i_size_read(bvi);
994 if ((bvi_size << 3) < (vi->i_size >>
995 ni->itype.index.block_size_bits)) {
996 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
997 "for index allocation (0x%llx).",
998 bvi_size << 3, vi->i_size);
999 goto iput_unm_err_out;
1001 /* No longer need the bitmap attribute inode. */
1002 iput(bvi);
1003 skip_large_dir_stuff:
1004 /* Setup the operations for this inode. */
1005 vi->i_op = &ntfs_dir_inode_ops;
1006 vi->i_fop = &ntfs_dir_ops;
1007 vi->i_mapping->a_ops = &ntfs_mst_aops;
1008 } else {
1009 /* It is a file. */
1010 ntfs_attr_reinit_search_ctx(ctx);
1012 /* Setup the data attribute, even if not present. */
1013 ni->type = AT_DATA;
1014 ni->name = NULL;
1015 ni->name_len = 0;
1017 /* Find first extent of the unnamed data attribute. */
1018 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1019 if (unlikely(err)) {
1020 vi->i_size = ni->initialized_size =
1021 ni->allocated_size = 0;
1022 if (err != -ENOENT) {
1023 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1024 "attribute.");
1025 goto unm_err_out;
1028 * FILE_Secure does not have an unnamed $DATA
1029 * attribute, so we special case it here.
1031 if (vi->i_ino == FILE_Secure)
1032 goto no_data_attr_special_case;
1034 * Most if not all the system files in the $Extend
1035 * system directory do not have unnamed data
1036 * attributes so we need to check if the parent
1037 * directory of the file is FILE_Extend and if it is
1038 * ignore this error. To do this we need to get the
1039 * name of this inode from the mft record as the name
1040 * contains the back reference to the parent directory.
1042 if (ntfs_is_extended_system_file(ctx) > 0)
1043 goto no_data_attr_special_case;
1044 // FIXME: File is corrupt! Hot-fix with empty data
1045 // attribute if recovery option is set.
1046 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1047 goto unm_err_out;
1049 a = ctx->attr;
1050 /* Setup the state. */
1051 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1052 if (a->flags & ATTR_COMPRESSION_MASK) {
1053 NInoSetCompressed(ni);
1054 if (vol->cluster_size > 4096) {
1055 ntfs_error(vi->i_sb, "Found "
1056 "compressed data but "
1057 "compression is "
1058 "disabled due to "
1059 "cluster size (%i) > "
1060 "4kiB.",
1061 vol->cluster_size);
1062 goto unm_err_out;
1064 if ((a->flags & ATTR_COMPRESSION_MASK)
1065 != ATTR_IS_COMPRESSED) {
1066 ntfs_error(vi->i_sb, "Found unknown "
1067 "compression method "
1068 "or corrupt file.");
1069 goto unm_err_out;
1072 if (a->flags & ATTR_IS_SPARSE)
1073 NInoSetSparse(ni);
1075 if (a->flags & ATTR_IS_ENCRYPTED) {
1076 if (NInoCompressed(ni)) {
1077 ntfs_error(vi->i_sb, "Found encrypted and "
1078 "compressed data.");
1079 goto unm_err_out;
1081 NInoSetEncrypted(ni);
1083 if (a->non_resident) {
1084 NInoSetNonResident(ni);
1085 if (NInoCompressed(ni) || NInoSparse(ni)) {
1086 if (NInoCompressed(ni) && a->data.non_resident.
1087 compression_unit != 4) {
1088 ntfs_error(vi->i_sb, "Found "
1089 "non-standard "
1090 "compression unit (%u "
1091 "instead of 4). "
1092 "Cannot handle this.",
1093 a->data.non_resident.
1094 compression_unit);
1095 err = -EOPNOTSUPP;
1096 goto unm_err_out;
1098 if (a->data.non_resident.compression_unit) {
1099 ni->itype.compressed.block_size = 1U <<
1100 (a->data.non_resident.
1101 compression_unit +
1102 vol->cluster_size_bits);
1103 ni->itype.compressed.block_size_bits =
1104 ffs(ni->itype.
1105 compressed.
1106 block_size) - 1;
1107 ni->itype.compressed.block_clusters =
1108 1U << a->data.
1109 non_resident.
1110 compression_unit;
1111 } else {
1112 ni->itype.compressed.block_size = 0;
1113 ni->itype.compressed.block_size_bits =
1115 ni->itype.compressed.block_clusters =
1118 ni->itype.compressed.size = sle64_to_cpu(
1119 a->data.non_resident.
1120 compressed_size);
1122 if (a->data.non_resident.lowest_vcn) {
1123 ntfs_error(vi->i_sb, "First extent of $DATA "
1124 "attribute has non zero "
1125 "lowest_vcn.");
1126 goto unm_err_out;
1128 vi->i_size = sle64_to_cpu(
1129 a->data.non_resident.data_size);
1130 ni->initialized_size = sle64_to_cpu(
1131 a->data.non_resident.initialized_size);
1132 ni->allocated_size = sle64_to_cpu(
1133 a->data.non_resident.allocated_size);
1134 } else { /* Resident attribute. */
1135 vi->i_size = ni->initialized_size = le32_to_cpu(
1136 a->data.resident.value_length);
1137 ni->allocated_size = le32_to_cpu(a->length) -
1138 le16_to_cpu(
1139 a->data.resident.value_offset);
1140 if (vi->i_size > ni->allocated_size) {
1141 ntfs_error(vi->i_sb, "Resident data attribute "
1142 "is corrupt (size exceeds "
1143 "allocation).");
1144 goto unm_err_out;
1147 no_data_attr_special_case:
1148 /* We are done with the mft record, so we release it. */
1149 ntfs_attr_put_search_ctx(ctx);
1150 unmap_mft_record(ni);
1151 m = NULL;
1152 ctx = NULL;
1153 /* Setup the operations for this inode. */
1154 vi->i_op = &ntfs_file_inode_ops;
1155 vi->i_fop = &ntfs_file_ops;
1156 vi->i_mapping->a_ops = &ntfs_normal_aops;
1157 if (NInoMstProtected(ni))
1158 vi->i_mapping->a_ops = &ntfs_mst_aops;
1159 else if (NInoCompressed(ni))
1160 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1163 * The number of 512-byte blocks used on disk (for stat). This is in so
1164 * far inaccurate as it doesn't account for any named streams or other
1165 * special non-resident attributes, but that is how Windows works, too,
1166 * so we are at least consistent with Windows, if not entirely
1167 * consistent with the Linux Way. Doing it the Linux Way would cause a
1168 * significant slowdown as it would involve iterating over all
1169 * attributes in the mft record and adding the allocated/compressed
1170 * sizes of all non-resident attributes present to give us the Linux
1171 * correct size that should go into i_blocks (after division by 512).
1173 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1174 vi->i_blocks = ni->itype.compressed.size >> 9;
1175 else
1176 vi->i_blocks = ni->allocated_size >> 9;
1177 ntfs_debug("Done.");
1178 return 0;
1179 iput_unm_err_out:
1180 iput(bvi);
1181 unm_err_out:
1182 if (!err)
1183 err = -EIO;
1184 if (ctx)
1185 ntfs_attr_put_search_ctx(ctx);
1186 if (m)
1187 unmap_mft_record(ni);
1188 err_out:
1189 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1190 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1191 make_bad_inode(vi);
1192 if (err != -EOPNOTSUPP && err != -ENOMEM)
1193 NVolSetErrors(vol);
1194 return err;
1198 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1199 * @base_vi: base inode
1200 * @vi: attribute inode to read
1202 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1203 * attribute inode described by @vi into memory from the base mft record
1204 * described by @base_ni.
1206 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1207 * reading and looks up the attribute described by @vi before setting up the
1208 * necessary fields in @vi as well as initializing the ntfs inode.
1210 * Q: What locks are held when the function is called?
1211 * A: i_state has I_NEW set, hence the inode is locked, also
1212 * i_count is set to 1, so it is not going to go away
1214 * Return 0 on success and -errno on error. In the error case, the inode will
1215 * have had make_bad_inode() executed on it.
1217 * Note this cannot be called for AT_INDEX_ALLOCATION.
1219 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1221 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1222 ntfs_inode *ni, *base_ni;
1223 MFT_RECORD *m;
1224 ATTR_RECORD *a;
1225 ntfs_attr_search_ctx *ctx;
1226 int err = 0;
1228 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1230 ntfs_init_big_inode(vi);
1232 ni = NTFS_I(vi);
1233 base_ni = NTFS_I(base_vi);
1235 /* Just mirror the values from the base inode. */
1236 vi->i_uid = base_vi->i_uid;
1237 vi->i_gid = base_vi->i_gid;
1238 set_nlink(vi, base_vi->i_nlink);
1239 vi->i_mtime = base_vi->i_mtime;
1240 vi->i_ctime = base_vi->i_ctime;
1241 vi->i_atime = base_vi->i_atime;
1242 vi->i_generation = ni->seq_no = base_ni->seq_no;
1244 /* Set inode type to zero but preserve permissions. */
1245 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1247 m = map_mft_record(base_ni);
1248 if (IS_ERR(m)) {
1249 err = PTR_ERR(m);
1250 goto err_out;
1252 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1253 if (!ctx) {
1254 err = -ENOMEM;
1255 goto unm_err_out;
1257 /* Find the attribute. */
1258 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1259 CASE_SENSITIVE, 0, NULL, 0, ctx);
1260 if (unlikely(err))
1261 goto unm_err_out;
1262 a = ctx->attr;
1263 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1264 if (a->flags & ATTR_COMPRESSION_MASK) {
1265 NInoSetCompressed(ni);
1266 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1267 ni->name_len)) {
1268 ntfs_error(vi->i_sb, "Found compressed "
1269 "non-data or named data "
1270 "attribute. Please report "
1271 "you saw this message to "
1272 "linux-ntfs-dev@lists."
1273 "sourceforge.net");
1274 goto unm_err_out;
1276 if (vol->cluster_size > 4096) {
1277 ntfs_error(vi->i_sb, "Found compressed "
1278 "attribute but compression is "
1279 "disabled due to cluster size "
1280 "(%i) > 4kiB.",
1281 vol->cluster_size);
1282 goto unm_err_out;
1284 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1285 ATTR_IS_COMPRESSED) {
1286 ntfs_error(vi->i_sb, "Found unknown "
1287 "compression method.");
1288 goto unm_err_out;
1292 * The compressed/sparse flag set in an index root just means
1293 * to compress all files.
1295 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1296 ntfs_error(vi->i_sb, "Found mst protected attribute "
1297 "but the attribute is %s. Please "
1298 "report you saw this message to "
1299 "linux-ntfs-dev@lists.sourceforge.net",
1300 NInoCompressed(ni) ? "compressed" :
1301 "sparse");
1302 goto unm_err_out;
1304 if (a->flags & ATTR_IS_SPARSE)
1305 NInoSetSparse(ni);
1307 if (a->flags & ATTR_IS_ENCRYPTED) {
1308 if (NInoCompressed(ni)) {
1309 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1310 "data.");
1311 goto unm_err_out;
1314 * The encryption flag set in an index root just means to
1315 * encrypt all files.
1317 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1318 ntfs_error(vi->i_sb, "Found mst protected attribute "
1319 "but the attribute is encrypted. "
1320 "Please report you saw this message "
1321 "to linux-ntfs-dev@lists.sourceforge."
1322 "net");
1323 goto unm_err_out;
1325 if (ni->type != AT_DATA) {
1326 ntfs_error(vi->i_sb, "Found encrypted non-data "
1327 "attribute.");
1328 goto unm_err_out;
1330 NInoSetEncrypted(ni);
1332 if (!a->non_resident) {
1333 /* Ensure the attribute name is placed before the value. */
1334 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1335 le16_to_cpu(a->data.resident.value_offset)))) {
1336 ntfs_error(vol->sb, "Attribute name is placed after "
1337 "the attribute value.");
1338 goto unm_err_out;
1340 if (NInoMstProtected(ni)) {
1341 ntfs_error(vi->i_sb, "Found mst protected attribute "
1342 "but the attribute is resident. "
1343 "Please report you saw this message to "
1344 "linux-ntfs-dev@lists.sourceforge.net");
1345 goto unm_err_out;
1347 vi->i_size = ni->initialized_size = le32_to_cpu(
1348 a->data.resident.value_length);
1349 ni->allocated_size = le32_to_cpu(a->length) -
1350 le16_to_cpu(a->data.resident.value_offset);
1351 if (vi->i_size > ni->allocated_size) {
1352 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1353 "(size exceeds allocation).");
1354 goto unm_err_out;
1356 } else {
1357 NInoSetNonResident(ni);
1359 * Ensure the attribute name is placed before the mapping pairs
1360 * array.
1362 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1363 le16_to_cpu(
1364 a->data.non_resident.mapping_pairs_offset)))) {
1365 ntfs_error(vol->sb, "Attribute name is placed after "
1366 "the mapping pairs array.");
1367 goto unm_err_out;
1369 if (NInoCompressed(ni) || NInoSparse(ni)) {
1370 if (NInoCompressed(ni) && a->data.non_resident.
1371 compression_unit != 4) {
1372 ntfs_error(vi->i_sb, "Found non-standard "
1373 "compression unit (%u instead "
1374 "of 4). Cannot handle this.",
1375 a->data.non_resident.
1376 compression_unit);
1377 err = -EOPNOTSUPP;
1378 goto unm_err_out;
1380 if (a->data.non_resident.compression_unit) {
1381 ni->itype.compressed.block_size = 1U <<
1382 (a->data.non_resident.
1383 compression_unit +
1384 vol->cluster_size_bits);
1385 ni->itype.compressed.block_size_bits =
1386 ffs(ni->itype.compressed.
1387 block_size) - 1;
1388 ni->itype.compressed.block_clusters = 1U <<
1389 a->data.non_resident.
1390 compression_unit;
1391 } else {
1392 ni->itype.compressed.block_size = 0;
1393 ni->itype.compressed.block_size_bits = 0;
1394 ni->itype.compressed.block_clusters = 0;
1396 ni->itype.compressed.size = sle64_to_cpu(
1397 a->data.non_resident.compressed_size);
1399 if (a->data.non_resident.lowest_vcn) {
1400 ntfs_error(vi->i_sb, "First extent of attribute has "
1401 "non-zero lowest_vcn.");
1402 goto unm_err_out;
1404 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1405 ni->initialized_size = sle64_to_cpu(
1406 a->data.non_resident.initialized_size);
1407 ni->allocated_size = sle64_to_cpu(
1408 a->data.non_resident.allocated_size);
1410 vi->i_mapping->a_ops = &ntfs_normal_aops;
1411 if (NInoMstProtected(ni))
1412 vi->i_mapping->a_ops = &ntfs_mst_aops;
1413 else if (NInoCompressed(ni))
1414 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1415 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1416 vi->i_blocks = ni->itype.compressed.size >> 9;
1417 else
1418 vi->i_blocks = ni->allocated_size >> 9;
1420 * Make sure the base inode does not go away and attach it to the
1421 * attribute inode.
1423 igrab(base_vi);
1424 ni->ext.base_ntfs_ino = base_ni;
1425 ni->nr_extents = -1;
1427 ntfs_attr_put_search_ctx(ctx);
1428 unmap_mft_record(base_ni);
1430 ntfs_debug("Done.");
1431 return 0;
1433 unm_err_out:
1434 if (!err)
1435 err = -EIO;
1436 if (ctx)
1437 ntfs_attr_put_search_ctx(ctx);
1438 unmap_mft_record(base_ni);
1439 err_out:
1440 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1441 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1442 "Marking corrupt inode and base inode 0x%lx as bad. "
1443 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1444 base_vi->i_ino);
1445 make_bad_inode(vi);
1446 if (err != -ENOMEM)
1447 NVolSetErrors(vol);
1448 return err;
1452 * ntfs_read_locked_index_inode - read an index inode from its base inode
1453 * @base_vi: base inode
1454 * @vi: index inode to read
1456 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1457 * index inode described by @vi into memory from the base mft record described
1458 * by @base_ni.
1460 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1461 * reading and looks up the attributes relating to the index described by @vi
1462 * before setting up the necessary fields in @vi as well as initializing the
1463 * ntfs inode.
1465 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1466 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1467 * are setup like directory inodes since directories are a special case of
1468 * indices ao they need to be treated in much the same way. Most importantly,
1469 * for small indices the index allocation attribute might not actually exist.
1470 * However, the index root attribute always exists but this does not need to
1471 * have an inode associated with it and this is why we define a new inode type
1472 * index. Also, like for directories, we need to have an attribute inode for
1473 * the bitmap attribute corresponding to the index allocation attribute and we
1474 * can store this in the appropriate field of the inode, just like we do for
1475 * normal directory inodes.
1477 * Q: What locks are held when the function is called?
1478 * A: i_state has I_NEW set, hence the inode is locked, also
1479 * i_count is set to 1, so it is not going to go away
1481 * Return 0 on success and -errno on error. In the error case, the inode will
1482 * have had make_bad_inode() executed on it.
1484 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1486 loff_t bvi_size;
1487 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1488 ntfs_inode *ni, *base_ni, *bni;
1489 struct inode *bvi;
1490 MFT_RECORD *m;
1491 ATTR_RECORD *a;
1492 ntfs_attr_search_ctx *ctx;
1493 INDEX_ROOT *ir;
1494 u8 *ir_end, *index_end;
1495 int err = 0;
1497 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1498 ntfs_init_big_inode(vi);
1499 ni = NTFS_I(vi);
1500 base_ni = NTFS_I(base_vi);
1501 /* Just mirror the values from the base inode. */
1502 vi->i_uid = base_vi->i_uid;
1503 vi->i_gid = base_vi->i_gid;
1504 set_nlink(vi, base_vi->i_nlink);
1505 vi->i_mtime = base_vi->i_mtime;
1506 vi->i_ctime = base_vi->i_ctime;
1507 vi->i_atime = base_vi->i_atime;
1508 vi->i_generation = ni->seq_no = base_ni->seq_no;
1509 /* Set inode type to zero but preserve permissions. */
1510 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1511 /* Map the mft record for the base inode. */
1512 m = map_mft_record(base_ni);
1513 if (IS_ERR(m)) {
1514 err = PTR_ERR(m);
1515 goto err_out;
1517 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1518 if (!ctx) {
1519 err = -ENOMEM;
1520 goto unm_err_out;
1522 /* Find the index root attribute. */
1523 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1524 CASE_SENSITIVE, 0, NULL, 0, ctx);
1525 if (unlikely(err)) {
1526 if (err == -ENOENT)
1527 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1528 "missing.");
1529 goto unm_err_out;
1531 a = ctx->attr;
1532 /* Set up the state. */
1533 if (unlikely(a->non_resident)) {
1534 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1535 goto unm_err_out;
1537 /* Ensure the attribute name is placed before the value. */
1538 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1539 le16_to_cpu(a->data.resident.value_offset)))) {
1540 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1541 "after the attribute value.");
1542 goto unm_err_out;
1545 * Compressed/encrypted/sparse index root is not allowed, except for
1546 * directories of course but those are not dealt with here.
1548 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1549 ATTR_IS_SPARSE)) {
1550 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1551 "root attribute.");
1552 goto unm_err_out;
1554 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1555 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1556 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1557 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1558 goto unm_err_out;
1560 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1561 if (index_end > ir_end) {
1562 ntfs_error(vi->i_sb, "Index is corrupt.");
1563 goto unm_err_out;
1565 if (ir->type) {
1566 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1567 le32_to_cpu(ir->type));
1568 goto unm_err_out;
1570 ni->itype.index.collation_rule = ir->collation_rule;
1571 ntfs_debug("Index collation rule is 0x%x.",
1572 le32_to_cpu(ir->collation_rule));
1573 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1574 if (!is_power_of_2(ni->itype.index.block_size)) {
1575 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1576 "two.", ni->itype.index.block_size);
1577 goto unm_err_out;
1579 if (ni->itype.index.block_size > PAGE_SIZE) {
1580 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1581 "(%ld) is not supported. Sorry.",
1582 ni->itype.index.block_size, PAGE_SIZE);
1583 err = -EOPNOTSUPP;
1584 goto unm_err_out;
1586 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1587 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1588 "(%i) is not supported. Sorry.",
1589 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1590 err = -EOPNOTSUPP;
1591 goto unm_err_out;
1593 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1594 /* Determine the size of a vcn in the index. */
1595 if (vol->cluster_size <= ni->itype.index.block_size) {
1596 ni->itype.index.vcn_size = vol->cluster_size;
1597 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1598 } else {
1599 ni->itype.index.vcn_size = vol->sector_size;
1600 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1602 /* Check for presence of index allocation attribute. */
1603 if (!(ir->index.flags & LARGE_INDEX)) {
1604 /* No index allocation. */
1605 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1606 /* We are done with the mft record, so we release it. */
1607 ntfs_attr_put_search_ctx(ctx);
1608 unmap_mft_record(base_ni);
1609 m = NULL;
1610 ctx = NULL;
1611 goto skip_large_index_stuff;
1612 } /* LARGE_INDEX: Index allocation present. Setup state. */
1613 NInoSetIndexAllocPresent(ni);
1614 /* Find index allocation attribute. */
1615 ntfs_attr_reinit_search_ctx(ctx);
1616 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1617 CASE_SENSITIVE, 0, NULL, 0, ctx);
1618 if (unlikely(err)) {
1619 if (err == -ENOENT)
1620 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1621 "not present but $INDEX_ROOT "
1622 "indicated it is.");
1623 else
1624 ntfs_error(vi->i_sb, "Failed to lookup "
1625 "$INDEX_ALLOCATION attribute.");
1626 goto unm_err_out;
1628 a = ctx->attr;
1629 if (!a->non_resident) {
1630 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1631 "resident.");
1632 goto unm_err_out;
1635 * Ensure the attribute name is placed before the mapping pairs array.
1637 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1638 le16_to_cpu(
1639 a->data.non_resident.mapping_pairs_offset)))) {
1640 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1641 "placed after the mapping pairs array.");
1642 goto unm_err_out;
1644 if (a->flags & ATTR_IS_ENCRYPTED) {
1645 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1646 "encrypted.");
1647 goto unm_err_out;
1649 if (a->flags & ATTR_IS_SPARSE) {
1650 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1651 goto unm_err_out;
1653 if (a->flags & ATTR_COMPRESSION_MASK) {
1654 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1655 "compressed.");
1656 goto unm_err_out;
1658 if (a->data.non_resident.lowest_vcn) {
1659 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1660 "attribute has non zero lowest_vcn.");
1661 goto unm_err_out;
1663 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1664 ni->initialized_size = sle64_to_cpu(
1665 a->data.non_resident.initialized_size);
1666 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1668 * We are done with the mft record, so we release it. Otherwise
1669 * we would deadlock in ntfs_attr_iget().
1671 ntfs_attr_put_search_ctx(ctx);
1672 unmap_mft_record(base_ni);
1673 m = NULL;
1674 ctx = NULL;
1675 /* Get the index bitmap attribute inode. */
1676 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1677 if (IS_ERR(bvi)) {
1678 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1679 err = PTR_ERR(bvi);
1680 goto unm_err_out;
1682 bni = NTFS_I(bvi);
1683 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1684 NInoSparse(bni)) {
1685 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1686 "encrypted and/or sparse.");
1687 goto iput_unm_err_out;
1689 /* Consistency check bitmap size vs. index allocation size. */
1690 bvi_size = i_size_read(bvi);
1691 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1692 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1693 "index allocation (0x%llx).", bvi_size << 3,
1694 vi->i_size);
1695 goto iput_unm_err_out;
1697 iput(bvi);
1698 skip_large_index_stuff:
1699 /* Setup the operations for this index inode. */
1700 vi->i_mapping->a_ops = &ntfs_mst_aops;
1701 vi->i_blocks = ni->allocated_size >> 9;
1703 * Make sure the base inode doesn't go away and attach it to the
1704 * index inode.
1706 igrab(base_vi);
1707 ni->ext.base_ntfs_ino = base_ni;
1708 ni->nr_extents = -1;
1710 ntfs_debug("Done.");
1711 return 0;
1712 iput_unm_err_out:
1713 iput(bvi);
1714 unm_err_out:
1715 if (!err)
1716 err = -EIO;
1717 if (ctx)
1718 ntfs_attr_put_search_ctx(ctx);
1719 if (m)
1720 unmap_mft_record(base_ni);
1721 err_out:
1722 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1723 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1724 ni->name_len);
1725 make_bad_inode(vi);
1726 if (err != -EOPNOTSUPP && err != -ENOMEM)
1727 NVolSetErrors(vol);
1728 return err;
1732 * The MFT inode has special locking, so teach the lock validator
1733 * about this by splitting off the locking rules of the MFT from
1734 * the locking rules of other inodes. The MFT inode can never be
1735 * accessed from the VFS side (or even internally), only by the
1736 * map_mft functions.
1738 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1741 * ntfs_read_inode_mount - special read_inode for mount time use only
1742 * @vi: inode to read
1744 * Read inode FILE_MFT at mount time, only called with super_block lock
1745 * held from within the read_super() code path.
1747 * This function exists because when it is called the page cache for $MFT/$DATA
1748 * is not initialized and hence we cannot get at the contents of mft records
1749 * by calling map_mft_record*().
1751 * Further it needs to cope with the circular references problem, i.e. cannot
1752 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1753 * we do not know where the other extent mft records are yet and again, because
1754 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1755 * attribute list is actually present in $MFT inode.
1757 * We solve these problems by starting with the $DATA attribute before anything
1758 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1759 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1760 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1761 * sufficient information for the next step to complete.
1763 * This should work but there are two possible pit falls (see inline comments
1764 * below), but only time will tell if they are real pits or just smoke...
1766 int ntfs_read_inode_mount(struct inode *vi)
1768 VCN next_vcn, last_vcn, highest_vcn;
1769 s64 block;
1770 struct super_block *sb = vi->i_sb;
1771 ntfs_volume *vol = NTFS_SB(sb);
1772 struct buffer_head *bh;
1773 ntfs_inode *ni;
1774 MFT_RECORD *m = NULL;
1775 ATTR_RECORD *a;
1776 ntfs_attr_search_ctx *ctx;
1777 unsigned int i, nr_blocks;
1778 int err;
1780 ntfs_debug("Entering.");
1782 /* Initialize the ntfs specific part of @vi. */
1783 ntfs_init_big_inode(vi);
1785 ni = NTFS_I(vi);
1787 /* Setup the data attribute. It is special as it is mst protected. */
1788 NInoSetNonResident(ni);
1789 NInoSetMstProtected(ni);
1790 NInoSetSparseDisabled(ni);
1791 ni->type = AT_DATA;
1792 ni->name = NULL;
1793 ni->name_len = 0;
1795 * This sets up our little cheat allowing us to reuse the async read io
1796 * completion handler for directories.
1798 ni->itype.index.block_size = vol->mft_record_size;
1799 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1801 /* Very important! Needed to be able to call map_mft_record*(). */
1802 vol->mft_ino = vi;
1804 /* Allocate enough memory to read the first mft record. */
1805 if (vol->mft_record_size > 64 * 1024) {
1806 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1807 vol->mft_record_size);
1808 goto err_out;
1810 i = vol->mft_record_size;
1811 if (i < sb->s_blocksize)
1812 i = sb->s_blocksize;
1813 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1814 if (!m) {
1815 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1816 goto err_out;
1819 /* Determine the first block of the $MFT/$DATA attribute. */
1820 block = vol->mft_lcn << vol->cluster_size_bits >>
1821 sb->s_blocksize_bits;
1822 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1823 if (!nr_blocks)
1824 nr_blocks = 1;
1826 /* Load $MFT/$DATA's first mft record. */
1827 for (i = 0; i < nr_blocks; i++) {
1828 bh = sb_bread(sb, block++);
1829 if (!bh) {
1830 ntfs_error(sb, "Device read failed.");
1831 goto err_out;
1833 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1834 sb->s_blocksize);
1835 brelse(bh);
1838 /* Apply the mst fixups. */
1839 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1840 /* FIXME: Try to use the $MFTMirr now. */
1841 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1842 goto err_out;
1845 /* Need this to sanity check attribute list references to $MFT. */
1846 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1848 /* Provides readpage() for map_mft_record(). */
1849 vi->i_mapping->a_ops = &ntfs_mst_aops;
1851 ctx = ntfs_attr_get_search_ctx(ni, m);
1852 if (!ctx) {
1853 err = -ENOMEM;
1854 goto err_out;
1857 /* Find the attribute list attribute if present. */
1858 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1859 if (err) {
1860 if (unlikely(err != -ENOENT)) {
1861 ntfs_error(sb, "Failed to lookup attribute list "
1862 "attribute. You should run chkdsk.");
1863 goto put_err_out;
1865 } else /* if (!err) */ {
1866 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1867 u8 *al_end;
1868 static const char *es = " Not allowed. $MFT is corrupt. "
1869 "You should run chkdsk.";
1871 ntfs_debug("Attribute list attribute found in $MFT.");
1872 NInoSetAttrList(ni);
1873 a = ctx->attr;
1874 if (a->flags & ATTR_COMPRESSION_MASK) {
1875 ntfs_error(sb, "Attribute list attribute is "
1876 "compressed.%s", es);
1877 goto put_err_out;
1879 if (a->flags & ATTR_IS_ENCRYPTED ||
1880 a->flags & ATTR_IS_SPARSE) {
1881 if (a->non_resident) {
1882 ntfs_error(sb, "Non-resident attribute list "
1883 "attribute is encrypted/"
1884 "sparse.%s", es);
1885 goto put_err_out;
1887 ntfs_warning(sb, "Resident attribute list attribute "
1888 "in $MFT system file is marked "
1889 "encrypted/sparse which is not true. "
1890 "However, Windows allows this and "
1891 "chkdsk does not detect or correct it "
1892 "so we will just ignore the invalid "
1893 "flags and pretend they are not set.");
1895 /* Now allocate memory for the attribute list. */
1896 ni->attr_list_size = (u32)ntfs_attr_size(a);
1897 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1898 if (!ni->attr_list) {
1899 ntfs_error(sb, "Not enough memory to allocate buffer "
1900 "for attribute list.");
1901 goto put_err_out;
1903 if (a->non_resident) {
1904 NInoSetAttrListNonResident(ni);
1905 if (a->data.non_resident.lowest_vcn) {
1906 ntfs_error(sb, "Attribute list has non zero "
1907 "lowest_vcn. $MFT is corrupt. "
1908 "You should run chkdsk.");
1909 goto put_err_out;
1911 /* Setup the runlist. */
1912 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1913 a, NULL);
1914 if (IS_ERR(ni->attr_list_rl.rl)) {
1915 err = PTR_ERR(ni->attr_list_rl.rl);
1916 ni->attr_list_rl.rl = NULL;
1917 ntfs_error(sb, "Mapping pairs decompression "
1918 "failed with error code %i.",
1919 -err);
1920 goto put_err_out;
1922 /* Now load the attribute list. */
1923 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1924 ni->attr_list, ni->attr_list_size,
1925 sle64_to_cpu(a->data.
1926 non_resident.initialized_size)))) {
1927 ntfs_error(sb, "Failed to load attribute list "
1928 "attribute with error code %i.",
1929 -err);
1930 goto put_err_out;
1932 } else /* if (!ctx.attr->non_resident) */ {
1933 if ((u8*)a + le16_to_cpu(
1934 a->data.resident.value_offset) +
1935 le32_to_cpu(
1936 a->data.resident.value_length) >
1937 (u8*)ctx->mrec + vol->mft_record_size) {
1938 ntfs_error(sb, "Corrupt attribute list "
1939 "attribute.");
1940 goto put_err_out;
1942 /* Now copy the attribute list. */
1943 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1944 a->data.resident.value_offset),
1945 le32_to_cpu(
1946 a->data.resident.value_length));
1948 /* The attribute list is now setup in memory. */
1950 * FIXME: I don't know if this case is actually possible.
1951 * According to logic it is not possible but I have seen too
1952 * many weird things in MS software to rely on logic... Thus we
1953 * perform a manual search and make sure the first $MFT/$DATA
1954 * extent is in the base inode. If it is not we abort with an
1955 * error and if we ever see a report of this error we will need
1956 * to do some magic in order to have the necessary mft record
1957 * loaded and in the right place in the page cache. But
1958 * hopefully logic will prevail and this never happens...
1960 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1961 al_end = (u8*)al_entry + ni->attr_list_size;
1962 for (;; al_entry = next_al_entry) {
1963 /* Out of bounds check. */
1964 if ((u8*)al_entry < ni->attr_list ||
1965 (u8*)al_entry > al_end)
1966 goto em_put_err_out;
1967 /* Catch the end of the attribute list. */
1968 if ((u8*)al_entry == al_end)
1969 goto em_put_err_out;
1970 if (!al_entry->length)
1971 goto em_put_err_out;
1972 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1973 le16_to_cpu(al_entry->length) > al_end)
1974 goto em_put_err_out;
1975 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1976 le16_to_cpu(al_entry->length));
1977 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1978 goto em_put_err_out;
1979 if (AT_DATA != al_entry->type)
1980 continue;
1981 /* We want an unnamed attribute. */
1982 if (al_entry->name_length)
1983 goto em_put_err_out;
1984 /* Want the first entry, i.e. lowest_vcn == 0. */
1985 if (al_entry->lowest_vcn)
1986 goto em_put_err_out;
1987 /* First entry has to be in the base mft record. */
1988 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1989 /* MFT references do not match, logic fails. */
1990 ntfs_error(sb, "BUG: The first $DATA extent "
1991 "of $MFT is not in the base "
1992 "mft record. Please report "
1993 "you saw this message to "
1994 "linux-ntfs-dev@lists."
1995 "sourceforge.net");
1996 goto put_err_out;
1997 } else {
1998 /* Sequence numbers must match. */
1999 if (MSEQNO_LE(al_entry->mft_reference) !=
2000 ni->seq_no)
2001 goto em_put_err_out;
2002 /* Got it. All is ok. We can stop now. */
2003 break;
2008 ntfs_attr_reinit_search_ctx(ctx);
2010 /* Now load all attribute extents. */
2011 a = NULL;
2012 next_vcn = last_vcn = highest_vcn = 0;
2013 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2014 ctx))) {
2015 runlist_element *nrl;
2017 /* Cache the current attribute. */
2018 a = ctx->attr;
2019 /* $MFT must be non-resident. */
2020 if (!a->non_resident) {
2021 ntfs_error(sb, "$MFT must be non-resident but a "
2022 "resident extent was found. $MFT is "
2023 "corrupt. Run chkdsk.");
2024 goto put_err_out;
2026 /* $MFT must be uncompressed and unencrypted. */
2027 if (a->flags & ATTR_COMPRESSION_MASK ||
2028 a->flags & ATTR_IS_ENCRYPTED ||
2029 a->flags & ATTR_IS_SPARSE) {
2030 ntfs_error(sb, "$MFT must be uncompressed, "
2031 "non-sparse, and unencrypted but a "
2032 "compressed/sparse/encrypted extent "
2033 "was found. $MFT is corrupt. Run "
2034 "chkdsk.");
2035 goto put_err_out;
2038 * Decompress the mapping pairs array of this extent and merge
2039 * the result into the existing runlist. No need for locking
2040 * as we have exclusive access to the inode at this time and we
2041 * are a mount in progress task, too.
2043 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2044 if (IS_ERR(nrl)) {
2045 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2046 "failed with error code %ld. $MFT is "
2047 "corrupt.", PTR_ERR(nrl));
2048 goto put_err_out;
2050 ni->runlist.rl = nrl;
2052 /* Are we in the first extent? */
2053 if (!next_vcn) {
2054 if (a->data.non_resident.lowest_vcn) {
2055 ntfs_error(sb, "First extent of $DATA "
2056 "attribute has non zero "
2057 "lowest_vcn. $MFT is corrupt. "
2058 "You should run chkdsk.");
2059 goto put_err_out;
2061 /* Get the last vcn in the $DATA attribute. */
2062 last_vcn = sle64_to_cpu(
2063 a->data.non_resident.allocated_size)
2064 >> vol->cluster_size_bits;
2065 /* Fill in the inode size. */
2066 vi->i_size = sle64_to_cpu(
2067 a->data.non_resident.data_size);
2068 ni->initialized_size = sle64_to_cpu(
2069 a->data.non_resident.initialized_size);
2070 ni->allocated_size = sle64_to_cpu(
2071 a->data.non_resident.allocated_size);
2073 * Verify the number of mft records does not exceed
2074 * 2^32 - 1.
2076 if ((vi->i_size >> vol->mft_record_size_bits) >=
2077 (1ULL << 32)) {
2078 ntfs_error(sb, "$MFT is too big! Aborting.");
2079 goto put_err_out;
2082 * We have got the first extent of the runlist for
2083 * $MFT which means it is now relatively safe to call
2084 * the normal ntfs_read_inode() function.
2085 * Complete reading the inode, this will actually
2086 * re-read the mft record for $MFT, this time entering
2087 * it into the page cache with which we complete the
2088 * kick start of the volume. It should be safe to do
2089 * this now as the first extent of $MFT/$DATA is
2090 * already known and we would hope that we don't need
2091 * further extents in order to find the other
2092 * attributes belonging to $MFT. Only time will tell if
2093 * this is really the case. If not we will have to play
2094 * magic at this point, possibly duplicating a lot of
2095 * ntfs_read_inode() at this point. We will need to
2096 * ensure we do enough of its work to be able to call
2097 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2098 * hope this never happens...
2100 ntfs_read_locked_inode(vi);
2101 if (is_bad_inode(vi)) {
2102 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2103 "failed. BUG or corrupt $MFT. "
2104 "Run chkdsk and if no errors "
2105 "are found, please report you "
2106 "saw this message to "
2107 "linux-ntfs-dev@lists."
2108 "sourceforge.net");
2109 ntfs_attr_put_search_ctx(ctx);
2110 /* Revert to the safe super operations. */
2111 ntfs_free(m);
2112 return -1;
2115 * Re-initialize some specifics about $MFT's inode as
2116 * ntfs_read_inode() will have set up the default ones.
2118 /* Set uid and gid to root. */
2119 vi->i_uid = GLOBAL_ROOT_UID;
2120 vi->i_gid = GLOBAL_ROOT_GID;
2121 /* Regular file. No access for anyone. */
2122 vi->i_mode = S_IFREG;
2123 /* No VFS initiated operations allowed for $MFT. */
2124 vi->i_op = &ntfs_empty_inode_ops;
2125 vi->i_fop = &ntfs_empty_file_ops;
2128 /* Get the lowest vcn for the next extent. */
2129 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2130 next_vcn = highest_vcn + 1;
2132 /* Only one extent or error, which we catch below. */
2133 if (next_vcn <= 0)
2134 break;
2136 /* Avoid endless loops due to corruption. */
2137 if (next_vcn < sle64_to_cpu(
2138 a->data.non_resident.lowest_vcn)) {
2139 ntfs_error(sb, "$MFT has corrupt attribute list "
2140 "attribute. Run chkdsk.");
2141 goto put_err_out;
2144 if (err != -ENOENT) {
2145 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2146 "$MFT is corrupt. Run chkdsk.");
2147 goto put_err_out;
2149 if (!a) {
2150 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2151 "corrupt. Run chkdsk.");
2152 goto put_err_out;
2154 if (highest_vcn && highest_vcn != last_vcn - 1) {
2155 ntfs_error(sb, "Failed to load the complete runlist for "
2156 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2157 "Run chkdsk.");
2158 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2159 (unsigned long long)highest_vcn,
2160 (unsigned long long)last_vcn - 1);
2161 goto put_err_out;
2163 ntfs_attr_put_search_ctx(ctx);
2164 ntfs_debug("Done.");
2165 ntfs_free(m);
2168 * Split the locking rules of the MFT inode from the
2169 * locking rules of other inodes:
2171 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2172 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2174 return 0;
2176 em_put_err_out:
2177 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2178 "attribute list. $MFT is corrupt. Run chkdsk.");
2179 put_err_out:
2180 ntfs_attr_put_search_ctx(ctx);
2181 err_out:
2182 ntfs_error(sb, "Failed. Marking inode as bad.");
2183 make_bad_inode(vi);
2184 ntfs_free(m);
2185 return -1;
2188 static void __ntfs_clear_inode(ntfs_inode *ni)
2190 /* Free all alocated memory. */
2191 down_write(&ni->runlist.lock);
2192 if (ni->runlist.rl) {
2193 ntfs_free(ni->runlist.rl);
2194 ni->runlist.rl = NULL;
2196 up_write(&ni->runlist.lock);
2198 if (ni->attr_list) {
2199 ntfs_free(ni->attr_list);
2200 ni->attr_list = NULL;
2203 down_write(&ni->attr_list_rl.lock);
2204 if (ni->attr_list_rl.rl) {
2205 ntfs_free(ni->attr_list_rl.rl);
2206 ni->attr_list_rl.rl = NULL;
2208 up_write(&ni->attr_list_rl.lock);
2210 if (ni->name_len && ni->name != I30) {
2211 /* Catch bugs... */
2212 BUG_ON(!ni->name);
2213 kfree(ni->name);
2217 void ntfs_clear_extent_inode(ntfs_inode *ni)
2219 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2221 BUG_ON(NInoAttr(ni));
2222 BUG_ON(ni->nr_extents != -1);
2224 #ifdef NTFS_RW
2225 if (NInoDirty(ni)) {
2226 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2227 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2228 "Losing data! This is a BUG!!!");
2229 // FIXME: Do something!!!
2231 #endif /* NTFS_RW */
2233 __ntfs_clear_inode(ni);
2235 /* Bye, bye... */
2236 ntfs_destroy_extent_inode(ni);
2240 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2241 * @vi: vfs inode pending annihilation
2243 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2244 * is called, which deallocates all memory belonging to the NTFS specific part
2245 * of the inode and returns.
2247 * If the MFT record is dirty, we commit it before doing anything else.
2249 void ntfs_evict_big_inode(struct inode *vi)
2251 ntfs_inode *ni = NTFS_I(vi);
2253 truncate_inode_pages_final(&vi->i_data);
2254 clear_inode(vi);
2256 #ifdef NTFS_RW
2257 if (NInoDirty(ni)) {
2258 bool was_bad = (is_bad_inode(vi));
2260 /* Committing the inode also commits all extent inodes. */
2261 ntfs_commit_inode(vi);
2263 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2264 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2265 "0x%lx. Losing data!", vi->i_ino);
2266 // FIXME: Do something!!!
2269 #endif /* NTFS_RW */
2271 /* No need to lock at this stage as no one else has a reference. */
2272 if (ni->nr_extents > 0) {
2273 int i;
2275 for (i = 0; i < ni->nr_extents; i++)
2276 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2277 kfree(ni->ext.extent_ntfs_inos);
2280 __ntfs_clear_inode(ni);
2282 if (NInoAttr(ni)) {
2283 /* Release the base inode if we are holding it. */
2284 if (ni->nr_extents == -1) {
2285 iput(VFS_I(ni->ext.base_ntfs_ino));
2286 ni->nr_extents = 0;
2287 ni->ext.base_ntfs_ino = NULL;
2290 return;
2294 * ntfs_show_options - show mount options in /proc/mounts
2295 * @sf: seq_file in which to write our mount options
2296 * @root: root of the mounted tree whose mount options to display
2298 * Called by the VFS once for each mounted ntfs volume when someone reads
2299 * /proc/mounts in order to display the NTFS specific mount options of each
2300 * mount. The mount options of fs specified by @root are written to the seq file
2301 * @sf and success is returned.
2303 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2305 ntfs_volume *vol = NTFS_SB(root->d_sb);
2306 int i;
2308 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2309 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2310 if (vol->fmask == vol->dmask)
2311 seq_printf(sf, ",umask=0%o", vol->fmask);
2312 else {
2313 seq_printf(sf, ",fmask=0%o", vol->fmask);
2314 seq_printf(sf, ",dmask=0%o", vol->dmask);
2316 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2317 if (NVolCaseSensitive(vol))
2318 seq_printf(sf, ",case_sensitive");
2319 if (NVolShowSystemFiles(vol))
2320 seq_printf(sf, ",show_sys_files");
2321 if (!NVolSparseEnabled(vol))
2322 seq_printf(sf, ",disable_sparse");
2323 for (i = 0; on_errors_arr[i].val; i++) {
2324 if (on_errors_arr[i].val & vol->on_errors)
2325 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2327 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2328 return 0;
2331 #ifdef NTFS_RW
2333 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2334 "chkdsk.";
2337 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2338 * @vi: inode for which the i_size was changed
2340 * We only support i_size changes for normal files at present, i.e. not
2341 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2342 * below.
2344 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2345 * that the change is allowed.
2347 * This implies for us that @vi is a file inode rather than a directory, index,
2348 * or attribute inode as well as that @vi is a base inode.
2350 * Returns 0 on success or -errno on error.
2352 * Called with ->i_mutex held.
2354 int ntfs_truncate(struct inode *vi)
2356 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2357 VCN highest_vcn;
2358 unsigned long flags;
2359 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2360 ntfs_volume *vol = ni->vol;
2361 ntfs_attr_search_ctx *ctx;
2362 MFT_RECORD *m;
2363 ATTR_RECORD *a;
2364 const char *te = " Leaving file length out of sync with i_size.";
2365 int err, mp_size, size_change, alloc_change;
2366 u32 attr_len;
2368 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2369 BUG_ON(NInoAttr(ni));
2370 BUG_ON(S_ISDIR(vi->i_mode));
2371 BUG_ON(NInoMstProtected(ni));
2372 BUG_ON(ni->nr_extents < 0);
2373 retry_truncate:
2375 * Lock the runlist for writing and map the mft record to ensure it is
2376 * safe to mess with the attribute runlist and sizes.
2378 down_write(&ni->runlist.lock);
2379 if (!NInoAttr(ni))
2380 base_ni = ni;
2381 else
2382 base_ni = ni->ext.base_ntfs_ino;
2383 m = map_mft_record(base_ni);
2384 if (IS_ERR(m)) {
2385 err = PTR_ERR(m);
2386 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2387 "(error code %d).%s", vi->i_ino, err, te);
2388 ctx = NULL;
2389 m = NULL;
2390 goto old_bad_out;
2392 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2393 if (unlikely(!ctx)) {
2394 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2395 "inode 0x%lx (not enough memory).%s",
2396 vi->i_ino, te);
2397 err = -ENOMEM;
2398 goto old_bad_out;
2400 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2401 CASE_SENSITIVE, 0, NULL, 0, ctx);
2402 if (unlikely(err)) {
2403 if (err == -ENOENT) {
2404 ntfs_error(vi->i_sb, "Open attribute is missing from "
2405 "mft record. Inode 0x%lx is corrupt. "
2406 "Run chkdsk.%s", vi->i_ino, te);
2407 err = -EIO;
2408 } else
2409 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2410 "inode 0x%lx (error code %d).%s",
2411 vi->i_ino, err, te);
2412 goto old_bad_out;
2414 m = ctx->mrec;
2415 a = ctx->attr;
2417 * The i_size of the vfs inode is the new size for the attribute value.
2419 new_size = i_size_read(vi);
2420 /* The current size of the attribute value is the old size. */
2421 old_size = ntfs_attr_size(a);
2422 /* Calculate the new allocated size. */
2423 if (NInoNonResident(ni))
2424 new_alloc_size = (new_size + vol->cluster_size - 1) &
2425 ~(s64)vol->cluster_size_mask;
2426 else
2427 new_alloc_size = (new_size + 7) & ~7;
2428 /* The current allocated size is the old allocated size. */
2429 read_lock_irqsave(&ni->size_lock, flags);
2430 old_alloc_size = ni->allocated_size;
2431 read_unlock_irqrestore(&ni->size_lock, flags);
2433 * The change in the file size. This will be 0 if no change, >0 if the
2434 * size is growing, and <0 if the size is shrinking.
2436 size_change = -1;
2437 if (new_size - old_size >= 0) {
2438 size_change = 1;
2439 if (new_size == old_size)
2440 size_change = 0;
2442 /* As above for the allocated size. */
2443 alloc_change = -1;
2444 if (new_alloc_size - old_alloc_size >= 0) {
2445 alloc_change = 1;
2446 if (new_alloc_size == old_alloc_size)
2447 alloc_change = 0;
2450 * If neither the size nor the allocation are being changed there is
2451 * nothing to do.
2453 if (!size_change && !alloc_change)
2454 goto unm_done;
2455 /* If the size is changing, check if new size is allowed in $AttrDef. */
2456 if (size_change) {
2457 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2458 if (unlikely(err)) {
2459 if (err == -ERANGE) {
2460 ntfs_error(vol->sb, "Truncate would cause the "
2461 "inode 0x%lx to %simum size "
2462 "for its attribute type "
2463 "(0x%x). Aborting truncate.",
2464 vi->i_ino,
2465 new_size > old_size ? "exceed "
2466 "the max" : "go under the min",
2467 le32_to_cpu(ni->type));
2468 err = -EFBIG;
2469 } else {
2470 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2471 "attribute type 0x%x. "
2472 "Aborting truncate.",
2473 vi->i_ino,
2474 le32_to_cpu(ni->type));
2475 err = -EIO;
2477 /* Reset the vfs inode size to the old size. */
2478 i_size_write(vi, old_size);
2479 goto err_out;
2482 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2483 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2484 "supported yet for %s files, ignoring.",
2485 NInoCompressed(ni) ? "compressed" :
2486 "encrypted");
2487 err = -EOPNOTSUPP;
2488 goto bad_out;
2490 if (a->non_resident)
2491 goto do_non_resident_truncate;
2492 BUG_ON(NInoNonResident(ni));
2493 /* Resize the attribute record to best fit the new attribute size. */
2494 if (new_size < vol->mft_record_size &&
2495 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2496 /* The resize succeeded! */
2497 flush_dcache_mft_record_page(ctx->ntfs_ino);
2498 mark_mft_record_dirty(ctx->ntfs_ino);
2499 write_lock_irqsave(&ni->size_lock, flags);
2500 /* Update the sizes in the ntfs inode and all is done. */
2501 ni->allocated_size = le32_to_cpu(a->length) -
2502 le16_to_cpu(a->data.resident.value_offset);
2504 * Note ntfs_resident_attr_value_resize() has already done any
2505 * necessary data clearing in the attribute record. When the
2506 * file is being shrunk vmtruncate() will already have cleared
2507 * the top part of the last partial page, i.e. since this is
2508 * the resident case this is the page with index 0. However,
2509 * when the file is being expanded, the page cache page data
2510 * between the old data_size, i.e. old_size, and the new_size
2511 * has not been zeroed. Fortunately, we do not need to zero it
2512 * either since on one hand it will either already be zero due
2513 * to both readpage and writepage clearing partial page data
2514 * beyond i_size in which case there is nothing to do or in the
2515 * case of the file being mmap()ped at the same time, POSIX
2516 * specifies that the behaviour is unspecified thus we do not
2517 * have to do anything. This means that in our implementation
2518 * in the rare case that the file is mmap()ped and a write
2519 * occurred into the mmap()ped region just beyond the file size
2520 * and writepage has not yet been called to write out the page
2521 * (which would clear the area beyond the file size) and we now
2522 * extend the file size to incorporate this dirty region
2523 * outside the file size, a write of the page would result in
2524 * this data being written to disk instead of being cleared.
2525 * Given both POSIX and the Linux mmap(2) man page specify that
2526 * this corner case is undefined, we choose to leave it like
2527 * that as this is much simpler for us as we cannot lock the
2528 * relevant page now since we are holding too many ntfs locks
2529 * which would result in a lock reversal deadlock.
2531 ni->initialized_size = new_size;
2532 write_unlock_irqrestore(&ni->size_lock, flags);
2533 goto unm_done;
2535 /* If the above resize failed, this must be an attribute extension. */
2536 BUG_ON(size_change < 0);
2538 * We have to drop all the locks so we can call
2539 * ntfs_attr_make_non_resident(). This could be optimised by try-
2540 * locking the first page cache page and only if that fails dropping
2541 * the locks, locking the page, and redoing all the locking and
2542 * lookups. While this would be a huge optimisation, it is not worth
2543 * it as this is definitely a slow code path as it only ever can happen
2544 * once for any given file.
2546 ntfs_attr_put_search_ctx(ctx);
2547 unmap_mft_record(base_ni);
2548 up_write(&ni->runlist.lock);
2550 * Not enough space in the mft record, try to make the attribute
2551 * non-resident and if successful restart the truncation process.
2553 err = ntfs_attr_make_non_resident(ni, old_size);
2554 if (likely(!err))
2555 goto retry_truncate;
2557 * Could not make non-resident. If this is due to this not being
2558 * permitted for this attribute type or there not being enough space,
2559 * try to make other attributes non-resident. Otherwise fail.
2561 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2562 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2563 "type 0x%x, because the conversion from "
2564 "resident to non-resident attribute failed "
2565 "with error code %i.", vi->i_ino,
2566 (unsigned)le32_to_cpu(ni->type), err);
2567 if (err != -ENOMEM)
2568 err = -EIO;
2569 goto conv_err_out;
2571 /* TODO: Not implemented from here, abort. */
2572 if (err == -ENOSPC)
2573 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2574 "disk for the non-resident attribute value. "
2575 "This case is not implemented yet.");
2576 else /* if (err == -EPERM) */
2577 ntfs_error(vol->sb, "This attribute type may not be "
2578 "non-resident. This case is not implemented "
2579 "yet.");
2580 err = -EOPNOTSUPP;
2581 goto conv_err_out;
2582 #if 0
2583 // TODO: Attempt to make other attributes non-resident.
2584 if (!err)
2585 goto do_resident_extend;
2587 * Both the attribute list attribute and the standard information
2588 * attribute must remain in the base inode. Thus, if this is one of
2589 * these attributes, we have to try to move other attributes out into
2590 * extent mft records instead.
2592 if (ni->type == AT_ATTRIBUTE_LIST ||
2593 ni->type == AT_STANDARD_INFORMATION) {
2594 // TODO: Attempt to move other attributes into extent mft
2595 // records.
2596 err = -EOPNOTSUPP;
2597 if (!err)
2598 goto do_resident_extend;
2599 goto err_out;
2601 // TODO: Attempt to move this attribute to an extent mft record, but
2602 // only if it is not already the only attribute in an mft record in
2603 // which case there would be nothing to gain.
2604 err = -EOPNOTSUPP;
2605 if (!err)
2606 goto do_resident_extend;
2607 /* There is nothing we can do to make enough space. )-: */
2608 goto err_out;
2609 #endif
2610 do_non_resident_truncate:
2611 BUG_ON(!NInoNonResident(ni));
2612 if (alloc_change < 0) {
2613 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2614 if (highest_vcn > 0 &&
2615 old_alloc_size >> vol->cluster_size_bits >
2616 highest_vcn + 1) {
2618 * This attribute has multiple extents. Not yet
2619 * supported.
2621 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2622 "attribute type 0x%x, because the "
2623 "attribute is highly fragmented (it "
2624 "consists of multiple extents) and "
2625 "this case is not implemented yet.",
2626 vi->i_ino,
2627 (unsigned)le32_to_cpu(ni->type));
2628 err = -EOPNOTSUPP;
2629 goto bad_out;
2633 * If the size is shrinking, need to reduce the initialized_size and
2634 * the data_size before reducing the allocation.
2636 if (size_change < 0) {
2638 * Make the valid size smaller (i_size is already up-to-date).
2640 write_lock_irqsave(&ni->size_lock, flags);
2641 if (new_size < ni->initialized_size) {
2642 ni->initialized_size = new_size;
2643 a->data.non_resident.initialized_size =
2644 cpu_to_sle64(new_size);
2646 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2647 write_unlock_irqrestore(&ni->size_lock, flags);
2648 flush_dcache_mft_record_page(ctx->ntfs_ino);
2649 mark_mft_record_dirty(ctx->ntfs_ino);
2650 /* If the allocated size is not changing, we are done. */
2651 if (!alloc_change)
2652 goto unm_done;
2654 * If the size is shrinking it makes no sense for the
2655 * allocation to be growing.
2657 BUG_ON(alloc_change > 0);
2658 } else /* if (size_change >= 0) */ {
2660 * The file size is growing or staying the same but the
2661 * allocation can be shrinking, growing or staying the same.
2663 if (alloc_change > 0) {
2665 * We need to extend the allocation and possibly update
2666 * the data size. If we are updating the data size,
2667 * since we are not touching the initialized_size we do
2668 * not need to worry about the actual data on disk.
2669 * And as far as the page cache is concerned, there
2670 * will be no pages beyond the old data size and any
2671 * partial region in the last page between the old and
2672 * new data size (or the end of the page if the new
2673 * data size is outside the page) does not need to be
2674 * modified as explained above for the resident
2675 * attribute truncate case. To do this, we simply drop
2676 * the locks we hold and leave all the work to our
2677 * friendly helper ntfs_attr_extend_allocation().
2679 ntfs_attr_put_search_ctx(ctx);
2680 unmap_mft_record(base_ni);
2681 up_write(&ni->runlist.lock);
2682 err = ntfs_attr_extend_allocation(ni, new_size,
2683 size_change > 0 ? new_size : -1, -1);
2685 * ntfs_attr_extend_allocation() will have done error
2686 * output already.
2688 goto done;
2690 if (!alloc_change)
2691 goto alloc_done;
2693 /* alloc_change < 0 */
2694 /* Free the clusters. */
2695 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2696 vol->cluster_size_bits, -1, ctx);
2697 m = ctx->mrec;
2698 a = ctx->attr;
2699 if (unlikely(nr_freed < 0)) {
2700 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2701 "%lli). Unmount and run chkdsk to recover "
2702 "the lost cluster(s).", (long long)nr_freed);
2703 NVolSetErrors(vol);
2704 nr_freed = 0;
2706 /* Truncate the runlist. */
2707 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2708 new_alloc_size >> vol->cluster_size_bits);
2710 * If the runlist truncation failed and/or the search context is no
2711 * longer valid, we cannot resize the attribute record or build the
2712 * mapping pairs array thus we mark the inode bad so that no access to
2713 * the freed clusters can happen.
2715 if (unlikely(err || IS_ERR(m))) {
2716 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2717 IS_ERR(m) ?
2718 "restore attribute search context" :
2719 "truncate attribute runlist",
2720 IS_ERR(m) ? PTR_ERR(m) : err, es);
2721 err = -EIO;
2722 goto bad_out;
2724 /* Get the size for the shrunk mapping pairs array for the runlist. */
2725 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2726 if (unlikely(mp_size <= 0)) {
2727 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2728 "attribute type 0x%x, because determining the "
2729 "size for the mapping pairs failed with error "
2730 "code %i.%s", vi->i_ino,
2731 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2732 err = -EIO;
2733 goto bad_out;
2736 * Shrink the attribute record for the new mapping pairs array. Note,
2737 * this cannot fail since we are making the attribute smaller thus by
2738 * definition there is enough space to do so.
2740 attr_len = le32_to_cpu(a->length);
2741 err = ntfs_attr_record_resize(m, a, mp_size +
2742 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2743 BUG_ON(err);
2745 * Generate the mapping pairs array directly into the attribute record.
2747 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2748 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2749 mp_size, ni->runlist.rl, 0, -1, NULL);
2750 if (unlikely(err)) {
2751 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2752 "attribute type 0x%x, because building the "
2753 "mapping pairs failed with error code %i.%s",
2754 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2755 err, es);
2756 err = -EIO;
2757 goto bad_out;
2759 /* Update the allocated/compressed size as well as the highest vcn. */
2760 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2761 vol->cluster_size_bits) - 1);
2762 write_lock_irqsave(&ni->size_lock, flags);
2763 ni->allocated_size = new_alloc_size;
2764 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2765 if (NInoSparse(ni) || NInoCompressed(ni)) {
2766 if (nr_freed) {
2767 ni->itype.compressed.size -= nr_freed <<
2768 vol->cluster_size_bits;
2769 BUG_ON(ni->itype.compressed.size < 0);
2770 a->data.non_resident.compressed_size = cpu_to_sle64(
2771 ni->itype.compressed.size);
2772 vi->i_blocks = ni->itype.compressed.size >> 9;
2774 } else
2775 vi->i_blocks = new_alloc_size >> 9;
2776 write_unlock_irqrestore(&ni->size_lock, flags);
2778 * We have shrunk the allocation. If this is a shrinking truncate we
2779 * have already dealt with the initialized_size and the data_size above
2780 * and we are done. If the truncate is only changing the allocation
2781 * and not the data_size, we are also done. If this is an extending
2782 * truncate, need to extend the data_size now which is ensured by the
2783 * fact that @size_change is positive.
2785 alloc_done:
2787 * If the size is growing, need to update it now. If it is shrinking,
2788 * we have already updated it above (before the allocation change).
2790 if (size_change > 0)
2791 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2792 /* Ensure the modified mft record is written out. */
2793 flush_dcache_mft_record_page(ctx->ntfs_ino);
2794 mark_mft_record_dirty(ctx->ntfs_ino);
2795 unm_done:
2796 ntfs_attr_put_search_ctx(ctx);
2797 unmap_mft_record(base_ni);
2798 up_write(&ni->runlist.lock);
2799 done:
2800 /* Update the mtime and ctime on the base inode. */
2801 /* normally ->truncate shouldn't update ctime or mtime,
2802 * but ntfs did before so it got a copy & paste version
2803 * of file_update_time. one day someone should fix this
2804 * for real.
2806 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2807 struct timespec now = current_time(VFS_I(base_ni));
2808 int sync_it = 0;
2810 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2811 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2812 sync_it = 1;
2813 VFS_I(base_ni)->i_mtime = now;
2814 VFS_I(base_ni)->i_ctime = now;
2816 if (sync_it)
2817 mark_inode_dirty_sync(VFS_I(base_ni));
2820 if (likely(!err)) {
2821 NInoClearTruncateFailed(ni);
2822 ntfs_debug("Done.");
2824 return err;
2825 old_bad_out:
2826 old_size = -1;
2827 bad_out:
2828 if (err != -ENOMEM && err != -EOPNOTSUPP)
2829 NVolSetErrors(vol);
2830 if (err != -EOPNOTSUPP)
2831 NInoSetTruncateFailed(ni);
2832 else if (old_size >= 0)
2833 i_size_write(vi, old_size);
2834 err_out:
2835 if (ctx)
2836 ntfs_attr_put_search_ctx(ctx);
2837 if (m)
2838 unmap_mft_record(base_ni);
2839 up_write(&ni->runlist.lock);
2840 out:
2841 ntfs_debug("Failed. Returning error code %i.", err);
2842 return err;
2843 conv_err_out:
2844 if (err != -ENOMEM && err != -EOPNOTSUPP)
2845 NVolSetErrors(vol);
2846 if (err != -EOPNOTSUPP)
2847 NInoSetTruncateFailed(ni);
2848 else
2849 i_size_write(vi, old_size);
2850 goto out;
2854 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2855 * @vi: inode for which the i_size was changed
2857 * Wrapper for ntfs_truncate() that has no return value.
2859 * See ntfs_truncate() description above for details.
2861 #ifdef NTFS_RW
2862 void ntfs_truncate_vfs(struct inode *vi) {
2863 ntfs_truncate(vi);
2865 #endif
2868 * ntfs_setattr - called from notify_change() when an attribute is being changed
2869 * @dentry: dentry whose attributes to change
2870 * @attr: structure describing the attributes and the changes
2872 * We have to trap VFS attempts to truncate the file described by @dentry as
2873 * soon as possible, because we do not implement changes in i_size yet. So we
2874 * abort all i_size changes here.
2876 * We also abort all changes of user, group, and mode as we do not implement
2877 * the NTFS ACLs yet.
2879 * Called with ->i_mutex held.
2881 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2883 struct inode *vi = d_inode(dentry);
2884 int err;
2885 unsigned int ia_valid = attr->ia_valid;
2887 err = setattr_prepare(dentry, attr);
2888 if (err)
2889 goto out;
2890 /* We do not support NTFS ACLs yet. */
2891 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2892 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2893 "supported yet, ignoring.");
2894 err = -EOPNOTSUPP;
2895 goto out;
2897 if (ia_valid & ATTR_SIZE) {
2898 if (attr->ia_size != i_size_read(vi)) {
2899 ntfs_inode *ni = NTFS_I(vi);
2901 * FIXME: For now we do not support resizing of
2902 * compressed or encrypted files yet.
2904 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2905 ntfs_warning(vi->i_sb, "Changes in inode size "
2906 "are not supported yet for "
2907 "%s files, ignoring.",
2908 NInoCompressed(ni) ?
2909 "compressed" : "encrypted");
2910 err = -EOPNOTSUPP;
2911 } else {
2912 truncate_setsize(vi, attr->ia_size);
2913 ntfs_truncate_vfs(vi);
2915 if (err || ia_valid == ATTR_SIZE)
2916 goto out;
2917 } else {
2919 * We skipped the truncate but must still update
2920 * timestamps.
2922 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2925 if (ia_valid & ATTR_ATIME)
2926 vi->i_atime = timespec_trunc(attr->ia_atime,
2927 vi->i_sb->s_time_gran);
2928 if (ia_valid & ATTR_MTIME)
2929 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2930 vi->i_sb->s_time_gran);
2931 if (ia_valid & ATTR_CTIME)
2932 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2933 vi->i_sb->s_time_gran);
2934 mark_inode_dirty(vi);
2935 out:
2936 return err;
2940 * ntfs_write_inode - write out a dirty inode
2941 * @vi: inode to write out
2942 * @sync: if true, write out synchronously
2944 * Write out a dirty inode to disk including any extent inodes if present.
2946 * If @sync is true, commit the inode to disk and wait for io completion. This
2947 * is done using write_mft_record().
2949 * If @sync is false, just schedule the write to happen but do not wait for i/o
2950 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2951 * marking the page (and in this case mft record) dirty but we do not implement
2952 * this yet as write_mft_record() largely ignores the @sync parameter and
2953 * always performs synchronous writes.
2955 * Return 0 on success and -errno on error.
2957 int __ntfs_write_inode(struct inode *vi, int sync)
2959 sle64 nt;
2960 ntfs_inode *ni = NTFS_I(vi);
2961 ntfs_attr_search_ctx *ctx;
2962 MFT_RECORD *m;
2963 STANDARD_INFORMATION *si;
2964 int err = 0;
2965 bool modified = false;
2967 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2968 vi->i_ino);
2970 * Dirty attribute inodes are written via their real inodes so just
2971 * clean them here. Access time updates are taken care off when the
2972 * real inode is written.
2974 if (NInoAttr(ni)) {
2975 NInoClearDirty(ni);
2976 ntfs_debug("Done.");
2977 return 0;
2979 /* Map, pin, and lock the mft record belonging to the inode. */
2980 m = map_mft_record(ni);
2981 if (IS_ERR(m)) {
2982 err = PTR_ERR(m);
2983 goto err_out;
2985 /* Update the access times in the standard information attribute. */
2986 ctx = ntfs_attr_get_search_ctx(ni, m);
2987 if (unlikely(!ctx)) {
2988 err = -ENOMEM;
2989 goto unm_err_out;
2991 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2992 CASE_SENSITIVE, 0, NULL, 0, ctx);
2993 if (unlikely(err)) {
2994 ntfs_attr_put_search_ctx(ctx);
2995 goto unm_err_out;
2997 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2998 le16_to_cpu(ctx->attr->data.resident.value_offset));
2999 /* Update the access times if they have changed. */
3000 nt = utc2ntfs(vi->i_mtime);
3001 if (si->last_data_change_time != nt) {
3002 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3003 "new = 0x%llx", vi->i_ino, (long long)
3004 sle64_to_cpu(si->last_data_change_time),
3005 (long long)sle64_to_cpu(nt));
3006 si->last_data_change_time = nt;
3007 modified = true;
3009 nt = utc2ntfs(vi->i_ctime);
3010 if (si->last_mft_change_time != nt) {
3011 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3012 "new = 0x%llx", vi->i_ino, (long long)
3013 sle64_to_cpu(si->last_mft_change_time),
3014 (long long)sle64_to_cpu(nt));
3015 si->last_mft_change_time = nt;
3016 modified = true;
3018 nt = utc2ntfs(vi->i_atime);
3019 if (si->last_access_time != nt) {
3020 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3021 "new = 0x%llx", vi->i_ino,
3022 (long long)sle64_to_cpu(si->last_access_time),
3023 (long long)sle64_to_cpu(nt));
3024 si->last_access_time = nt;
3025 modified = true;
3028 * If we just modified the standard information attribute we need to
3029 * mark the mft record it is in dirty. We do this manually so that
3030 * mark_inode_dirty() is not called which would redirty the inode and
3031 * hence result in an infinite loop of trying to write the inode.
3032 * There is no need to mark the base inode nor the base mft record
3033 * dirty, since we are going to write this mft record below in any case
3034 * and the base mft record may actually not have been modified so it
3035 * might not need to be written out.
3036 * NOTE: It is not a problem when the inode for $MFT itself is being
3037 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3038 * on the $MFT inode and hence ntfs_write_inode() will not be
3039 * re-invoked because of it which in turn is ok since the dirtied mft
3040 * record will be cleaned and written out to disk below, i.e. before
3041 * this function returns.
3043 if (modified) {
3044 flush_dcache_mft_record_page(ctx->ntfs_ino);
3045 if (!NInoTestSetDirty(ctx->ntfs_ino))
3046 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3047 ctx->ntfs_ino->page_ofs);
3049 ntfs_attr_put_search_ctx(ctx);
3050 /* Now the access times are updated, write the base mft record. */
3051 if (NInoDirty(ni))
3052 err = write_mft_record(ni, m, sync);
3053 /* Write all attached extent mft records. */
3054 mutex_lock(&ni->extent_lock);
3055 if (ni->nr_extents > 0) {
3056 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3057 int i;
3059 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3060 for (i = 0; i < ni->nr_extents; i++) {
3061 ntfs_inode *tni = extent_nis[i];
3063 if (NInoDirty(tni)) {
3064 MFT_RECORD *tm = map_mft_record(tni);
3065 int ret;
3067 if (IS_ERR(tm)) {
3068 if (!err || err == -ENOMEM)
3069 err = PTR_ERR(tm);
3070 continue;
3072 ret = write_mft_record(tni, tm, sync);
3073 unmap_mft_record(tni);
3074 if (unlikely(ret)) {
3075 if (!err || err == -ENOMEM)
3076 err = ret;
3081 mutex_unlock(&ni->extent_lock);
3082 unmap_mft_record(ni);
3083 if (unlikely(err))
3084 goto err_out;
3085 ntfs_debug("Done.");
3086 return 0;
3087 unm_err_out:
3088 unmap_mft_record(ni);
3089 err_out:
3090 if (err == -ENOMEM) {
3091 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3092 "Marking the inode dirty again, so the VFS "
3093 "retries later.");
3094 mark_inode_dirty(vi);
3095 } else {
3096 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3097 NVolSetErrors(ni->vol);
3099 return err;
3102 #endif /* NTFS_RW */