2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
43 static int ext3_writepage_trans_blocks(struct inode
*inode
);
46 * Test whether an inode is a fast symlink.
48 static int ext3_inode_is_fast_symlink(struct inode
*inode
)
50 int ea_blocks
= EXT3_I(inode
)->i_file_acl
?
51 (inode
->i_sb
->s_blocksize
>> 9) : 0;
53 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
57 * The ext3 forget function must perform a revoke if we are freeing data
58 * which has been journaled. Metadata (eg. indirect blocks) must be
59 * revoked in all cases.
61 * "bh" may be NULL: a metadata block may have been freed from memory
62 * but there may still be a record of it in the journal, and that record
63 * still needs to be revoked.
65 int ext3_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
66 struct buffer_head
*bh
, ext3_fsblk_t blocknr
)
72 BUFFER_TRACE(bh
, "enter");
74 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 bh
, is_metadata
, inode
->i_mode
,
77 test_opt(inode
->i_sb
, DATA_FLAGS
));
79 /* Never use the revoke function if we are doing full data
80 * journaling: there is no need to, and a V1 superblock won't
81 * support it. Otherwise, only skip the revoke on un-journaled
84 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT3_MOUNT_JOURNAL_DATA
||
85 (!is_metadata
&& !ext3_should_journal_data(inode
))) {
87 BUFFER_TRACE(bh
, "call journal_forget");
88 return ext3_journal_forget(handle
, bh
);
94 * data!=journal && (is_metadata || should_journal_data(inode))
96 BUFFER_TRACE(bh
, "call ext3_journal_revoke");
97 err
= ext3_journal_revoke(handle
, blocknr
, bh
);
99 ext3_abort(inode
->i_sb
, __func__
,
100 "error %d when attempting revoke", err
);
101 BUFFER_TRACE(bh
, "exit");
106 * Work out how many blocks we need to proceed with the next chunk of a
107 * truncate transaction.
109 static unsigned long blocks_for_truncate(struct inode
*inode
)
111 unsigned long needed
;
113 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
115 /* Give ourselves just enough room to cope with inodes in which
116 * i_blocks is corrupt: we've seen disk corruptions in the past
117 * which resulted in random data in an inode which looked enough
118 * like a regular file for ext3 to try to delete it. Things
119 * will go a bit crazy if that happens, but at least we should
120 * try not to panic the whole kernel. */
124 /* But we need to bound the transaction so we don't overflow the
126 if (needed
> EXT3_MAX_TRANS_DATA
)
127 needed
= EXT3_MAX_TRANS_DATA
;
129 return EXT3_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
133 * Truncate transactions can be complex and absolutely huge. So we need to
134 * be able to restart the transaction at a conventient checkpoint to make
135 * sure we don't overflow the journal.
137 * start_transaction gets us a new handle for a truncate transaction,
138 * and extend_transaction tries to extend the existing one a bit. If
139 * extend fails, we need to propagate the failure up and restart the
140 * transaction in the top-level truncate loop. --sct
142 static handle_t
*start_transaction(struct inode
*inode
)
146 result
= ext3_journal_start(inode
, blocks_for_truncate(inode
));
150 ext3_std_error(inode
->i_sb
, PTR_ERR(result
));
155 * Try to extend this transaction for the purposes of truncation.
157 * Returns 0 if we managed to create more room. If we can't create more
158 * room, and the transaction must be restarted we return 1.
160 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
162 if (handle
->h_buffer_credits
> EXT3_RESERVE_TRANS_BLOCKS
)
164 if (!ext3_journal_extend(handle
, blocks_for_truncate(inode
)))
170 * Restart the transaction associated with *handle. This does a commit,
171 * so before we call here everything must be consistently dirtied against
174 static int ext3_journal_test_restart(handle_t
*handle
, struct inode
*inode
)
176 jbd_debug(2, "restarting handle %p\n", handle
);
177 return ext3_journal_restart(handle
, blocks_for_truncate(inode
));
181 * Called at the last iput() if i_nlink is zero.
183 void ext3_delete_inode (struct inode
* inode
)
187 truncate_inode_pages(&inode
->i_data
, 0);
189 if (is_bad_inode(inode
))
192 handle
= start_transaction(inode
);
193 if (IS_ERR(handle
)) {
195 * If we're going to skip the normal cleanup, we still need to
196 * make sure that the in-core orphan linked list is properly
199 ext3_orphan_del(NULL
, inode
);
207 ext3_truncate(inode
);
209 * Kill off the orphan record which ext3_truncate created.
210 * AKPM: I think this can be inside the above `if'.
211 * Note that ext3_orphan_del() has to be able to cope with the
212 * deletion of a non-existent orphan - this is because we don't
213 * know if ext3_truncate() actually created an orphan record.
214 * (Well, we could do this if we need to, but heck - it works)
216 ext3_orphan_del(handle
, inode
);
217 EXT3_I(inode
)->i_dtime
= get_seconds();
220 * One subtle ordering requirement: if anything has gone wrong
221 * (transaction abort, IO errors, whatever), then we can still
222 * do these next steps (the fs will already have been marked as
223 * having errors), but we can't free the inode if the mark_dirty
226 if (ext3_mark_inode_dirty(handle
, inode
))
227 /* If that failed, just do the required in-core inode clear. */
230 ext3_free_inode(handle
, inode
);
231 ext3_journal_stop(handle
);
234 clear_inode(inode
); /* We must guarantee clearing of inode... */
240 struct buffer_head
*bh
;
243 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
245 p
->key
= *(p
->p
= v
);
249 static int verify_chain(Indirect
*from
, Indirect
*to
)
251 while (from
<= to
&& from
->key
== *from
->p
)
257 * ext3_block_to_path - parse the block number into array of offsets
258 * @inode: inode in question (we are only interested in its superblock)
259 * @i_block: block number to be parsed
260 * @offsets: array to store the offsets in
261 * @boundary: set this non-zero if the referred-to block is likely to be
262 * followed (on disk) by an indirect block.
264 * To store the locations of file's data ext3 uses a data structure common
265 * for UNIX filesystems - tree of pointers anchored in the inode, with
266 * data blocks at leaves and indirect blocks in intermediate nodes.
267 * This function translates the block number into path in that tree -
268 * return value is the path length and @offsets[n] is the offset of
269 * pointer to (n+1)th node in the nth one. If @block is out of range
270 * (negative or too large) warning is printed and zero returned.
272 * Note: function doesn't find node addresses, so no IO is needed. All
273 * we need to know is the capacity of indirect blocks (taken from the
278 * Portability note: the last comparison (check that we fit into triple
279 * indirect block) is spelled differently, because otherwise on an
280 * architecture with 32-bit longs and 8Kb pages we might get into trouble
281 * if our filesystem had 8Kb blocks. We might use long long, but that would
282 * kill us on x86. Oh, well, at least the sign propagation does not matter -
283 * i_block would have to be negative in the very beginning, so we would not
287 static int ext3_block_to_path(struct inode
*inode
,
288 long i_block
, int offsets
[4], int *boundary
)
290 int ptrs
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
291 int ptrs_bits
= EXT3_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
292 const long direct_blocks
= EXT3_NDIR_BLOCKS
,
293 indirect_blocks
= ptrs
,
294 double_blocks
= (1 << (ptrs_bits
* 2));
299 ext3_warning (inode
->i_sb
, "ext3_block_to_path", "block < 0");
300 } else if (i_block
< direct_blocks
) {
301 offsets
[n
++] = i_block
;
302 final
= direct_blocks
;
303 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
304 offsets
[n
++] = EXT3_IND_BLOCK
;
305 offsets
[n
++] = i_block
;
307 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
308 offsets
[n
++] = EXT3_DIND_BLOCK
;
309 offsets
[n
++] = i_block
>> ptrs_bits
;
310 offsets
[n
++] = i_block
& (ptrs
- 1);
312 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
313 offsets
[n
++] = EXT3_TIND_BLOCK
;
314 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
315 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
316 offsets
[n
++] = i_block
& (ptrs
- 1);
319 ext3_warning(inode
->i_sb
, "ext3_block_to_path", "block > big");
322 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
327 * ext3_get_branch - read the chain of indirect blocks leading to data
328 * @inode: inode in question
329 * @depth: depth of the chain (1 - direct pointer, etc.)
330 * @offsets: offsets of pointers in inode/indirect blocks
331 * @chain: place to store the result
332 * @err: here we store the error value
334 * Function fills the array of triples <key, p, bh> and returns %NULL
335 * if everything went OK or the pointer to the last filled triple
336 * (incomplete one) otherwise. Upon the return chain[i].key contains
337 * the number of (i+1)-th block in the chain (as it is stored in memory,
338 * i.e. little-endian 32-bit), chain[i].p contains the address of that
339 * number (it points into struct inode for i==0 and into the bh->b_data
340 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
341 * block for i>0 and NULL for i==0. In other words, it holds the block
342 * numbers of the chain, addresses they were taken from (and where we can
343 * verify that chain did not change) and buffer_heads hosting these
346 * Function stops when it stumbles upon zero pointer (absent block)
347 * (pointer to last triple returned, *@err == 0)
348 * or when it gets an IO error reading an indirect block
349 * (ditto, *@err == -EIO)
350 * or when it notices that chain had been changed while it was reading
351 * (ditto, *@err == -EAGAIN)
352 * or when it reads all @depth-1 indirect blocks successfully and finds
353 * the whole chain, all way to the data (returns %NULL, *err == 0).
355 static Indirect
*ext3_get_branch(struct inode
*inode
, int depth
, int *offsets
,
356 Indirect chain
[4], int *err
)
358 struct super_block
*sb
= inode
->i_sb
;
360 struct buffer_head
*bh
;
363 /* i_data is not going away, no lock needed */
364 add_chain (chain
, NULL
, EXT3_I(inode
)->i_data
+ *offsets
);
368 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
371 /* Reader: pointers */
372 if (!verify_chain(chain
, p
))
374 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
392 * ext3_find_near - find a place for allocation with sufficient locality
394 * @ind: descriptor of indirect block.
396 * This function returns the preferred place for block allocation.
397 * It is used when heuristic for sequential allocation fails.
399 * + if there is a block to the left of our position - allocate near it.
400 * + if pointer will live in indirect block - allocate near that block.
401 * + if pointer will live in inode - allocate in the same
404 * In the latter case we colour the starting block by the callers PID to
405 * prevent it from clashing with concurrent allocations for a different inode
406 * in the same block group. The PID is used here so that functionally related
407 * files will be close-by on-disk.
409 * Caller must make sure that @ind is valid and will stay that way.
411 static ext3_fsblk_t
ext3_find_near(struct inode
*inode
, Indirect
*ind
)
413 struct ext3_inode_info
*ei
= EXT3_I(inode
);
414 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
416 ext3_fsblk_t bg_start
;
417 ext3_grpblk_t colour
;
419 /* Try to find previous block */
420 for (p
= ind
->p
- 1; p
>= start
; p
--) {
422 return le32_to_cpu(*p
);
425 /* No such thing, so let's try location of indirect block */
427 return ind
->bh
->b_blocknr
;
430 * It is going to be referred to from the inode itself? OK, just put it
431 * into the same cylinder group then.
433 bg_start
= ext3_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
434 colour
= (current
->pid
% 16) *
435 (EXT3_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
436 return bg_start
+ colour
;
440 * ext3_find_goal - find a preferred place for allocation.
442 * @block: block we want
443 * @partial: pointer to the last triple within a chain
445 * Normally this function find the preferred place for block allocation,
449 static ext3_fsblk_t
ext3_find_goal(struct inode
*inode
, long block
,
452 struct ext3_block_alloc_info
*block_i
;
454 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
457 * try the heuristic for sequential allocation,
458 * failing that at least try to get decent locality.
460 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
461 && (block_i
->last_alloc_physical_block
!= 0)) {
462 return block_i
->last_alloc_physical_block
+ 1;
465 return ext3_find_near(inode
, partial
);
469 * ext3_blks_to_allocate: Look up the block map and count the number
470 * of direct blocks need to be allocated for the given branch.
472 * @branch: chain of indirect blocks
473 * @k: number of blocks need for indirect blocks
474 * @blks: number of data blocks to be mapped.
475 * @blocks_to_boundary: the offset in the indirect block
477 * return the total number of blocks to be allocate, including the
478 * direct and indirect blocks.
480 static int ext3_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
481 int blocks_to_boundary
)
483 unsigned long count
= 0;
486 * Simple case, [t,d]Indirect block(s) has not allocated yet
487 * then it's clear blocks on that path have not allocated
490 /* right now we don't handle cross boundary allocation */
491 if (blks
< blocks_to_boundary
+ 1)
494 count
+= blocks_to_boundary
+ 1;
499 while (count
< blks
&& count
<= blocks_to_boundary
&&
500 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
507 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
508 * @indirect_blks: the number of blocks need to allocate for indirect
511 * @new_blocks: on return it will store the new block numbers for
512 * the indirect blocks(if needed) and the first direct block,
513 * @blks: on return it will store the total number of allocated
516 static int ext3_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
517 ext3_fsblk_t goal
, int indirect_blks
, int blks
,
518 ext3_fsblk_t new_blocks
[4], int *err
)
521 unsigned long count
= 0;
523 ext3_fsblk_t current_block
= 0;
527 * Here we try to allocate the requested multiple blocks at once,
528 * on a best-effort basis.
529 * To build a branch, we should allocate blocks for
530 * the indirect blocks(if not allocated yet), and at least
531 * the first direct block of this branch. That's the
532 * minimum number of blocks need to allocate(required)
534 target
= blks
+ indirect_blks
;
538 /* allocating blocks for indirect blocks and direct blocks */
539 current_block
= ext3_new_blocks(handle
,inode
,goal
,&count
,err
);
544 /* allocate blocks for indirect blocks */
545 while (index
< indirect_blks
&& count
) {
546 new_blocks
[index
++] = current_block
++;
554 /* save the new block number for the first direct block */
555 new_blocks
[index
] = current_block
;
557 /* total number of blocks allocated for direct blocks */
562 for (i
= 0; i
<index
; i
++)
563 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
568 * ext3_alloc_branch - allocate and set up a chain of blocks.
570 * @indirect_blks: number of allocated indirect blocks
571 * @blks: number of allocated direct blocks
572 * @offsets: offsets (in the blocks) to store the pointers to next.
573 * @branch: place to store the chain in.
575 * This function allocates blocks, zeroes out all but the last one,
576 * links them into chain and (if we are synchronous) writes them to disk.
577 * In other words, it prepares a branch that can be spliced onto the
578 * inode. It stores the information about that chain in the branch[], in
579 * the same format as ext3_get_branch() would do. We are calling it after
580 * we had read the existing part of chain and partial points to the last
581 * triple of that (one with zero ->key). Upon the exit we have the same
582 * picture as after the successful ext3_get_block(), except that in one
583 * place chain is disconnected - *branch->p is still zero (we did not
584 * set the last link), but branch->key contains the number that should
585 * be placed into *branch->p to fill that gap.
587 * If allocation fails we free all blocks we've allocated (and forget
588 * their buffer_heads) and return the error value the from failed
589 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
590 * as described above and return 0.
592 static int ext3_alloc_branch(handle_t
*handle
, struct inode
*inode
,
593 int indirect_blks
, int *blks
, ext3_fsblk_t goal
,
594 int *offsets
, Indirect
*branch
)
596 int blocksize
= inode
->i_sb
->s_blocksize
;
599 struct buffer_head
*bh
;
601 ext3_fsblk_t new_blocks
[4];
602 ext3_fsblk_t current_block
;
604 num
= ext3_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
605 *blks
, new_blocks
, &err
);
609 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
611 * metadata blocks and data blocks are allocated.
613 for (n
= 1; n
<= indirect_blks
; n
++) {
615 * Get buffer_head for parent block, zero it out
616 * and set the pointer to new one, then send
619 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
622 BUFFER_TRACE(bh
, "call get_create_access");
623 err
= ext3_journal_get_create_access(handle
, bh
);
630 memset(bh
->b_data
, 0, blocksize
);
631 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
632 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
633 *branch
[n
].p
= branch
[n
].key
;
634 if ( n
== indirect_blks
) {
635 current_block
= new_blocks
[n
];
637 * End of chain, update the last new metablock of
638 * the chain to point to the new allocated
639 * data blocks numbers
641 for (i
=1; i
< num
; i
++)
642 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
644 BUFFER_TRACE(bh
, "marking uptodate");
645 set_buffer_uptodate(bh
);
648 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
649 err
= ext3_journal_dirty_metadata(handle
, bh
);
656 /* Allocation failed, free what we already allocated */
657 for (i
= 1; i
<= n
; i
++) {
658 BUFFER_TRACE(branch
[i
].bh
, "call journal_forget");
659 ext3_journal_forget(handle
, branch
[i
].bh
);
661 for (i
= 0; i
<indirect_blks
; i
++)
662 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
664 ext3_free_blocks(handle
, inode
, new_blocks
[i
], num
);
670 * ext3_splice_branch - splice the allocated branch onto inode.
672 * @block: (logical) number of block we are adding
673 * @chain: chain of indirect blocks (with a missing link - see
675 * @where: location of missing link
676 * @num: number of indirect blocks we are adding
677 * @blks: number of direct blocks we are adding
679 * This function fills the missing link and does all housekeeping needed in
680 * inode (->i_blocks, etc.). In case of success we end up with the full
681 * chain to new block and return 0.
683 static int ext3_splice_branch(handle_t
*handle
, struct inode
*inode
,
684 long block
, Indirect
*where
, int num
, int blks
)
688 struct ext3_block_alloc_info
*block_i
;
689 ext3_fsblk_t current_block
;
691 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
693 * If we're splicing into a [td]indirect block (as opposed to the
694 * inode) then we need to get write access to the [td]indirect block
698 BUFFER_TRACE(where
->bh
, "get_write_access");
699 err
= ext3_journal_get_write_access(handle
, where
->bh
);
705 *where
->p
= where
->key
;
708 * Update the host buffer_head or inode to point to more just allocated
709 * direct blocks blocks
711 if (num
== 0 && blks
> 1) {
712 current_block
= le32_to_cpu(where
->key
) + 1;
713 for (i
= 1; i
< blks
; i
++)
714 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
718 * update the most recently allocated logical & physical block
719 * in i_block_alloc_info, to assist find the proper goal block for next
723 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
724 block_i
->last_alloc_physical_block
=
725 le32_to_cpu(where
[num
].key
) + blks
- 1;
728 /* We are done with atomic stuff, now do the rest of housekeeping */
730 inode
->i_ctime
= CURRENT_TIME_SEC
;
731 ext3_mark_inode_dirty(handle
, inode
);
733 /* had we spliced it onto indirect block? */
736 * If we spliced it onto an indirect block, we haven't
737 * altered the inode. Note however that if it is being spliced
738 * onto an indirect block at the very end of the file (the
739 * file is growing) then we *will* alter the inode to reflect
740 * the new i_size. But that is not done here - it is done in
741 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
743 jbd_debug(5, "splicing indirect only\n");
744 BUFFER_TRACE(where
->bh
, "call ext3_journal_dirty_metadata");
745 err
= ext3_journal_dirty_metadata(handle
, where
->bh
);
750 * OK, we spliced it into the inode itself on a direct block.
751 * Inode was dirtied above.
753 jbd_debug(5, "splicing direct\n");
758 for (i
= 1; i
<= num
; i
++) {
759 BUFFER_TRACE(where
[i
].bh
, "call journal_forget");
760 ext3_journal_forget(handle
, where
[i
].bh
);
761 ext3_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
763 ext3_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
769 * Allocation strategy is simple: if we have to allocate something, we will
770 * have to go the whole way to leaf. So let's do it before attaching anything
771 * to tree, set linkage between the newborn blocks, write them if sync is
772 * required, recheck the path, free and repeat if check fails, otherwise
773 * set the last missing link (that will protect us from any truncate-generated
774 * removals - all blocks on the path are immune now) and possibly force the
775 * write on the parent block.
776 * That has a nice additional property: no special recovery from the failed
777 * allocations is needed - we simply release blocks and do not touch anything
778 * reachable from inode.
780 * `handle' can be NULL if create == 0.
782 * The BKL may not be held on entry here. Be sure to take it early.
783 * return > 0, # of blocks mapped or allocated.
784 * return = 0, if plain lookup failed.
785 * return < 0, error case.
787 int ext3_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
788 sector_t iblock
, unsigned long maxblocks
,
789 struct buffer_head
*bh_result
,
790 int create
, int extend_disksize
)
798 int blocks_to_boundary
= 0;
800 struct ext3_inode_info
*ei
= EXT3_I(inode
);
802 ext3_fsblk_t first_block
= 0;
805 J_ASSERT(handle
!= NULL
|| create
== 0);
806 depth
= ext3_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
811 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
813 /* Simplest case - block found, no allocation needed */
815 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
816 clear_buffer_new(bh_result
);
819 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
822 if (!verify_chain(chain
, partial
)) {
824 * Indirect block might be removed by
825 * truncate while we were reading it.
826 * Handling of that case: forget what we've
827 * got now. Flag the err as EAGAIN, so it
834 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
836 if (blk
== first_block
+ count
)
845 /* Next simple case - plain lookup or failed read of indirect block */
846 if (!create
|| err
== -EIO
)
849 mutex_lock(&ei
->truncate_mutex
);
852 * If the indirect block is missing while we are reading
853 * the chain(ext3_get_branch() returns -EAGAIN err), or
854 * if the chain has been changed after we grab the semaphore,
855 * (either because another process truncated this branch, or
856 * another get_block allocated this branch) re-grab the chain to see if
857 * the request block has been allocated or not.
859 * Since we already block the truncate/other get_block
860 * at this point, we will have the current copy of the chain when we
861 * splice the branch into the tree.
863 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
864 while (partial
> chain
) {
868 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
871 mutex_unlock(&ei
->truncate_mutex
);
874 clear_buffer_new(bh_result
);
880 * Okay, we need to do block allocation. Lazily initialize the block
881 * allocation info here if necessary
883 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
884 ext3_init_block_alloc_info(inode
);
886 goal
= ext3_find_goal(inode
, iblock
, partial
);
888 /* the number of blocks need to allocate for [d,t]indirect blocks */
889 indirect_blks
= (chain
+ depth
) - partial
- 1;
892 * Next look up the indirect map to count the totoal number of
893 * direct blocks to allocate for this branch.
895 count
= ext3_blks_to_allocate(partial
, indirect_blks
,
896 maxblocks
, blocks_to_boundary
);
898 * Block out ext3_truncate while we alter the tree
900 err
= ext3_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
901 offsets
+ (partial
- chain
), partial
);
904 * The ext3_splice_branch call will free and forget any buffers
905 * on the new chain if there is a failure, but that risks using
906 * up transaction credits, especially for bitmaps where the
907 * credits cannot be returned. Can we handle this somehow? We
908 * may need to return -EAGAIN upwards in the worst case. --sct
911 err
= ext3_splice_branch(handle
, inode
, iblock
,
912 partial
, indirect_blks
, count
);
914 * i_disksize growing is protected by truncate_mutex. Don't forget to
915 * protect it if you're about to implement concurrent
916 * ext3_get_block() -bzzz
918 if (!err
&& extend_disksize
&& inode
->i_size
> ei
->i_disksize
)
919 ei
->i_disksize
= inode
->i_size
;
920 mutex_unlock(&ei
->truncate_mutex
);
924 set_buffer_new(bh_result
);
926 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
927 if (count
> blocks_to_boundary
)
928 set_buffer_boundary(bh_result
);
930 /* Clean up and exit */
931 partial
= chain
+ depth
- 1; /* the whole chain */
933 while (partial
> chain
) {
934 BUFFER_TRACE(partial
->bh
, "call brelse");
938 BUFFER_TRACE(bh_result
, "returned");
943 /* Maximum number of blocks we map for direct IO at once. */
944 #define DIO_MAX_BLOCKS 4096
946 * Number of credits we need for writing DIO_MAX_BLOCKS:
947 * We need sb + group descriptor + bitmap + inode -> 4
948 * For B blocks with A block pointers per block we need:
949 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
950 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
952 #define DIO_CREDITS 25
954 static int ext3_get_block(struct inode
*inode
, sector_t iblock
,
955 struct buffer_head
*bh_result
, int create
)
957 handle_t
*handle
= ext3_journal_current_handle();
958 int ret
= 0, started
= 0;
959 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
961 if (create
&& !handle
) { /* Direct IO write... */
962 if (max_blocks
> DIO_MAX_BLOCKS
)
963 max_blocks
= DIO_MAX_BLOCKS
;
964 handle
= ext3_journal_start(inode
, DIO_CREDITS
+
965 2 * EXT3_QUOTA_TRANS_BLOCKS(inode
->i_sb
));
966 if (IS_ERR(handle
)) {
967 ret
= PTR_ERR(handle
);
973 ret
= ext3_get_blocks_handle(handle
, inode
, iblock
,
974 max_blocks
, bh_result
, create
, 0);
976 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
980 ext3_journal_stop(handle
);
985 int ext3_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
988 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
993 * `handle' can be NULL if create is zero
995 struct buffer_head
*ext3_getblk(handle_t
*handle
, struct inode
*inode
,
996 long block
, int create
, int *errp
)
998 struct buffer_head dummy
;
1001 J_ASSERT(handle
!= NULL
|| create
== 0);
1004 dummy
.b_blocknr
= -1000;
1005 buffer_trace_init(&dummy
.b_history
);
1006 err
= ext3_get_blocks_handle(handle
, inode
, block
, 1,
1009 * ext3_get_blocks_handle() returns number of blocks
1010 * mapped. 0 in case of a HOLE.
1018 if (!err
&& buffer_mapped(&dummy
)) {
1019 struct buffer_head
*bh
;
1020 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1025 if (buffer_new(&dummy
)) {
1026 J_ASSERT(create
!= 0);
1027 J_ASSERT(handle
!= NULL
);
1030 * Now that we do not always journal data, we should
1031 * keep in mind whether this should always journal the
1032 * new buffer as metadata. For now, regular file
1033 * writes use ext3_get_block instead, so it's not a
1037 BUFFER_TRACE(bh
, "call get_create_access");
1038 fatal
= ext3_journal_get_create_access(handle
, bh
);
1039 if (!fatal
&& !buffer_uptodate(bh
)) {
1040 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1041 set_buffer_uptodate(bh
);
1044 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
1045 err
= ext3_journal_dirty_metadata(handle
, bh
);
1049 BUFFER_TRACE(bh
, "not a new buffer");
1062 struct buffer_head
*ext3_bread(handle_t
*handle
, struct inode
*inode
,
1063 int block
, int create
, int *err
)
1065 struct buffer_head
* bh
;
1067 bh
= ext3_getblk(handle
, inode
, block
, create
, err
);
1070 if (buffer_uptodate(bh
))
1072 ll_rw_block(READ_META
, 1, &bh
);
1074 if (buffer_uptodate(bh
))
1081 static int walk_page_buffers( handle_t
*handle
,
1082 struct buffer_head
*head
,
1086 int (*fn
)( handle_t
*handle
,
1087 struct buffer_head
*bh
))
1089 struct buffer_head
*bh
;
1090 unsigned block_start
, block_end
;
1091 unsigned blocksize
= head
->b_size
;
1093 struct buffer_head
*next
;
1095 for ( bh
= head
, block_start
= 0;
1096 ret
== 0 && (bh
!= head
|| !block_start
);
1097 block_start
= block_end
, bh
= next
)
1099 next
= bh
->b_this_page
;
1100 block_end
= block_start
+ blocksize
;
1101 if (block_end
<= from
|| block_start
>= to
) {
1102 if (partial
&& !buffer_uptodate(bh
))
1106 err
= (*fn
)(handle
, bh
);
1114 * To preserve ordering, it is essential that the hole instantiation and
1115 * the data write be encapsulated in a single transaction. We cannot
1116 * close off a transaction and start a new one between the ext3_get_block()
1117 * and the commit_write(). So doing the journal_start at the start of
1118 * prepare_write() is the right place.
1120 * Also, this function can nest inside ext3_writepage() ->
1121 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1122 * has generated enough buffer credits to do the whole page. So we won't
1123 * block on the journal in that case, which is good, because the caller may
1126 * By accident, ext3 can be reentered when a transaction is open via
1127 * quota file writes. If we were to commit the transaction while thus
1128 * reentered, there can be a deadlock - we would be holding a quota
1129 * lock, and the commit would never complete if another thread had a
1130 * transaction open and was blocking on the quota lock - a ranking
1133 * So what we do is to rely on the fact that journal_stop/journal_start
1134 * will _not_ run commit under these circumstances because handle->h_ref
1135 * is elevated. We'll still have enough credits for the tiny quotafile
1138 static int do_journal_get_write_access(handle_t
*handle
,
1139 struct buffer_head
*bh
)
1141 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1143 return ext3_journal_get_write_access(handle
, bh
);
1146 static int ext3_write_begin(struct file
*file
, struct address_space
*mapping
,
1147 loff_t pos
, unsigned len
, unsigned flags
,
1148 struct page
**pagep
, void **fsdata
)
1150 struct inode
*inode
= mapping
->host
;
1151 int ret
, needed_blocks
= ext3_writepage_trans_blocks(inode
);
1158 index
= pos
>> PAGE_CACHE_SHIFT
;
1159 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1163 page
= __grab_cache_page(mapping
, index
);
1168 handle
= ext3_journal_start(inode
, needed_blocks
);
1169 if (IS_ERR(handle
)) {
1171 page_cache_release(page
);
1172 ret
= PTR_ERR(handle
);
1175 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1178 goto write_begin_failed
;
1180 if (ext3_should_journal_data(inode
)) {
1181 ret
= walk_page_buffers(handle
, page_buffers(page
),
1182 from
, to
, NULL
, do_journal_get_write_access
);
1186 ext3_journal_stop(handle
);
1188 page_cache_release(page
);
1190 * block_write_begin may have instantiated a few blocks
1191 * outside i_size. Trim these off again. Don't need
1192 * i_size_read because we hold i_mutex.
1194 if (pos
+ len
> inode
->i_size
)
1195 vmtruncate(inode
, inode
->i_size
);
1197 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1204 int ext3_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1206 int err
= journal_dirty_data(handle
, bh
);
1208 ext3_journal_abort_handle(__func__
, __func__
,
1213 /* For write_end() in data=journal mode */
1214 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1216 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1218 set_buffer_uptodate(bh
);
1219 return ext3_journal_dirty_metadata(handle
, bh
);
1223 * Generic write_end handler for ordered and writeback ext3 journal modes.
1224 * We can't use generic_write_end, because that unlocks the page and we need to
1225 * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
1226 * after block_write_end.
1228 static int ext3_generic_write_end(struct file
*file
,
1229 struct address_space
*mapping
,
1230 loff_t pos
, unsigned len
, unsigned copied
,
1231 struct page
*page
, void *fsdata
)
1233 struct inode
*inode
= file
->f_mapping
->host
;
1235 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1237 if (pos
+copied
> inode
->i_size
) {
1238 i_size_write(inode
, pos
+copied
);
1239 mark_inode_dirty(inode
);
1246 * We need to pick up the new inode size which generic_commit_write gave us
1247 * `file' can be NULL - eg, when called from page_symlink().
1249 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1250 * buffers are managed internally.
1252 static int ext3_ordered_write_end(struct file
*file
,
1253 struct address_space
*mapping
,
1254 loff_t pos
, unsigned len
, unsigned copied
,
1255 struct page
*page
, void *fsdata
)
1257 handle_t
*handle
= ext3_journal_current_handle();
1258 struct inode
*inode
= file
->f_mapping
->host
;
1262 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1265 ret
= walk_page_buffers(handle
, page_buffers(page
),
1266 from
, to
, NULL
, ext3_journal_dirty_data
);
1270 * generic_write_end() will run mark_inode_dirty() if i_size
1271 * changes. So let's piggyback the i_disksize mark_inode_dirty
1276 new_i_size
= pos
+ copied
;
1277 if (new_i_size
> EXT3_I(inode
)->i_disksize
)
1278 EXT3_I(inode
)->i_disksize
= new_i_size
;
1279 ret2
= ext3_generic_write_end(file
, mapping
, pos
, len
, copied
,
1285 ret2
= ext3_journal_stop(handle
);
1289 page_cache_release(page
);
1291 return ret
? ret
: copied
;
1294 static int ext3_writeback_write_end(struct file
*file
,
1295 struct address_space
*mapping
,
1296 loff_t pos
, unsigned len
, unsigned copied
,
1297 struct page
*page
, void *fsdata
)
1299 handle_t
*handle
= ext3_journal_current_handle();
1300 struct inode
*inode
= file
->f_mapping
->host
;
1304 new_i_size
= pos
+ copied
;
1305 if (new_i_size
> EXT3_I(inode
)->i_disksize
)
1306 EXT3_I(inode
)->i_disksize
= new_i_size
;
1308 ret2
= ext3_generic_write_end(file
, mapping
, pos
, len
, copied
,
1314 ret2
= ext3_journal_stop(handle
);
1318 page_cache_release(page
);
1320 return ret
? ret
: copied
;
1323 static int ext3_journalled_write_end(struct file
*file
,
1324 struct address_space
*mapping
,
1325 loff_t pos
, unsigned len
, unsigned copied
,
1326 struct page
*page
, void *fsdata
)
1328 handle_t
*handle
= ext3_journal_current_handle();
1329 struct inode
*inode
= mapping
->host
;
1334 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1338 if (!PageUptodate(page
))
1340 page_zero_new_buffers(page
, from
+copied
, to
);
1343 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1344 to
, &partial
, write_end_fn
);
1346 SetPageUptodate(page
);
1347 if (pos
+copied
> inode
->i_size
)
1348 i_size_write(inode
, pos
+copied
);
1349 EXT3_I(inode
)->i_state
|= EXT3_STATE_JDATA
;
1350 if (inode
->i_size
> EXT3_I(inode
)->i_disksize
) {
1351 EXT3_I(inode
)->i_disksize
= inode
->i_size
;
1352 ret2
= ext3_mark_inode_dirty(handle
, inode
);
1357 ret2
= ext3_journal_stop(handle
);
1361 page_cache_release(page
);
1363 return ret
? ret
: copied
;
1367 * bmap() is special. It gets used by applications such as lilo and by
1368 * the swapper to find the on-disk block of a specific piece of data.
1370 * Naturally, this is dangerous if the block concerned is still in the
1371 * journal. If somebody makes a swapfile on an ext3 data-journaling
1372 * filesystem and enables swap, then they may get a nasty shock when the
1373 * data getting swapped to that swapfile suddenly gets overwritten by
1374 * the original zero's written out previously to the journal and
1375 * awaiting writeback in the kernel's buffer cache.
1377 * So, if we see any bmap calls here on a modified, data-journaled file,
1378 * take extra steps to flush any blocks which might be in the cache.
1380 static sector_t
ext3_bmap(struct address_space
*mapping
, sector_t block
)
1382 struct inode
*inode
= mapping
->host
;
1386 if (EXT3_I(inode
)->i_state
& EXT3_STATE_JDATA
) {
1388 * This is a REALLY heavyweight approach, but the use of
1389 * bmap on dirty files is expected to be extremely rare:
1390 * only if we run lilo or swapon on a freshly made file
1391 * do we expect this to happen.
1393 * (bmap requires CAP_SYS_RAWIO so this does not
1394 * represent an unprivileged user DOS attack --- we'd be
1395 * in trouble if mortal users could trigger this path at
1398 * NB. EXT3_STATE_JDATA is not set on files other than
1399 * regular files. If somebody wants to bmap a directory
1400 * or symlink and gets confused because the buffer
1401 * hasn't yet been flushed to disk, they deserve
1402 * everything they get.
1405 EXT3_I(inode
)->i_state
&= ~EXT3_STATE_JDATA
;
1406 journal
= EXT3_JOURNAL(inode
);
1407 journal_lock_updates(journal
);
1408 err
= journal_flush(journal
);
1409 journal_unlock_updates(journal
);
1415 return generic_block_bmap(mapping
,block
,ext3_get_block
);
1418 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1424 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1430 static int journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1432 if (buffer_mapped(bh
))
1433 return ext3_journal_dirty_data(handle
, bh
);
1438 * Note that we always start a transaction even if we're not journalling
1439 * data. This is to preserve ordering: any hole instantiation within
1440 * __block_write_full_page -> ext3_get_block() should be journalled
1441 * along with the data so we don't crash and then get metadata which
1442 * refers to old data.
1444 * In all journalling modes block_write_full_page() will start the I/O.
1448 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1453 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1455 * Same applies to ext3_get_block(). We will deadlock on various things like
1456 * lock_journal and i_truncate_mutex.
1458 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1461 * 16May01: If we're reentered then journal_current_handle() will be
1462 * non-zero. We simply *return*.
1464 * 1 July 2001: @@@ FIXME:
1465 * In journalled data mode, a data buffer may be metadata against the
1466 * current transaction. But the same file is part of a shared mapping
1467 * and someone does a writepage() on it.
1469 * We will move the buffer onto the async_data list, but *after* it has
1470 * been dirtied. So there's a small window where we have dirty data on
1473 * Note that this only applies to the last partial page in the file. The
1474 * bit which block_write_full_page() uses prepare/commit for. (That's
1475 * broken code anyway: it's wrong for msync()).
1477 * It's a rare case: affects the final partial page, for journalled data
1478 * where the file is subject to bith write() and writepage() in the same
1479 * transction. To fix it we'll need a custom block_write_full_page().
1480 * We'll probably need that anyway for journalling writepage() output.
1482 * We don't honour synchronous mounts for writepage(). That would be
1483 * disastrous. Any write() or metadata operation will sync the fs for
1486 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1487 * we don't need to open a transaction here.
1489 static int ext3_ordered_writepage(struct page
*page
,
1490 struct writeback_control
*wbc
)
1492 struct inode
*inode
= page
->mapping
->host
;
1493 struct buffer_head
*page_bufs
;
1494 handle_t
*handle
= NULL
;
1498 J_ASSERT(PageLocked(page
));
1501 * We give up here if we're reentered, because it might be for a
1502 * different filesystem.
1504 if (ext3_journal_current_handle())
1507 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1509 if (IS_ERR(handle
)) {
1510 ret
= PTR_ERR(handle
);
1514 if (!page_has_buffers(page
)) {
1515 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1516 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1518 page_bufs
= page_buffers(page
);
1519 walk_page_buffers(handle
, page_bufs
, 0,
1520 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1522 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1525 * The page can become unlocked at any point now, and
1526 * truncate can then come in and change things. So we
1527 * can't touch *page from now on. But *page_bufs is
1528 * safe due to elevated refcount.
1532 * And attach them to the current transaction. But only if
1533 * block_write_full_page() succeeded. Otherwise they are unmapped,
1534 * and generally junk.
1537 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1538 NULL
, journal_dirty_data_fn
);
1542 walk_page_buffers(handle
, page_bufs
, 0,
1543 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1544 err
= ext3_journal_stop(handle
);
1550 redirty_page_for_writepage(wbc
, page
);
1555 static int ext3_writeback_writepage(struct page
*page
,
1556 struct writeback_control
*wbc
)
1558 struct inode
*inode
= page
->mapping
->host
;
1559 handle_t
*handle
= NULL
;
1563 if (ext3_journal_current_handle())
1566 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1567 if (IS_ERR(handle
)) {
1568 ret
= PTR_ERR(handle
);
1572 if (test_opt(inode
->i_sb
, NOBH
) && ext3_should_writeback_data(inode
))
1573 ret
= nobh_writepage(page
, ext3_get_block
, wbc
);
1575 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1577 err
= ext3_journal_stop(handle
);
1583 redirty_page_for_writepage(wbc
, page
);
1588 static int ext3_journalled_writepage(struct page
*page
,
1589 struct writeback_control
*wbc
)
1591 struct inode
*inode
= page
->mapping
->host
;
1592 handle_t
*handle
= NULL
;
1596 if (ext3_journal_current_handle())
1599 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1600 if (IS_ERR(handle
)) {
1601 ret
= PTR_ERR(handle
);
1605 if (!page_has_buffers(page
) || PageChecked(page
)) {
1607 * It's mmapped pagecache. Add buffers and journal it. There
1608 * doesn't seem much point in redirtying the page here.
1610 ClearPageChecked(page
);
1611 ret
= block_prepare_write(page
, 0, PAGE_CACHE_SIZE
,
1614 ext3_journal_stop(handle
);
1617 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1618 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1620 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1621 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1624 EXT3_I(inode
)->i_state
|= EXT3_STATE_JDATA
;
1628 * It may be a page full of checkpoint-mode buffers. We don't
1629 * really know unless we go poke around in the buffer_heads.
1630 * But block_write_full_page will do the right thing.
1632 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1634 err
= ext3_journal_stop(handle
);
1641 redirty_page_for_writepage(wbc
, page
);
1647 static int ext3_readpage(struct file
*file
, struct page
*page
)
1649 return mpage_readpage(page
, ext3_get_block
);
1653 ext3_readpages(struct file
*file
, struct address_space
*mapping
,
1654 struct list_head
*pages
, unsigned nr_pages
)
1656 return mpage_readpages(mapping
, pages
, nr_pages
, ext3_get_block
);
1659 static void ext3_invalidatepage(struct page
*page
, unsigned long offset
)
1661 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1664 * If it's a full truncate we just forget about the pending dirtying
1667 ClearPageChecked(page
);
1669 journal_invalidatepage(journal
, page
, offset
);
1672 static int ext3_releasepage(struct page
*page
, gfp_t wait
)
1674 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1676 WARN_ON(PageChecked(page
));
1677 if (!page_has_buffers(page
))
1679 return journal_try_to_free_buffers(journal
, page
, wait
);
1683 * If the O_DIRECT write will extend the file then add this inode to the
1684 * orphan list. So recovery will truncate it back to the original size
1685 * if the machine crashes during the write.
1687 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1688 * crashes then stale disk data _may_ be exposed inside the file. But current
1689 * VFS code falls back into buffered path in that case so we are safe.
1691 static ssize_t
ext3_direct_IO(int rw
, struct kiocb
*iocb
,
1692 const struct iovec
*iov
, loff_t offset
,
1693 unsigned long nr_segs
)
1695 struct file
*file
= iocb
->ki_filp
;
1696 struct inode
*inode
= file
->f_mapping
->host
;
1697 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1701 size_t count
= iov_length(iov
, nr_segs
);
1704 loff_t final_size
= offset
+ count
;
1706 if (final_size
> inode
->i_size
) {
1707 /* Credits for sb + inode write */
1708 handle
= ext3_journal_start(inode
, 2);
1709 if (IS_ERR(handle
)) {
1710 ret
= PTR_ERR(handle
);
1713 ret
= ext3_orphan_add(handle
, inode
);
1715 ext3_journal_stop(handle
);
1719 ei
->i_disksize
= inode
->i_size
;
1720 ext3_journal_stop(handle
);
1724 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
1726 ext3_get_block
, NULL
);
1731 /* Credits for sb + inode write */
1732 handle
= ext3_journal_start(inode
, 2);
1733 if (IS_ERR(handle
)) {
1734 /* This is really bad luck. We've written the data
1735 * but cannot extend i_size. Bail out and pretend
1736 * the write failed... */
1737 ret
= PTR_ERR(handle
);
1741 ext3_orphan_del(handle
, inode
);
1743 loff_t end
= offset
+ ret
;
1744 if (end
> inode
->i_size
) {
1745 ei
->i_disksize
= end
;
1746 i_size_write(inode
, end
);
1748 * We're going to return a positive `ret'
1749 * here due to non-zero-length I/O, so there's
1750 * no way of reporting error returns from
1751 * ext3_mark_inode_dirty() to userspace. So
1754 ext3_mark_inode_dirty(handle
, inode
);
1757 err
= ext3_journal_stop(handle
);
1766 * Pages can be marked dirty completely asynchronously from ext3's journalling
1767 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1768 * much here because ->set_page_dirty is called under VFS locks. The page is
1769 * not necessarily locked.
1771 * We cannot just dirty the page and leave attached buffers clean, because the
1772 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1773 * or jbddirty because all the journalling code will explode.
1775 * So what we do is to mark the page "pending dirty" and next time writepage
1776 * is called, propagate that into the buffers appropriately.
1778 static int ext3_journalled_set_page_dirty(struct page
*page
)
1780 SetPageChecked(page
);
1781 return __set_page_dirty_nobuffers(page
);
1784 static const struct address_space_operations ext3_ordered_aops
= {
1785 .readpage
= ext3_readpage
,
1786 .readpages
= ext3_readpages
,
1787 .writepage
= ext3_ordered_writepage
,
1788 .sync_page
= block_sync_page
,
1789 .write_begin
= ext3_write_begin
,
1790 .write_end
= ext3_ordered_write_end
,
1792 .invalidatepage
= ext3_invalidatepage
,
1793 .releasepage
= ext3_releasepage
,
1794 .direct_IO
= ext3_direct_IO
,
1795 .migratepage
= buffer_migrate_page
,
1796 .is_partially_uptodate
= block_is_partially_uptodate
,
1799 static const struct address_space_operations ext3_writeback_aops
= {
1800 .readpage
= ext3_readpage
,
1801 .readpages
= ext3_readpages
,
1802 .writepage
= ext3_writeback_writepage
,
1803 .sync_page
= block_sync_page
,
1804 .write_begin
= ext3_write_begin
,
1805 .write_end
= ext3_writeback_write_end
,
1807 .invalidatepage
= ext3_invalidatepage
,
1808 .releasepage
= ext3_releasepage
,
1809 .direct_IO
= ext3_direct_IO
,
1810 .migratepage
= buffer_migrate_page
,
1811 .is_partially_uptodate
= block_is_partially_uptodate
,
1814 static const struct address_space_operations ext3_journalled_aops
= {
1815 .readpage
= ext3_readpage
,
1816 .readpages
= ext3_readpages
,
1817 .writepage
= ext3_journalled_writepage
,
1818 .sync_page
= block_sync_page
,
1819 .write_begin
= ext3_write_begin
,
1820 .write_end
= ext3_journalled_write_end
,
1821 .set_page_dirty
= ext3_journalled_set_page_dirty
,
1823 .invalidatepage
= ext3_invalidatepage
,
1824 .releasepage
= ext3_releasepage
,
1825 .is_partially_uptodate
= block_is_partially_uptodate
,
1828 void ext3_set_aops(struct inode
*inode
)
1830 if (ext3_should_order_data(inode
))
1831 inode
->i_mapping
->a_ops
= &ext3_ordered_aops
;
1832 else if (ext3_should_writeback_data(inode
))
1833 inode
->i_mapping
->a_ops
= &ext3_writeback_aops
;
1835 inode
->i_mapping
->a_ops
= &ext3_journalled_aops
;
1839 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1840 * up to the end of the block which corresponds to `from'.
1841 * This required during truncate. We need to physically zero the tail end
1842 * of that block so it doesn't yield old data if the file is later grown.
1844 static int ext3_block_truncate_page(handle_t
*handle
, struct page
*page
,
1845 struct address_space
*mapping
, loff_t from
)
1847 ext3_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
1848 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
1849 unsigned blocksize
, iblock
, length
, pos
;
1850 struct inode
*inode
= mapping
->host
;
1851 struct buffer_head
*bh
;
1854 blocksize
= inode
->i_sb
->s_blocksize
;
1855 length
= blocksize
- (offset
& (blocksize
- 1));
1856 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1859 * For "nobh" option, we can only work if we don't need to
1860 * read-in the page - otherwise we create buffers to do the IO.
1862 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
1863 ext3_should_writeback_data(inode
) && PageUptodate(page
)) {
1864 zero_user(page
, offset
, length
);
1865 set_page_dirty(page
);
1869 if (!page_has_buffers(page
))
1870 create_empty_buffers(page
, blocksize
, 0);
1872 /* Find the buffer that contains "offset" */
1873 bh
= page_buffers(page
);
1875 while (offset
>= pos
) {
1876 bh
= bh
->b_this_page
;
1882 if (buffer_freed(bh
)) {
1883 BUFFER_TRACE(bh
, "freed: skip");
1887 if (!buffer_mapped(bh
)) {
1888 BUFFER_TRACE(bh
, "unmapped");
1889 ext3_get_block(inode
, iblock
, bh
, 0);
1890 /* unmapped? It's a hole - nothing to do */
1891 if (!buffer_mapped(bh
)) {
1892 BUFFER_TRACE(bh
, "still unmapped");
1897 /* Ok, it's mapped. Make sure it's up-to-date */
1898 if (PageUptodate(page
))
1899 set_buffer_uptodate(bh
);
1901 if (!buffer_uptodate(bh
)) {
1903 ll_rw_block(READ
, 1, &bh
);
1905 /* Uhhuh. Read error. Complain and punt. */
1906 if (!buffer_uptodate(bh
))
1910 if (ext3_should_journal_data(inode
)) {
1911 BUFFER_TRACE(bh
, "get write access");
1912 err
= ext3_journal_get_write_access(handle
, bh
);
1917 zero_user(page
, offset
, length
);
1918 BUFFER_TRACE(bh
, "zeroed end of block");
1921 if (ext3_should_journal_data(inode
)) {
1922 err
= ext3_journal_dirty_metadata(handle
, bh
);
1924 if (ext3_should_order_data(inode
))
1925 err
= ext3_journal_dirty_data(handle
, bh
);
1926 mark_buffer_dirty(bh
);
1931 page_cache_release(page
);
1936 * Probably it should be a library function... search for first non-zero word
1937 * or memcmp with zero_page, whatever is better for particular architecture.
1940 static inline int all_zeroes(__le32
*p
, __le32
*q
)
1949 * ext3_find_shared - find the indirect blocks for partial truncation.
1950 * @inode: inode in question
1951 * @depth: depth of the affected branch
1952 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1953 * @chain: place to store the pointers to partial indirect blocks
1954 * @top: place to the (detached) top of branch
1956 * This is a helper function used by ext3_truncate().
1958 * When we do truncate() we may have to clean the ends of several
1959 * indirect blocks but leave the blocks themselves alive. Block is
1960 * partially truncated if some data below the new i_size is refered
1961 * from it (and it is on the path to the first completely truncated
1962 * data block, indeed). We have to free the top of that path along
1963 * with everything to the right of the path. Since no allocation
1964 * past the truncation point is possible until ext3_truncate()
1965 * finishes, we may safely do the latter, but top of branch may
1966 * require special attention - pageout below the truncation point
1967 * might try to populate it.
1969 * We atomically detach the top of branch from the tree, store the
1970 * block number of its root in *@top, pointers to buffer_heads of
1971 * partially truncated blocks - in @chain[].bh and pointers to
1972 * their last elements that should not be removed - in
1973 * @chain[].p. Return value is the pointer to last filled element
1976 * The work left to caller to do the actual freeing of subtrees:
1977 * a) free the subtree starting from *@top
1978 * b) free the subtrees whose roots are stored in
1979 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1980 * c) free the subtrees growing from the inode past the @chain[0].
1981 * (no partially truncated stuff there). */
1983 static Indirect
*ext3_find_shared(struct inode
*inode
, int depth
,
1984 int offsets
[4], Indirect chain
[4], __le32
*top
)
1986 Indirect
*partial
, *p
;
1990 /* Make k index the deepest non-null offest + 1 */
1991 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
1993 partial
= ext3_get_branch(inode
, k
, offsets
, chain
, &err
);
1994 /* Writer: pointers */
1996 partial
= chain
+ k
-1;
1998 * If the branch acquired continuation since we've looked at it -
1999 * fine, it should all survive and (new) top doesn't belong to us.
2001 if (!partial
->key
&& *partial
->p
)
2004 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
2007 * OK, we've found the last block that must survive. The rest of our
2008 * branch should be detached before unlocking. However, if that rest
2009 * of branch is all ours and does not grow immediately from the inode
2010 * it's easier to cheat and just decrement partial->p.
2012 if (p
== chain
+ k
- 1 && p
> chain
) {
2016 /* Nope, don't do this in ext3. Must leave the tree intact */
2023 while(partial
> p
) {
2024 brelse(partial
->bh
);
2032 * Zero a number of block pointers in either an inode or an indirect block.
2033 * If we restart the transaction we must again get write access to the
2034 * indirect block for further modification.
2036 * We release `count' blocks on disk, but (last - first) may be greater
2037 * than `count' because there can be holes in there.
2039 static void ext3_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2040 struct buffer_head
*bh
, ext3_fsblk_t block_to_free
,
2041 unsigned long count
, __le32
*first
, __le32
*last
)
2044 if (try_to_extend_transaction(handle
, inode
)) {
2046 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2047 ext3_journal_dirty_metadata(handle
, bh
);
2049 ext3_mark_inode_dirty(handle
, inode
);
2050 ext3_journal_test_restart(handle
, inode
);
2052 BUFFER_TRACE(bh
, "retaking write access");
2053 ext3_journal_get_write_access(handle
, bh
);
2058 * Any buffers which are on the journal will be in memory. We find
2059 * them on the hash table so journal_revoke() will run journal_forget()
2060 * on them. We've already detached each block from the file, so
2061 * bforget() in journal_forget() should be safe.
2063 * AKPM: turn on bforget in journal_forget()!!!
2065 for (p
= first
; p
< last
; p
++) {
2066 u32 nr
= le32_to_cpu(*p
);
2068 struct buffer_head
*bh
;
2071 bh
= sb_find_get_block(inode
->i_sb
, nr
);
2072 ext3_forget(handle
, 0, inode
, bh
, nr
);
2076 ext3_free_blocks(handle
, inode
, block_to_free
, count
);
2080 * ext3_free_data - free a list of data blocks
2081 * @handle: handle for this transaction
2082 * @inode: inode we are dealing with
2083 * @this_bh: indirect buffer_head which contains *@first and *@last
2084 * @first: array of block numbers
2085 * @last: points immediately past the end of array
2087 * We are freeing all blocks refered from that array (numbers are stored as
2088 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2090 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2091 * blocks are contiguous then releasing them at one time will only affect one
2092 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2093 * actually use a lot of journal space.
2095 * @this_bh will be %NULL if @first and @last point into the inode's direct
2098 static void ext3_free_data(handle_t
*handle
, struct inode
*inode
,
2099 struct buffer_head
*this_bh
,
2100 __le32
*first
, __le32
*last
)
2102 ext3_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2103 unsigned long count
= 0; /* Number of blocks in the run */
2104 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2107 ext3_fsblk_t nr
; /* Current block # */
2108 __le32
*p
; /* Pointer into inode/ind
2109 for current block */
2112 if (this_bh
) { /* For indirect block */
2113 BUFFER_TRACE(this_bh
, "get_write_access");
2114 err
= ext3_journal_get_write_access(handle
, this_bh
);
2115 /* Important: if we can't update the indirect pointers
2116 * to the blocks, we can't free them. */
2121 for (p
= first
; p
< last
; p
++) {
2122 nr
= le32_to_cpu(*p
);
2124 /* accumulate blocks to free if they're contiguous */
2127 block_to_free_p
= p
;
2129 } else if (nr
== block_to_free
+ count
) {
2132 ext3_clear_blocks(handle
, inode
, this_bh
,
2134 count
, block_to_free_p
, p
);
2136 block_to_free_p
= p
;
2143 ext3_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2144 count
, block_to_free_p
, p
);
2147 BUFFER_TRACE(this_bh
, "call ext3_journal_dirty_metadata");
2150 * The buffer head should have an attached journal head at this
2151 * point. However, if the data is corrupted and an indirect
2152 * block pointed to itself, it would have been detached when
2153 * the block was cleared. Check for this instead of OOPSing.
2156 ext3_journal_dirty_metadata(handle
, this_bh
);
2158 ext3_error(inode
->i_sb
, "ext3_free_data",
2159 "circular indirect block detected, "
2160 "inode=%lu, block=%llu",
2162 (unsigned long long)this_bh
->b_blocknr
);
2167 * ext3_free_branches - free an array of branches
2168 * @handle: JBD handle for this transaction
2169 * @inode: inode we are dealing with
2170 * @parent_bh: the buffer_head which contains *@first and *@last
2171 * @first: array of block numbers
2172 * @last: pointer immediately past the end of array
2173 * @depth: depth of the branches to free
2175 * We are freeing all blocks refered from these branches (numbers are
2176 * stored as little-endian 32-bit) and updating @inode->i_blocks
2179 static void ext3_free_branches(handle_t
*handle
, struct inode
*inode
,
2180 struct buffer_head
*parent_bh
,
2181 __le32
*first
, __le32
*last
, int depth
)
2186 if (is_handle_aborted(handle
))
2190 struct buffer_head
*bh
;
2191 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2193 while (--p
>= first
) {
2194 nr
= le32_to_cpu(*p
);
2196 continue; /* A hole */
2198 /* Go read the buffer for the next level down */
2199 bh
= sb_bread(inode
->i_sb
, nr
);
2202 * A read failure? Report error and clear slot
2206 ext3_error(inode
->i_sb
, "ext3_free_branches",
2207 "Read failure, inode=%lu, block="E3FSBLK
,
2212 /* This zaps the entire block. Bottom up. */
2213 BUFFER_TRACE(bh
, "free child branches");
2214 ext3_free_branches(handle
, inode
, bh
,
2215 (__le32
*)bh
->b_data
,
2216 (__le32
*)bh
->b_data
+ addr_per_block
,
2220 * We've probably journalled the indirect block several
2221 * times during the truncate. But it's no longer
2222 * needed and we now drop it from the transaction via
2225 * That's easy if it's exclusively part of this
2226 * transaction. But if it's part of the committing
2227 * transaction then journal_forget() will simply
2228 * brelse() it. That means that if the underlying
2229 * block is reallocated in ext3_get_block(),
2230 * unmap_underlying_metadata() will find this block
2231 * and will try to get rid of it. damn, damn.
2233 * If this block has already been committed to the
2234 * journal, a revoke record will be written. And
2235 * revoke records must be emitted *before* clearing
2236 * this block's bit in the bitmaps.
2238 ext3_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2241 * Everything below this this pointer has been
2242 * released. Now let this top-of-subtree go.
2244 * We want the freeing of this indirect block to be
2245 * atomic in the journal with the updating of the
2246 * bitmap block which owns it. So make some room in
2249 * We zero the parent pointer *after* freeing its
2250 * pointee in the bitmaps, so if extend_transaction()
2251 * for some reason fails to put the bitmap changes and
2252 * the release into the same transaction, recovery
2253 * will merely complain about releasing a free block,
2254 * rather than leaking blocks.
2256 if (is_handle_aborted(handle
))
2258 if (try_to_extend_transaction(handle
, inode
)) {
2259 ext3_mark_inode_dirty(handle
, inode
);
2260 ext3_journal_test_restart(handle
, inode
);
2263 ext3_free_blocks(handle
, inode
, nr
, 1);
2267 * The block which we have just freed is
2268 * pointed to by an indirect block: journal it
2270 BUFFER_TRACE(parent_bh
, "get_write_access");
2271 if (!ext3_journal_get_write_access(handle
,
2274 BUFFER_TRACE(parent_bh
,
2275 "call ext3_journal_dirty_metadata");
2276 ext3_journal_dirty_metadata(handle
,
2282 /* We have reached the bottom of the tree. */
2283 BUFFER_TRACE(parent_bh
, "free data blocks");
2284 ext3_free_data(handle
, inode
, parent_bh
, first
, last
);
2288 int ext3_can_truncate(struct inode
*inode
)
2290 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
2292 if (S_ISREG(inode
->i_mode
))
2294 if (S_ISDIR(inode
->i_mode
))
2296 if (S_ISLNK(inode
->i_mode
))
2297 return !ext3_inode_is_fast_symlink(inode
);
2304 * We block out ext3_get_block() block instantiations across the entire
2305 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2306 * simultaneously on behalf of the same inode.
2308 * As we work through the truncate and commmit bits of it to the journal there
2309 * is one core, guiding principle: the file's tree must always be consistent on
2310 * disk. We must be able to restart the truncate after a crash.
2312 * The file's tree may be transiently inconsistent in memory (although it
2313 * probably isn't), but whenever we close off and commit a journal transaction,
2314 * the contents of (the filesystem + the journal) must be consistent and
2315 * restartable. It's pretty simple, really: bottom up, right to left (although
2316 * left-to-right works OK too).
2318 * Note that at recovery time, journal replay occurs *before* the restart of
2319 * truncate against the orphan inode list.
2321 * The committed inode has the new, desired i_size (which is the same as
2322 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2323 * that this inode's truncate did not complete and it will again call
2324 * ext3_truncate() to have another go. So there will be instantiated blocks
2325 * to the right of the truncation point in a crashed ext3 filesystem. But
2326 * that's fine - as long as they are linked from the inode, the post-crash
2327 * ext3_truncate() run will find them and release them.
2329 void ext3_truncate(struct inode
*inode
)
2332 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2333 __le32
*i_data
= ei
->i_data
;
2334 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2335 struct address_space
*mapping
= inode
->i_mapping
;
2342 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2345 if (!ext3_can_truncate(inode
))
2349 * We have to lock the EOF page here, because lock_page() nests
2350 * outside journal_start().
2352 if ((inode
->i_size
& (blocksize
- 1)) == 0) {
2353 /* Block boundary? Nothing to do */
2356 page
= grab_cache_page(mapping
,
2357 inode
->i_size
>> PAGE_CACHE_SHIFT
);
2362 handle
= start_transaction(inode
);
2363 if (IS_ERR(handle
)) {
2365 clear_highpage(page
);
2366 flush_dcache_page(page
);
2368 page_cache_release(page
);
2370 return; /* AKPM: return what? */
2373 last_block
= (inode
->i_size
+ blocksize
-1)
2374 >> EXT3_BLOCK_SIZE_BITS(inode
->i_sb
);
2377 ext3_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2379 n
= ext3_block_to_path(inode
, last_block
, offsets
, NULL
);
2381 goto out_stop
; /* error */
2384 * OK. This truncate is going to happen. We add the inode to the
2385 * orphan list, so that if this truncate spans multiple transactions,
2386 * and we crash, we will resume the truncate when the filesystem
2387 * recovers. It also marks the inode dirty, to catch the new size.
2389 * Implication: the file must always be in a sane, consistent
2390 * truncatable state while each transaction commits.
2392 if (ext3_orphan_add(handle
, inode
))
2396 * The orphan list entry will now protect us from any crash which
2397 * occurs before the truncate completes, so it is now safe to propagate
2398 * the new, shorter inode size (held for now in i_size) into the
2399 * on-disk inode. We do this via i_disksize, which is the value which
2400 * ext3 *really* writes onto the disk inode.
2402 ei
->i_disksize
= inode
->i_size
;
2405 * From here we block out all ext3_get_block() callers who want to
2406 * modify the block allocation tree.
2408 mutex_lock(&ei
->truncate_mutex
);
2410 if (n
== 1) { /* direct blocks */
2411 ext3_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2412 i_data
+ EXT3_NDIR_BLOCKS
);
2416 partial
= ext3_find_shared(inode
, n
, offsets
, chain
, &nr
);
2417 /* Kill the top of shared branch (not detached) */
2419 if (partial
== chain
) {
2420 /* Shared branch grows from the inode */
2421 ext3_free_branches(handle
, inode
, NULL
,
2422 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2425 * We mark the inode dirty prior to restart,
2426 * and prior to stop. No need for it here.
2429 /* Shared branch grows from an indirect block */
2430 BUFFER_TRACE(partial
->bh
, "get_write_access");
2431 ext3_free_branches(handle
, inode
, partial
->bh
,
2433 partial
->p
+1, (chain
+n
-1) - partial
);
2436 /* Clear the ends of indirect blocks on the shared branch */
2437 while (partial
> chain
) {
2438 ext3_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2439 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2440 (chain
+n
-1) - partial
);
2441 BUFFER_TRACE(partial
->bh
, "call brelse");
2442 brelse (partial
->bh
);
2446 /* Kill the remaining (whole) subtrees */
2447 switch (offsets
[0]) {
2449 nr
= i_data
[EXT3_IND_BLOCK
];
2451 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2452 i_data
[EXT3_IND_BLOCK
] = 0;
2454 case EXT3_IND_BLOCK
:
2455 nr
= i_data
[EXT3_DIND_BLOCK
];
2457 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2458 i_data
[EXT3_DIND_BLOCK
] = 0;
2460 case EXT3_DIND_BLOCK
:
2461 nr
= i_data
[EXT3_TIND_BLOCK
];
2463 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2464 i_data
[EXT3_TIND_BLOCK
] = 0;
2466 case EXT3_TIND_BLOCK
:
2470 ext3_discard_reservation(inode
);
2472 mutex_unlock(&ei
->truncate_mutex
);
2473 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
2474 ext3_mark_inode_dirty(handle
, inode
);
2477 * In a multi-transaction truncate, we only make the final transaction
2484 * If this was a simple ftruncate(), and the file will remain alive
2485 * then we need to clear up the orphan record which we created above.
2486 * However, if this was a real unlink then we were called by
2487 * ext3_delete_inode(), and we allow that function to clean up the
2488 * orphan info for us.
2491 ext3_orphan_del(handle
, inode
);
2493 ext3_journal_stop(handle
);
2496 static ext3_fsblk_t
ext3_get_inode_block(struct super_block
*sb
,
2497 unsigned long ino
, struct ext3_iloc
*iloc
)
2499 unsigned long block_group
;
2500 unsigned long offset
;
2502 struct ext3_group_desc
*gdp
;
2504 if (!ext3_valid_inum(sb
, ino
)) {
2506 * This error is already checked for in namei.c unless we are
2507 * looking at an NFS filehandle, in which case no error
2513 block_group
= (ino
- 1) / EXT3_INODES_PER_GROUP(sb
);
2514 gdp
= ext3_get_group_desc(sb
, block_group
, NULL
);
2518 * Figure out the offset within the block group inode table
2520 offset
= ((ino
- 1) % EXT3_INODES_PER_GROUP(sb
)) *
2521 EXT3_INODE_SIZE(sb
);
2522 block
= le32_to_cpu(gdp
->bg_inode_table
) +
2523 (offset
>> EXT3_BLOCK_SIZE_BITS(sb
));
2525 iloc
->block_group
= block_group
;
2526 iloc
->offset
= offset
& (EXT3_BLOCK_SIZE(sb
) - 1);
2531 * ext3_get_inode_loc returns with an extra refcount against the inode's
2532 * underlying buffer_head on success. If 'in_mem' is true, we have all
2533 * data in memory that is needed to recreate the on-disk version of this
2536 static int __ext3_get_inode_loc(struct inode
*inode
,
2537 struct ext3_iloc
*iloc
, int in_mem
)
2540 struct buffer_head
*bh
;
2542 block
= ext3_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2546 bh
= sb_getblk(inode
->i_sb
, block
);
2548 ext3_error (inode
->i_sb
, "ext3_get_inode_loc",
2549 "unable to read inode block - "
2550 "inode=%lu, block="E3FSBLK
,
2551 inode
->i_ino
, block
);
2554 if (!buffer_uptodate(bh
)) {
2558 * If the buffer has the write error flag, we have failed
2559 * to write out another inode in the same block. In this
2560 * case, we don't have to read the block because we may
2561 * read the old inode data successfully.
2563 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
2564 set_buffer_uptodate(bh
);
2566 if (buffer_uptodate(bh
)) {
2567 /* someone brought it uptodate while we waited */
2573 * If we have all information of the inode in memory and this
2574 * is the only valid inode in the block, we need not read the
2578 struct buffer_head
*bitmap_bh
;
2579 struct ext3_group_desc
*desc
;
2580 int inodes_per_buffer
;
2581 int inode_offset
, i
;
2585 block_group
= (inode
->i_ino
- 1) /
2586 EXT3_INODES_PER_GROUP(inode
->i_sb
);
2587 inodes_per_buffer
= bh
->b_size
/
2588 EXT3_INODE_SIZE(inode
->i_sb
);
2589 inode_offset
= ((inode
->i_ino
- 1) %
2590 EXT3_INODES_PER_GROUP(inode
->i_sb
));
2591 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2593 /* Is the inode bitmap in cache? */
2594 desc
= ext3_get_group_desc(inode
->i_sb
,
2599 bitmap_bh
= sb_getblk(inode
->i_sb
,
2600 le32_to_cpu(desc
->bg_inode_bitmap
));
2605 * If the inode bitmap isn't in cache then the
2606 * optimisation may end up performing two reads instead
2607 * of one, so skip it.
2609 if (!buffer_uptodate(bitmap_bh
)) {
2613 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2614 if (i
== inode_offset
)
2616 if (ext3_test_bit(i
, bitmap_bh
->b_data
))
2620 if (i
== start
+ inodes_per_buffer
) {
2621 /* all other inodes are free, so skip I/O */
2622 memset(bh
->b_data
, 0, bh
->b_size
);
2623 set_buffer_uptodate(bh
);
2631 * There are other valid inodes in the buffer, this inode
2632 * has in-inode xattrs, or we don't have this inode in memory.
2633 * Read the block from disk.
2636 bh
->b_end_io
= end_buffer_read_sync
;
2637 submit_bh(READ_META
, bh
);
2639 if (!buffer_uptodate(bh
)) {
2640 ext3_error(inode
->i_sb
, "ext3_get_inode_loc",
2641 "unable to read inode block - "
2642 "inode=%lu, block="E3FSBLK
,
2643 inode
->i_ino
, block
);
2653 int ext3_get_inode_loc(struct inode
*inode
, struct ext3_iloc
*iloc
)
2655 /* We have all inode data except xattrs in memory here. */
2656 return __ext3_get_inode_loc(inode
, iloc
,
2657 !(EXT3_I(inode
)->i_state
& EXT3_STATE_XATTR
));
2660 void ext3_set_inode_flags(struct inode
*inode
)
2662 unsigned int flags
= EXT3_I(inode
)->i_flags
;
2664 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2665 if (flags
& EXT3_SYNC_FL
)
2666 inode
->i_flags
|= S_SYNC
;
2667 if (flags
& EXT3_APPEND_FL
)
2668 inode
->i_flags
|= S_APPEND
;
2669 if (flags
& EXT3_IMMUTABLE_FL
)
2670 inode
->i_flags
|= S_IMMUTABLE
;
2671 if (flags
& EXT3_NOATIME_FL
)
2672 inode
->i_flags
|= S_NOATIME
;
2673 if (flags
& EXT3_DIRSYNC_FL
)
2674 inode
->i_flags
|= S_DIRSYNC
;
2677 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2678 void ext3_get_inode_flags(struct ext3_inode_info
*ei
)
2680 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2682 ei
->i_flags
&= ~(EXT3_SYNC_FL
|EXT3_APPEND_FL
|
2683 EXT3_IMMUTABLE_FL
|EXT3_NOATIME_FL
|EXT3_DIRSYNC_FL
);
2685 ei
->i_flags
|= EXT3_SYNC_FL
;
2686 if (flags
& S_APPEND
)
2687 ei
->i_flags
|= EXT3_APPEND_FL
;
2688 if (flags
& S_IMMUTABLE
)
2689 ei
->i_flags
|= EXT3_IMMUTABLE_FL
;
2690 if (flags
& S_NOATIME
)
2691 ei
->i_flags
|= EXT3_NOATIME_FL
;
2692 if (flags
& S_DIRSYNC
)
2693 ei
->i_flags
|= EXT3_DIRSYNC_FL
;
2696 struct inode
*ext3_iget(struct super_block
*sb
, unsigned long ino
)
2698 struct ext3_iloc iloc
;
2699 struct ext3_inode
*raw_inode
;
2700 struct ext3_inode_info
*ei
;
2701 struct buffer_head
*bh
;
2702 struct inode
*inode
;
2706 inode
= iget_locked(sb
, ino
);
2708 return ERR_PTR(-ENOMEM
);
2709 if (!(inode
->i_state
& I_NEW
))
2713 #ifdef CONFIG_EXT3_FS_POSIX_ACL
2714 ei
->i_acl
= EXT3_ACL_NOT_CACHED
;
2715 ei
->i_default_acl
= EXT3_ACL_NOT_CACHED
;
2717 ei
->i_block_alloc_info
= NULL
;
2719 ret
= __ext3_get_inode_loc(inode
, &iloc
, 0);
2723 raw_inode
= ext3_raw_inode(&iloc
);
2724 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2725 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2726 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2727 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2728 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2729 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2731 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
2732 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
2733 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
2734 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
2735 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
2736 inode
->i_atime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= 0;
2739 ei
->i_dir_start_lookup
= 0;
2740 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2741 /* We now have enough fields to check if the inode was active or not.
2742 * This is needed because nfsd might try to access dead inodes
2743 * the test is that same one that e2fsck uses
2744 * NeilBrown 1999oct15
2746 if (inode
->i_nlink
== 0) {
2747 if (inode
->i_mode
== 0 ||
2748 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ORPHAN_FS
)) {
2749 /* this inode is deleted */
2754 /* The only unlinked inodes we let through here have
2755 * valid i_mode and are being read by the orphan
2756 * recovery code: that's fine, we're about to complete
2757 * the process of deleting those. */
2759 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
2760 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2761 #ifdef EXT3_FRAGMENTS
2762 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
2763 ei
->i_frag_no
= raw_inode
->i_frag
;
2764 ei
->i_frag_size
= raw_inode
->i_fsize
;
2766 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
2767 if (!S_ISREG(inode
->i_mode
)) {
2768 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
2771 ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
2773 ei
->i_disksize
= inode
->i_size
;
2774 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2775 ei
->i_block_group
= iloc
.block_group
;
2777 * NOTE! The in-memory inode i_data array is in little-endian order
2778 * even on big-endian machines: we do NOT byteswap the block numbers!
2780 for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2781 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2782 INIT_LIST_HEAD(&ei
->i_orphan
);
2784 if (inode
->i_ino
>= EXT3_FIRST_INO(inode
->i_sb
) + 1 &&
2785 EXT3_INODE_SIZE(inode
->i_sb
) > EXT3_GOOD_OLD_INODE_SIZE
) {
2787 * When mke2fs creates big inodes it does not zero out
2788 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2789 * so ignore those first few inodes.
2791 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
2792 if (EXT3_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
2793 EXT3_INODE_SIZE(inode
->i_sb
)) {
2798 if (ei
->i_extra_isize
== 0) {
2799 /* The extra space is currently unused. Use it. */
2800 ei
->i_extra_isize
= sizeof(struct ext3_inode
) -
2801 EXT3_GOOD_OLD_INODE_SIZE
;
2803 __le32
*magic
= (void *)raw_inode
+
2804 EXT3_GOOD_OLD_INODE_SIZE
+
2806 if (*magic
== cpu_to_le32(EXT3_XATTR_MAGIC
))
2807 ei
->i_state
|= EXT3_STATE_XATTR
;
2810 ei
->i_extra_isize
= 0;
2812 if (S_ISREG(inode
->i_mode
)) {
2813 inode
->i_op
= &ext3_file_inode_operations
;
2814 inode
->i_fop
= &ext3_file_operations
;
2815 ext3_set_aops(inode
);
2816 } else if (S_ISDIR(inode
->i_mode
)) {
2817 inode
->i_op
= &ext3_dir_inode_operations
;
2818 inode
->i_fop
= &ext3_dir_operations
;
2819 } else if (S_ISLNK(inode
->i_mode
)) {
2820 if (ext3_inode_is_fast_symlink(inode
))
2821 inode
->i_op
= &ext3_fast_symlink_inode_operations
;
2823 inode
->i_op
= &ext3_symlink_inode_operations
;
2824 ext3_set_aops(inode
);
2827 inode
->i_op
= &ext3_special_inode_operations
;
2828 if (raw_inode
->i_block
[0])
2829 init_special_inode(inode
, inode
->i_mode
,
2830 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
2832 init_special_inode(inode
, inode
->i_mode
,
2833 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
2836 ext3_set_inode_flags(inode
);
2837 unlock_new_inode(inode
);
2842 return ERR_PTR(ret
);
2846 * Post the struct inode info into an on-disk inode location in the
2847 * buffer-cache. This gobbles the caller's reference to the
2848 * buffer_head in the inode location struct.
2850 * The caller must have write access to iloc->bh.
2852 static int ext3_do_update_inode(handle_t
*handle
,
2853 struct inode
*inode
,
2854 struct ext3_iloc
*iloc
)
2856 struct ext3_inode
*raw_inode
= ext3_raw_inode(iloc
);
2857 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2858 struct buffer_head
*bh
= iloc
->bh
;
2859 int err
= 0, rc
, block
;
2861 /* For fields not not tracking in the in-memory inode,
2862 * initialise them to zero for new inodes. */
2863 if (ei
->i_state
& EXT3_STATE_NEW
)
2864 memset(raw_inode
, 0, EXT3_SB(inode
->i_sb
)->s_inode_size
);
2866 ext3_get_inode_flags(ei
);
2867 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
2868 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
2869 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
2870 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
2872 * Fix up interoperability with old kernels. Otherwise, old inodes get
2873 * re-used with the upper 16 bits of the uid/gid intact
2876 raw_inode
->i_uid_high
=
2877 cpu_to_le16(high_16_bits(inode
->i_uid
));
2878 raw_inode
->i_gid_high
=
2879 cpu_to_le16(high_16_bits(inode
->i_gid
));
2881 raw_inode
->i_uid_high
= 0;
2882 raw_inode
->i_gid_high
= 0;
2885 raw_inode
->i_uid_low
=
2886 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
2887 raw_inode
->i_gid_low
=
2888 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
2889 raw_inode
->i_uid_high
= 0;
2890 raw_inode
->i_gid_high
= 0;
2892 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
2893 raw_inode
->i_size
= cpu_to_le32(ei
->i_disksize
);
2894 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
2895 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
2896 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
2897 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
2898 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
2899 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
2900 #ifdef EXT3_FRAGMENTS
2901 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
2902 raw_inode
->i_frag
= ei
->i_frag_no
;
2903 raw_inode
->i_fsize
= ei
->i_frag_size
;
2905 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
2906 if (!S_ISREG(inode
->i_mode
)) {
2907 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
2909 raw_inode
->i_size_high
=
2910 cpu_to_le32(ei
->i_disksize
>> 32);
2911 if (ei
->i_disksize
> 0x7fffffffULL
) {
2912 struct super_block
*sb
= inode
->i_sb
;
2913 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb
,
2914 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
) ||
2915 EXT3_SB(sb
)->s_es
->s_rev_level
==
2916 cpu_to_le32(EXT3_GOOD_OLD_REV
)) {
2917 /* If this is the first large file
2918 * created, add a flag to the superblock.
2920 err
= ext3_journal_get_write_access(handle
,
2921 EXT3_SB(sb
)->s_sbh
);
2924 ext3_update_dynamic_rev(sb
);
2925 EXT3_SET_RO_COMPAT_FEATURE(sb
,
2926 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
);
2929 err
= ext3_journal_dirty_metadata(handle
,
2930 EXT3_SB(sb
)->s_sbh
);
2934 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
2935 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
2936 if (old_valid_dev(inode
->i_rdev
)) {
2937 raw_inode
->i_block
[0] =
2938 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
2939 raw_inode
->i_block
[1] = 0;
2941 raw_inode
->i_block
[0] = 0;
2942 raw_inode
->i_block
[1] =
2943 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
2944 raw_inode
->i_block
[2] = 0;
2946 } else for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2947 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
2949 if (ei
->i_extra_isize
)
2950 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
2952 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2953 rc
= ext3_journal_dirty_metadata(handle
, bh
);
2956 ei
->i_state
&= ~EXT3_STATE_NEW
;
2960 ext3_std_error(inode
->i_sb
, err
);
2965 * ext3_write_inode()
2967 * We are called from a few places:
2969 * - Within generic_file_write() for O_SYNC files.
2970 * Here, there will be no transaction running. We wait for any running
2971 * trasnaction to commit.
2973 * - Within sys_sync(), kupdate and such.
2974 * We wait on commit, if tol to.
2976 * - Within prune_icache() (PF_MEMALLOC == true)
2977 * Here we simply return. We can't afford to block kswapd on the
2980 * In all cases it is actually safe for us to return without doing anything,
2981 * because the inode has been copied into a raw inode buffer in
2982 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2985 * Note that we are absolutely dependent upon all inode dirtiers doing the
2986 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2987 * which we are interested.
2989 * It would be a bug for them to not do this. The code:
2991 * mark_inode_dirty(inode)
2993 * inode->i_size = expr;
2995 * is in error because a kswapd-driven write_inode() could occur while
2996 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2997 * will no longer be on the superblock's dirty inode list.
2999 int ext3_write_inode(struct inode
*inode
, int wait
)
3001 if (current
->flags
& PF_MEMALLOC
)
3004 if (ext3_journal_current_handle()) {
3005 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3013 return ext3_force_commit(inode
->i_sb
);
3019 * Called from notify_change.
3021 * We want to trap VFS attempts to truncate the file as soon as
3022 * possible. In particular, we want to make sure that when the VFS
3023 * shrinks i_size, we put the inode on the orphan list and modify
3024 * i_disksize immediately, so that during the subsequent flushing of
3025 * dirty pages and freeing of disk blocks, we can guarantee that any
3026 * commit will leave the blocks being flushed in an unused state on
3027 * disk. (On recovery, the inode will get truncated and the blocks will
3028 * be freed, so we have a strong guarantee that no future commit will
3029 * leave these blocks visible to the user.)
3031 * Called with inode->sem down.
3033 int ext3_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3035 struct inode
*inode
= dentry
->d_inode
;
3037 const unsigned int ia_valid
= attr
->ia_valid
;
3039 error
= inode_change_ok(inode
, attr
);
3043 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3044 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3047 /* (user+group)*(old+new) structure, inode write (sb,
3048 * inode block, ? - but truncate inode update has it) */
3049 handle
= ext3_journal_start(inode
, 2*(EXT3_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
3050 EXT3_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
3051 if (IS_ERR(handle
)) {
3052 error
= PTR_ERR(handle
);
3055 error
= DQUOT_TRANSFER(inode
, attr
) ? -EDQUOT
: 0;
3057 ext3_journal_stop(handle
);
3060 /* Update corresponding info in inode so that everything is in
3061 * one transaction */
3062 if (attr
->ia_valid
& ATTR_UID
)
3063 inode
->i_uid
= attr
->ia_uid
;
3064 if (attr
->ia_valid
& ATTR_GID
)
3065 inode
->i_gid
= attr
->ia_gid
;
3066 error
= ext3_mark_inode_dirty(handle
, inode
);
3067 ext3_journal_stop(handle
);
3070 if (S_ISREG(inode
->i_mode
) &&
3071 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3074 handle
= ext3_journal_start(inode
, 3);
3075 if (IS_ERR(handle
)) {
3076 error
= PTR_ERR(handle
);
3080 error
= ext3_orphan_add(handle
, inode
);
3081 EXT3_I(inode
)->i_disksize
= attr
->ia_size
;
3082 rc
= ext3_mark_inode_dirty(handle
, inode
);
3085 ext3_journal_stop(handle
);
3088 rc
= inode_setattr(inode
, attr
);
3090 /* If inode_setattr's call to ext3_truncate failed to get a
3091 * transaction handle at all, we need to clean up the in-core
3092 * orphan list manually. */
3094 ext3_orphan_del(NULL
, inode
);
3096 if (!rc
&& (ia_valid
& ATTR_MODE
))
3097 rc
= ext3_acl_chmod(inode
);
3100 ext3_std_error(inode
->i_sb
, error
);
3108 * How many blocks doth make a writepage()?
3110 * With N blocks per page, it may be:
3115 * N+5 bitmap blocks (from the above)
3116 * N+5 group descriptor summary blocks
3119 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3121 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3123 * With ordered or writeback data it's the same, less the N data blocks.
3125 * If the inode's direct blocks can hold an integral number of pages then a
3126 * page cannot straddle two indirect blocks, and we can only touch one indirect
3127 * and dindirect block, and the "5" above becomes "3".
3129 * This still overestimates under most circumstances. If we were to pass the
3130 * start and end offsets in here as well we could do block_to_path() on each
3131 * block and work out the exact number of indirects which are touched. Pah.
3134 static int ext3_writepage_trans_blocks(struct inode
*inode
)
3136 int bpp
= ext3_journal_blocks_per_page(inode
);
3137 int indirects
= (EXT3_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3140 if (ext3_should_journal_data(inode
))
3141 ret
= 3 * (bpp
+ indirects
) + 2;
3143 ret
= 2 * (bpp
+ indirects
) + 2;
3146 /* We know that structure was already allocated during DQUOT_INIT so
3147 * we will be updating only the data blocks + inodes */
3148 ret
+= 2*EXT3_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
3155 * The caller must have previously called ext3_reserve_inode_write().
3156 * Give this, we know that the caller already has write access to iloc->bh.
3158 int ext3_mark_iloc_dirty(handle_t
*handle
,
3159 struct inode
*inode
, struct ext3_iloc
*iloc
)
3163 /* the do_update_inode consumes one bh->b_count */
3166 /* ext3_do_update_inode() does journal_dirty_metadata */
3167 err
= ext3_do_update_inode(handle
, inode
, iloc
);
3173 * On success, We end up with an outstanding reference count against
3174 * iloc->bh. This _must_ be cleaned up later.
3178 ext3_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3179 struct ext3_iloc
*iloc
)
3183 err
= ext3_get_inode_loc(inode
, iloc
);
3185 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3186 err
= ext3_journal_get_write_access(handle
, iloc
->bh
);
3193 ext3_std_error(inode
->i_sb
, err
);
3198 * What we do here is to mark the in-core inode as clean with respect to inode
3199 * dirtiness (it may still be data-dirty).
3200 * This means that the in-core inode may be reaped by prune_icache
3201 * without having to perform any I/O. This is a very good thing,
3202 * because *any* task may call prune_icache - even ones which
3203 * have a transaction open against a different journal.
3205 * Is this cheating? Not really. Sure, we haven't written the
3206 * inode out, but prune_icache isn't a user-visible syncing function.
3207 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3208 * we start and wait on commits.
3210 * Is this efficient/effective? Well, we're being nice to the system
3211 * by cleaning up our inodes proactively so they can be reaped
3212 * without I/O. But we are potentially leaving up to five seconds'
3213 * worth of inodes floating about which prune_icache wants us to
3214 * write out. One way to fix that would be to get prune_icache()
3215 * to do a write_super() to free up some memory. It has the desired
3218 int ext3_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3220 struct ext3_iloc iloc
;
3224 err
= ext3_reserve_inode_write(handle
, inode
, &iloc
);
3226 err
= ext3_mark_iloc_dirty(handle
, inode
, &iloc
);
3231 * ext3_dirty_inode() is called from __mark_inode_dirty()
3233 * We're really interested in the case where a file is being extended.
3234 * i_size has been changed by generic_commit_write() and we thus need
3235 * to include the updated inode in the current transaction.
3237 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3238 * are allocated to the file.
3240 * If the inode is marked synchronous, we don't honour that here - doing
3241 * so would cause a commit on atime updates, which we don't bother doing.
3242 * We handle synchronous inodes at the highest possible level.
3244 void ext3_dirty_inode(struct inode
*inode
)
3246 handle_t
*current_handle
= ext3_journal_current_handle();
3249 handle
= ext3_journal_start(inode
, 2);
3252 if (current_handle
&&
3253 current_handle
->h_transaction
!= handle
->h_transaction
) {
3254 /* This task has a transaction open against a different fs */
3255 printk(KERN_EMERG
"%s: transactions do not match!\n",
3258 jbd_debug(5, "marking dirty. outer handle=%p\n",
3260 ext3_mark_inode_dirty(handle
, inode
);
3262 ext3_journal_stop(handle
);
3269 * Bind an inode's backing buffer_head into this transaction, to prevent
3270 * it from being flushed to disk early. Unlike
3271 * ext3_reserve_inode_write, this leaves behind no bh reference and
3272 * returns no iloc structure, so the caller needs to repeat the iloc
3273 * lookup to mark the inode dirty later.
3275 static int ext3_pin_inode(handle_t
*handle
, struct inode
*inode
)
3277 struct ext3_iloc iloc
;
3281 err
= ext3_get_inode_loc(inode
, &iloc
);
3283 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3284 err
= journal_get_write_access(handle
, iloc
.bh
);
3286 err
= ext3_journal_dirty_metadata(handle
,
3291 ext3_std_error(inode
->i_sb
, err
);
3296 int ext3_change_inode_journal_flag(struct inode
*inode
, int val
)
3303 * We have to be very careful here: changing a data block's
3304 * journaling status dynamically is dangerous. If we write a
3305 * data block to the journal, change the status and then delete
3306 * that block, we risk forgetting to revoke the old log record
3307 * from the journal and so a subsequent replay can corrupt data.
3308 * So, first we make sure that the journal is empty and that
3309 * nobody is changing anything.
3312 journal
= EXT3_JOURNAL(inode
);
3313 if (is_journal_aborted(journal
))
3316 journal_lock_updates(journal
);
3317 journal_flush(journal
);
3320 * OK, there are no updates running now, and all cached data is
3321 * synced to disk. We are now in a completely consistent state
3322 * which doesn't have anything in the journal, and we know that
3323 * no filesystem updates are running, so it is safe to modify
3324 * the inode's in-core data-journaling state flag now.
3328 EXT3_I(inode
)->i_flags
|= EXT3_JOURNAL_DATA_FL
;
3330 EXT3_I(inode
)->i_flags
&= ~EXT3_JOURNAL_DATA_FL
;
3331 ext3_set_aops(inode
);
3333 journal_unlock_updates(journal
);
3335 /* Finally we can mark the inode as dirty. */
3337 handle
= ext3_journal_start(inode
, 1);
3339 return PTR_ERR(handle
);
3341 err
= ext3_mark_inode_dirty(handle
, inode
);
3343 ext3_journal_stop(handle
);
3344 ext3_std_error(inode
->i_sb
, err
);