2 * This contains encryption functions for per-file encryption.
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
7 * Written by Michael Halcrow, 2014.
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
16 * This has not yet undergone a rigorous security audit.
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/bio.h>
28 #include <linux/dcache.h>
29 #include <linux/namei.h>
30 #include "fscrypt_private.h"
32 static unsigned int num_prealloc_crypto_pages
= 32;
33 static unsigned int num_prealloc_crypto_ctxs
= 128;
35 module_param(num_prealloc_crypto_pages
, uint
, 0444);
36 MODULE_PARM_DESC(num_prealloc_crypto_pages
,
37 "Number of crypto pages to preallocate");
38 module_param(num_prealloc_crypto_ctxs
, uint
, 0444);
39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs
,
40 "Number of crypto contexts to preallocate");
42 static mempool_t
*fscrypt_bounce_page_pool
= NULL
;
44 static LIST_HEAD(fscrypt_free_ctxs
);
45 static DEFINE_SPINLOCK(fscrypt_ctx_lock
);
47 static struct workqueue_struct
*fscrypt_read_workqueue
;
48 static DEFINE_MUTEX(fscrypt_init_mutex
);
50 static struct kmem_cache
*fscrypt_ctx_cachep
;
51 struct kmem_cache
*fscrypt_info_cachep
;
54 * fscrypt_release_ctx() - Releases an encryption context
55 * @ctx: The encryption context to release.
57 * If the encryption context was allocated from the pre-allocated pool, returns
58 * it to that pool. Else, frees it.
60 * If there's a bounce page in the context, this frees that.
62 void fscrypt_release_ctx(struct fscrypt_ctx
*ctx
)
66 if (ctx
->flags
& FS_CTX_HAS_BOUNCE_BUFFER_FL
&& ctx
->w
.bounce_page
) {
67 mempool_free(ctx
->w
.bounce_page
, fscrypt_bounce_page_pool
);
68 ctx
->w
.bounce_page
= NULL
;
70 ctx
->w
.control_page
= NULL
;
71 if (ctx
->flags
& FS_CTX_REQUIRES_FREE_ENCRYPT_FL
) {
72 kmem_cache_free(fscrypt_ctx_cachep
, ctx
);
74 spin_lock_irqsave(&fscrypt_ctx_lock
, flags
);
75 list_add(&ctx
->free_list
, &fscrypt_free_ctxs
);
76 spin_unlock_irqrestore(&fscrypt_ctx_lock
, flags
);
79 EXPORT_SYMBOL(fscrypt_release_ctx
);
82 * fscrypt_get_ctx() - Gets an encryption context
83 * @inode: The inode for which we are doing the crypto
84 * @gfp_flags: The gfp flag for memory allocation
86 * Allocates and initializes an encryption context.
88 * Return: An allocated and initialized encryption context on success; error
89 * value or NULL otherwise.
91 struct fscrypt_ctx
*fscrypt_get_ctx(const struct inode
*inode
, gfp_t gfp_flags
)
93 struct fscrypt_ctx
*ctx
= NULL
;
94 struct fscrypt_info
*ci
= inode
->i_crypt_info
;
98 return ERR_PTR(-ENOKEY
);
101 * We first try getting the ctx from a free list because in
102 * the common case the ctx will have an allocated and
103 * initialized crypto tfm, so it's probably a worthwhile
104 * optimization. For the bounce page, we first try getting it
105 * from the kernel allocator because that's just about as fast
106 * as getting it from a list and because a cache of free pages
107 * should generally be a "last resort" option for a filesystem
108 * to be able to do its job.
110 spin_lock_irqsave(&fscrypt_ctx_lock
, flags
);
111 ctx
= list_first_entry_or_null(&fscrypt_free_ctxs
,
112 struct fscrypt_ctx
, free_list
);
114 list_del(&ctx
->free_list
);
115 spin_unlock_irqrestore(&fscrypt_ctx_lock
, flags
);
117 ctx
= kmem_cache_zalloc(fscrypt_ctx_cachep
, gfp_flags
);
119 return ERR_PTR(-ENOMEM
);
120 ctx
->flags
|= FS_CTX_REQUIRES_FREE_ENCRYPT_FL
;
122 ctx
->flags
&= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL
;
124 ctx
->flags
&= ~FS_CTX_HAS_BOUNCE_BUFFER_FL
;
127 EXPORT_SYMBOL(fscrypt_get_ctx
);
130 * page_crypt_complete() - completion callback for page crypto
131 * @req: The asynchronous cipher request context
132 * @res: The result of the cipher operation
134 static void page_crypt_complete(struct crypto_async_request
*req
, int res
)
136 struct fscrypt_completion_result
*ecr
= req
->data
;
138 if (res
== -EINPROGRESS
)
141 complete(&ecr
->completion
);
147 } fscrypt_direction_t
;
149 static int do_page_crypto(const struct inode
*inode
,
150 fscrypt_direction_t rw
, u64 lblk_num
,
151 struct page
*src_page
, struct page
*dest_page
,
152 unsigned int len
, unsigned int offs
,
157 u8 padding
[FS_XTS_TWEAK_SIZE
- sizeof(__le64
)];
159 struct skcipher_request
*req
= NULL
;
160 DECLARE_FS_COMPLETION_RESULT(ecr
);
161 struct scatterlist dst
, src
;
162 struct fscrypt_info
*ci
= inode
->i_crypt_info
;
163 struct crypto_skcipher
*tfm
= ci
->ci_ctfm
;
168 req
= skcipher_request_alloc(tfm
, gfp_flags
);
170 printk_ratelimited(KERN_ERR
171 "%s: crypto_request_alloc() failed\n",
176 skcipher_request_set_callback(
177 req
, CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
178 page_crypt_complete
, &ecr
);
180 BUILD_BUG_ON(sizeof(xts_tweak
) != FS_XTS_TWEAK_SIZE
);
181 xts_tweak
.index
= cpu_to_le64(lblk_num
);
182 memset(xts_tweak
.padding
, 0, sizeof(xts_tweak
.padding
));
184 sg_init_table(&dst
, 1);
185 sg_set_page(&dst
, dest_page
, len
, offs
);
186 sg_init_table(&src
, 1);
187 sg_set_page(&src
, src_page
, len
, offs
);
188 skcipher_request_set_crypt(req
, &src
, &dst
, len
, &xts_tweak
);
189 if (rw
== FS_DECRYPT
)
190 res
= crypto_skcipher_decrypt(req
);
192 res
= crypto_skcipher_encrypt(req
);
193 if (res
== -EINPROGRESS
|| res
== -EBUSY
) {
194 BUG_ON(req
->base
.data
!= &ecr
);
195 wait_for_completion(&ecr
.completion
);
198 skcipher_request_free(req
);
200 printk_ratelimited(KERN_ERR
201 "%s: crypto_skcipher_encrypt() returned %d\n",
208 static struct page
*alloc_bounce_page(struct fscrypt_ctx
*ctx
, gfp_t gfp_flags
)
210 ctx
->w
.bounce_page
= mempool_alloc(fscrypt_bounce_page_pool
, gfp_flags
);
211 if (ctx
->w
.bounce_page
== NULL
)
212 return ERR_PTR(-ENOMEM
);
213 ctx
->flags
|= FS_CTX_HAS_BOUNCE_BUFFER_FL
;
214 return ctx
->w
.bounce_page
;
218 * fscypt_encrypt_page() - Encrypts a page
219 * @inode: The inode for which the encryption should take place
220 * @page: The page to encrypt. Must be locked for bounce-page
222 * @len: Length of data to encrypt in @page and encrypted
223 * data in returned page.
224 * @offs: Offset of data within @page and returned
225 * page holding encrypted data.
226 * @lblk_num: Logical block number. This must be unique for multiple
227 * calls with same inode, except when overwriting
228 * previously written data.
229 * @gfp_flags: The gfp flag for memory allocation
231 * Encrypts @page using the ctx encryption context. Performs encryption
232 * either in-place or into a newly allocated bounce page.
233 * Called on the page write path.
235 * Bounce page allocation is the default.
236 * In this case, the contents of @page are encrypted and stored in an
237 * allocated bounce page. @page has to be locked and the caller must call
238 * fscrypt_restore_control_page() on the returned ciphertext page to
239 * release the bounce buffer and the encryption context.
241 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
242 * fscrypt_operations. Here, the input-page is returned with its content
245 * Return: A page with the encrypted content on success. Else, an
246 * error value or NULL.
248 struct page
*fscrypt_encrypt_page(const struct inode
*inode
,
252 u64 lblk_num
, gfp_t gfp_flags
)
255 struct fscrypt_ctx
*ctx
;
256 struct page
*ciphertext_page
= page
;
259 BUG_ON(len
% FS_CRYPTO_BLOCK_SIZE
!= 0);
261 if (inode
->i_sb
->s_cop
->flags
& FS_CFLG_OWN_PAGES
) {
262 /* with inplace-encryption we just encrypt the page */
263 err
= do_page_crypto(inode
, FS_ENCRYPT
, lblk_num
,
264 page
, ciphertext_page
,
265 len
, offs
, gfp_flags
);
269 return ciphertext_page
;
272 BUG_ON(!PageLocked(page
));
274 ctx
= fscrypt_get_ctx(inode
, gfp_flags
);
276 return (struct page
*)ctx
;
278 /* The encryption operation will require a bounce page. */
279 ciphertext_page
= alloc_bounce_page(ctx
, gfp_flags
);
280 if (IS_ERR(ciphertext_page
))
283 ctx
->w
.control_page
= page
;
284 err
= do_page_crypto(inode
, FS_ENCRYPT
, lblk_num
,
285 page
, ciphertext_page
,
286 len
, offs
, gfp_flags
);
288 ciphertext_page
= ERR_PTR(err
);
291 SetPagePrivate(ciphertext_page
);
292 set_page_private(ciphertext_page
, (unsigned long)ctx
);
293 lock_page(ciphertext_page
);
294 return ciphertext_page
;
297 fscrypt_release_ctx(ctx
);
298 return ciphertext_page
;
300 EXPORT_SYMBOL(fscrypt_encrypt_page
);
303 * fscrypt_decrypt_page() - Decrypts a page in-place
304 * @inode: The corresponding inode for the page to decrypt.
305 * @page: The page to decrypt. Must be locked in case
306 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
307 * @len: Number of bytes in @page to be decrypted.
308 * @offs: Start of data in @page.
309 * @lblk_num: Logical block number.
311 * Decrypts page in-place using the ctx encryption context.
313 * Called from the read completion callback.
315 * Return: Zero on success, non-zero otherwise.
317 int fscrypt_decrypt_page(const struct inode
*inode
, struct page
*page
,
318 unsigned int len
, unsigned int offs
, u64 lblk_num
)
320 if (!(inode
->i_sb
->s_cop
->flags
& FS_CFLG_OWN_PAGES
))
321 BUG_ON(!PageLocked(page
));
323 return do_page_crypto(inode
, FS_DECRYPT
, lblk_num
, page
, page
, len
,
326 EXPORT_SYMBOL(fscrypt_decrypt_page
);
328 int fscrypt_zeroout_range(const struct inode
*inode
, pgoff_t lblk
,
329 sector_t pblk
, unsigned int len
)
331 struct fscrypt_ctx
*ctx
;
332 struct page
*ciphertext_page
= NULL
;
336 BUG_ON(inode
->i_sb
->s_blocksize
!= PAGE_SIZE
);
338 ctx
= fscrypt_get_ctx(inode
, GFP_NOFS
);
342 ciphertext_page
= alloc_bounce_page(ctx
, GFP_NOWAIT
);
343 if (IS_ERR(ciphertext_page
)) {
344 err
= PTR_ERR(ciphertext_page
);
349 err
= do_page_crypto(inode
, FS_ENCRYPT
, lblk
,
350 ZERO_PAGE(0), ciphertext_page
,
351 PAGE_SIZE
, 0, GFP_NOFS
);
355 bio
= bio_alloc(GFP_NOWAIT
, 1);
360 bio
->bi_bdev
= inode
->i_sb
->s_bdev
;
361 bio
->bi_iter
.bi_sector
=
362 pblk
<< (inode
->i_sb
->s_blocksize_bits
- 9);
363 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
364 ret
= bio_add_page(bio
, ciphertext_page
,
365 inode
->i_sb
->s_blocksize
, 0);
366 if (ret
!= inode
->i_sb
->s_blocksize
) {
367 /* should never happen! */
373 err
= submit_bio_wait(bio
);
374 if ((err
== 0) && bio
->bi_error
)
384 fscrypt_release_ctx(ctx
);
387 EXPORT_SYMBOL(fscrypt_zeroout_range
);
390 * Validate dentries for encrypted directories to make sure we aren't
391 * potentially caching stale data after a key has been added or
394 static int fscrypt_d_revalidate(struct dentry
*dentry
, unsigned int flags
)
397 struct fscrypt_info
*ci
;
398 int dir_has_key
, cached_with_key
;
400 if (flags
& LOOKUP_RCU
)
403 dir
= dget_parent(dentry
);
404 if (!d_inode(dir
)->i_sb
->s_cop
->is_encrypted(d_inode(dir
))) {
409 ci
= d_inode(dir
)->i_crypt_info
;
410 if (ci
&& ci
->ci_keyring_key
&&
411 (ci
->ci_keyring_key
->flags
& ((1 << KEY_FLAG_INVALIDATED
) |
412 (1 << KEY_FLAG_REVOKED
) |
413 (1 << KEY_FLAG_DEAD
))))
416 /* this should eventually be an flag in d_flags */
417 spin_lock(&dentry
->d_lock
);
418 cached_with_key
= dentry
->d_flags
& DCACHE_ENCRYPTED_WITH_KEY
;
419 spin_unlock(&dentry
->d_lock
);
420 dir_has_key
= (ci
!= NULL
);
424 * If the dentry was cached without the key, and it is a
425 * negative dentry, it might be a valid name. We can't check
426 * if the key has since been made available due to locking
427 * reasons, so we fail the validation so ext4_lookup() can do
430 * We also fail the validation if the dentry was created with
431 * the key present, but we no longer have the key, or vice versa.
433 if ((!cached_with_key
&& d_is_negative(dentry
)) ||
434 (!cached_with_key
&& dir_has_key
) ||
435 (cached_with_key
&& !dir_has_key
))
440 const struct dentry_operations fscrypt_d_ops
= {
441 .d_revalidate
= fscrypt_d_revalidate
,
443 EXPORT_SYMBOL(fscrypt_d_ops
);
446 * Call fscrypt_decrypt_page on every single page, reusing the encryption
449 static void completion_pages(struct work_struct
*work
)
451 struct fscrypt_ctx
*ctx
=
452 container_of(work
, struct fscrypt_ctx
, r
.work
);
453 struct bio
*bio
= ctx
->r
.bio
;
457 bio_for_each_segment_all(bv
, bio
, i
) {
458 struct page
*page
= bv
->bv_page
;
459 int ret
= fscrypt_decrypt_page(page
->mapping
->host
, page
,
460 PAGE_SIZE
, 0, page
->index
);
466 SetPageUptodate(page
);
470 fscrypt_release_ctx(ctx
);
474 void fscrypt_decrypt_bio_pages(struct fscrypt_ctx
*ctx
, struct bio
*bio
)
476 INIT_WORK(&ctx
->r
.work
, completion_pages
);
478 queue_work(fscrypt_read_workqueue
, &ctx
->r
.work
);
480 EXPORT_SYMBOL(fscrypt_decrypt_bio_pages
);
482 void fscrypt_pullback_bio_page(struct page
**page
, bool restore
)
484 struct fscrypt_ctx
*ctx
;
485 struct page
*bounce_page
;
487 /* The bounce data pages are unmapped. */
488 if ((*page
)->mapping
)
491 /* The bounce data page is unmapped. */
493 ctx
= (struct fscrypt_ctx
*)page_private(bounce_page
);
495 /* restore control page */
496 *page
= ctx
->w
.control_page
;
499 fscrypt_restore_control_page(bounce_page
);
501 EXPORT_SYMBOL(fscrypt_pullback_bio_page
);
503 void fscrypt_restore_control_page(struct page
*page
)
505 struct fscrypt_ctx
*ctx
;
507 ctx
= (struct fscrypt_ctx
*)page_private(page
);
508 set_page_private(page
, (unsigned long)NULL
);
509 ClearPagePrivate(page
);
511 fscrypt_release_ctx(ctx
);
513 EXPORT_SYMBOL(fscrypt_restore_control_page
);
515 static void fscrypt_destroy(void)
517 struct fscrypt_ctx
*pos
, *n
;
519 list_for_each_entry_safe(pos
, n
, &fscrypt_free_ctxs
, free_list
)
520 kmem_cache_free(fscrypt_ctx_cachep
, pos
);
521 INIT_LIST_HEAD(&fscrypt_free_ctxs
);
522 mempool_destroy(fscrypt_bounce_page_pool
);
523 fscrypt_bounce_page_pool
= NULL
;
527 * fscrypt_initialize() - allocate major buffers for fs encryption.
528 * @cop_flags: fscrypt operations flags
530 * We only call this when we start accessing encrypted files, since it
531 * results in memory getting allocated that wouldn't otherwise be used.
533 * Return: Zero on success, non-zero otherwise.
535 int fscrypt_initialize(unsigned int cop_flags
)
537 int i
, res
= -ENOMEM
;
540 * No need to allocate a bounce page pool if there already is one or
541 * this FS won't use it.
543 if (cop_flags
& FS_CFLG_OWN_PAGES
|| fscrypt_bounce_page_pool
)
546 mutex_lock(&fscrypt_init_mutex
);
547 if (fscrypt_bounce_page_pool
)
548 goto already_initialized
;
550 for (i
= 0; i
< num_prealloc_crypto_ctxs
; i
++) {
551 struct fscrypt_ctx
*ctx
;
553 ctx
= kmem_cache_zalloc(fscrypt_ctx_cachep
, GFP_NOFS
);
556 list_add(&ctx
->free_list
, &fscrypt_free_ctxs
);
559 fscrypt_bounce_page_pool
=
560 mempool_create_page_pool(num_prealloc_crypto_pages
, 0);
561 if (!fscrypt_bounce_page_pool
)
565 mutex_unlock(&fscrypt_init_mutex
);
569 mutex_unlock(&fscrypt_init_mutex
);
574 * fscrypt_init() - Set up for fs encryption.
576 static int __init
fscrypt_init(void)
578 fscrypt_read_workqueue
= alloc_workqueue("fscrypt_read_queue",
580 if (!fscrypt_read_workqueue
)
583 fscrypt_ctx_cachep
= KMEM_CACHE(fscrypt_ctx
, SLAB_RECLAIM_ACCOUNT
);
584 if (!fscrypt_ctx_cachep
)
585 goto fail_free_queue
;
587 fscrypt_info_cachep
= KMEM_CACHE(fscrypt_info
, SLAB_RECLAIM_ACCOUNT
);
588 if (!fscrypt_info_cachep
)
594 kmem_cache_destroy(fscrypt_ctx_cachep
);
596 destroy_workqueue(fscrypt_read_workqueue
);
600 module_init(fscrypt_init
)
603 * fscrypt_exit() - Shutdown the fs encryption system
605 static void __exit
fscrypt_exit(void)
609 if (fscrypt_read_workqueue
)
610 destroy_workqueue(fscrypt_read_workqueue
);
611 kmem_cache_destroy(fscrypt_ctx_cachep
);
612 kmem_cache_destroy(fscrypt_info_cachep
);
614 module_exit(fscrypt_exit
);
616 MODULE_LICENSE("GPL");