2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
10 #include <linux/init.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
19 #include <asm/pgalloc.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
27 #define PAGE_SHIFT_64K 16
28 #define PAGE_SHIFT_16M 24
29 #define PAGE_SHIFT_16G 34
31 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
32 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 #define MAX_NUMBER_GPAGES 1024
35 /* Tracks the 16G pages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. */
37 static unsigned long gpage_freearray
[MAX_NUMBER_GPAGES
];
38 static unsigned nr_gpages
;
40 /* Array of valid huge page sizes - non-zero value(hugepte_shift) is
41 * stored for the huge page sizes that are valid.
43 unsigned int mmu_huge_psizes
[MMU_PAGE_COUNT
] = { }; /* initialize all to 0 */
45 #define hugepte_shift mmu_huge_psizes
46 #define PTRS_PER_HUGEPTE(psize) (1 << hugepte_shift[psize])
47 #define HUGEPTE_TABLE_SIZE(psize) (sizeof(pte_t) << hugepte_shift[psize])
49 #define HUGEPD_SHIFT(psize) (mmu_psize_to_shift(psize) \
50 + hugepte_shift[psize])
51 #define HUGEPD_SIZE(psize) (1UL << HUGEPD_SHIFT(psize))
52 #define HUGEPD_MASK(psize) (~(HUGEPD_SIZE(psize)-1))
54 /* Subtract one from array size because we don't need a cache for 4K since
55 * is not a huge page size */
56 #define huge_pgtable_cache(psize) (pgtable_cache[HUGEPTE_CACHE_NUM \
58 #define HUGEPTE_CACHE_NAME(psize) (huge_pgtable_cache_name[psize])
60 static const char *huge_pgtable_cache_name
[MMU_PAGE_COUNT
] = {
61 "unused_4K", "hugepte_cache_64K", "unused_64K_AP",
62 "hugepte_cache_1M", "hugepte_cache_16M", "hugepte_cache_16G"
65 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
66 * will choke on pointers to hugepte tables, which is handy for
67 * catching screwups early. */
70 typedef struct { unsigned long pd
; } hugepd_t
;
72 #define hugepd_none(hpd) ((hpd).pd == 0)
74 static inline int shift_to_mmu_psize(unsigned int shift
)
77 #ifndef CONFIG_PPC_64K_PAGES
89 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize
)
91 if (mmu_psize_defs
[mmu_psize
].shift
)
92 return mmu_psize_defs
[mmu_psize
].shift
;
96 static inline pte_t
*hugepd_page(hugepd_t hpd
)
98 BUG_ON(!(hpd
.pd
& HUGEPD_OK
));
99 return (pte_t
*)(hpd
.pd
& ~HUGEPD_OK
);
102 static inline pte_t
*hugepte_offset(hugepd_t
*hpdp
, unsigned long addr
,
103 struct hstate
*hstate
)
105 unsigned int shift
= huge_page_shift(hstate
);
106 int psize
= shift_to_mmu_psize(shift
);
107 unsigned long idx
= ((addr
>> shift
) & (PTRS_PER_HUGEPTE(psize
)-1));
108 pte_t
*dir
= hugepd_page(*hpdp
);
113 static int __hugepte_alloc(struct mm_struct
*mm
, hugepd_t
*hpdp
,
114 unsigned long address
, unsigned int psize
)
116 pte_t
*new = kmem_cache_zalloc(huge_pgtable_cache(psize
),
117 GFP_KERNEL
|__GFP_REPEAT
);
122 spin_lock(&mm
->page_table_lock
);
123 if (!hugepd_none(*hpdp
))
124 kmem_cache_free(huge_pgtable_cache(psize
), new);
126 hpdp
->pd
= (unsigned long)new | HUGEPD_OK
;
127 spin_unlock(&mm
->page_table_lock
);
132 static pud_t
*hpud_offset(pgd_t
*pgd
, unsigned long addr
, struct hstate
*hstate
)
134 if (huge_page_shift(hstate
) < PUD_SHIFT
)
135 return pud_offset(pgd
, addr
);
137 return (pud_t
*) pgd
;
139 static pud_t
*hpud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long addr
,
140 struct hstate
*hstate
)
142 if (huge_page_shift(hstate
) < PUD_SHIFT
)
143 return pud_alloc(mm
, pgd
, addr
);
145 return (pud_t
*) pgd
;
147 static pmd_t
*hpmd_offset(pud_t
*pud
, unsigned long addr
, struct hstate
*hstate
)
149 if (huge_page_shift(hstate
) < PMD_SHIFT
)
150 return pmd_offset(pud
, addr
);
152 return (pmd_t
*) pud
;
154 static pmd_t
*hpmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long addr
,
155 struct hstate
*hstate
)
157 if (huge_page_shift(hstate
) < PMD_SHIFT
)
158 return pmd_alloc(mm
, pud
, addr
);
160 return (pmd_t
*) pud
;
163 /* Build list of addresses of gigantic pages. This function is used in early
164 * boot before the buddy or bootmem allocator is setup.
166 void add_gpage(unsigned long addr
, unsigned long page_size
,
167 unsigned long number_of_pages
)
171 while (number_of_pages
> 0) {
172 gpage_freearray
[nr_gpages
] = addr
;
179 /* Moves the gigantic page addresses from the temporary list to the
180 * huge_boot_pages list.
182 int alloc_bootmem_huge_page(struct hstate
*hstate
)
184 struct huge_bootmem_page
*m
;
187 m
= phys_to_virt(gpage_freearray
[--nr_gpages
]);
188 gpage_freearray
[nr_gpages
] = 0;
189 list_add(&m
->list
, &huge_boot_pages
);
195 /* Modelled after find_linux_pte() */
196 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
205 struct hstate
*hstate
;
206 psize
= get_slice_psize(mm
, addr
);
207 shift
= mmu_psize_to_shift(psize
);
208 sz
= ((1UL) << shift
);
209 hstate
= size_to_hstate(sz
);
211 addr
&= hstate
->mask
;
213 pg
= pgd_offset(mm
, addr
);
214 if (!pgd_none(*pg
)) {
215 pu
= hpud_offset(pg
, addr
, hstate
);
216 if (!pud_none(*pu
)) {
217 pm
= hpmd_offset(pu
, addr
, hstate
);
219 return hugepte_offset((hugepd_t
*)pm
, addr
,
227 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
228 unsigned long addr
, unsigned long sz
)
233 hugepd_t
*hpdp
= NULL
;
234 struct hstate
*hstate
;
236 hstate
= size_to_hstate(sz
);
238 psize
= get_slice_psize(mm
, addr
);
239 BUG_ON(!mmu_huge_psizes
[psize
]);
241 addr
&= hstate
->mask
;
243 pg
= pgd_offset(mm
, addr
);
244 pu
= hpud_alloc(mm
, pg
, addr
, hstate
);
247 pm
= hpmd_alloc(mm
, pu
, addr
, hstate
);
249 hpdp
= (hugepd_t
*)pm
;
255 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, psize
))
258 return hugepte_offset(hpdp
, addr
, hstate
);
261 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
266 static void free_hugepte_range(struct mmu_gather
*tlb
, hugepd_t
*hpdp
,
269 pte_t
*hugepte
= hugepd_page(*hpdp
);
273 pgtable_free_tlb(tlb
, pgtable_free_cache(hugepte
,
274 HUGEPTE_CACHE_NUM
+psize
-1,
278 static void hugetlb_free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
279 unsigned long addr
, unsigned long end
,
280 unsigned long floor
, unsigned long ceiling
,
288 pmd
= pmd_offset(pud
, addr
);
290 next
= pmd_addr_end(addr
, end
);
293 free_hugepte_range(tlb
, (hugepd_t
*)pmd
, psize
);
294 } while (pmd
++, addr
= next
, addr
!= end
);
304 if (end
- 1 > ceiling
- 1)
307 pmd
= pmd_offset(pud
, start
);
309 pmd_free_tlb(tlb
, pmd
);
312 static void hugetlb_free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
313 unsigned long addr
, unsigned long end
,
314 unsigned long floor
, unsigned long ceiling
)
320 unsigned int psize
= get_slice_psize(tlb
->mm
, addr
);
321 shift
= mmu_psize_to_shift(psize
);
324 pud
= pud_offset(pgd
, addr
);
326 next
= pud_addr_end(addr
, end
);
327 if (shift
< PMD_SHIFT
) {
328 if (pud_none_or_clear_bad(pud
))
330 hugetlb_free_pmd_range(tlb
, pud
, addr
, next
, floor
,
335 free_hugepte_range(tlb
, (hugepd_t
*)pud
, psize
);
337 } while (pud
++, addr
= next
, addr
!= end
);
343 ceiling
&= PGDIR_MASK
;
347 if (end
- 1 > ceiling
- 1)
350 pud
= pud_offset(pgd
, start
);
352 pud_free_tlb(tlb
, pud
);
356 * This function frees user-level page tables of a process.
358 * Must be called with pagetable lock held.
360 void hugetlb_free_pgd_range(struct mmu_gather
*tlb
,
361 unsigned long addr
, unsigned long end
,
362 unsigned long floor
, unsigned long ceiling
)
369 * Comments below take from the normal free_pgd_range(). They
370 * apply here too. The tests against HUGEPD_MASK below are
371 * essential, because we *don't* test for this at the bottom
372 * level. Without them we'll attempt to free a hugepte table
373 * when we unmap just part of it, even if there are other
374 * active mappings using it.
376 * The next few lines have given us lots of grief...
378 * Why are we testing HUGEPD* at this top level? Because
379 * often there will be no work to do at all, and we'd prefer
380 * not to go all the way down to the bottom just to discover
383 * Why all these "- 1"s? Because 0 represents both the bottom
384 * of the address space and the top of it (using -1 for the
385 * top wouldn't help much: the masks would do the wrong thing).
386 * The rule is that addr 0 and floor 0 refer to the bottom of
387 * the address space, but end 0 and ceiling 0 refer to the top
388 * Comparisons need to use "end - 1" and "ceiling - 1" (though
389 * that end 0 case should be mythical).
391 * Wherever addr is brought up or ceiling brought down, we
392 * must be careful to reject "the opposite 0" before it
393 * confuses the subsequent tests. But what about where end is
394 * brought down by HUGEPD_SIZE below? no, end can't go down to
397 * Whereas we round start (addr) and ceiling down, by different
398 * masks at different levels, in order to test whether a table
399 * now has no other vmas using it, so can be freed, we don't
400 * bother to round floor or end up - the tests don't need that.
402 unsigned int psize
= get_slice_psize(tlb
->mm
, addr
);
404 addr
&= HUGEPD_MASK(psize
);
406 addr
+= HUGEPD_SIZE(psize
);
411 ceiling
&= HUGEPD_MASK(psize
);
415 if (end
- 1 > ceiling
- 1)
416 end
-= HUGEPD_SIZE(psize
);
421 pgd
= pgd_offset(tlb
->mm
, addr
);
423 psize
= get_slice_psize(tlb
->mm
, addr
);
424 BUG_ON(!mmu_huge_psizes
[psize
]);
425 next
= pgd_addr_end(addr
, end
);
426 if (mmu_psize_to_shift(psize
) < PUD_SHIFT
) {
427 if (pgd_none_or_clear_bad(pgd
))
429 hugetlb_free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
433 free_hugepte_range(tlb
, (hugepd_t
*)pgd
, psize
);
435 } while (pgd
++, addr
= next
, addr
!= end
);
438 void set_huge_pte_at(struct mm_struct
*mm
, unsigned long addr
,
439 pte_t
*ptep
, pte_t pte
)
441 if (pte_present(*ptep
)) {
442 /* We open-code pte_clear because we need to pass the right
443 * argument to hpte_need_flush (huge / !huge). Might not be
444 * necessary anymore if we make hpte_need_flush() get the
445 * page size from the slices
447 unsigned int psize
= get_slice_psize(mm
, addr
);
448 unsigned int shift
= mmu_psize_to_shift(psize
);
449 unsigned long sz
= ((1UL) << shift
);
450 struct hstate
*hstate
= size_to_hstate(sz
);
451 pte_update(mm
, addr
& hstate
->mask
, ptep
, ~0UL, 1);
453 *ptep
= __pte(pte_val(pte
) & ~_PAGE_HPTEFLAGS
);
456 pte_t
huge_ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
,
459 unsigned long old
= pte_update(mm
, addr
, ptep
, ~0UL, 1);
464 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
468 unsigned int mmu_psize
= get_slice_psize(mm
, address
);
470 /* Verify it is a huge page else bail. */
471 if (!mmu_huge_psizes
[mmu_psize
])
472 return ERR_PTR(-EINVAL
);
474 ptep
= huge_pte_offset(mm
, address
);
475 page
= pte_page(*ptep
);
477 unsigned int shift
= mmu_psize_to_shift(mmu_psize
);
478 unsigned long sz
= ((1UL) << shift
);
479 page
+= (address
% sz
) / PAGE_SIZE
;
485 int pmd_huge(pmd_t pmd
)
490 int pud_huge(pud_t pud
)
496 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
497 pmd_t
*pmd
, int write
)
504 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
505 unsigned long len
, unsigned long pgoff
,
508 struct hstate
*hstate
= hstate_file(file
);
509 int mmu_psize
= shift_to_mmu_psize(huge_page_shift(hstate
));
510 return slice_get_unmapped_area(addr
, len
, flags
, mmu_psize
, 1, 0);
514 * Called by asm hashtable.S for doing lazy icache flush
516 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags
,
517 pte_t pte
, int trap
, unsigned long sz
)
522 if (!pfn_valid(pte_pfn(pte
)))
525 page
= pte_page(pte
);
528 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
530 for (i
= 0; i
< (sz
/ PAGE_SIZE
); i
++)
531 __flush_dcache_icache(page_address(page
+i
));
532 set_bit(PG_arch_1
, &page
->flags
);
540 int hash_huge_page(struct mm_struct
*mm
, unsigned long access
,
541 unsigned long ea
, unsigned long vsid
, int local
,
545 unsigned long old_pte
, new_pte
;
546 unsigned long va
, rflags
, pa
, sz
;
549 int ssize
= user_segment_size(ea
);
550 unsigned int mmu_psize
;
552 mmu_psize
= get_slice_psize(mm
, ea
);
554 if (!mmu_huge_psizes
[mmu_psize
])
556 ptep
= huge_pte_offset(mm
, ea
);
558 /* Search the Linux page table for a match with va */
559 va
= hpt_va(ea
, vsid
, ssize
);
562 * If no pte found or not present, send the problem up to
565 if (unlikely(!ptep
|| pte_none(*ptep
)))
569 * Check the user's access rights to the page. If access should be
570 * prevented then send the problem up to do_page_fault.
572 if (unlikely(access
& ~pte_val(*ptep
)))
575 * At this point, we have a pte (old_pte) which can be used to build
576 * or update an HPTE. There are 2 cases:
578 * 1. There is a valid (present) pte with no associated HPTE (this is
579 * the most common case)
580 * 2. There is a valid (present) pte with an associated HPTE. The
581 * current values of the pp bits in the HPTE prevent access
582 * because we are doing software DIRTY bit management and the
583 * page is currently not DIRTY.
588 old_pte
= pte_val(*ptep
);
589 if (old_pte
& _PAGE_BUSY
)
591 new_pte
= old_pte
| _PAGE_BUSY
| _PAGE_ACCESSED
;
592 } while(old_pte
!= __cmpxchg_u64((unsigned long *)ptep
,
595 rflags
= 0x2 | (!(new_pte
& _PAGE_RW
));
596 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
597 rflags
|= ((new_pte
& _PAGE_EXEC
) ? 0 : HPTE_R_N
);
598 shift
= mmu_psize_to_shift(mmu_psize
);
599 sz
= ((1UL) << shift
);
600 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
601 /* No CPU has hugepages but lacks no execute, so we
602 * don't need to worry about that case */
603 rflags
= hash_huge_page_do_lazy_icache(rflags
, __pte(old_pte
),
606 /* Check if pte already has an hpte (case 2) */
607 if (unlikely(old_pte
& _PAGE_HASHPTE
)) {
608 /* There MIGHT be an HPTE for this pte */
609 unsigned long hash
, slot
;
611 hash
= hpt_hash(va
, shift
, ssize
);
612 if (old_pte
& _PAGE_F_SECOND
)
614 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
615 slot
+= (old_pte
& _PAGE_F_GIX
) >> 12;
617 if (ppc_md
.hpte_updatepp(slot
, rflags
, va
, mmu_psize
,
619 old_pte
&= ~_PAGE_HPTEFLAGS
;
622 if (likely(!(old_pte
& _PAGE_HASHPTE
))) {
623 unsigned long hash
= hpt_hash(va
, shift
, ssize
);
624 unsigned long hpte_group
;
626 pa
= pte_pfn(__pte(old_pte
)) << PAGE_SHIFT
;
629 hpte_group
= ((hash
& htab_hash_mask
) *
630 HPTES_PER_GROUP
) & ~0x7UL
;
632 /* clear HPTE slot informations in new PTE */
633 #ifdef CONFIG_PPC_64K_PAGES
634 new_pte
= (new_pte
& ~_PAGE_HPTEFLAGS
) | _PAGE_HPTE_SUB0
;
636 new_pte
= (new_pte
& ~_PAGE_HPTEFLAGS
) | _PAGE_HASHPTE
;
638 /* Add in WIMG bits */
639 rflags
|= (new_pte
& (_PAGE_WRITETHRU
| _PAGE_NO_CACHE
|
640 _PAGE_COHERENT
| _PAGE_GUARDED
));
642 /* Insert into the hash table, primary slot */
643 slot
= ppc_md
.hpte_insert(hpte_group
, va
, pa
, rflags
, 0,
646 /* Primary is full, try the secondary */
647 if (unlikely(slot
== -1)) {
648 hpte_group
= ((~hash
& htab_hash_mask
) *
649 HPTES_PER_GROUP
) & ~0x7UL
;
650 slot
= ppc_md
.hpte_insert(hpte_group
, va
, pa
, rflags
,
655 hpte_group
= ((hash
& htab_hash_mask
) *
656 HPTES_PER_GROUP
)&~0x7UL
;
658 ppc_md
.hpte_remove(hpte_group
);
663 if (unlikely(slot
== -2))
664 panic("hash_huge_page: pte_insert failed\n");
666 new_pte
|= (slot
<< 12) & (_PAGE_F_SECOND
| _PAGE_F_GIX
);
670 * No need to use ldarx/stdcx here
672 *ptep
= __pte(new_pte
& ~_PAGE_BUSY
);
680 void set_huge_psize(int psize
)
682 /* Check that it is a page size supported by the hardware and
683 * that it fits within pagetable limits. */
684 if (mmu_psize_defs
[psize
].shift
&&
685 mmu_psize_defs
[psize
].shift
< SID_SHIFT_1T
&&
686 (mmu_psize_defs
[psize
].shift
> MIN_HUGEPTE_SHIFT
||
687 mmu_psize_defs
[psize
].shift
== PAGE_SHIFT_64K
||
688 mmu_psize_defs
[psize
].shift
== PAGE_SHIFT_16G
)) {
689 /* Return if huge page size has already been setup or is the
690 * same as the base page size. */
691 if (mmu_huge_psizes
[psize
] ||
692 mmu_psize_defs
[psize
].shift
== PAGE_SHIFT
)
694 hugetlb_add_hstate(mmu_psize_defs
[psize
].shift
- PAGE_SHIFT
);
696 switch (mmu_psize_defs
[psize
].shift
) {
698 /* We only allow 64k hpages with 4k base page,
699 * which was checked above, and always put them
701 hugepte_shift
[psize
] = PMD_SHIFT
;
704 /* 16M pages can be at two different levels
705 * of pagestables based on base page size */
706 if (PAGE_SHIFT
== PAGE_SHIFT_64K
)
707 hugepte_shift
[psize
] = PMD_SHIFT
;
708 else /* 4k base page */
709 hugepte_shift
[psize
] = PUD_SHIFT
;
712 /* 16G pages are always at PGD level */
713 hugepte_shift
[psize
] = PGDIR_SHIFT
;
716 hugepte_shift
[psize
] -= mmu_psize_defs
[psize
].shift
;
718 hugepte_shift
[psize
] = 0;
721 static int __init
hugepage_setup_sz(char *str
)
723 unsigned long long size
;
727 size
= memparse(str
, &str
);
730 mmu_psize
= shift_to_mmu_psize(shift
);
731 if (mmu_psize
>= 0 && mmu_psize_defs
[mmu_psize
].shift
)
732 set_huge_psize(mmu_psize
);
734 printk(KERN_WARNING
"Invalid huge page size specified(%llu)\n", size
);
738 __setup("hugepagesz=", hugepage_setup_sz
);
740 static int __init
hugetlbpage_init(void)
744 if (!cpu_has_feature(CPU_FTR_16M_PAGE
))
747 /* Add supported huge page sizes. Need to change HUGE_MAX_HSTATE
748 * and adjust PTE_NONCACHE_NUM if the number of supported huge page
751 set_huge_psize(MMU_PAGE_16M
);
752 set_huge_psize(MMU_PAGE_16G
);
754 /* Temporarily disable support for 64K huge pages when 64K SPU local
755 * store support is enabled as the current implementation conflicts.
757 #ifndef CONFIG_SPU_FS_64K_LS
758 set_huge_psize(MMU_PAGE_64K
);
761 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
762 if (mmu_huge_psizes
[psize
]) {
763 huge_pgtable_cache(psize
) = kmem_cache_create(
764 HUGEPTE_CACHE_NAME(psize
),
765 HUGEPTE_TABLE_SIZE(psize
),
766 HUGEPTE_TABLE_SIZE(psize
),
769 if (!huge_pgtable_cache(psize
))
770 panic("hugetlbpage_init(): could not create %s"\
771 "\n", HUGEPTE_CACHE_NAME(psize
));
778 module_init(hugetlbpage_init
);