1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
24 #include <asm/tlbflush.h>
27 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
29 unsigned long text
, lib
, swap
, anon
, file
, shmem
;
30 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
32 anon
= get_mm_counter(mm
, MM_ANONPAGES
);
33 file
= get_mm_counter(mm
, MM_FILEPAGES
);
34 shmem
= get_mm_counter(mm
, MM_SHMEMPAGES
);
37 * Note: to minimize their overhead, mm maintains hiwater_vm and
38 * hiwater_rss only when about to *lower* total_vm or rss. Any
39 * collector of these hiwater stats must therefore get total_vm
40 * and rss too, which will usually be the higher. Barriers? not
41 * worth the effort, such snapshots can always be inconsistent.
43 hiwater_vm
= total_vm
= mm
->total_vm
;
44 if (hiwater_vm
< mm
->hiwater_vm
)
45 hiwater_vm
= mm
->hiwater_vm
;
46 hiwater_rss
= total_rss
= anon
+ file
+ shmem
;
47 if (hiwater_rss
< mm
->hiwater_rss
)
48 hiwater_rss
= mm
->hiwater_rss
;
50 /* split executable areas between text and lib */
51 text
= PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
);
52 text
= min(text
, mm
->exec_vm
<< PAGE_SHIFT
);
53 lib
= (mm
->exec_vm
<< PAGE_SHIFT
) - text
;
55 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
65 "RssShmem:\t%8lu kB\n"
72 hiwater_vm
<< (PAGE_SHIFT
-10),
73 total_vm
<< (PAGE_SHIFT
-10),
74 mm
->locked_vm
<< (PAGE_SHIFT
-10),
75 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
76 hiwater_rss
<< (PAGE_SHIFT
-10),
77 total_rss
<< (PAGE_SHIFT
-10),
78 anon
<< (PAGE_SHIFT
-10),
79 file
<< (PAGE_SHIFT
-10),
80 shmem
<< (PAGE_SHIFT
-10),
81 mm
->data_vm
<< (PAGE_SHIFT
-10),
82 mm
->stack_vm
<< (PAGE_SHIFT
-10),
85 mm_pgtables_bytes(mm
) >> 10,
86 swap
<< (PAGE_SHIFT
-10));
87 hugetlb_report_usage(m
, mm
);
90 unsigned long task_vsize(struct mm_struct
*mm
)
92 return PAGE_SIZE
* mm
->total_vm
;
95 unsigned long task_statm(struct mm_struct
*mm
,
96 unsigned long *shared
, unsigned long *text
,
97 unsigned long *data
, unsigned long *resident
)
99 *shared
= get_mm_counter(mm
, MM_FILEPAGES
) +
100 get_mm_counter(mm
, MM_SHMEMPAGES
);
101 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
103 *data
= mm
->data_vm
+ mm
->stack_vm
;
104 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
110 * Save get_task_policy() for show_numa_map().
112 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
114 struct task_struct
*task
= priv
->task
;
117 priv
->task_mempolicy
= get_task_policy(task
);
118 mpol_get(priv
->task_mempolicy
);
121 static void release_task_mempolicy(struct proc_maps_private
*priv
)
123 mpol_put(priv
->task_mempolicy
);
126 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
129 static void release_task_mempolicy(struct proc_maps_private
*priv
)
134 static void vma_stop(struct proc_maps_private
*priv
)
136 struct mm_struct
*mm
= priv
->mm
;
138 release_task_mempolicy(priv
);
139 up_read(&mm
->mmap_sem
);
143 static struct vm_area_struct
*
144 m_next_vma(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
146 if (vma
== priv
->tail_vma
)
148 return vma
->vm_next
?: priv
->tail_vma
;
151 static void m_cache_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
153 if (m
->count
< m
->size
) /* vma is copied successfully */
154 m
->version
= m_next_vma(m
->private, vma
) ? vma
->vm_end
: -1UL;
157 static void *m_start(struct seq_file
*m
, loff_t
*ppos
)
159 struct proc_maps_private
*priv
= m
->private;
160 unsigned long last_addr
= m
->version
;
161 struct mm_struct
*mm
;
162 struct vm_area_struct
*vma
;
163 unsigned int pos
= *ppos
;
165 /* See m_cache_vma(). Zero at the start or after lseek. */
166 if (last_addr
== -1UL)
169 priv
->task
= get_proc_task(priv
->inode
);
171 return ERR_PTR(-ESRCH
);
174 if (!mm
|| !mmget_not_zero(mm
))
177 down_read(&mm
->mmap_sem
);
178 hold_task_mempolicy(priv
);
179 priv
->tail_vma
= get_gate_vma(mm
);
182 vma
= find_vma(mm
, last_addr
- 1);
183 if (vma
&& vma
->vm_start
<= last_addr
)
184 vma
= m_next_vma(priv
, vma
);
190 if (pos
< mm
->map_count
) {
191 for (vma
= mm
->mmap
; pos
; pos
--) {
192 m
->version
= vma
->vm_start
;
198 /* we do not bother to update m->version in this case */
199 if (pos
== mm
->map_count
&& priv
->tail_vma
)
200 return priv
->tail_vma
;
206 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
208 struct proc_maps_private
*priv
= m
->private;
209 struct vm_area_struct
*next
;
212 next
= m_next_vma(priv
, v
);
218 static void m_stop(struct seq_file
*m
, void *v
)
220 struct proc_maps_private
*priv
= m
->private;
222 if (!IS_ERR_OR_NULL(v
))
225 put_task_struct(priv
->task
);
230 static int proc_maps_open(struct inode
*inode
, struct file
*file
,
231 const struct seq_operations
*ops
, int psize
)
233 struct proc_maps_private
*priv
= __seq_open_private(file
, ops
, psize
);
239 priv
->mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
240 if (IS_ERR(priv
->mm
)) {
241 int err
= PTR_ERR(priv
->mm
);
243 seq_release_private(inode
, file
);
250 static int proc_map_release(struct inode
*inode
, struct file
*file
)
252 struct seq_file
*seq
= file
->private_data
;
253 struct proc_maps_private
*priv
= seq
->private;
259 return seq_release_private(inode
, file
);
262 static int do_maps_open(struct inode
*inode
, struct file
*file
,
263 const struct seq_operations
*ops
)
265 return proc_maps_open(inode
, file
, ops
,
266 sizeof(struct proc_maps_private
));
270 * Indicate if the VMA is a stack for the given task; for
271 * /proc/PID/maps that is the stack of the main task.
273 static int is_stack(struct vm_area_struct
*vma
)
276 * We make no effort to guess what a given thread considers to be
277 * its "stack". It's not even well-defined for programs written
280 return vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
281 vma
->vm_end
>= vma
->vm_mm
->start_stack
;
284 static void show_vma_header_prefix(struct seq_file
*m
,
285 unsigned long start
, unsigned long end
,
286 vm_flags_t flags
, unsigned long long pgoff
,
287 dev_t dev
, unsigned long ino
)
289 seq_setwidth(m
, 25 + sizeof(void *) * 6 - 1);
290 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
293 flags
& VM_READ
? 'r' : '-',
294 flags
& VM_WRITE
? 'w' : '-',
295 flags
& VM_EXEC
? 'x' : '-',
296 flags
& VM_MAYSHARE
? 's' : 'p',
298 MAJOR(dev
), MINOR(dev
), ino
);
302 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
304 struct mm_struct
*mm
= vma
->vm_mm
;
305 struct file
*file
= vma
->vm_file
;
306 vm_flags_t flags
= vma
->vm_flags
;
307 unsigned long ino
= 0;
308 unsigned long long pgoff
= 0;
309 unsigned long start
, end
;
311 const char *name
= NULL
;
314 struct inode
*inode
= file_inode(vma
->vm_file
);
315 dev
= inode
->i_sb
->s_dev
;
317 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
320 start
= vma
->vm_start
;
322 show_vma_header_prefix(m
, start
, end
, flags
, pgoff
, dev
, ino
);
325 * Print the dentry name for named mappings, and a
326 * special [heap] marker for the heap:
330 seq_file_path(m
, file
, "\n");
334 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
335 name
= vma
->vm_ops
->name(vma
);
340 name
= arch_vma_name(vma
);
347 if (vma
->vm_start
<= mm
->brk
&&
348 vma
->vm_end
>= mm
->start_brk
) {
365 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
367 show_map_vma(m
, v
, is_pid
);
372 static int show_pid_map(struct seq_file
*m
, void *v
)
374 return show_map(m
, v
, 1);
377 static int show_tid_map(struct seq_file
*m
, void *v
)
379 return show_map(m
, v
, 0);
382 static const struct seq_operations proc_pid_maps_op
= {
389 static const struct seq_operations proc_tid_maps_op
= {
396 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
398 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
401 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
403 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
406 const struct file_operations proc_pid_maps_operations
= {
407 .open
= pid_maps_open
,
410 .release
= proc_map_release
,
413 const struct file_operations proc_tid_maps_operations
= {
414 .open
= tid_maps_open
,
417 .release
= proc_map_release
,
421 * Proportional Set Size(PSS): my share of RSS.
423 * PSS of a process is the count of pages it has in memory, where each
424 * page is divided by the number of processes sharing it. So if a
425 * process has 1000 pages all to itself, and 1000 shared with one other
426 * process, its PSS will be 1500.
428 * To keep (accumulated) division errors low, we adopt a 64bit
429 * fixed-point pss counter to minimize division errors. So (pss >>
430 * PSS_SHIFT) would be the real byte count.
432 * A shift of 12 before division means (assuming 4K page size):
433 * - 1M 3-user-pages add up to 8KB errors;
434 * - supports mapcount up to 2^24, or 16M;
435 * - supports PSS up to 2^52 bytes, or 4PB.
439 #ifdef CONFIG_PROC_PAGE_MONITOR
440 struct mem_size_stats
{
442 unsigned long resident
;
443 unsigned long shared_clean
;
444 unsigned long shared_dirty
;
445 unsigned long private_clean
;
446 unsigned long private_dirty
;
447 unsigned long referenced
;
448 unsigned long anonymous
;
449 unsigned long lazyfree
;
450 unsigned long anonymous_thp
;
451 unsigned long shmem_thp
;
453 unsigned long shared_hugetlb
;
454 unsigned long private_hugetlb
;
455 unsigned long first_vma_start
;
459 bool check_shmem_swap
;
462 static void smaps_account(struct mem_size_stats
*mss
, struct page
*page
,
463 bool compound
, bool young
, bool dirty
)
465 int i
, nr
= compound
? 1 << compound_order(page
) : 1;
466 unsigned long size
= nr
* PAGE_SIZE
;
468 if (PageAnon(page
)) {
469 mss
->anonymous
+= size
;
470 if (!PageSwapBacked(page
) && !dirty
&& !PageDirty(page
))
471 mss
->lazyfree
+= size
;
474 mss
->resident
+= size
;
475 /* Accumulate the size in pages that have been accessed. */
476 if (young
|| page_is_young(page
) || PageReferenced(page
))
477 mss
->referenced
+= size
;
480 * page_count(page) == 1 guarantees the page is mapped exactly once.
481 * If any subpage of the compound page mapped with PTE it would elevate
484 if (page_count(page
) == 1) {
485 if (dirty
|| PageDirty(page
))
486 mss
->private_dirty
+= size
;
488 mss
->private_clean
+= size
;
489 mss
->pss
+= (u64
)size
<< PSS_SHIFT
;
493 for (i
= 0; i
< nr
; i
++, page
++) {
494 int mapcount
= page_mapcount(page
);
497 if (dirty
|| PageDirty(page
))
498 mss
->shared_dirty
+= PAGE_SIZE
;
500 mss
->shared_clean
+= PAGE_SIZE
;
501 mss
->pss
+= (PAGE_SIZE
<< PSS_SHIFT
) / mapcount
;
503 if (dirty
|| PageDirty(page
))
504 mss
->private_dirty
+= PAGE_SIZE
;
506 mss
->private_clean
+= PAGE_SIZE
;
507 mss
->pss
+= PAGE_SIZE
<< PSS_SHIFT
;
513 static int smaps_pte_hole(unsigned long addr
, unsigned long end
,
514 struct mm_walk
*walk
)
516 struct mem_size_stats
*mss
= walk
->private;
518 mss
->swap
+= shmem_partial_swap_usage(
519 walk
->vma
->vm_file
->f_mapping
, addr
, end
);
525 static void smaps_pte_entry(pte_t
*pte
, unsigned long addr
,
526 struct mm_walk
*walk
)
528 struct mem_size_stats
*mss
= walk
->private;
529 struct vm_area_struct
*vma
= walk
->vma
;
530 struct page
*page
= NULL
;
532 if (pte_present(*pte
)) {
533 page
= vm_normal_page(vma
, addr
, *pte
);
534 } else if (is_swap_pte(*pte
)) {
535 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
537 if (!non_swap_entry(swpent
)) {
540 mss
->swap
+= PAGE_SIZE
;
541 mapcount
= swp_swapcount(swpent
);
543 u64 pss_delta
= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
545 do_div(pss_delta
, mapcount
);
546 mss
->swap_pss
+= pss_delta
;
548 mss
->swap_pss
+= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
550 } else if (is_migration_entry(swpent
))
551 page
= migration_entry_to_page(swpent
);
552 else if (is_device_private_entry(swpent
))
553 page
= device_private_entry_to_page(swpent
);
554 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM
) && mss
->check_shmem_swap
555 && pte_none(*pte
))) {
556 page
= find_get_entry(vma
->vm_file
->f_mapping
,
557 linear_page_index(vma
, addr
));
561 if (radix_tree_exceptional_entry(page
))
562 mss
->swap
+= PAGE_SIZE
;
572 smaps_account(mss
, page
, false, pte_young(*pte
), pte_dirty(*pte
));
575 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
576 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
577 struct mm_walk
*walk
)
579 struct mem_size_stats
*mss
= walk
->private;
580 struct vm_area_struct
*vma
= walk
->vma
;
583 /* FOLL_DUMP will return -EFAULT on huge zero page */
584 page
= follow_trans_huge_pmd(vma
, addr
, pmd
, FOLL_DUMP
);
585 if (IS_ERR_OR_NULL(page
))
588 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
589 else if (PageSwapBacked(page
))
590 mss
->shmem_thp
+= HPAGE_PMD_SIZE
;
591 else if (is_zone_device_page(page
))
594 VM_BUG_ON_PAGE(1, page
);
595 smaps_account(mss
, page
, true, pmd_young(*pmd
), pmd_dirty(*pmd
));
598 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
599 struct mm_walk
*walk
)
604 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
605 struct mm_walk
*walk
)
607 struct vm_area_struct
*vma
= walk
->vma
;
611 ptl
= pmd_trans_huge_lock(pmd
, vma
);
613 if (pmd_present(*pmd
))
614 smaps_pmd_entry(pmd
, addr
, walk
);
619 if (pmd_trans_unstable(pmd
))
622 * The mmap_sem held all the way back in m_start() is what
623 * keeps khugepaged out of here and from collapsing things
626 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
627 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
628 smaps_pte_entry(pte
, addr
, walk
);
629 pte_unmap_unlock(pte
- 1, ptl
);
635 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
638 * Don't forget to update Documentation/ on changes.
640 static const char mnemonics
[BITS_PER_LONG
][2] = {
642 * In case if we meet a flag we don't know about.
644 [0 ... (BITS_PER_LONG
-1)] = "??",
646 [ilog2(VM_READ
)] = "rd",
647 [ilog2(VM_WRITE
)] = "wr",
648 [ilog2(VM_EXEC
)] = "ex",
649 [ilog2(VM_SHARED
)] = "sh",
650 [ilog2(VM_MAYREAD
)] = "mr",
651 [ilog2(VM_MAYWRITE
)] = "mw",
652 [ilog2(VM_MAYEXEC
)] = "me",
653 [ilog2(VM_MAYSHARE
)] = "ms",
654 [ilog2(VM_GROWSDOWN
)] = "gd",
655 [ilog2(VM_PFNMAP
)] = "pf",
656 [ilog2(VM_DENYWRITE
)] = "dw",
657 #ifdef CONFIG_X86_INTEL_MPX
658 [ilog2(VM_MPX
)] = "mp",
660 [ilog2(VM_LOCKED
)] = "lo",
661 [ilog2(VM_IO
)] = "io",
662 [ilog2(VM_SEQ_READ
)] = "sr",
663 [ilog2(VM_RAND_READ
)] = "rr",
664 [ilog2(VM_DONTCOPY
)] = "dc",
665 [ilog2(VM_DONTEXPAND
)] = "de",
666 [ilog2(VM_ACCOUNT
)] = "ac",
667 [ilog2(VM_NORESERVE
)] = "nr",
668 [ilog2(VM_HUGETLB
)] = "ht",
669 [ilog2(VM_SYNC
)] = "sf",
670 [ilog2(VM_ARCH_1
)] = "ar",
671 [ilog2(VM_WIPEONFORK
)] = "wf",
672 [ilog2(VM_DONTDUMP
)] = "dd",
673 #ifdef CONFIG_MEM_SOFT_DIRTY
674 [ilog2(VM_SOFTDIRTY
)] = "sd",
676 [ilog2(VM_MIXEDMAP
)] = "mm",
677 [ilog2(VM_HUGEPAGE
)] = "hg",
678 [ilog2(VM_NOHUGEPAGE
)] = "nh",
679 [ilog2(VM_MERGEABLE
)] = "mg",
680 [ilog2(VM_UFFD_MISSING
)]= "um",
681 [ilog2(VM_UFFD_WP
)] = "uw",
682 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
683 /* These come out via ProtectionKey: */
684 [ilog2(VM_PKEY_BIT0
)] = "",
685 [ilog2(VM_PKEY_BIT1
)] = "",
686 [ilog2(VM_PKEY_BIT2
)] = "",
687 [ilog2(VM_PKEY_BIT3
)] = "",
692 seq_puts(m
, "VmFlags: ");
693 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
694 if (!mnemonics
[i
][0])
696 if (vma
->vm_flags
& (1UL << i
)) {
697 seq_printf(m
, "%c%c ",
698 mnemonics
[i
][0], mnemonics
[i
][1]);
704 #ifdef CONFIG_HUGETLB_PAGE
705 static int smaps_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
706 unsigned long addr
, unsigned long end
,
707 struct mm_walk
*walk
)
709 struct mem_size_stats
*mss
= walk
->private;
710 struct vm_area_struct
*vma
= walk
->vma
;
711 struct page
*page
= NULL
;
713 if (pte_present(*pte
)) {
714 page
= vm_normal_page(vma
, addr
, *pte
);
715 } else if (is_swap_pte(*pte
)) {
716 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
718 if (is_migration_entry(swpent
))
719 page
= migration_entry_to_page(swpent
);
720 else if (is_device_private_entry(swpent
))
721 page
= device_private_entry_to_page(swpent
);
724 int mapcount
= page_mapcount(page
);
727 mss
->shared_hugetlb
+= huge_page_size(hstate_vma(vma
));
729 mss
->private_hugetlb
+= huge_page_size(hstate_vma(vma
));
733 #endif /* HUGETLB_PAGE */
735 void __weak
arch_show_smap(struct seq_file
*m
, struct vm_area_struct
*vma
)
739 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
741 struct proc_maps_private
*priv
= m
->private;
742 struct vm_area_struct
*vma
= v
;
743 struct mem_size_stats mss_stack
;
744 struct mem_size_stats
*mss
;
745 struct mm_walk smaps_walk
= {
746 .pmd_entry
= smaps_pte_range
,
747 #ifdef CONFIG_HUGETLB_PAGE
748 .hugetlb_entry
= smaps_hugetlb_range
,
760 mss
->first_vma_start
= vma
->vm_start
;
763 last_vma
= !m_next_vma(priv
, vma
);
766 memset(&mss_stack
, 0, sizeof(mss_stack
));
770 smaps_walk
.private = mss
;
773 if (vma
->vm_file
&& shmem_mapping(vma
->vm_file
->f_mapping
)) {
775 * For shared or readonly shmem mappings we know that all
776 * swapped out pages belong to the shmem object, and we can
777 * obtain the swap value much more efficiently. For private
778 * writable mappings, we might have COW pages that are
779 * not affected by the parent swapped out pages of the shmem
780 * object, so we have to distinguish them during the page walk.
781 * Unless we know that the shmem object (or the part mapped by
782 * our VMA) has no swapped out pages at all.
784 unsigned long shmem_swapped
= shmem_swap_usage(vma
);
786 if (!shmem_swapped
|| (vma
->vm_flags
& VM_SHARED
) ||
787 !(vma
->vm_flags
& VM_WRITE
)) {
788 mss
->swap
= shmem_swapped
;
790 mss
->check_shmem_swap
= true;
791 smaps_walk
.pte_hole
= smaps_pte_hole
;
796 /* mmap_sem is held in m_start */
797 walk_page_vma(vma
, &smaps_walk
);
798 if (vma
->vm_flags
& VM_LOCKED
)
799 mss
->pss_locked
+= mss
->pss
;
802 show_map_vma(m
, vma
, is_pid
);
803 } else if (last_vma
) {
804 show_vma_header_prefix(
805 m
, mss
->first_vma_start
, vma
->vm_end
, 0, 0, 0, 0);
807 seq_puts(m
, "[rollup]\n");
815 "KernelPageSize: %8lu kB\n"
816 "MMUPageSize: %8lu kB\n",
817 (vma
->vm_end
- vma
->vm_start
) >> 10,
818 vma_kernel_pagesize(vma
) >> 10,
819 vma_mmu_pagesize(vma
) >> 10);
822 if (!rollup_mode
|| last_vma
)
826 "Shared_Clean: %8lu kB\n"
827 "Shared_Dirty: %8lu kB\n"
828 "Private_Clean: %8lu kB\n"
829 "Private_Dirty: %8lu kB\n"
830 "Referenced: %8lu kB\n"
831 "Anonymous: %8lu kB\n"
832 "LazyFree: %8lu kB\n"
833 "AnonHugePages: %8lu kB\n"
834 "ShmemPmdMapped: %8lu kB\n"
835 "Shared_Hugetlb: %8lu kB\n"
836 "Private_Hugetlb: %7lu kB\n"
841 (unsigned long)(mss
->pss
>> (10 + PSS_SHIFT
)),
842 mss
->shared_clean
>> 10,
843 mss
->shared_dirty
>> 10,
844 mss
->private_clean
>> 10,
845 mss
->private_dirty
>> 10,
846 mss
->referenced
>> 10,
847 mss
->anonymous
>> 10,
849 mss
->anonymous_thp
>> 10,
850 mss
->shmem_thp
>> 10,
851 mss
->shared_hugetlb
>> 10,
852 mss
->private_hugetlb
>> 10,
854 (unsigned long)(mss
->swap_pss
>> (10 + PSS_SHIFT
)),
855 (unsigned long)(mss
->pss
>> (10 + PSS_SHIFT
)));
858 arch_show_smap(m
, vma
);
859 show_smap_vma_flags(m
, vma
);
865 static int show_pid_smap(struct seq_file
*m
, void *v
)
867 return show_smap(m
, v
, 1);
870 static int show_tid_smap(struct seq_file
*m
, void *v
)
872 return show_smap(m
, v
, 0);
875 static const struct seq_operations proc_pid_smaps_op
= {
879 .show
= show_pid_smap
882 static const struct seq_operations proc_tid_smaps_op
= {
886 .show
= show_tid_smap
889 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
891 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
894 static int pid_smaps_rollup_open(struct inode
*inode
, struct file
*file
)
896 struct seq_file
*seq
;
897 struct proc_maps_private
*priv
;
898 int ret
= do_maps_open(inode
, file
, &proc_pid_smaps_op
);
902 seq
= file
->private_data
;
904 priv
->rollup
= kzalloc(sizeof(*priv
->rollup
), GFP_KERNEL
);
906 proc_map_release(inode
, file
);
909 priv
->rollup
->first
= true;
913 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
915 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
918 const struct file_operations proc_pid_smaps_operations
= {
919 .open
= pid_smaps_open
,
922 .release
= proc_map_release
,
925 const struct file_operations proc_pid_smaps_rollup_operations
= {
926 .open
= pid_smaps_rollup_open
,
929 .release
= proc_map_release
,
932 const struct file_operations proc_tid_smaps_operations
= {
933 .open
= tid_smaps_open
,
936 .release
= proc_map_release
,
939 enum clear_refs_types
{
943 CLEAR_REFS_SOFT_DIRTY
,
944 CLEAR_REFS_MM_HIWATER_RSS
,
948 struct clear_refs_private
{
949 enum clear_refs_types type
;
952 #ifdef CONFIG_MEM_SOFT_DIRTY
953 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
954 unsigned long addr
, pte_t
*pte
)
957 * The soft-dirty tracker uses #PF-s to catch writes
958 * to pages, so write-protect the pte as well. See the
959 * Documentation/vm/soft-dirty.txt for full description
960 * of how soft-dirty works.
964 if (pte_present(ptent
)) {
965 ptent
= ptep_modify_prot_start(vma
->vm_mm
, addr
, pte
);
966 ptent
= pte_wrprotect(ptent
);
967 ptent
= pte_clear_soft_dirty(ptent
);
968 ptep_modify_prot_commit(vma
->vm_mm
, addr
, pte
, ptent
);
969 } else if (is_swap_pte(ptent
)) {
970 ptent
= pte_swp_clear_soft_dirty(ptent
);
971 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
975 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
976 unsigned long addr
, pte_t
*pte
)
981 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
982 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
983 unsigned long addr
, pmd_t
*pmdp
)
985 pmd_t old
, pmd
= *pmdp
;
987 if (pmd_present(pmd
)) {
988 /* See comment in change_huge_pmd() */
989 old
= pmdp_invalidate(vma
, addr
, pmdp
);
991 pmd
= pmd_mkdirty(pmd
);
993 pmd
= pmd_mkyoung(pmd
);
995 pmd
= pmd_wrprotect(pmd
);
996 pmd
= pmd_clear_soft_dirty(pmd
);
998 set_pmd_at(vma
->vm_mm
, addr
, pmdp
, pmd
);
999 } else if (is_migration_entry(pmd_to_swp_entry(pmd
))) {
1000 pmd
= pmd_swp_clear_soft_dirty(pmd
);
1001 set_pmd_at(vma
->vm_mm
, addr
, pmdp
, pmd
);
1005 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
1006 unsigned long addr
, pmd_t
*pmdp
)
1011 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
1012 unsigned long end
, struct mm_walk
*walk
)
1014 struct clear_refs_private
*cp
= walk
->private;
1015 struct vm_area_struct
*vma
= walk
->vma
;
1020 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1022 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
1023 clear_soft_dirty_pmd(vma
, addr
, pmd
);
1027 if (!pmd_present(*pmd
))
1030 page
= pmd_page(*pmd
);
1032 /* Clear accessed and referenced bits. */
1033 pmdp_test_and_clear_young(vma
, addr
, pmd
);
1034 test_and_clear_page_young(page
);
1035 ClearPageReferenced(page
);
1041 if (pmd_trans_unstable(pmd
))
1044 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1045 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
1048 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
1049 clear_soft_dirty(vma
, addr
, pte
);
1053 if (!pte_present(ptent
))
1056 page
= vm_normal_page(vma
, addr
, ptent
);
1060 /* Clear accessed and referenced bits. */
1061 ptep_test_and_clear_young(vma
, addr
, pte
);
1062 test_and_clear_page_young(page
);
1063 ClearPageReferenced(page
);
1065 pte_unmap_unlock(pte
- 1, ptl
);
1070 static int clear_refs_test_walk(unsigned long start
, unsigned long end
,
1071 struct mm_walk
*walk
)
1073 struct clear_refs_private
*cp
= walk
->private;
1074 struct vm_area_struct
*vma
= walk
->vma
;
1076 if (vma
->vm_flags
& VM_PFNMAP
)
1080 * Writing 1 to /proc/pid/clear_refs affects all pages.
1081 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1082 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1083 * Writing 4 to /proc/pid/clear_refs affects all pages.
1085 if (cp
->type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
1087 if (cp
->type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
1092 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
1093 size_t count
, loff_t
*ppos
)
1095 struct task_struct
*task
;
1096 char buffer
[PROC_NUMBUF
];
1097 struct mm_struct
*mm
;
1098 struct vm_area_struct
*vma
;
1099 enum clear_refs_types type
;
1100 struct mmu_gather tlb
;
1104 memset(buffer
, 0, sizeof(buffer
));
1105 if (count
> sizeof(buffer
) - 1)
1106 count
= sizeof(buffer
) - 1;
1107 if (copy_from_user(buffer
, buf
, count
))
1109 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
1112 type
= (enum clear_refs_types
)itype
;
1113 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
1116 task
= get_proc_task(file_inode(file
));
1119 mm
= get_task_mm(task
);
1121 struct clear_refs_private cp
= {
1124 struct mm_walk clear_refs_walk
= {
1125 .pmd_entry
= clear_refs_pte_range
,
1126 .test_walk
= clear_refs_test_walk
,
1131 if (type
== CLEAR_REFS_MM_HIWATER_RSS
) {
1132 if (down_write_killable(&mm
->mmap_sem
)) {
1138 * Writing 5 to /proc/pid/clear_refs resets the peak
1139 * resident set size to this mm's current rss value.
1141 reset_mm_hiwater_rss(mm
);
1142 up_write(&mm
->mmap_sem
);
1146 down_read(&mm
->mmap_sem
);
1147 tlb_gather_mmu(&tlb
, mm
, 0, -1);
1148 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
1149 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1150 if (!(vma
->vm_flags
& VM_SOFTDIRTY
))
1152 up_read(&mm
->mmap_sem
);
1153 if (down_write_killable(&mm
->mmap_sem
)) {
1157 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1158 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
1159 vma_set_page_prot(vma
);
1161 downgrade_write(&mm
->mmap_sem
);
1164 mmu_notifier_invalidate_range_start(mm
, 0, -1);
1166 walk_page_range(0, mm
->highest_vm_end
, &clear_refs_walk
);
1167 if (type
== CLEAR_REFS_SOFT_DIRTY
)
1168 mmu_notifier_invalidate_range_end(mm
, 0, -1);
1169 tlb_finish_mmu(&tlb
, 0, -1);
1170 up_read(&mm
->mmap_sem
);
1174 put_task_struct(task
);
1179 const struct file_operations proc_clear_refs_operations
= {
1180 .write
= clear_refs_write
,
1181 .llseek
= noop_llseek
,
1188 struct pagemapread
{
1189 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
1190 pagemap_entry_t
*buffer
;
1194 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1195 #define PAGEMAP_WALK_MASK (PMD_MASK)
1197 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1198 #define PM_PFRAME_BITS 55
1199 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1200 #define PM_SOFT_DIRTY BIT_ULL(55)
1201 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1202 #define PM_FILE BIT_ULL(61)
1203 #define PM_SWAP BIT_ULL(62)
1204 #define PM_PRESENT BIT_ULL(63)
1206 #define PM_END_OF_BUFFER 1
1208 static inline pagemap_entry_t
make_pme(u64 frame
, u64 flags
)
1210 return (pagemap_entry_t
) { .pme
= (frame
& PM_PFRAME_MASK
) | flags
};
1213 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
1214 struct pagemapread
*pm
)
1216 pm
->buffer
[pm
->pos
++] = *pme
;
1217 if (pm
->pos
>= pm
->len
)
1218 return PM_END_OF_BUFFER
;
1222 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
1223 struct mm_walk
*walk
)
1225 struct pagemapread
*pm
= walk
->private;
1226 unsigned long addr
= start
;
1229 while (addr
< end
) {
1230 struct vm_area_struct
*vma
= find_vma(walk
->mm
, addr
);
1231 pagemap_entry_t pme
= make_pme(0, 0);
1232 /* End of address space hole, which we mark as non-present. */
1233 unsigned long hole_end
;
1236 hole_end
= min(end
, vma
->vm_start
);
1240 for (; addr
< hole_end
; addr
+= PAGE_SIZE
) {
1241 err
= add_to_pagemap(addr
, &pme
, pm
);
1249 /* Addresses in the VMA. */
1250 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1251 pme
= make_pme(0, PM_SOFT_DIRTY
);
1252 for (; addr
< min(end
, vma
->vm_end
); addr
+= PAGE_SIZE
) {
1253 err
= add_to_pagemap(addr
, &pme
, pm
);
1262 static pagemap_entry_t
pte_to_pagemap_entry(struct pagemapread
*pm
,
1263 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
1265 u64 frame
= 0, flags
= 0;
1266 struct page
*page
= NULL
;
1268 if (pte_present(pte
)) {
1270 frame
= pte_pfn(pte
);
1271 flags
|= PM_PRESENT
;
1272 page
= _vm_normal_page(vma
, addr
, pte
, true);
1273 if (pte_soft_dirty(pte
))
1274 flags
|= PM_SOFT_DIRTY
;
1275 } else if (is_swap_pte(pte
)) {
1277 if (pte_swp_soft_dirty(pte
))
1278 flags
|= PM_SOFT_DIRTY
;
1279 entry
= pte_to_swp_entry(pte
);
1280 frame
= swp_type(entry
) |
1281 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
1283 if (is_migration_entry(entry
))
1284 page
= migration_entry_to_page(entry
);
1286 if (is_device_private_entry(entry
))
1287 page
= device_private_entry_to_page(entry
);
1290 if (page
&& !PageAnon(page
))
1292 if (page
&& page_mapcount(page
) == 1)
1293 flags
|= PM_MMAP_EXCLUSIVE
;
1294 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1295 flags
|= PM_SOFT_DIRTY
;
1297 return make_pme(frame
, flags
);
1300 static int pagemap_pmd_range(pmd_t
*pmdp
, unsigned long addr
, unsigned long end
,
1301 struct mm_walk
*walk
)
1303 struct vm_area_struct
*vma
= walk
->vma
;
1304 struct pagemapread
*pm
= walk
->private;
1306 pte_t
*pte
, *orig_pte
;
1309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1310 ptl
= pmd_trans_huge_lock(pmdp
, vma
);
1312 u64 flags
= 0, frame
= 0;
1314 struct page
*page
= NULL
;
1316 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1317 flags
|= PM_SOFT_DIRTY
;
1319 if (pmd_present(pmd
)) {
1320 page
= pmd_page(pmd
);
1322 flags
|= PM_PRESENT
;
1323 if (pmd_soft_dirty(pmd
))
1324 flags
|= PM_SOFT_DIRTY
;
1326 frame
= pmd_pfn(pmd
) +
1327 ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1329 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1330 else if (is_swap_pmd(pmd
)) {
1331 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
1333 frame
= swp_type(entry
) |
1334 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
1336 if (pmd_swp_soft_dirty(pmd
))
1337 flags
|= PM_SOFT_DIRTY
;
1338 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
1339 page
= migration_entry_to_page(entry
);
1343 if (page
&& page_mapcount(page
) == 1)
1344 flags
|= PM_MMAP_EXCLUSIVE
;
1346 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1347 pagemap_entry_t pme
= make_pme(frame
, flags
);
1349 err
= add_to_pagemap(addr
, &pme
, pm
);
1352 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1359 if (pmd_trans_unstable(pmdp
))
1361 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1364 * We can assume that @vma always points to a valid one and @end never
1365 * goes beyond vma->vm_end.
1367 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmdp
, addr
, &ptl
);
1368 for (; addr
< end
; pte
++, addr
+= PAGE_SIZE
) {
1369 pagemap_entry_t pme
;
1371 pme
= pte_to_pagemap_entry(pm
, vma
, addr
, *pte
);
1372 err
= add_to_pagemap(addr
, &pme
, pm
);
1376 pte_unmap_unlock(orig_pte
, ptl
);
1383 #ifdef CONFIG_HUGETLB_PAGE
1384 /* This function walks within one hugetlb entry in the single call */
1385 static int pagemap_hugetlb_range(pte_t
*ptep
, unsigned long hmask
,
1386 unsigned long addr
, unsigned long end
,
1387 struct mm_walk
*walk
)
1389 struct pagemapread
*pm
= walk
->private;
1390 struct vm_area_struct
*vma
= walk
->vma
;
1391 u64 flags
= 0, frame
= 0;
1395 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1396 flags
|= PM_SOFT_DIRTY
;
1398 pte
= huge_ptep_get(ptep
);
1399 if (pte_present(pte
)) {
1400 struct page
*page
= pte_page(pte
);
1402 if (!PageAnon(page
))
1405 if (page_mapcount(page
) == 1)
1406 flags
|= PM_MMAP_EXCLUSIVE
;
1408 flags
|= PM_PRESENT
;
1410 frame
= pte_pfn(pte
) +
1411 ((addr
& ~hmask
) >> PAGE_SHIFT
);
1414 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1415 pagemap_entry_t pme
= make_pme(frame
, flags
);
1417 err
= add_to_pagemap(addr
, &pme
, pm
);
1420 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1428 #endif /* HUGETLB_PAGE */
1431 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1433 * For each page in the address space, this file contains one 64-bit entry
1434 * consisting of the following:
1436 * Bits 0-54 page frame number (PFN) if present
1437 * Bits 0-4 swap type if swapped
1438 * Bits 5-54 swap offset if swapped
1439 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1440 * Bit 56 page exclusively mapped
1442 * Bit 61 page is file-page or shared-anon
1443 * Bit 62 page swapped
1444 * Bit 63 page present
1446 * If the page is not present but in swap, then the PFN contains an
1447 * encoding of the swap file number and the page's offset into the
1448 * swap. Unmapped pages return a null PFN. This allows determining
1449 * precisely which pages are mapped (or in swap) and comparing mapped
1450 * pages between processes.
1452 * Efficient users of this interface will use /proc/pid/maps to
1453 * determine which areas of memory are actually mapped and llseek to
1454 * skip over unmapped regions.
1456 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1457 size_t count
, loff_t
*ppos
)
1459 struct mm_struct
*mm
= file
->private_data
;
1460 struct pagemapread pm
;
1461 struct mm_walk pagemap_walk
= {};
1463 unsigned long svpfn
;
1464 unsigned long start_vaddr
;
1465 unsigned long end_vaddr
;
1466 int ret
= 0, copied
= 0;
1468 if (!mm
|| !mmget_not_zero(mm
))
1472 /* file position must be aligned */
1473 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1480 /* do not disclose physical addresses: attack vector */
1481 pm
.show_pfn
= file_ns_capable(file
, &init_user_ns
, CAP_SYS_ADMIN
);
1483 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1484 pm
.buffer
= kmalloc(pm
.len
* PM_ENTRY_BYTES
, GFP_KERNEL
);
1489 pagemap_walk
.pmd_entry
= pagemap_pmd_range
;
1490 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1491 #ifdef CONFIG_HUGETLB_PAGE
1492 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1494 pagemap_walk
.mm
= mm
;
1495 pagemap_walk
.private = &pm
;
1498 svpfn
= src
/ PM_ENTRY_BYTES
;
1499 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1500 end_vaddr
= mm
->task_size
;
1502 /* watch out for wraparound */
1503 if (svpfn
> mm
->task_size
>> PAGE_SHIFT
)
1504 start_vaddr
= end_vaddr
;
1507 * The odds are that this will stop walking way
1508 * before end_vaddr, because the length of the
1509 * user buffer is tracked in "pm", and the walk
1510 * will stop when we hit the end of the buffer.
1513 while (count
&& (start_vaddr
< end_vaddr
)) {
1518 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1520 if (end
< start_vaddr
|| end
> end_vaddr
)
1522 down_read(&mm
->mmap_sem
);
1523 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1524 up_read(&mm
->mmap_sem
);
1527 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1528 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1537 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1548 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1550 struct mm_struct
*mm
;
1552 mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
1555 file
->private_data
= mm
;
1559 static int pagemap_release(struct inode
*inode
, struct file
*file
)
1561 struct mm_struct
*mm
= file
->private_data
;
1568 const struct file_operations proc_pagemap_operations
= {
1569 .llseek
= mem_lseek
, /* borrow this */
1570 .read
= pagemap_read
,
1571 .open
= pagemap_open
,
1572 .release
= pagemap_release
,
1574 #endif /* CONFIG_PROC_PAGE_MONITOR */
1579 unsigned long pages
;
1581 unsigned long active
;
1582 unsigned long writeback
;
1583 unsigned long mapcount_max
;
1584 unsigned long dirty
;
1585 unsigned long swapcache
;
1586 unsigned long node
[MAX_NUMNODES
];
1589 struct numa_maps_private
{
1590 struct proc_maps_private proc_maps
;
1591 struct numa_maps md
;
1594 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1595 unsigned long nr_pages
)
1597 int count
= page_mapcount(page
);
1599 md
->pages
+= nr_pages
;
1600 if (pte_dirty
|| PageDirty(page
))
1601 md
->dirty
+= nr_pages
;
1603 if (PageSwapCache(page
))
1604 md
->swapcache
+= nr_pages
;
1606 if (PageActive(page
) || PageUnevictable(page
))
1607 md
->active
+= nr_pages
;
1609 if (PageWriteback(page
))
1610 md
->writeback
+= nr_pages
;
1613 md
->anon
+= nr_pages
;
1615 if (count
> md
->mapcount_max
)
1616 md
->mapcount_max
= count
;
1618 md
->node
[page_to_nid(page
)] += nr_pages
;
1621 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1627 if (!pte_present(pte
))
1630 page
= vm_normal_page(vma
, addr
, pte
);
1634 if (PageReserved(page
))
1637 nid
= page_to_nid(page
);
1638 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1645 static struct page
*can_gather_numa_stats_pmd(pmd_t pmd
,
1646 struct vm_area_struct
*vma
,
1652 if (!pmd_present(pmd
))
1655 page
= vm_normal_page_pmd(vma
, addr
, pmd
);
1659 if (PageReserved(page
))
1662 nid
= page_to_nid(page
);
1663 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1670 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1671 unsigned long end
, struct mm_walk
*walk
)
1673 struct numa_maps
*md
= walk
->private;
1674 struct vm_area_struct
*vma
= walk
->vma
;
1679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1680 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1684 page
= can_gather_numa_stats_pmd(*pmd
, vma
, addr
);
1686 gather_stats(page
, md
, pmd_dirty(*pmd
),
1687 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1692 if (pmd_trans_unstable(pmd
))
1695 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1697 struct page
*page
= can_gather_numa_stats(*pte
, vma
, addr
);
1700 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1702 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1703 pte_unmap_unlock(orig_pte
, ptl
);
1707 #ifdef CONFIG_HUGETLB_PAGE
1708 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1709 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1711 pte_t huge_pte
= huge_ptep_get(pte
);
1712 struct numa_maps
*md
;
1715 if (!pte_present(huge_pte
))
1718 page
= pte_page(huge_pte
);
1723 gather_stats(page
, md
, pte_dirty(huge_pte
), 1);
1728 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1729 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1736 * Display pages allocated per node and memory policy via /proc.
1738 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1740 struct numa_maps_private
*numa_priv
= m
->private;
1741 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1742 struct vm_area_struct
*vma
= v
;
1743 struct numa_maps
*md
= &numa_priv
->md
;
1744 struct file
*file
= vma
->vm_file
;
1745 struct mm_struct
*mm
= vma
->vm_mm
;
1746 struct mm_walk walk
= {
1747 .hugetlb_entry
= gather_hugetlb_stats
,
1748 .pmd_entry
= gather_pte_stats
,
1752 struct mempolicy
*pol
;
1759 /* Ensure we start with an empty set of numa_maps statistics. */
1760 memset(md
, 0, sizeof(*md
));
1762 pol
= __get_vma_policy(vma
, vma
->vm_start
);
1764 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1767 mpol_to_str(buffer
, sizeof(buffer
), proc_priv
->task_mempolicy
);
1770 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1773 seq_puts(m
, " file=");
1774 seq_file_path(m
, file
, "\n\t= ");
1775 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1776 seq_puts(m
, " heap");
1777 } else if (is_stack(vma
)) {
1778 seq_puts(m
, " stack");
1781 if (is_vm_hugetlb_page(vma
))
1782 seq_puts(m
, " huge");
1784 /* mmap_sem is held by m_start */
1785 walk_page_vma(vma
, &walk
);
1791 seq_printf(m
, " anon=%lu", md
->anon
);
1794 seq_printf(m
, " dirty=%lu", md
->dirty
);
1796 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1797 seq_printf(m
, " mapped=%lu", md
->pages
);
1799 if (md
->mapcount_max
> 1)
1800 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1803 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1805 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1806 seq_printf(m
, " active=%lu", md
->active
);
1809 seq_printf(m
, " writeback=%lu", md
->writeback
);
1811 for_each_node_state(nid
, N_MEMORY
)
1813 seq_printf(m
, " N%d=%lu", nid
, md
->node
[nid
]);
1815 seq_printf(m
, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma
) >> 10);
1818 m_cache_vma(m
, vma
);
1822 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1824 return show_numa_map(m
, v
, 1);
1827 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1829 return show_numa_map(m
, v
, 0);
1832 static const struct seq_operations proc_pid_numa_maps_op
= {
1836 .show
= show_pid_numa_map
,
1839 static const struct seq_operations proc_tid_numa_maps_op
= {
1843 .show
= show_tid_numa_map
,
1846 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1847 const struct seq_operations
*ops
)
1849 return proc_maps_open(inode
, file
, ops
,
1850 sizeof(struct numa_maps_private
));
1853 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1855 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1858 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1860 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1863 const struct file_operations proc_pid_numa_maps_operations
= {
1864 .open
= pid_numa_maps_open
,
1866 .llseek
= seq_lseek
,
1867 .release
= proc_map_release
,
1870 const struct file_operations proc_tid_numa_maps_operations
= {
1871 .open
= tid_numa_maps_open
,
1873 .llseek
= seq_lseek
,
1874 .release
= proc_map_release
,
1876 #endif /* CONFIG_NUMA */