Linux 2.6.28-rc5
[cris-mirror.git] / arch / s390 / include / asm / pgtable.h
blob7fc76133b3e46da10eddb1ca115b7ac69a4a80c0
1 /*
2 * include/asm-s390/pgtable.h
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
10 * Derived from "include/asm-i386/pgtable.h"
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
31 #ifndef __ASSEMBLY__
32 #include <linux/sched.h>
33 #include <linux/mm_types.h>
34 #include <asm/bitops.h>
35 #include <asm/bug.h>
36 #include <asm/processor.h>
38 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
39 extern void paging_init(void);
40 extern void vmem_map_init(void);
43 * The S390 doesn't have any external MMU info: the kernel page
44 * tables contain all the necessary information.
46 #define update_mmu_cache(vma, address, pte) do { } while (0)
49 * ZERO_PAGE is a global shared page that is always zero: used
50 * for zero-mapped memory areas etc..
52 extern char empty_zero_page[PAGE_SIZE];
53 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
54 #endif /* !__ASSEMBLY__ */
57 * PMD_SHIFT determines the size of the area a second-level page
58 * table can map
59 * PGDIR_SHIFT determines what a third-level page table entry can map
61 #ifndef __s390x__
62 # define PMD_SHIFT 20
63 # define PUD_SHIFT 20
64 # define PGDIR_SHIFT 20
65 #else /* __s390x__ */
66 # define PMD_SHIFT 20
67 # define PUD_SHIFT 31
68 # define PGDIR_SHIFT 42
69 #endif /* __s390x__ */
71 #define PMD_SIZE (1UL << PMD_SHIFT)
72 #define PMD_MASK (~(PMD_SIZE-1))
73 #define PUD_SIZE (1UL << PUD_SHIFT)
74 #define PUD_MASK (~(PUD_SIZE-1))
75 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
76 #define PGDIR_MASK (~(PGDIR_SIZE-1))
79 * entries per page directory level: the S390 is two-level, so
80 * we don't really have any PMD directory physically.
81 * for S390 segment-table entries are combined to one PGD
82 * that leads to 1024 pte per pgd
84 #define PTRS_PER_PTE 256
85 #ifndef __s390x__
86 #define PTRS_PER_PMD 1
87 #define PTRS_PER_PUD 1
88 #else /* __s390x__ */
89 #define PTRS_PER_PMD 2048
90 #define PTRS_PER_PUD 2048
91 #endif /* __s390x__ */
92 #define PTRS_PER_PGD 2048
94 #define FIRST_USER_ADDRESS 0
96 #define pte_ERROR(e) \
97 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
98 #define pmd_ERROR(e) \
99 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
100 #define pud_ERROR(e) \
101 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
102 #define pgd_ERROR(e) \
103 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
105 #ifndef __ASSEMBLY__
107 * The vmalloc area will always be on the topmost area of the kernel
108 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
109 * which should be enough for any sane case.
110 * By putting vmalloc at the top, we maximise the gap between physical
111 * memory and vmalloc to catch misplaced memory accesses. As a side
112 * effect, this also makes sure that 64 bit module code cannot be used
113 * as system call address.
115 #ifndef __s390x__
116 #define VMALLOC_START 0x78000000UL
117 #define VMALLOC_END 0x7e000000UL
118 #define VMEM_MAP_END 0x80000000UL
119 #else /* __s390x__ */
120 #define VMALLOC_START 0x3e000000000UL
121 #define VMALLOC_END 0x3e040000000UL
122 #define VMEM_MAP_END 0x40000000000UL
123 #endif /* __s390x__ */
126 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
127 * mapping. This needs to be calculated at compile time since the size of the
128 * VMEM_MAP is static but the size of struct page can change.
130 #define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
131 #define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
132 #define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
133 #define vmemmap ((struct page *) VMALLOC_END)
136 * A 31 bit pagetable entry of S390 has following format:
137 * | PFRA | | OS |
138 * 0 0IP0
139 * 00000000001111111111222222222233
140 * 01234567890123456789012345678901
142 * I Page-Invalid Bit: Page is not available for address-translation
143 * P Page-Protection Bit: Store access not possible for page
145 * A 31 bit segmenttable entry of S390 has following format:
146 * | P-table origin | |PTL
147 * 0 IC
148 * 00000000001111111111222222222233
149 * 01234567890123456789012345678901
151 * I Segment-Invalid Bit: Segment is not available for address-translation
152 * C Common-Segment Bit: Segment is not private (PoP 3-30)
153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
155 * The 31 bit segmenttable origin of S390 has following format:
157 * |S-table origin | | STL |
158 * X **GPS
159 * 00000000001111111111222222222233
160 * 01234567890123456789012345678901
162 * X Space-Switch event:
163 * G Segment-Invalid Bit: *
164 * P Private-Space Bit: Segment is not private (PoP 3-30)
165 * S Storage-Alteration:
166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
168 * A 64 bit pagetable entry of S390 has following format:
169 * | PFRA |0IP0| OS |
170 * 0000000000111111111122222222223333333333444444444455555555556666
171 * 0123456789012345678901234567890123456789012345678901234567890123
173 * I Page-Invalid Bit: Page is not available for address-translation
174 * P Page-Protection Bit: Store access not possible for page
176 * A 64 bit segmenttable entry of S390 has following format:
177 * | P-table origin | TT
178 * 0000000000111111111122222222223333333333444444444455555555556666
179 * 0123456789012345678901234567890123456789012345678901234567890123
181 * I Segment-Invalid Bit: Segment is not available for address-translation
182 * C Common-Segment Bit: Segment is not private (PoP 3-30)
183 * P Page-Protection Bit: Store access not possible for page
184 * TT Type 00
186 * A 64 bit region table entry of S390 has following format:
187 * | S-table origin | TF TTTL
188 * 0000000000111111111122222222223333333333444444444455555555556666
189 * 0123456789012345678901234567890123456789012345678901234567890123
191 * I Segment-Invalid Bit: Segment is not available for address-translation
192 * TT Type 01
193 * TF
194 * TL Table length
196 * The 64 bit regiontable origin of S390 has following format:
197 * | region table origon | DTTL
198 * 0000000000111111111122222222223333333333444444444455555555556666
199 * 0123456789012345678901234567890123456789012345678901234567890123
201 * X Space-Switch event:
202 * G Segment-Invalid Bit:
203 * P Private-Space Bit:
204 * S Storage-Alteration:
205 * R Real space
206 * TL Table-Length:
208 * A storage key has the following format:
209 * | ACC |F|R|C|0|
210 * 0 3 4 5 6 7
211 * ACC: access key
212 * F : fetch protection bit
213 * R : referenced bit
214 * C : changed bit
217 /* Hardware bits in the page table entry */
218 #define _PAGE_RO 0x200 /* HW read-only bit */
219 #define _PAGE_INVALID 0x400 /* HW invalid bit */
221 /* Software bits in the page table entry */
222 #define _PAGE_SWT 0x001 /* SW pte type bit t */
223 #define _PAGE_SWX 0x002 /* SW pte type bit x */
224 #define _PAGE_SPECIAL 0x004 /* SW associated with special page */
225 #define __HAVE_ARCH_PTE_SPECIAL
227 /* Set of bits not changed in pte_modify */
228 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL)
230 /* Six different types of pages. */
231 #define _PAGE_TYPE_EMPTY 0x400
232 #define _PAGE_TYPE_NONE 0x401
233 #define _PAGE_TYPE_SWAP 0x403
234 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
235 #define _PAGE_TYPE_RO 0x200
236 #define _PAGE_TYPE_RW 0x000
237 #define _PAGE_TYPE_EX_RO 0x202
238 #define _PAGE_TYPE_EX_RW 0x002
241 * Only four types for huge pages, using the invalid bit and protection bit
242 * of a segment table entry.
244 #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
245 #define _HPAGE_TYPE_NONE 0x220
246 #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
247 #define _HPAGE_TYPE_RW 0x000
250 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
251 * pte_none and pte_file to find out the pte type WITHOUT holding the page
252 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
253 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
254 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
255 * This change is done while holding the lock, but the intermediate step
256 * of a previously valid pte with the hw invalid bit set can be observed by
257 * handle_pte_fault. That makes it necessary that all valid pte types with
258 * the hw invalid bit set must be distinguishable from the four pte types
259 * empty, none, swap and file.
261 * irxt ipte irxt
262 * _PAGE_TYPE_EMPTY 1000 -> 1000
263 * _PAGE_TYPE_NONE 1001 -> 1001
264 * _PAGE_TYPE_SWAP 1011 -> 1011
265 * _PAGE_TYPE_FILE 11?1 -> 11?1
266 * _PAGE_TYPE_RO 0100 -> 1100
267 * _PAGE_TYPE_RW 0000 -> 1000
268 * _PAGE_TYPE_EX_RO 0110 -> 1110
269 * _PAGE_TYPE_EX_RW 0010 -> 1010
271 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
272 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
273 * pte_file is true for bits combinations 1101, 1111
274 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
277 /* Page status table bits for virtualization */
278 #define RCP_PCL_BIT 55
279 #define RCP_HR_BIT 54
280 #define RCP_HC_BIT 53
281 #define RCP_GR_BIT 50
282 #define RCP_GC_BIT 49
284 /* User dirty bit for KVM's migration feature */
285 #define KVM_UD_BIT 47
287 #ifndef __s390x__
289 /* Bits in the segment table address-space-control-element */
290 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
291 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
292 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
293 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
294 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
296 /* Bits in the segment table entry */
297 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
298 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
299 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
300 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
302 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
303 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
305 #else /* __s390x__ */
307 /* Bits in the segment/region table address-space-control-element */
308 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
309 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
310 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
311 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
312 #define _ASCE_REAL_SPACE 0x20 /* real space control */
313 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
314 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
315 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
316 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
317 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
318 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
320 /* Bits in the region table entry */
321 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
322 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
323 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
324 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
325 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
326 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
327 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
329 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
330 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
331 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
332 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
333 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
334 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
336 /* Bits in the segment table entry */
337 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
338 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
339 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
341 #define _SEGMENT_ENTRY (0)
342 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
344 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
345 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
347 #endif /* __s390x__ */
350 * A user page table pointer has the space-switch-event bit, the
351 * private-space-control bit and the storage-alteration-event-control
352 * bit set. A kernel page table pointer doesn't need them.
354 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
355 _ASCE_ALT_EVENT)
357 /* Bits int the storage key */
358 #define _PAGE_CHANGED 0x02 /* HW changed bit */
359 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
362 * Page protection definitions.
364 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
365 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
366 #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
367 #define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
368 #define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
370 #define PAGE_KERNEL PAGE_RW
371 #define PAGE_COPY PAGE_RO
374 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
375 * Write permission always implies read permission. In theory with a
376 * primary/secondary page table execute only can be implemented but
377 * it would cost an additional bit in the pte to distinguish all the
378 * different pte types. To avoid that execute permission currently
379 * implies read permission as well.
381 /*xwr*/
382 #define __P000 PAGE_NONE
383 #define __P001 PAGE_RO
384 #define __P010 PAGE_RO
385 #define __P011 PAGE_RO
386 #define __P100 PAGE_EX_RO
387 #define __P101 PAGE_EX_RO
388 #define __P110 PAGE_EX_RO
389 #define __P111 PAGE_EX_RO
391 #define __S000 PAGE_NONE
392 #define __S001 PAGE_RO
393 #define __S010 PAGE_RW
394 #define __S011 PAGE_RW
395 #define __S100 PAGE_EX_RO
396 #define __S101 PAGE_EX_RO
397 #define __S110 PAGE_EX_RW
398 #define __S111 PAGE_EX_RW
400 #ifndef __s390x__
401 # define PxD_SHADOW_SHIFT 1
402 #else /* __s390x__ */
403 # define PxD_SHADOW_SHIFT 2
404 #endif /* __s390x__ */
406 static inline void *get_shadow_table(void *table)
408 unsigned long addr, offset;
409 struct page *page;
411 addr = (unsigned long) table;
412 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
413 page = virt_to_page((void *)(addr ^ offset));
414 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
418 * Certain architectures need to do special things when PTEs
419 * within a page table are directly modified. Thus, the following
420 * hook is made available.
422 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
423 pte_t *ptep, pte_t entry)
425 *ptep = entry;
426 if (mm->context.noexec) {
427 if (!(pte_val(entry) & _PAGE_INVALID) &&
428 (pte_val(entry) & _PAGE_SWX))
429 pte_val(entry) |= _PAGE_RO;
430 else
431 pte_val(entry) = _PAGE_TYPE_EMPTY;
432 ptep[PTRS_PER_PTE] = entry;
437 * pgd/pmd/pte query functions
439 #ifndef __s390x__
441 static inline int pgd_present(pgd_t pgd) { return 1; }
442 static inline int pgd_none(pgd_t pgd) { return 0; }
443 static inline int pgd_bad(pgd_t pgd) { return 0; }
445 static inline int pud_present(pud_t pud) { return 1; }
446 static inline int pud_none(pud_t pud) { return 0; }
447 static inline int pud_bad(pud_t pud) { return 0; }
449 #else /* __s390x__ */
451 static inline int pgd_present(pgd_t pgd)
453 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
454 return 1;
455 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
458 static inline int pgd_none(pgd_t pgd)
460 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
461 return 0;
462 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
465 static inline int pgd_bad(pgd_t pgd)
468 * With dynamic page table levels the pgd can be a region table
469 * entry or a segment table entry. Check for the bit that are
470 * invalid for either table entry.
472 unsigned long mask =
473 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
474 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
475 return (pgd_val(pgd) & mask) != 0;
478 static inline int pud_present(pud_t pud)
480 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
481 return 1;
482 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
485 static inline int pud_none(pud_t pud)
487 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
488 return 0;
489 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
492 static inline int pud_bad(pud_t pud)
495 * With dynamic page table levels the pud can be a region table
496 * entry or a segment table entry. Check for the bit that are
497 * invalid for either table entry.
499 unsigned long mask =
500 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
501 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
502 return (pud_val(pud) & mask) != 0;
505 #endif /* __s390x__ */
507 static inline int pmd_present(pmd_t pmd)
509 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
512 static inline int pmd_none(pmd_t pmd)
514 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
517 static inline int pmd_bad(pmd_t pmd)
519 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
520 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
523 static inline int pte_none(pte_t pte)
525 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
528 static inline int pte_present(pte_t pte)
530 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
531 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
532 (!(pte_val(pte) & _PAGE_INVALID) &&
533 !(pte_val(pte) & _PAGE_SWT));
536 static inline int pte_file(pte_t pte)
538 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
539 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
542 static inline int pte_special(pte_t pte)
544 return (pte_val(pte) & _PAGE_SPECIAL);
547 #define __HAVE_ARCH_PTE_SAME
548 #define pte_same(a,b) (pte_val(a) == pte_val(b))
550 static inline void rcp_lock(pte_t *ptep)
552 #ifdef CONFIG_PGSTE
553 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
554 preempt_disable();
555 while (test_and_set_bit(RCP_PCL_BIT, pgste))
557 #endif
560 static inline void rcp_unlock(pte_t *ptep)
562 #ifdef CONFIG_PGSTE
563 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
564 clear_bit(RCP_PCL_BIT, pgste);
565 preempt_enable();
566 #endif
569 /* forward declaration for SetPageUptodate in page-flags.h*/
570 static inline void page_clear_dirty(struct page *page);
571 #include <linux/page-flags.h>
573 static inline void ptep_rcp_copy(pte_t *ptep)
575 #ifdef CONFIG_PGSTE
576 struct page *page = virt_to_page(pte_val(*ptep));
577 unsigned int skey;
578 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
580 skey = page_get_storage_key(page_to_phys(page));
581 if (skey & _PAGE_CHANGED) {
582 set_bit_simple(RCP_GC_BIT, pgste);
583 set_bit_simple(KVM_UD_BIT, pgste);
585 if (skey & _PAGE_REFERENCED)
586 set_bit_simple(RCP_GR_BIT, pgste);
587 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
588 SetPageDirty(page);
589 set_bit_simple(KVM_UD_BIT, pgste);
591 if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
592 SetPageReferenced(page);
593 #endif
597 * query functions pte_write/pte_dirty/pte_young only work if
598 * pte_present() is true. Undefined behaviour if not..
600 static inline int pte_write(pte_t pte)
602 return (pte_val(pte) & _PAGE_RO) == 0;
605 static inline int pte_dirty(pte_t pte)
607 /* A pte is neither clean nor dirty on s/390. The dirty bit
608 * is in the storage key. See page_test_and_clear_dirty for
609 * details.
611 return 0;
614 static inline int pte_young(pte_t pte)
616 /* A pte is neither young nor old on s/390. The young bit
617 * is in the storage key. See page_test_and_clear_young for
618 * details.
620 return 0;
624 * pgd/pmd/pte modification functions
627 #ifndef __s390x__
629 #define pgd_clear(pgd) do { } while (0)
630 #define pud_clear(pud) do { } while (0)
632 #else /* __s390x__ */
634 static inline void pgd_clear_kernel(pgd_t * pgd)
636 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
637 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
640 static inline void pgd_clear(pgd_t * pgd)
642 pgd_t *shadow = get_shadow_table(pgd);
644 pgd_clear_kernel(pgd);
645 if (shadow)
646 pgd_clear_kernel(shadow);
649 static inline void pud_clear_kernel(pud_t *pud)
651 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
652 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
655 static inline void pud_clear(pud_t *pud)
657 pud_t *shadow = get_shadow_table(pud);
659 pud_clear_kernel(pud);
660 if (shadow)
661 pud_clear_kernel(shadow);
664 #endif /* __s390x__ */
666 static inline void pmd_clear_kernel(pmd_t * pmdp)
668 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
671 static inline void pmd_clear(pmd_t *pmd)
673 pmd_t *shadow = get_shadow_table(pmd);
675 pmd_clear_kernel(pmd);
676 if (shadow)
677 pmd_clear_kernel(shadow);
680 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
682 if (mm->context.has_pgste)
683 ptep_rcp_copy(ptep);
684 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
685 if (mm->context.noexec)
686 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
690 * The following pte modification functions only work if
691 * pte_present() is true. Undefined behaviour if not..
693 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
695 pte_val(pte) &= _PAGE_CHG_MASK;
696 pte_val(pte) |= pgprot_val(newprot);
697 return pte;
700 static inline pte_t pte_wrprotect(pte_t pte)
702 /* Do not clobber _PAGE_TYPE_NONE pages! */
703 if (!(pte_val(pte) & _PAGE_INVALID))
704 pte_val(pte) |= _PAGE_RO;
705 return pte;
708 static inline pte_t pte_mkwrite(pte_t pte)
710 pte_val(pte) &= ~_PAGE_RO;
711 return pte;
714 static inline pte_t pte_mkclean(pte_t pte)
716 /* The only user of pte_mkclean is the fork() code.
717 We must *not* clear the *physical* page dirty bit
718 just because fork() wants to clear the dirty bit in
719 *one* of the page's mappings. So we just do nothing. */
720 return pte;
723 static inline pte_t pte_mkdirty(pte_t pte)
725 /* We do not explicitly set the dirty bit because the
726 * sske instruction is slow. It is faster to let the
727 * next instruction set the dirty bit.
729 return pte;
732 static inline pte_t pte_mkold(pte_t pte)
734 /* S/390 doesn't keep its dirty/referenced bit in the pte.
735 * There is no point in clearing the real referenced bit.
737 return pte;
740 static inline pte_t pte_mkyoung(pte_t pte)
742 /* S/390 doesn't keep its dirty/referenced bit in the pte.
743 * There is no point in setting the real referenced bit.
745 return pte;
748 static inline pte_t pte_mkspecial(pte_t pte)
750 pte_val(pte) |= _PAGE_SPECIAL;
751 return pte;
754 #ifdef CONFIG_PGSTE
756 * Get (and clear) the user dirty bit for a PTE.
758 static inline int kvm_s390_test_and_clear_page_dirty(struct mm_struct *mm,
759 pte_t *ptep)
761 int dirty;
762 unsigned long *pgste;
763 struct page *page;
764 unsigned int skey;
766 if (!mm->context.has_pgste)
767 return -EINVAL;
768 rcp_lock(ptep);
769 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
770 page = virt_to_page(pte_val(*ptep));
771 skey = page_get_storage_key(page_to_phys(page));
772 if (skey & _PAGE_CHANGED) {
773 set_bit_simple(RCP_GC_BIT, pgste);
774 set_bit_simple(KVM_UD_BIT, pgste);
776 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
777 SetPageDirty(page);
778 set_bit_simple(KVM_UD_BIT, pgste);
780 dirty = test_and_clear_bit_simple(KVM_UD_BIT, pgste);
781 if (skey & _PAGE_CHANGED)
782 page_clear_dirty(page);
783 rcp_unlock(ptep);
784 return dirty;
786 #endif
788 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
789 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
790 unsigned long addr, pte_t *ptep)
792 #ifdef CONFIG_PGSTE
793 unsigned long physpage;
794 int young;
795 unsigned long *pgste;
797 if (!vma->vm_mm->context.has_pgste)
798 return 0;
799 physpage = pte_val(*ptep) & PAGE_MASK;
800 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
802 young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
803 rcp_lock(ptep);
804 if (young)
805 set_bit_simple(RCP_GR_BIT, pgste);
806 young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
807 rcp_unlock(ptep);
808 return young;
809 #endif
810 return 0;
813 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
814 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
815 unsigned long address, pte_t *ptep)
817 /* No need to flush TLB
818 * On s390 reference bits are in storage key and never in TLB
819 * With virtualization we handle the reference bit, without we
820 * we can simply return */
821 #ifdef CONFIG_PGSTE
822 return ptep_test_and_clear_young(vma, address, ptep);
823 #endif
824 return 0;
827 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
829 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
830 #ifndef __s390x__
831 /* pto must point to the start of the segment table */
832 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
833 #else
834 /* ipte in zarch mode can do the math */
835 pte_t *pto = ptep;
836 #endif
837 asm volatile(
838 " ipte %2,%3"
839 : "=m" (*ptep) : "m" (*ptep),
840 "a" (pto), "a" (address));
844 static inline void ptep_invalidate(struct mm_struct *mm,
845 unsigned long address, pte_t *ptep)
847 if (mm->context.has_pgste) {
848 rcp_lock(ptep);
849 __ptep_ipte(address, ptep);
850 ptep_rcp_copy(ptep);
851 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
852 rcp_unlock(ptep);
853 return;
855 __ptep_ipte(address, ptep);
856 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
857 if (mm->context.noexec) {
858 __ptep_ipte(address, ptep + PTRS_PER_PTE);
859 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
864 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
865 * both clear the TLB for the unmapped pte. The reason is that
866 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
867 * to modify an active pte. The sequence is
868 * 1) ptep_get_and_clear
869 * 2) set_pte_at
870 * 3) flush_tlb_range
871 * On s390 the tlb needs to get flushed with the modification of the pte
872 * if the pte is active. The only way how this can be implemented is to
873 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
874 * is a nop.
876 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
877 #define ptep_get_and_clear(__mm, __address, __ptep) \
878 ({ \
879 pte_t __pte = *(__ptep); \
880 if (atomic_read(&(__mm)->mm_users) > 1 || \
881 (__mm) != current->active_mm) \
882 ptep_invalidate(__mm, __address, __ptep); \
883 else \
884 pte_clear((__mm), (__address), (__ptep)); \
885 __pte; \
888 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
889 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
890 unsigned long address, pte_t *ptep)
892 pte_t pte = *ptep;
893 ptep_invalidate(vma->vm_mm, address, ptep);
894 return pte;
898 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
899 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
900 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
901 * cannot be accessed while the batched unmap is running. In this case
902 * full==1 and a simple pte_clear is enough. See tlb.h.
904 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
905 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
906 unsigned long addr,
907 pte_t *ptep, int full)
909 pte_t pte = *ptep;
911 if (full)
912 pte_clear(mm, addr, ptep);
913 else
914 ptep_invalidate(mm, addr, ptep);
915 return pte;
918 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
919 #define ptep_set_wrprotect(__mm, __addr, __ptep) \
920 ({ \
921 pte_t __pte = *(__ptep); \
922 if (pte_write(__pte)) { \
923 if (atomic_read(&(__mm)->mm_users) > 1 || \
924 (__mm) != current->active_mm) \
925 ptep_invalidate(__mm, __addr, __ptep); \
926 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
930 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
931 #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
932 ({ \
933 int __changed = !pte_same(*(__ptep), __entry); \
934 if (__changed) { \
935 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
936 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
938 __changed; \
942 * Test and clear dirty bit in storage key.
943 * We can't clear the changed bit atomically. This is a potential
944 * race against modification of the referenced bit. This function
945 * should therefore only be called if it is not mapped in any
946 * address space.
948 #define __HAVE_ARCH_PAGE_TEST_DIRTY
949 static inline int page_test_dirty(struct page *page)
951 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
954 #define __HAVE_ARCH_PAGE_CLEAR_DIRTY
955 static inline void page_clear_dirty(struct page *page)
957 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
961 * Test and clear referenced bit in storage key.
963 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
964 static inline int page_test_and_clear_young(struct page *page)
966 unsigned long physpage = page_to_phys(page);
967 int ccode;
969 asm volatile(
970 " rrbe 0,%1\n"
971 " ipm %0\n"
972 " srl %0,28\n"
973 : "=d" (ccode) : "a" (physpage) : "cc" );
974 return ccode & 2;
978 * Conversion functions: convert a page and protection to a page entry,
979 * and a page entry and page directory to the page they refer to.
981 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
983 pte_t __pte;
984 pte_val(__pte) = physpage + pgprot_val(pgprot);
985 return __pte;
988 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
990 unsigned long physpage = page_to_phys(page);
992 return mk_pte_phys(physpage, pgprot);
995 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
996 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
997 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
998 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1000 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1001 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1003 #ifndef __s390x__
1005 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1006 #define pud_deref(pmd) ({ BUG(); 0UL; })
1007 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1009 #define pud_offset(pgd, address) ((pud_t *) pgd)
1010 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1012 #else /* __s390x__ */
1014 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1015 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1016 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1018 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1020 pud_t *pud = (pud_t *) pgd;
1021 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1022 pud = (pud_t *) pgd_deref(*pgd);
1023 return pud + pud_index(address);
1026 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1028 pmd_t *pmd = (pmd_t *) pud;
1029 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1030 pmd = (pmd_t *) pud_deref(*pud);
1031 return pmd + pmd_index(address);
1034 #endif /* __s390x__ */
1036 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1037 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1038 #define pte_page(x) pfn_to_page(pte_pfn(x))
1040 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1042 /* Find an entry in the lowest level page table.. */
1043 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1044 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1045 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1046 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
1047 #define pte_unmap(pte) do { } while (0)
1048 #define pte_unmap_nested(pte) do { } while (0)
1051 * 31 bit swap entry format:
1052 * A page-table entry has some bits we have to treat in a special way.
1053 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1054 * exception will occur instead of a page translation exception. The
1055 * specifiation exception has the bad habit not to store necessary
1056 * information in the lowcore.
1057 * Bit 21 and bit 22 are the page invalid bit and the page protection
1058 * bit. We set both to indicate a swapped page.
1059 * Bit 30 and 31 are used to distinguish the different page types. For
1060 * a swapped page these bits need to be zero.
1061 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1062 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1063 * plus 24 for the offset.
1064 * 0| offset |0110|o|type |00|
1065 * 0 0000000001111111111 2222 2 22222 33
1066 * 0 1234567890123456789 0123 4 56789 01
1068 * 64 bit swap entry format:
1069 * A page-table entry has some bits we have to treat in a special way.
1070 * Bits 52 and bit 55 have to be zero, otherwise an specification
1071 * exception will occur instead of a page translation exception. The
1072 * specifiation exception has the bad habit not to store necessary
1073 * information in the lowcore.
1074 * Bit 53 and bit 54 are the page invalid bit and the page protection
1075 * bit. We set both to indicate a swapped page.
1076 * Bit 62 and 63 are used to distinguish the different page types. For
1077 * a swapped page these bits need to be zero.
1078 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1079 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1080 * plus 56 for the offset.
1081 * | offset |0110|o|type |00|
1082 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1083 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1085 #ifndef __s390x__
1086 #define __SWP_OFFSET_MASK (~0UL >> 12)
1087 #else
1088 #define __SWP_OFFSET_MASK (~0UL >> 11)
1089 #endif
1090 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1092 pte_t pte;
1093 offset &= __SWP_OFFSET_MASK;
1094 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1095 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1096 return pte;
1099 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1100 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1101 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1103 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1104 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1106 #ifndef __s390x__
1107 # define PTE_FILE_MAX_BITS 26
1108 #else /* __s390x__ */
1109 # define PTE_FILE_MAX_BITS 59
1110 #endif /* __s390x__ */
1112 #define pte_to_pgoff(__pte) \
1113 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1115 #define pgoff_to_pte(__off) \
1116 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1117 | _PAGE_TYPE_FILE })
1119 #endif /* !__ASSEMBLY__ */
1121 #define kern_addr_valid(addr) (1)
1123 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1124 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1125 extern int s390_enable_sie(void);
1128 * No page table caches to initialise
1130 #define pgtable_cache_init() do { } while (0)
1132 #include <asm-generic/pgtable.h>
1134 #endif /* _S390_PAGE_H */