Linux 2.6.28-rc5
[cris-mirror.git] / arch / powerpc / include / asm / smu.h
blob7ae2753da565d6435c05b8d0e9ff505ae94fa928
1 #ifndef _SMU_H
2 #define _SMU_H
4 /*
5 * Definitions for talking to the SMU chip in newer G5 PowerMacs
6 */
7 #ifdef __KERNEL__
8 #include <linux/list.h>
9 #endif
10 #include <linux/types.h>
13 * Known SMU commands
15 * Most of what is below comes from looking at the Open Firmware driver,
16 * though this is still incomplete and could use better documentation here
17 * or there...
22 * Partition info commands
24 * These commands are used to retrieve the sdb-partition-XX datas from
25 * the SMU. The length is always 2. First byte is the subcommand code
26 * and second byte is the partition ID.
28 * The reply is 6 bytes:
30 * - 0..1 : partition address
31 * - 2 : a byte containing the partition ID
32 * - 3 : length (maybe other bits are rest of header ?)
34 * The data must then be obtained with calls to another command:
35 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC (described below).
37 #define SMU_CMD_PARTITION_COMMAND 0x3e
38 #define SMU_CMD_PARTITION_LATEST 0x01
39 #define SMU_CMD_PARTITION_BASE 0x02
40 #define SMU_CMD_PARTITION_UPDATE 0x03
44 * Fan control
46 * This is a "mux" for fan control commands. The command seem to
47 * act differently based on the number of arguments. With 1 byte
48 * of argument, this seem to be queries for fans status, setpoint,
49 * etc..., while with 0xe arguments, we will set the fans speeds.
51 * Queries (1 byte arg):
52 * ---------------------
54 * arg=0x01: read RPM fans status
55 * arg=0x02: read RPM fans setpoint
56 * arg=0x11: read PWM fans status
57 * arg=0x12: read PWM fans setpoint
59 * the "status" queries return the current speed while the "setpoint" ones
60 * return the programmed/target speed. It _seems_ that the result is a bit
61 * mask in the first byte of active/available fans, followed by 6 words (16
62 * bits) containing the requested speed.
64 * Setpoint (14 bytes arg):
65 * ------------------------
67 * first arg byte is 0 for RPM fans and 0x10 for PWM. Second arg byte is the
68 * mask of fans affected by the command. Followed by 6 words containing the
69 * setpoint value for selected fans in the mask (or 0 if mask value is 0)
71 #define SMU_CMD_FAN_COMMAND 0x4a
75 * Battery access
77 * Same command number as the PMU, could it be same syntax ?
79 #define SMU_CMD_BATTERY_COMMAND 0x6f
80 #define SMU_CMD_GET_BATTERY_INFO 0x00
83 * Real time clock control
85 * This is a "mux", first data byte contains the "sub" command.
86 * The "RTC" part of the SMU controls the date, time, powerup
87 * timer, but also a PRAM
89 * Dates are in BCD format on 7 bytes:
90 * [sec] [min] [hour] [weekday] [month day] [month] [year]
91 * with month being 1 based and year minus 100
93 #define SMU_CMD_RTC_COMMAND 0x8e
94 #define SMU_CMD_RTC_SET_PWRUP_TIMER 0x00 /* i: 7 bytes date */
95 #define SMU_CMD_RTC_GET_PWRUP_TIMER 0x01 /* o: 7 bytes date */
96 #define SMU_CMD_RTC_STOP_PWRUP_TIMER 0x02
97 #define SMU_CMD_RTC_SET_PRAM_BYTE_ACC 0x20 /* i: 1 byte (address?) */
98 #define SMU_CMD_RTC_SET_PRAM_AUTOINC 0x21 /* i: 1 byte (data?) */
99 #define SMU_CMD_RTC_SET_PRAM_LO_BYTES 0x22 /* i: 10 bytes */
100 #define SMU_CMD_RTC_SET_PRAM_HI_BYTES 0x23 /* i: 10 bytes */
101 #define SMU_CMD_RTC_GET_PRAM_BYTE 0x28 /* i: 1 bytes (address?) */
102 #define SMU_CMD_RTC_GET_PRAM_LO_BYTES 0x29 /* o: 10 bytes */
103 #define SMU_CMD_RTC_GET_PRAM_HI_BYTES 0x2a /* o: 10 bytes */
104 #define SMU_CMD_RTC_SET_DATETIME 0x80 /* i: 7 bytes date */
105 #define SMU_CMD_RTC_GET_DATETIME 0x81 /* o: 7 bytes date */
108 * i2c commands
110 * To issue an i2c command, first is to send a parameter block to the
111 * the SMU. This is a command of type 0x9a with 9 bytes of header
112 * eventually followed by data for a write:
114 * 0: bus number (from device-tree usually, SMU has lots of busses !)
115 * 1: transfer type/format (see below)
116 * 2: device address. For combined and combined4 type transfers, this
117 * is the "write" version of the address (bit 0x01 cleared)
118 * 3: subaddress length (0..3)
119 * 4: subaddress byte 0 (or only byte for subaddress length 1)
120 * 5: subaddress byte 1
121 * 6: subaddress byte 2
122 * 7: combined address (device address for combined mode data phase)
123 * 8: data length
125 * The transfer types are the same good old Apple ones it seems,
126 * that is:
127 * - 0x00: Simple transfer
128 * - 0x01: Subaddress transfer (addr write + data tx, no restart)
129 * - 0x02: Combined transfer (addr write + restart + data tx)
131 * This is then followed by actual data for a write.
133 * At this point, the OF driver seems to have a limitation on transfer
134 * sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know
135 * wether this is just an OF limit due to some temporary buffer size
136 * or if this is an SMU imposed limit. This driver has the same limitation
137 * for now as I use a 0x10 bytes temporary buffer as well
139 * Once that is completed, a response is expected from the SMU. This is
140 * obtained via a command of type 0x9a with a length of 1 byte containing
141 * 0 as the data byte. OF also fills the rest of the data buffer with 0xff's
142 * though I can't tell yet if this is actually necessary. Once this command
143 * is complete, at this point, all I can tell is what OF does. OF tests
144 * byte 0 of the reply:
145 * - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ?
146 * - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0)
147 * - on write, < 0 -> failure (immediate exit)
148 * - else, OF just exists (without error, weird)
150 * So on read, there is this wait-for-busy thing when getting a 0xfc or
151 * 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and
152 * doing the above again until either the retries expire or the result
153 * is no longer 0xfe or 0xfc
155 * The Darwin I2C driver is less subtle though. On any non-success status
156 * from the response command, it waits 5ms and tries again up to 20 times,
157 * it doesn't differenciate between fatal errors or "busy" status.
159 * This driver provides an asynchronous paramblock based i2c command
160 * interface to be used either directly by low level code or by a higher
161 * level driver interfacing to the linux i2c layer. The current
162 * implementation of this relies on working timers & timer interrupts
163 * though, so be careful of calling context for now. This may be "fixed"
164 * in the future by adding a polling facility.
166 #define SMU_CMD_I2C_COMMAND 0x9a
167 /* transfer types */
168 #define SMU_I2C_TRANSFER_SIMPLE 0x00
169 #define SMU_I2C_TRANSFER_STDSUB 0x01
170 #define SMU_I2C_TRANSFER_COMBINED 0x02
173 * Power supply control
175 * The "sub" command is an ASCII string in the data, the
176 * data length is that of the string.
178 * The VSLEW command can be used to get or set the voltage slewing.
179 * - length 5 (only "VSLEW") : it returns "DONE" and 3 bytes of
180 * reply at data offset 6, 7 and 8.
181 * - length 8 ("VSLEWxyz") has 3 additional bytes appended, and is
182 * used to set the voltage slewing point. The SMU replies with "DONE"
183 * I yet have to figure out their exact meaning of those 3 bytes in
184 * both cases. They seem to be:
185 * x = processor mask
186 * y = op. point index
187 * z = processor freq. step index
188 * I haven't yet decyphered result codes
191 #define SMU_CMD_POWER_COMMAND 0xaa
192 #define SMU_CMD_POWER_RESTART "RESTART"
193 #define SMU_CMD_POWER_SHUTDOWN "SHUTDOWN"
194 #define SMU_CMD_POWER_VOLTAGE_SLEW "VSLEW"
197 * Read ADC sensors
199 * This command takes one byte of parameter: the sensor ID (or "reg"
200 * value in the device-tree) and returns a 16 bits value
202 #define SMU_CMD_READ_ADC 0xd8
205 /* Misc commands
207 * This command seem to be a grab bag of various things
209 * Parameters:
210 * 1: subcommand
212 #define SMU_CMD_MISC_df_COMMAND 0xdf
215 * Sets "system ready" status
217 * I did not yet understand how it exactly works or what it does.
219 * Guessing from OF code, 0x02 activates the display backlight. Apple uses/used
220 * the same codebase for all OF versions. On PowerBooks, this command would
221 * enable the backlight. For the G5s, it only activates the front LED. However,
222 * don't take this for granted.
224 * Parameters:
225 * 2: status [0x00, 0x01 or 0x02]
227 #define SMU_CMD_MISC_df_SET_DISPLAY_LIT 0x02
230 * Sets mode of power switch.
232 * What this actually does is not yet known. Maybe it enables some interrupt.
234 * Parameters:
235 * 2: enable power switch? [0x00 or 0x01]
236 * 3 (optional): enable nmi? [0x00 or 0x01]
238 * Returns:
239 * If parameter 2 is 0x00 and parameter 3 is not specified, returns wether
240 * NMI is enabled. Otherwise unknown.
242 #define SMU_CMD_MISC_df_NMI_OPTION 0x04
244 /* Sets LED dimm offset.
246 * The front LED dimms itself during sleep. Its brightness (or, well, the PWM
247 * frequency) depends on current time. Therefore, the SMU needs to know the
248 * timezone.
250 * Parameters:
251 * 2-8: unknown (BCD coding)
253 #define SMU_CMD_MISC_df_DIMM_OFFSET 0x99
257 * Version info commands
259 * Parameters:
260 * 1 (optional): Specifies version part to retrieve
262 * Returns:
263 * Version value
265 #define SMU_CMD_VERSION_COMMAND 0xea
266 #define SMU_VERSION_RUNNING 0x00
267 #define SMU_VERSION_BASE 0x01
268 #define SMU_VERSION_UPDATE 0x02
272 * Switches
274 * These are switches whose status seems to be known to the SMU.
276 * Parameters:
277 * none
279 * Result:
280 * Switch bits (ORed, see below)
282 #define SMU_CMD_SWITCHES 0xdc
284 /* Switches bits */
285 #define SMU_SWITCH_CASE_CLOSED 0x01
286 #define SMU_SWITCH_AC_POWER 0x04
287 #define SMU_SWITCH_POWER_SWITCH 0x08
291 * Misc commands
293 * This command seem to be a grab bag of various things
295 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC is used, among others, to
296 * transfer blocks of data from the SMU. So far, I've decrypted it's
297 * usage to retrieve partition data. In order to do that, you have to
298 * break your transfer in "chunks" since that command cannot transfer
299 * more than a chunk at a time. The chunk size used by OF is 0xe bytes,
300 * but it seems that the darwin driver will let you do 0x1e bytes if
301 * your "PMU" version is >= 0x30. You can get the "PMU" version apparently
302 * either in the last 16 bits of property "smu-version-pmu" or as the 16
303 * bytes at offset 1 of "smu-version-info"
305 * For each chunk, the command takes 7 bytes of arguments:
306 * byte 0: subcommand code (0x02)
307 * byte 1: 0x04 (always, I don't know what it means, maybe the address
308 * space to use or some other nicety. It's hard coded in OF)
309 * byte 2..5: SMU address of the chunk (big endian 32 bits)
310 * byte 6: size to transfer (up to max chunk size)
312 * The data is returned directly
314 #define SMU_CMD_MISC_ee_COMMAND 0xee
315 #define SMU_CMD_MISC_ee_GET_DATABLOCK_REC 0x02
317 /* Retrieves currently used watts.
319 * Parameters:
320 * 1: 0x03 (Meaning unknown)
322 #define SMU_CMD_MISC_ee_GET_WATTS 0x03
324 #define SMU_CMD_MISC_ee_LEDS_CTRL 0x04 /* i: 00 (00,01) [00] */
325 #define SMU_CMD_MISC_ee_GET_DATA 0x05 /* i: 00 , o: ?? */
329 * Power related commands
331 * Parameters:
332 * 1: subcommand
334 #define SMU_CMD_POWER_EVENTS_COMMAND 0x8f
336 /* SMU_POWER_EVENTS subcommands */
337 enum {
338 SMU_PWR_GET_POWERUP_EVENTS = 0x00,
339 SMU_PWR_SET_POWERUP_EVENTS = 0x01,
340 SMU_PWR_CLR_POWERUP_EVENTS = 0x02,
341 SMU_PWR_GET_WAKEUP_EVENTS = 0x03,
342 SMU_PWR_SET_WAKEUP_EVENTS = 0x04,
343 SMU_PWR_CLR_WAKEUP_EVENTS = 0x05,
346 * Get last shutdown cause
348 * Returns:
349 * 1 byte (signed char): Last shutdown cause. Exact meaning unknown.
351 SMU_PWR_LAST_SHUTDOWN_CAUSE = 0x07,
354 * Sets or gets server ID. Meaning or use is unknown.
356 * Parameters:
357 * 2 (optional): Set server ID (1 byte)
359 * Returns:
360 * 1 byte (server ID?)
362 SMU_PWR_SERVER_ID = 0x08,
365 /* Power events wakeup bits */
366 enum {
367 SMU_PWR_WAKEUP_KEY = 0x01, /* Wake on key press */
368 SMU_PWR_WAKEUP_AC_INSERT = 0x02, /* Wake on AC adapter plug */
369 SMU_PWR_WAKEUP_AC_CHANGE = 0x04,
370 SMU_PWR_WAKEUP_LID_OPEN = 0x08,
371 SMU_PWR_WAKEUP_RING = 0x10,
376 * - Kernel side interface -
379 #ifdef __KERNEL__
382 * Asynchronous SMU commands
384 * Fill up this structure and submit it via smu_queue_command(),
385 * and get notified by the optional done() callback, or because
386 * status becomes != 1
389 struct smu_cmd;
391 struct smu_cmd
393 /* public */
394 u8 cmd; /* command */
395 int data_len; /* data len */
396 int reply_len; /* reply len */
397 void *data_buf; /* data buffer */
398 void *reply_buf; /* reply buffer */
399 int status; /* command status */
400 void (*done)(struct smu_cmd *cmd, void *misc);
401 void *misc;
403 /* private */
404 struct list_head link;
408 * Queues an SMU command, all fields have to be initialized
410 extern int smu_queue_cmd(struct smu_cmd *cmd);
413 * Simple command wrapper. This structure embeds a small buffer
414 * to ease sending simple SMU commands from the stack
416 struct smu_simple_cmd
418 struct smu_cmd cmd;
419 u8 buffer[16];
423 * Queues a simple command. All fields will be initialized by that
424 * function
426 extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
427 unsigned int data_len,
428 void (*done)(struct smu_cmd *cmd, void *misc),
429 void *misc,
430 ...);
433 * Completion helper. Pass it to smu_queue_simple or as 'done'
434 * member to smu_queue_cmd, it will call complete() on the struct
435 * completion passed in the "misc" argument
437 extern void smu_done_complete(struct smu_cmd *cmd, void *misc);
440 * Synchronous helpers. Will spin-wait for completion of a command
442 extern void smu_spinwait_cmd(struct smu_cmd *cmd);
444 static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd)
446 smu_spinwait_cmd(&scmd->cmd);
450 * Poll routine to call if blocked with irqs off
452 extern void smu_poll(void);
456 * Init routine, presence check....
458 extern int smu_init(void);
459 extern int smu_present(void);
460 struct of_device;
461 extern struct of_device *smu_get_ofdev(void);
465 * Common command wrappers
467 extern void smu_shutdown(void);
468 extern void smu_restart(void);
469 struct rtc_time;
470 extern int smu_get_rtc_time(struct rtc_time *time, int spinwait);
471 extern int smu_set_rtc_time(struct rtc_time *time, int spinwait);
474 * SMU command buffer absolute address, exported by pmac_setup,
475 * this is allocated very early during boot.
477 extern unsigned long smu_cmdbuf_abs;
481 * Kenrel asynchronous i2c interface
484 #define SMU_I2C_READ_MAX 0x1d
485 #define SMU_I2C_WRITE_MAX 0x15
487 /* SMU i2c header, exactly matches i2c header on wire */
488 struct smu_i2c_param
490 u8 bus; /* SMU bus ID (from device tree) */
491 u8 type; /* i2c transfer type */
492 u8 devaddr; /* device address (includes direction) */
493 u8 sublen; /* subaddress length */
494 u8 subaddr[3]; /* subaddress */
495 u8 caddr; /* combined address, filled by SMU driver */
496 u8 datalen; /* length of transfer */
497 u8 data[SMU_I2C_READ_MAX]; /* data */
500 struct smu_i2c_cmd
502 /* public */
503 struct smu_i2c_param info;
504 void (*done)(struct smu_i2c_cmd *cmd, void *misc);
505 void *misc;
506 int status; /* 1 = pending, 0 = ok, <0 = fail */
508 /* private */
509 struct smu_cmd scmd;
510 int read;
511 int stage;
512 int retries;
513 u8 pdata[32];
514 struct list_head link;
518 * Call this to queue an i2c command to the SMU. You must fill info,
519 * including info.data for a write, done and misc.
520 * For now, no polling interface is provided so you have to use completion
521 * callback.
523 extern int smu_queue_i2c(struct smu_i2c_cmd *cmd);
526 #endif /* __KERNEL__ */
530 * - SMU "sdb" partitions informations -
535 * Partition header format
537 struct smu_sdbp_header {
538 __u8 id;
539 __u8 len;
540 __u8 version;
541 __u8 flags;
546 * demangle 16 and 32 bits integer in some SMU partitions
547 * (currently, afaik, this concerns only the FVT partition
548 * (0x12)
550 #define SMU_U16_MIX(x) le16_to_cpu(x);
551 #define SMU_U32_MIX(x) ((((x) & 0xff00ff00u) >> 8)|(((x) & 0x00ff00ffu) << 8))
554 /* This is the definition of the SMU sdb-partition-0x12 table (called
555 * CPU F/V/T operating points in Darwin). The definition for all those
556 * SMU tables should be moved to some separate file
558 #define SMU_SDB_FVT_ID 0x12
560 struct smu_sdbp_fvt {
561 __u32 sysclk; /* Base SysClk frequency in Hz for
562 * this operating point. Value need to
563 * be unmixed with SMU_U32_MIX()
565 __u8 pad;
566 __u8 maxtemp; /* Max temp. supported by this
567 * operating point
570 __u16 volts[3]; /* CPU core voltage for the 3
571 * PowerTune modes, a mode with
572 * 0V = not supported. Value need
573 * to be unmixed with SMU_U16_MIX()
577 /* This partition contains voltage & current sensor calibration
578 * informations
580 #define SMU_SDB_CPUVCP_ID 0x21
582 struct smu_sdbp_cpuvcp {
583 __u16 volt_scale; /* u4.12 fixed point */
584 __s16 volt_offset; /* s4.12 fixed point */
585 __u16 curr_scale; /* u4.12 fixed point */
586 __s16 curr_offset; /* s4.12 fixed point */
587 __s32 power_quads[3]; /* s4.28 fixed point */
590 /* This partition contains CPU thermal diode calibration
592 #define SMU_SDB_CPUDIODE_ID 0x18
594 struct smu_sdbp_cpudiode {
595 __u16 m_value; /* u1.15 fixed point */
596 __s16 b_value; /* s10.6 fixed point */
600 /* This partition contains Slots power calibration
602 #define SMU_SDB_SLOTSPOW_ID 0x78
604 struct smu_sdbp_slotspow {
605 __u16 pow_scale; /* u4.12 fixed point */
606 __s16 pow_offset; /* s4.12 fixed point */
609 /* This partition contains machine specific version information about
610 * the sensor/control layout
612 #define SMU_SDB_SENSORTREE_ID 0x25
614 struct smu_sdbp_sensortree {
615 __u8 model_id;
616 __u8 unknown[3];
619 /* This partition contains CPU thermal control PID informations. So far
620 * only single CPU machines have been seen with an SMU, so we assume this
621 * carries only informations for those
623 #define SMU_SDB_CPUPIDDATA_ID 0x17
625 struct smu_sdbp_cpupiddata {
626 __u8 unknown1;
627 __u8 target_temp_delta;
628 __u8 unknown2;
629 __u8 history_len;
630 __s16 power_adj;
631 __u16 max_power;
632 __s32 gp,gr,gd;
636 /* Other partitions without known structures */
637 #define SMU_SDB_DEBUG_SWITCHES_ID 0x05
639 #ifdef __KERNEL__
641 * This returns the pointer to an SMU "sdb" partition data or NULL
642 * if not found. The data format is described below
644 extern const struct smu_sdbp_header *smu_get_sdb_partition(int id,
645 unsigned int *size);
647 /* Get "sdb" partition data from an SMU satellite */
648 extern struct smu_sdbp_header *smu_sat_get_sdb_partition(unsigned int sat_id,
649 int id, unsigned int *size);
652 #endif /* __KERNEL__ */
656 * - Userland interface -
660 * A given instance of the device can be configured for 2 different
661 * things at the moment:
663 * - sending SMU commands (default at open() time)
664 * - receiving SMU events (not yet implemented)
666 * Commands are written with write() of a command block. They can be
667 * "driver" commands (for example to switch to event reception mode)
668 * or real SMU commands. They are made of a header followed by command
669 * data if any.
671 * For SMU commands (not for driver commands), you can then read() back
672 * a reply. The reader will be blocked or not depending on how the device
673 * file is opened. poll() isn't implemented yet. The reply will consist
674 * of a header as well, followed by the reply data if any. You should
675 * always provide a buffer large enough for the maximum reply data, I
676 * recommand one page.
678 * It is illegal to send SMU commands through a file descriptor configured
679 * for events reception
682 struct smu_user_cmd_hdr
684 __u32 cmdtype;
685 #define SMU_CMDTYPE_SMU 0 /* SMU command */
686 #define SMU_CMDTYPE_WANTS_EVENTS 1 /* switch fd to events mode */
687 #define SMU_CMDTYPE_GET_PARTITION 2 /* retrieve an sdb partition */
689 __u8 cmd; /* SMU command byte */
690 __u8 pad[3]; /* padding */
691 __u32 data_len; /* Length of data following */
694 struct smu_user_reply_hdr
696 __u32 status; /* Command status */
697 __u32 reply_len; /* Length of data follwing */
700 #endif /* _SMU_H */