1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * super.c contains code to handle: - mount structures
9 * - filesystem drivers list
11 * - umount system call
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
41 static LIST_HEAD(super_blocks
);
42 static DEFINE_SPINLOCK(sb_lock
);
44 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
51 * One thing we have to be careful of with a per-sb shrinker is that we don't
52 * drop the last active reference to the superblock from within the shrinker.
53 * If that happens we could trigger unregistering the shrinker from within the
54 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55 * take a passive reference to the superblock to avoid this from occurring.
57 static unsigned long super_cache_scan(struct shrinker
*shrink
,
58 struct shrink_control
*sc
)
60 struct super_block
*sb
;
67 sb
= container_of(shrink
, struct super_block
, s_shrink
);
70 * Deadlock avoidance. We may hold various FS locks, and we don't want
71 * to recurse into the FS that called us in clear_inode() and friends..
73 if (!(sc
->gfp_mask
& __GFP_FS
))
76 if (!trylock_super(sb
))
79 if (sb
->s_op
->nr_cached_objects
)
80 fs_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
82 inodes
= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
83 dentries
= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
84 total_objects
= dentries
+ inodes
+ fs_objects
+ 1;
88 /* proportion the scan between the caches */
89 dentries
= mult_frac(sc
->nr_to_scan
, dentries
, total_objects
);
90 inodes
= mult_frac(sc
->nr_to_scan
, inodes
, total_objects
);
91 fs_objects
= mult_frac(sc
->nr_to_scan
, fs_objects
, total_objects
);
94 * prune the dcache first as the icache is pinned by it, then
95 * prune the icache, followed by the filesystem specific caches
97 * Ensure that we always scan at least one object - memcg kmem
98 * accounting uses this to fully empty the caches.
100 sc
->nr_to_scan
= dentries
+ 1;
101 freed
= prune_dcache_sb(sb
, sc
);
102 sc
->nr_to_scan
= inodes
+ 1;
103 freed
+= prune_icache_sb(sb
, sc
);
106 sc
->nr_to_scan
= fs_objects
+ 1;
107 freed
+= sb
->s_op
->free_cached_objects(sb
, sc
);
110 up_read(&sb
->s_umount
);
114 static unsigned long super_cache_count(struct shrinker
*shrink
,
115 struct shrink_control
*sc
)
117 struct super_block
*sb
;
118 long total_objects
= 0;
120 sb
= container_of(shrink
, struct super_block
, s_shrink
);
123 * Don't call trylock_super as it is a potential
124 * scalability bottleneck. The counts could get updated
125 * between super_cache_count and super_cache_scan anyway.
126 * Call to super_cache_count with shrinker_rwsem held
127 * ensures the safety of call to list_lru_shrink_count() and
128 * s_op->nr_cached_objects().
130 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
131 total_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
133 total_objects
+= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
134 total_objects
+= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
136 total_objects
= vfs_pressure_ratio(total_objects
);
137 return total_objects
;
140 static void destroy_super_work(struct work_struct
*work
)
142 struct super_block
*s
= container_of(work
, struct super_block
,
146 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
147 percpu_free_rwsem(&s
->s_writers
.rw_sem
[i
]);
151 static void destroy_super_rcu(struct rcu_head
*head
)
153 struct super_block
*s
= container_of(head
, struct super_block
, rcu
);
154 INIT_WORK(&s
->destroy_work
, destroy_super_work
);
155 schedule_work(&s
->destroy_work
);
158 /* Free a superblock that has never been seen by anyone */
159 static void destroy_unused_super(struct super_block
*s
)
163 up_write(&s
->s_umount
);
164 list_lru_destroy(&s
->s_dentry_lru
);
165 list_lru_destroy(&s
->s_inode_lru
);
167 put_user_ns(s
->s_user_ns
);
169 /* no delays needed */
170 destroy_super_work(&s
->destroy_work
);
174 * alloc_super - create new superblock
175 * @type: filesystem type superblock should belong to
176 * @flags: the mount flags
177 * @user_ns: User namespace for the super_block
179 * Allocates and initializes a new &struct super_block. alloc_super()
180 * returns a pointer new superblock or %NULL if allocation had failed.
182 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
,
183 struct user_namespace
*user_ns
)
185 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
186 static const struct super_operations default_op
;
192 INIT_LIST_HEAD(&s
->s_mounts
);
193 s
->s_user_ns
= get_user_ns(user_ns
);
194 init_rwsem(&s
->s_umount
);
195 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
197 * sget() can have s_umount recursion.
199 * When it cannot find a suitable sb, it allocates a new
200 * one (this one), and tries again to find a suitable old
203 * In case that succeeds, it will acquire the s_umount
204 * lock of the old one. Since these are clearly distrinct
205 * locks, and this object isn't exposed yet, there's no
208 * Annotate this by putting this lock in a different
211 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
213 if (security_sb_alloc(s
))
216 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
217 if (__percpu_init_rwsem(&s
->s_writers
.rw_sem
[i
],
219 &type
->s_writers_key
[i
]))
222 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
223 s
->s_bdi
= &noop_backing_dev_info
;
225 if (s
->s_user_ns
!= &init_user_ns
)
226 s
->s_iflags
|= SB_I_NODEV
;
227 INIT_HLIST_NODE(&s
->s_instances
);
228 INIT_HLIST_BL_HEAD(&s
->s_anon
);
229 mutex_init(&s
->s_sync_lock
);
230 INIT_LIST_HEAD(&s
->s_inodes
);
231 spin_lock_init(&s
->s_inode_list_lock
);
232 INIT_LIST_HEAD(&s
->s_inodes_wb
);
233 spin_lock_init(&s
->s_inode_wblist_lock
);
235 if (list_lru_init_memcg(&s
->s_dentry_lru
))
237 if (list_lru_init_memcg(&s
->s_inode_lru
))
240 atomic_set(&s
->s_active
, 1);
241 mutex_init(&s
->s_vfs_rename_mutex
);
242 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
243 init_rwsem(&s
->s_dquot
.dqio_sem
);
244 s
->s_maxbytes
= MAX_NON_LFS
;
245 s
->s_op
= &default_op
;
246 s
->s_time_gran
= 1000000000;
247 s
->cleancache_poolid
= CLEANCACHE_NO_POOL
;
249 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
250 s
->s_shrink
.scan_objects
= super_cache_scan
;
251 s
->s_shrink
.count_objects
= super_cache_count
;
252 s
->s_shrink
.batch
= 1024;
253 s
->s_shrink
.flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
;
257 destroy_unused_super(s
);
261 /* Superblock refcounting */
264 * Drop a superblock's refcount. The caller must hold sb_lock.
266 static void __put_super(struct super_block
*s
)
269 list_del_init(&s
->s_list
);
270 WARN_ON(s
->s_dentry_lru
.node
);
271 WARN_ON(s
->s_inode_lru
.node
);
272 WARN_ON(!list_empty(&s
->s_mounts
));
274 put_user_ns(s
->s_user_ns
);
276 call_rcu(&s
->rcu
, destroy_super_rcu
);
281 * put_super - drop a temporary reference to superblock
282 * @sb: superblock in question
284 * Drops a temporary reference, frees superblock if there's no
287 static void put_super(struct super_block
*sb
)
291 spin_unlock(&sb_lock
);
296 * deactivate_locked_super - drop an active reference to superblock
297 * @s: superblock to deactivate
299 * Drops an active reference to superblock, converting it into a temporary
300 * one if there is no other active references left. In that case we
301 * tell fs driver to shut it down and drop the temporary reference we
304 * Caller holds exclusive lock on superblock; that lock is released.
306 void deactivate_locked_super(struct super_block
*s
)
308 struct file_system_type
*fs
= s
->s_type
;
309 if (atomic_dec_and_test(&s
->s_active
)) {
310 cleancache_invalidate_fs(s
);
311 unregister_shrinker(&s
->s_shrink
);
315 * Since list_lru_destroy() may sleep, we cannot call it from
316 * put_super(), where we hold the sb_lock. Therefore we destroy
317 * the lru lists right now.
319 list_lru_destroy(&s
->s_dentry_lru
);
320 list_lru_destroy(&s
->s_inode_lru
);
325 up_write(&s
->s_umount
);
329 EXPORT_SYMBOL(deactivate_locked_super
);
332 * deactivate_super - drop an active reference to superblock
333 * @s: superblock to deactivate
335 * Variant of deactivate_locked_super(), except that superblock is *not*
336 * locked by caller. If we are going to drop the final active reference,
337 * lock will be acquired prior to that.
339 void deactivate_super(struct super_block
*s
)
341 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
342 down_write(&s
->s_umount
);
343 deactivate_locked_super(s
);
347 EXPORT_SYMBOL(deactivate_super
);
350 * grab_super - acquire an active reference
351 * @s: reference we are trying to make active
353 * Tries to acquire an active reference. grab_super() is used when we
354 * had just found a superblock in super_blocks or fs_type->fs_supers
355 * and want to turn it into a full-blown active reference. grab_super()
356 * is called with sb_lock held and drops it. Returns 1 in case of
357 * success, 0 if we had failed (superblock contents was already dead or
358 * dying when grab_super() had been called). Note that this is only
359 * called for superblocks not in rundown mode (== ones still on ->fs_supers
360 * of their type), so increment of ->s_count is OK here.
362 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
365 spin_unlock(&sb_lock
);
366 down_write(&s
->s_umount
);
367 if ((s
->s_flags
& SB_BORN
) && atomic_inc_not_zero(&s
->s_active
)) {
371 up_write(&s
->s_umount
);
377 * trylock_super - try to grab ->s_umount shared
378 * @sb: reference we are trying to grab
380 * Try to prevent fs shutdown. This is used in places where we
381 * cannot take an active reference but we need to ensure that the
382 * filesystem is not shut down while we are working on it. It returns
383 * false if we cannot acquire s_umount or if we lose the race and
384 * filesystem already got into shutdown, and returns true with the s_umount
385 * lock held in read mode in case of success. On successful return,
386 * the caller must drop the s_umount lock when done.
388 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
389 * The reason why it's safe is that we are OK with doing trylock instead
390 * of down_read(). There's a couple of places that are OK with that, but
391 * it's very much not a general-purpose interface.
393 bool trylock_super(struct super_block
*sb
)
395 if (down_read_trylock(&sb
->s_umount
)) {
396 if (!hlist_unhashed(&sb
->s_instances
) &&
397 sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
399 up_read(&sb
->s_umount
);
406 * generic_shutdown_super - common helper for ->kill_sb()
407 * @sb: superblock to kill
409 * generic_shutdown_super() does all fs-independent work on superblock
410 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
411 * that need destruction out of superblock, call generic_shutdown_super()
412 * and release aforementioned objects. Note: dentries and inodes _are_
413 * taken care of and do not need specific handling.
415 * Upon calling this function, the filesystem may no longer alter or
416 * rearrange the set of dentries belonging to this super_block, nor may it
417 * change the attachments of dentries to inodes.
419 void generic_shutdown_super(struct super_block
*sb
)
421 const struct super_operations
*sop
= sb
->s_op
;
424 shrink_dcache_for_umount(sb
);
426 sb
->s_flags
&= ~SB_ACTIVE
;
428 fsnotify_unmount_inodes(sb
);
429 cgroup_writeback_umount();
433 if (sb
->s_dio_done_wq
) {
434 destroy_workqueue(sb
->s_dio_done_wq
);
435 sb
->s_dio_done_wq
= NULL
;
441 if (!list_empty(&sb
->s_inodes
)) {
442 printk("VFS: Busy inodes after unmount of %s. "
443 "Self-destruct in 5 seconds. Have a nice day...\n",
448 /* should be initialized for __put_super_and_need_restart() */
449 hlist_del_init(&sb
->s_instances
);
450 spin_unlock(&sb_lock
);
451 up_write(&sb
->s_umount
);
452 if (sb
->s_bdi
!= &noop_backing_dev_info
) {
454 sb
->s_bdi
= &noop_backing_dev_info
;
458 EXPORT_SYMBOL(generic_shutdown_super
);
461 * sget_userns - find or create a superblock
462 * @type: filesystem type superblock should belong to
463 * @test: comparison callback
464 * @set: setup callback
465 * @flags: mount flags
466 * @user_ns: User namespace for the super_block
467 * @data: argument to each of them
469 struct super_block
*sget_userns(struct file_system_type
*type
,
470 int (*test
)(struct super_block
*,void *),
471 int (*set
)(struct super_block
*,void *),
472 int flags
, struct user_namespace
*user_ns
,
475 struct super_block
*s
= NULL
;
476 struct super_block
*old
;
479 if (!(flags
& (SB_KERNMOUNT
|SB_SUBMOUNT
)) &&
480 !(type
->fs_flags
& FS_USERNS_MOUNT
) &&
481 !capable(CAP_SYS_ADMIN
))
482 return ERR_PTR(-EPERM
);
486 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
487 if (!test(old
, data
))
489 if (user_ns
!= old
->s_user_ns
) {
490 spin_unlock(&sb_lock
);
491 destroy_unused_super(s
);
492 return ERR_PTR(-EBUSY
);
494 if (!grab_super(old
))
496 destroy_unused_super(s
);
501 spin_unlock(&sb_lock
);
502 s
= alloc_super(type
, (flags
& ~SB_SUBMOUNT
), user_ns
);
504 return ERR_PTR(-ENOMEM
);
510 spin_unlock(&sb_lock
);
511 destroy_unused_super(s
);
515 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
516 list_add_tail(&s
->s_list
, &super_blocks
);
517 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
518 spin_unlock(&sb_lock
);
519 get_filesystem(type
);
520 register_shrinker(&s
->s_shrink
);
524 EXPORT_SYMBOL(sget_userns
);
527 * sget - find or create a superblock
528 * @type: filesystem type superblock should belong to
529 * @test: comparison callback
530 * @set: setup callback
531 * @flags: mount flags
532 * @data: argument to each of them
534 struct super_block
*sget(struct file_system_type
*type
,
535 int (*test
)(struct super_block
*,void *),
536 int (*set
)(struct super_block
*,void *),
540 struct user_namespace
*user_ns
= current_user_ns();
542 /* We don't yet pass the user namespace of the parent
543 * mount through to here so always use &init_user_ns
544 * until that changes.
546 if (flags
& SB_SUBMOUNT
)
547 user_ns
= &init_user_ns
;
549 /* Ensure the requestor has permissions over the target filesystem */
550 if (!(flags
& (SB_KERNMOUNT
|SB_SUBMOUNT
)) && !ns_capable(user_ns
, CAP_SYS_ADMIN
))
551 return ERR_PTR(-EPERM
);
553 return sget_userns(type
, test
, set
, flags
, user_ns
, data
);
558 void drop_super(struct super_block
*sb
)
560 up_read(&sb
->s_umount
);
564 EXPORT_SYMBOL(drop_super
);
566 void drop_super_exclusive(struct super_block
*sb
)
568 up_write(&sb
->s_umount
);
571 EXPORT_SYMBOL(drop_super_exclusive
);
574 * iterate_supers - call function for all active superblocks
575 * @f: function to call
576 * @arg: argument to pass to it
578 * Scans the superblock list and calls given function, passing it
579 * locked superblock and given argument.
581 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
583 struct super_block
*sb
, *p
= NULL
;
586 list_for_each_entry(sb
, &super_blocks
, s_list
) {
587 if (hlist_unhashed(&sb
->s_instances
))
590 spin_unlock(&sb_lock
);
592 down_read(&sb
->s_umount
);
593 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
595 up_read(&sb
->s_umount
);
604 spin_unlock(&sb_lock
);
608 * iterate_supers_type - call function for superblocks of given type
610 * @f: function to call
611 * @arg: argument to pass to it
613 * Scans the superblock list and calls given function, passing it
614 * locked superblock and given argument.
616 void iterate_supers_type(struct file_system_type
*type
,
617 void (*f
)(struct super_block
*, void *), void *arg
)
619 struct super_block
*sb
, *p
= NULL
;
622 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
624 spin_unlock(&sb_lock
);
626 down_read(&sb
->s_umount
);
627 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
629 up_read(&sb
->s_umount
);
638 spin_unlock(&sb_lock
);
641 EXPORT_SYMBOL(iterate_supers_type
);
643 static struct super_block
*__get_super(struct block_device
*bdev
, bool excl
)
645 struct super_block
*sb
;
652 list_for_each_entry(sb
, &super_blocks
, s_list
) {
653 if (hlist_unhashed(&sb
->s_instances
))
655 if (sb
->s_bdev
== bdev
) {
657 spin_unlock(&sb_lock
);
659 down_read(&sb
->s_umount
);
661 down_write(&sb
->s_umount
);
663 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
666 up_read(&sb
->s_umount
);
668 up_write(&sb
->s_umount
);
669 /* nope, got unmounted */
675 spin_unlock(&sb_lock
);
680 * get_super - get the superblock of a device
681 * @bdev: device to get the superblock for
683 * Scans the superblock list and finds the superblock of the file system
684 * mounted on the device given. %NULL is returned if no match is found.
686 struct super_block
*get_super(struct block_device
*bdev
)
688 return __get_super(bdev
, false);
690 EXPORT_SYMBOL(get_super
);
692 static struct super_block
*__get_super_thawed(struct block_device
*bdev
,
696 struct super_block
*s
= __get_super(bdev
, excl
);
697 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
700 up_read(&s
->s_umount
);
702 up_write(&s
->s_umount
);
703 wait_event(s
->s_writers
.wait_unfrozen
,
704 s
->s_writers
.frozen
== SB_UNFROZEN
);
710 * get_super_thawed - get thawed superblock of a device
711 * @bdev: device to get the superblock for
713 * Scans the superblock list and finds the superblock of the file system
714 * mounted on the device. The superblock is returned once it is thawed
715 * (or immediately if it was not frozen). %NULL is returned if no match
718 struct super_block
*get_super_thawed(struct block_device
*bdev
)
720 return __get_super_thawed(bdev
, false);
722 EXPORT_SYMBOL(get_super_thawed
);
725 * get_super_exclusive_thawed - get thawed superblock of a device
726 * @bdev: device to get the superblock for
728 * Scans the superblock list and finds the superblock of the file system
729 * mounted on the device. The superblock is returned once it is thawed
730 * (or immediately if it was not frozen) and s_umount semaphore is held
731 * in exclusive mode. %NULL is returned if no match is found.
733 struct super_block
*get_super_exclusive_thawed(struct block_device
*bdev
)
735 return __get_super_thawed(bdev
, true);
737 EXPORT_SYMBOL(get_super_exclusive_thawed
);
740 * get_active_super - get an active reference to the superblock of a device
741 * @bdev: device to get the superblock for
743 * Scans the superblock list and finds the superblock of the file system
744 * mounted on the device given. Returns the superblock with an active
745 * reference or %NULL if none was found.
747 struct super_block
*get_active_super(struct block_device
*bdev
)
749 struct super_block
*sb
;
756 list_for_each_entry(sb
, &super_blocks
, s_list
) {
757 if (hlist_unhashed(&sb
->s_instances
))
759 if (sb
->s_bdev
== bdev
) {
762 up_write(&sb
->s_umount
);
766 spin_unlock(&sb_lock
);
770 struct super_block
*user_get_super(dev_t dev
)
772 struct super_block
*sb
;
776 list_for_each_entry(sb
, &super_blocks
, s_list
) {
777 if (hlist_unhashed(&sb
->s_instances
))
779 if (sb
->s_dev
== dev
) {
781 spin_unlock(&sb_lock
);
782 down_read(&sb
->s_umount
);
784 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
786 up_read(&sb
->s_umount
);
787 /* nope, got unmounted */
793 spin_unlock(&sb_lock
);
798 * do_remount_sb - asks filesystem to change mount options.
799 * @sb: superblock in question
800 * @sb_flags: revised superblock flags
801 * @data: the rest of options
802 * @force: whether or not to force the change
804 * Alters the mount options of a mounted file system.
806 int do_remount_sb(struct super_block
*sb
, int sb_flags
, void *data
, int force
)
811 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
815 if (!(sb_flags
& SB_RDONLY
) && bdev_read_only(sb
->s_bdev
))
819 remount_ro
= (sb_flags
& SB_RDONLY
) && !sb_rdonly(sb
);
822 if (!hlist_empty(&sb
->s_pins
)) {
823 up_write(&sb
->s_umount
);
824 group_pin_kill(&sb
->s_pins
);
825 down_write(&sb
->s_umount
);
828 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
830 remount_ro
= (sb_flags
& SB_RDONLY
) && !sb_rdonly(sb
);
833 shrink_dcache_sb(sb
);
835 /* If we are remounting RDONLY and current sb is read/write,
836 make sure there are no rw files opened */
839 sb
->s_readonly_remount
= 1;
842 retval
= sb_prepare_remount_readonly(sb
);
848 if (sb
->s_op
->remount_fs
) {
849 retval
= sb
->s_op
->remount_fs(sb
, &sb_flags
, data
);
852 goto cancel_readonly
;
853 /* If forced remount, go ahead despite any errors */
854 WARN(1, "forced remount of a %s fs returned %i\n",
855 sb
->s_type
->name
, retval
);
858 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (sb_flags
& MS_RMT_MASK
);
859 /* Needs to be ordered wrt mnt_is_readonly() */
861 sb
->s_readonly_remount
= 0;
864 * Some filesystems modify their metadata via some other path than the
865 * bdev buffer cache (eg. use a private mapping, or directories in
866 * pagecache, etc). Also file data modifications go via their own
867 * mappings. So If we try to mount readonly then copy the filesystem
868 * from bdev, we could get stale data, so invalidate it to give a best
869 * effort at coherency.
871 if (remount_ro
&& sb
->s_bdev
)
872 invalidate_bdev(sb
->s_bdev
);
876 sb
->s_readonly_remount
= 0;
880 static void do_emergency_remount(struct work_struct
*work
)
882 struct super_block
*sb
, *p
= NULL
;
885 list_for_each_entry(sb
, &super_blocks
, s_list
) {
886 if (hlist_unhashed(&sb
->s_instances
))
889 spin_unlock(&sb_lock
);
890 down_write(&sb
->s_umount
);
891 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& SB_BORN
) &&
894 * What lock protects sb->s_flags??
896 do_remount_sb(sb
, SB_RDONLY
, NULL
, 1);
898 up_write(&sb
->s_umount
);
906 spin_unlock(&sb_lock
);
908 printk("Emergency Remount complete\n");
911 void emergency_remount(void)
913 struct work_struct
*work
;
915 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
917 INIT_WORK(work
, do_emergency_remount
);
923 * Unnamed block devices are dummy devices used by virtual
924 * filesystems which don't use real block-devices. -- jrs
927 static DEFINE_IDA(unnamed_dev_ida
);
928 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
929 /* Many userspace utilities consider an FSID of 0 invalid.
930 * Always return at least 1 from get_anon_bdev.
932 static int unnamed_dev_start
= 1;
934 int get_anon_bdev(dev_t
*p
)
940 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
942 spin_lock(&unnamed_dev_lock
);
943 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
945 unnamed_dev_start
= dev
+ 1;
946 spin_unlock(&unnamed_dev_lock
);
947 if (error
== -EAGAIN
)
948 /* We raced and lost with another CPU. */
953 if (dev
>= (1 << MINORBITS
)) {
954 spin_lock(&unnamed_dev_lock
);
955 ida_remove(&unnamed_dev_ida
, dev
);
956 if (unnamed_dev_start
> dev
)
957 unnamed_dev_start
= dev
;
958 spin_unlock(&unnamed_dev_lock
);
961 *p
= MKDEV(0, dev
& MINORMASK
);
964 EXPORT_SYMBOL(get_anon_bdev
);
966 void free_anon_bdev(dev_t dev
)
968 int slot
= MINOR(dev
);
969 spin_lock(&unnamed_dev_lock
);
970 ida_remove(&unnamed_dev_ida
, slot
);
971 if (slot
< unnamed_dev_start
)
972 unnamed_dev_start
= slot
;
973 spin_unlock(&unnamed_dev_lock
);
975 EXPORT_SYMBOL(free_anon_bdev
);
977 int set_anon_super(struct super_block
*s
, void *data
)
979 return get_anon_bdev(&s
->s_dev
);
982 EXPORT_SYMBOL(set_anon_super
);
984 void kill_anon_super(struct super_block
*sb
)
986 dev_t dev
= sb
->s_dev
;
987 generic_shutdown_super(sb
);
991 EXPORT_SYMBOL(kill_anon_super
);
993 void kill_litter_super(struct super_block
*sb
)
996 d_genocide(sb
->s_root
);
1000 EXPORT_SYMBOL(kill_litter_super
);
1002 static int ns_test_super(struct super_block
*sb
, void *data
)
1004 return sb
->s_fs_info
== data
;
1007 static int ns_set_super(struct super_block
*sb
, void *data
)
1009 sb
->s_fs_info
= data
;
1010 return set_anon_super(sb
, NULL
);
1013 struct dentry
*mount_ns(struct file_system_type
*fs_type
,
1014 int flags
, void *data
, void *ns
, struct user_namespace
*user_ns
,
1015 int (*fill_super
)(struct super_block
*, void *, int))
1017 struct super_block
*sb
;
1019 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1020 * over the namespace.
1022 if (!(flags
& SB_KERNMOUNT
) && !ns_capable(user_ns
, CAP_SYS_ADMIN
))
1023 return ERR_PTR(-EPERM
);
1025 sb
= sget_userns(fs_type
, ns_test_super
, ns_set_super
, flags
,
1028 return ERR_CAST(sb
);
1032 err
= fill_super(sb
, data
, flags
& SB_SILENT
? 1 : 0);
1034 deactivate_locked_super(sb
);
1035 return ERR_PTR(err
);
1038 sb
->s_flags
|= SB_ACTIVE
;
1041 return dget(sb
->s_root
);
1044 EXPORT_SYMBOL(mount_ns
);
1047 static int set_bdev_super(struct super_block
*s
, void *data
)
1050 s
->s_dev
= s
->s_bdev
->bd_dev
;
1051 s
->s_bdi
= bdi_get(s
->s_bdev
->bd_bdi
);
1056 static int test_bdev_super(struct super_block
*s
, void *data
)
1058 return (void *)s
->s_bdev
== data
;
1061 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
1062 int flags
, const char *dev_name
, void *data
,
1063 int (*fill_super
)(struct super_block
*, void *, int))
1065 struct block_device
*bdev
;
1066 struct super_block
*s
;
1067 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
1070 if (!(flags
& SB_RDONLY
))
1071 mode
|= FMODE_WRITE
;
1073 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
1075 return ERR_CAST(bdev
);
1078 * once the super is inserted into the list by sget, s_umount
1079 * will protect the lockfs code from trying to start a snapshot
1080 * while we are mounting
1082 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
1083 if (bdev
->bd_fsfreeze_count
> 0) {
1084 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1088 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| SB_NOSEC
,
1090 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1095 if ((flags
^ s
->s_flags
) & SB_RDONLY
) {
1096 deactivate_locked_super(s
);
1102 * s_umount nests inside bd_mutex during
1103 * __invalidate_device(). blkdev_put() acquires
1104 * bd_mutex and can't be called under s_umount. Drop
1105 * s_umount temporarily. This is safe as we're
1106 * holding an active reference.
1108 up_write(&s
->s_umount
);
1109 blkdev_put(bdev
, mode
);
1110 down_write(&s
->s_umount
);
1113 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1114 sb_set_blocksize(s
, block_size(bdev
));
1115 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1117 deactivate_locked_super(s
);
1121 s
->s_flags
|= SB_ACTIVE
;
1125 return dget(s
->s_root
);
1130 blkdev_put(bdev
, mode
);
1132 return ERR_PTR(error
);
1134 EXPORT_SYMBOL(mount_bdev
);
1136 void kill_block_super(struct super_block
*sb
)
1138 struct block_device
*bdev
= sb
->s_bdev
;
1139 fmode_t mode
= sb
->s_mode
;
1141 bdev
->bd_super
= NULL
;
1142 generic_shutdown_super(sb
);
1143 sync_blockdev(bdev
);
1144 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1145 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1148 EXPORT_SYMBOL(kill_block_super
);
1151 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1152 int flags
, void *data
,
1153 int (*fill_super
)(struct super_block
*, void *, int))
1156 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1161 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1163 deactivate_locked_super(s
);
1164 return ERR_PTR(error
);
1166 s
->s_flags
|= SB_ACTIVE
;
1167 return dget(s
->s_root
);
1169 EXPORT_SYMBOL(mount_nodev
);
1171 static int compare_single(struct super_block
*s
, void *p
)
1176 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1177 int flags
, void *data
,
1178 int (*fill_super
)(struct super_block
*, void *, int))
1180 struct super_block
*s
;
1183 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1187 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1189 deactivate_locked_super(s
);
1190 return ERR_PTR(error
);
1192 s
->s_flags
|= SB_ACTIVE
;
1194 do_remount_sb(s
, flags
, data
, 0);
1196 return dget(s
->s_root
);
1198 EXPORT_SYMBOL(mount_single
);
1201 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1203 struct dentry
*root
;
1204 struct super_block
*sb
;
1205 char *secdata
= NULL
;
1206 int error
= -ENOMEM
;
1208 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1209 secdata
= alloc_secdata();
1213 error
= security_sb_copy_data(data
, secdata
);
1215 goto out_free_secdata
;
1218 root
= type
->mount(type
, flags
, name
, data
);
1220 error
= PTR_ERR(root
);
1221 goto out_free_secdata
;
1225 WARN_ON(!sb
->s_bdi
);
1226 sb
->s_flags
|= SB_BORN
;
1228 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1233 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1234 * but s_maxbytes was an unsigned long long for many releases. Throw
1235 * this warning for a little while to try and catch filesystems that
1236 * violate this rule.
1238 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1239 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1241 up_write(&sb
->s_umount
);
1242 free_secdata(secdata
);
1246 deactivate_locked_super(sb
);
1248 free_secdata(secdata
);
1250 return ERR_PTR(error
);
1254 * Setup private BDI for given superblock. It gets automatically cleaned up
1255 * in generic_shutdown_super().
1257 int super_setup_bdi_name(struct super_block
*sb
, char *fmt
, ...)
1259 struct backing_dev_info
*bdi
;
1263 bdi
= bdi_alloc(GFP_KERNEL
);
1267 bdi
->name
= sb
->s_type
->name
;
1269 va_start(args
, fmt
);
1270 err
= bdi_register_va(bdi
, fmt
, args
);
1276 WARN_ON(sb
->s_bdi
!= &noop_backing_dev_info
);
1281 EXPORT_SYMBOL(super_setup_bdi_name
);
1284 * Setup private BDI for given superblock. I gets automatically cleaned up
1285 * in generic_shutdown_super().
1287 int super_setup_bdi(struct super_block
*sb
)
1289 static atomic_long_t bdi_seq
= ATOMIC_LONG_INIT(0);
1291 return super_setup_bdi_name(sb
, "%.28s-%ld", sb
->s_type
->name
,
1292 atomic_long_inc_return(&bdi_seq
));
1294 EXPORT_SYMBOL(super_setup_bdi
);
1297 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1300 void __sb_end_write(struct super_block
*sb
, int level
)
1302 percpu_up_read(sb
->s_writers
.rw_sem
+ level
-1);
1304 EXPORT_SYMBOL(__sb_end_write
);
1307 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1310 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1312 bool force_trylock
= false;
1315 #ifdef CONFIG_LOCKDEP
1317 * We want lockdep to tell us about possible deadlocks with freezing
1318 * but it's it bit tricky to properly instrument it. Getting a freeze
1319 * protection works as getting a read lock but there are subtle
1320 * problems. XFS for example gets freeze protection on internal level
1321 * twice in some cases, which is OK only because we already hold a
1322 * freeze protection also on higher level. Due to these cases we have
1323 * to use wait == F (trylock mode) which must not fail.
1328 for (i
= 0; i
< level
- 1; i
++)
1329 if (percpu_rwsem_is_held(sb
->s_writers
.rw_sem
+ i
)) {
1330 force_trylock
= true;
1335 if (wait
&& !force_trylock
)
1336 percpu_down_read(sb
->s_writers
.rw_sem
+ level
-1);
1338 ret
= percpu_down_read_trylock(sb
->s_writers
.rw_sem
+ level
-1);
1340 WARN_ON(force_trylock
&& !ret
);
1343 EXPORT_SYMBOL(__sb_start_write
);
1346 * sb_wait_write - wait until all writers to given file system finish
1347 * @sb: the super for which we wait
1348 * @level: type of writers we wait for (normal vs page fault)
1350 * This function waits until there are no writers of given type to given file
1353 static void sb_wait_write(struct super_block
*sb
, int level
)
1355 percpu_down_write(sb
->s_writers
.rw_sem
+ level
-1);
1359 * We are going to return to userspace and forget about these locks, the
1360 * ownership goes to the caller of thaw_super() which does unlock().
1362 static void lockdep_sb_freeze_release(struct super_block
*sb
)
1366 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1367 percpu_rwsem_release(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1371 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1373 static void lockdep_sb_freeze_acquire(struct super_block
*sb
)
1377 for (level
= 0; level
< SB_FREEZE_LEVELS
; ++level
)
1378 percpu_rwsem_acquire(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1381 static void sb_freeze_unlock(struct super_block
*sb
)
1385 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1386 percpu_up_write(sb
->s_writers
.rw_sem
+ level
);
1390 * freeze_super - lock the filesystem and force it into a consistent state
1391 * @sb: the super to lock
1393 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1394 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1397 * During this function, sb->s_writers.frozen goes through these values:
1399 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1401 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1402 * writes should be blocked, though page faults are still allowed. We wait for
1403 * all writes to complete and then proceed to the next stage.
1405 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1406 * but internal fs threads can still modify the filesystem (although they
1407 * should not dirty new pages or inodes), writeback can run etc. After waiting
1408 * for all running page faults we sync the filesystem which will clean all
1409 * dirty pages and inodes (no new dirty pages or inodes can be created when
1412 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1413 * modification are blocked (e.g. XFS preallocation truncation on inode
1414 * reclaim). This is usually implemented by blocking new transactions for
1415 * filesystems that have them and need this additional guard. After all
1416 * internal writers are finished we call ->freeze_fs() to finish filesystem
1417 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1418 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1420 * sb->s_writers.frozen is protected by sb->s_umount.
1422 int freeze_super(struct super_block
*sb
)
1426 atomic_inc(&sb
->s_active
);
1427 down_write(&sb
->s_umount
);
1428 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1429 deactivate_locked_super(sb
);
1433 if (!(sb
->s_flags
& SB_BORN
)) {
1434 up_write(&sb
->s_umount
);
1435 return 0; /* sic - it's "nothing to do" */
1438 if (sb_rdonly(sb
)) {
1439 /* Nothing to do really... */
1440 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1441 up_write(&sb
->s_umount
);
1445 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1446 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1447 up_write(&sb
->s_umount
);
1448 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1449 down_write(&sb
->s_umount
);
1451 /* Now we go and block page faults... */
1452 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1453 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1455 /* All writers are done so after syncing there won't be dirty data */
1456 sync_filesystem(sb
);
1458 /* Now wait for internal filesystem counter */
1459 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1460 sb_wait_write(sb
, SB_FREEZE_FS
);
1462 if (sb
->s_op
->freeze_fs
) {
1463 ret
= sb
->s_op
->freeze_fs(sb
);
1466 "VFS:Filesystem freeze failed\n");
1467 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1468 sb_freeze_unlock(sb
);
1469 wake_up(&sb
->s_writers
.wait_unfrozen
);
1470 deactivate_locked_super(sb
);
1475 * For debugging purposes so that fs can warn if it sees write activity
1476 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1478 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1479 lockdep_sb_freeze_release(sb
);
1480 up_write(&sb
->s_umount
);
1483 EXPORT_SYMBOL(freeze_super
);
1486 * thaw_super -- unlock filesystem
1487 * @sb: the super to thaw
1489 * Unlocks the filesystem and marks it writeable again after freeze_super().
1491 int thaw_super(struct super_block
*sb
)
1495 down_write(&sb
->s_umount
);
1496 if (sb
->s_writers
.frozen
!= SB_FREEZE_COMPLETE
) {
1497 up_write(&sb
->s_umount
);
1501 if (sb_rdonly(sb
)) {
1502 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1506 lockdep_sb_freeze_acquire(sb
);
1508 if (sb
->s_op
->unfreeze_fs
) {
1509 error
= sb
->s_op
->unfreeze_fs(sb
);
1512 "VFS:Filesystem thaw failed\n");
1513 lockdep_sb_freeze_release(sb
);
1514 up_write(&sb
->s_umount
);
1519 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1520 sb_freeze_unlock(sb
);
1522 wake_up(&sb
->s_writers
.wait_unfrozen
);
1523 deactivate_locked_super(sb
);
1526 EXPORT_SYMBOL(thaw_super
);