Linux 2.6.28-rc5
[cris-mirror.git] / kernel / auditsc.c
blobcf5bc2f5f9c3e527ac2ea72ec019d156be72ecb6
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
69 #include "audit.h"
71 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
72 * for saving names from getname(). */
73 #define AUDIT_NAMES 20
75 /* Indicates that audit should log the full pathname. */
76 #define AUDIT_NAME_FULL -1
78 /* no execve audit message should be longer than this (userspace limits) */
79 #define MAX_EXECVE_AUDIT_LEN 7500
81 /* number of audit rules */
82 int audit_n_rules;
84 /* determines whether we collect data for signals sent */
85 int audit_signals;
87 /* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
92 struct audit_names {
93 const char *name;
94 int name_len; /* number of name's characters to log */
95 unsigned name_put; /* call __putname() for this name */
96 unsigned long ino;
97 dev_t dev;
98 umode_t mode;
99 uid_t uid;
100 gid_t gid;
101 dev_t rdev;
102 u32 osid;
105 struct audit_aux_data {
106 struct audit_aux_data *next;
107 int type;
110 #define AUDIT_AUX_IPCPERM 0
112 /* Number of target pids per aux struct. */
113 #define AUDIT_AUX_PIDS 16
115 struct audit_aux_data_mq_open {
116 struct audit_aux_data d;
117 int oflag;
118 mode_t mode;
119 struct mq_attr attr;
122 struct audit_aux_data_mq_sendrecv {
123 struct audit_aux_data d;
124 mqd_t mqdes;
125 size_t msg_len;
126 unsigned int msg_prio;
127 struct timespec abs_timeout;
130 struct audit_aux_data_mq_notify {
131 struct audit_aux_data d;
132 mqd_t mqdes;
133 struct sigevent notification;
136 struct audit_aux_data_mq_getsetattr {
137 struct audit_aux_data d;
138 mqd_t mqdes;
139 struct mq_attr mqstat;
142 struct audit_aux_data_ipcctl {
143 struct audit_aux_data d;
144 struct ipc_perm p;
145 unsigned long qbytes;
146 uid_t uid;
147 gid_t gid;
148 mode_t mode;
149 u32 osid;
152 struct audit_aux_data_execve {
153 struct audit_aux_data d;
154 int argc;
155 int envc;
156 struct mm_struct *mm;
159 struct audit_aux_data_socketcall {
160 struct audit_aux_data d;
161 int nargs;
162 unsigned long args[0];
165 struct audit_aux_data_sockaddr {
166 struct audit_aux_data d;
167 int len;
168 char a[0];
171 struct audit_aux_data_fd_pair {
172 struct audit_aux_data d;
173 int fd[2];
176 struct audit_aux_data_pids {
177 struct audit_aux_data d;
178 pid_t target_pid[AUDIT_AUX_PIDS];
179 uid_t target_auid[AUDIT_AUX_PIDS];
180 uid_t target_uid[AUDIT_AUX_PIDS];
181 unsigned int target_sessionid[AUDIT_AUX_PIDS];
182 u32 target_sid[AUDIT_AUX_PIDS];
183 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
184 int pid_count;
187 struct audit_tree_refs {
188 struct audit_tree_refs *next;
189 struct audit_chunk *c[31];
192 /* The per-task audit context. */
193 struct audit_context {
194 int dummy; /* must be the first element */
195 int in_syscall; /* 1 if task is in a syscall */
196 enum audit_state state;
197 unsigned int serial; /* serial number for record */
198 struct timespec ctime; /* time of syscall entry */
199 int major; /* syscall number */
200 unsigned long argv[4]; /* syscall arguments */
201 int return_valid; /* return code is valid */
202 long return_code;/* syscall return code */
203 int auditable; /* 1 if record should be written */
204 int name_count;
205 struct audit_names names[AUDIT_NAMES];
206 char * filterkey; /* key for rule that triggered record */
207 struct path pwd;
208 struct audit_context *previous; /* For nested syscalls */
209 struct audit_aux_data *aux;
210 struct audit_aux_data *aux_pids;
212 /* Save things to print about task_struct */
213 pid_t pid, ppid;
214 uid_t uid, euid, suid, fsuid;
215 gid_t gid, egid, sgid, fsgid;
216 unsigned long personality;
217 int arch;
219 pid_t target_pid;
220 uid_t target_auid;
221 uid_t target_uid;
222 unsigned int target_sessionid;
223 u32 target_sid;
224 char target_comm[TASK_COMM_LEN];
226 struct audit_tree_refs *trees, *first_trees;
227 int tree_count;
229 #if AUDIT_DEBUG
230 int put_count;
231 int ino_count;
232 #endif
235 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
236 static inline int open_arg(int flags, int mask)
238 int n = ACC_MODE(flags);
239 if (flags & (O_TRUNC | O_CREAT))
240 n |= AUDIT_PERM_WRITE;
241 return n & mask;
244 static int audit_match_perm(struct audit_context *ctx, int mask)
246 unsigned n;
247 if (unlikely(!ctx))
248 return 0;
249 n = ctx->major;
251 switch (audit_classify_syscall(ctx->arch, n)) {
252 case 0: /* native */
253 if ((mask & AUDIT_PERM_WRITE) &&
254 audit_match_class(AUDIT_CLASS_WRITE, n))
255 return 1;
256 if ((mask & AUDIT_PERM_READ) &&
257 audit_match_class(AUDIT_CLASS_READ, n))
258 return 1;
259 if ((mask & AUDIT_PERM_ATTR) &&
260 audit_match_class(AUDIT_CLASS_CHATTR, n))
261 return 1;
262 return 0;
263 case 1: /* 32bit on biarch */
264 if ((mask & AUDIT_PERM_WRITE) &&
265 audit_match_class(AUDIT_CLASS_WRITE_32, n))
266 return 1;
267 if ((mask & AUDIT_PERM_READ) &&
268 audit_match_class(AUDIT_CLASS_READ_32, n))
269 return 1;
270 if ((mask & AUDIT_PERM_ATTR) &&
271 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
272 return 1;
273 return 0;
274 case 2: /* open */
275 return mask & ACC_MODE(ctx->argv[1]);
276 case 3: /* openat */
277 return mask & ACC_MODE(ctx->argv[2]);
278 case 4: /* socketcall */
279 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
280 case 5: /* execve */
281 return mask & AUDIT_PERM_EXEC;
282 default:
283 return 0;
287 static int audit_match_filetype(struct audit_context *ctx, int which)
289 unsigned index = which & ~S_IFMT;
290 mode_t mode = which & S_IFMT;
292 if (unlikely(!ctx))
293 return 0;
295 if (index >= ctx->name_count)
296 return 0;
297 if (ctx->names[index].ino == -1)
298 return 0;
299 if ((ctx->names[index].mode ^ mode) & S_IFMT)
300 return 0;
301 return 1;
305 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
306 * ->first_trees points to its beginning, ->trees - to the current end of data.
307 * ->tree_count is the number of free entries in array pointed to by ->trees.
308 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
309 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
310 * it's going to remain 1-element for almost any setup) until we free context itself.
311 * References in it _are_ dropped - at the same time we free/drop aux stuff.
314 #ifdef CONFIG_AUDIT_TREE
315 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
317 struct audit_tree_refs *p = ctx->trees;
318 int left = ctx->tree_count;
319 if (likely(left)) {
320 p->c[--left] = chunk;
321 ctx->tree_count = left;
322 return 1;
324 if (!p)
325 return 0;
326 p = p->next;
327 if (p) {
328 p->c[30] = chunk;
329 ctx->trees = p;
330 ctx->tree_count = 30;
331 return 1;
333 return 0;
336 static int grow_tree_refs(struct audit_context *ctx)
338 struct audit_tree_refs *p = ctx->trees;
339 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
340 if (!ctx->trees) {
341 ctx->trees = p;
342 return 0;
344 if (p)
345 p->next = ctx->trees;
346 else
347 ctx->first_trees = ctx->trees;
348 ctx->tree_count = 31;
349 return 1;
351 #endif
353 static void unroll_tree_refs(struct audit_context *ctx,
354 struct audit_tree_refs *p, int count)
356 #ifdef CONFIG_AUDIT_TREE
357 struct audit_tree_refs *q;
358 int n;
359 if (!p) {
360 /* we started with empty chain */
361 p = ctx->first_trees;
362 count = 31;
363 /* if the very first allocation has failed, nothing to do */
364 if (!p)
365 return;
367 n = count;
368 for (q = p; q != ctx->trees; q = q->next, n = 31) {
369 while (n--) {
370 audit_put_chunk(q->c[n]);
371 q->c[n] = NULL;
374 while (n-- > ctx->tree_count) {
375 audit_put_chunk(q->c[n]);
376 q->c[n] = NULL;
378 ctx->trees = p;
379 ctx->tree_count = count;
380 #endif
383 static void free_tree_refs(struct audit_context *ctx)
385 struct audit_tree_refs *p, *q;
386 for (p = ctx->first_trees; p; p = q) {
387 q = p->next;
388 kfree(p);
392 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
394 #ifdef CONFIG_AUDIT_TREE
395 struct audit_tree_refs *p;
396 int n;
397 if (!tree)
398 return 0;
399 /* full ones */
400 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
401 for (n = 0; n < 31; n++)
402 if (audit_tree_match(p->c[n], tree))
403 return 1;
405 /* partial */
406 if (p) {
407 for (n = ctx->tree_count; n < 31; n++)
408 if (audit_tree_match(p->c[n], tree))
409 return 1;
411 #endif
412 return 0;
415 /* Determine if any context name data matches a rule's watch data */
416 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
417 * otherwise. */
418 static int audit_filter_rules(struct task_struct *tsk,
419 struct audit_krule *rule,
420 struct audit_context *ctx,
421 struct audit_names *name,
422 enum audit_state *state)
424 int i, j, need_sid = 1;
425 u32 sid;
427 for (i = 0; i < rule->field_count; i++) {
428 struct audit_field *f = &rule->fields[i];
429 int result = 0;
431 switch (f->type) {
432 case AUDIT_PID:
433 result = audit_comparator(tsk->pid, f->op, f->val);
434 break;
435 case AUDIT_PPID:
436 if (ctx) {
437 if (!ctx->ppid)
438 ctx->ppid = sys_getppid();
439 result = audit_comparator(ctx->ppid, f->op, f->val);
441 break;
442 case AUDIT_UID:
443 result = audit_comparator(tsk->uid, f->op, f->val);
444 break;
445 case AUDIT_EUID:
446 result = audit_comparator(tsk->euid, f->op, f->val);
447 break;
448 case AUDIT_SUID:
449 result = audit_comparator(tsk->suid, f->op, f->val);
450 break;
451 case AUDIT_FSUID:
452 result = audit_comparator(tsk->fsuid, f->op, f->val);
453 break;
454 case AUDIT_GID:
455 result = audit_comparator(tsk->gid, f->op, f->val);
456 break;
457 case AUDIT_EGID:
458 result = audit_comparator(tsk->egid, f->op, f->val);
459 break;
460 case AUDIT_SGID:
461 result = audit_comparator(tsk->sgid, f->op, f->val);
462 break;
463 case AUDIT_FSGID:
464 result = audit_comparator(tsk->fsgid, f->op, f->val);
465 break;
466 case AUDIT_PERS:
467 result = audit_comparator(tsk->personality, f->op, f->val);
468 break;
469 case AUDIT_ARCH:
470 if (ctx)
471 result = audit_comparator(ctx->arch, f->op, f->val);
472 break;
474 case AUDIT_EXIT:
475 if (ctx && ctx->return_valid)
476 result = audit_comparator(ctx->return_code, f->op, f->val);
477 break;
478 case AUDIT_SUCCESS:
479 if (ctx && ctx->return_valid) {
480 if (f->val)
481 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
482 else
483 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
485 break;
486 case AUDIT_DEVMAJOR:
487 if (name)
488 result = audit_comparator(MAJOR(name->dev),
489 f->op, f->val);
490 else if (ctx) {
491 for (j = 0; j < ctx->name_count; j++) {
492 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
493 ++result;
494 break;
498 break;
499 case AUDIT_DEVMINOR:
500 if (name)
501 result = audit_comparator(MINOR(name->dev),
502 f->op, f->val);
503 else if (ctx) {
504 for (j = 0; j < ctx->name_count; j++) {
505 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
506 ++result;
507 break;
511 break;
512 case AUDIT_INODE:
513 if (name)
514 result = (name->ino == f->val);
515 else if (ctx) {
516 for (j = 0; j < ctx->name_count; j++) {
517 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
518 ++result;
519 break;
523 break;
524 case AUDIT_WATCH:
525 if (name && rule->watch->ino != (unsigned long)-1)
526 result = (name->dev == rule->watch->dev &&
527 name->ino == rule->watch->ino);
528 break;
529 case AUDIT_DIR:
530 if (ctx)
531 result = match_tree_refs(ctx, rule->tree);
532 break;
533 case AUDIT_LOGINUID:
534 result = 0;
535 if (ctx)
536 result = audit_comparator(tsk->loginuid, f->op, f->val);
537 break;
538 case AUDIT_SUBJ_USER:
539 case AUDIT_SUBJ_ROLE:
540 case AUDIT_SUBJ_TYPE:
541 case AUDIT_SUBJ_SEN:
542 case AUDIT_SUBJ_CLR:
543 /* NOTE: this may return negative values indicating
544 a temporary error. We simply treat this as a
545 match for now to avoid losing information that
546 may be wanted. An error message will also be
547 logged upon error */
548 if (f->lsm_rule) {
549 if (need_sid) {
550 security_task_getsecid(tsk, &sid);
551 need_sid = 0;
553 result = security_audit_rule_match(sid, f->type,
554 f->op,
555 f->lsm_rule,
556 ctx);
558 break;
559 case AUDIT_OBJ_USER:
560 case AUDIT_OBJ_ROLE:
561 case AUDIT_OBJ_TYPE:
562 case AUDIT_OBJ_LEV_LOW:
563 case AUDIT_OBJ_LEV_HIGH:
564 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
565 also applies here */
566 if (f->lsm_rule) {
567 /* Find files that match */
568 if (name) {
569 result = security_audit_rule_match(
570 name->osid, f->type, f->op,
571 f->lsm_rule, ctx);
572 } else if (ctx) {
573 for (j = 0; j < ctx->name_count; j++) {
574 if (security_audit_rule_match(
575 ctx->names[j].osid,
576 f->type, f->op,
577 f->lsm_rule, ctx)) {
578 ++result;
579 break;
583 /* Find ipc objects that match */
584 if (ctx) {
585 struct audit_aux_data *aux;
586 for (aux = ctx->aux; aux;
587 aux = aux->next) {
588 if (aux->type == AUDIT_IPC) {
589 struct audit_aux_data_ipcctl *axi = (void *)aux;
590 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
591 ++result;
592 break;
598 break;
599 case AUDIT_ARG0:
600 case AUDIT_ARG1:
601 case AUDIT_ARG2:
602 case AUDIT_ARG3:
603 if (ctx)
604 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
605 break;
606 case AUDIT_FILTERKEY:
607 /* ignore this field for filtering */
608 result = 1;
609 break;
610 case AUDIT_PERM:
611 result = audit_match_perm(ctx, f->val);
612 break;
613 case AUDIT_FILETYPE:
614 result = audit_match_filetype(ctx, f->val);
615 break;
618 if (!result)
619 return 0;
621 if (rule->filterkey && ctx)
622 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
623 switch (rule->action) {
624 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
625 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
627 return 1;
630 /* At process creation time, we can determine if system-call auditing is
631 * completely disabled for this task. Since we only have the task
632 * structure at this point, we can only check uid and gid.
634 static enum audit_state audit_filter_task(struct task_struct *tsk)
636 struct audit_entry *e;
637 enum audit_state state;
639 rcu_read_lock();
640 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
641 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
642 rcu_read_unlock();
643 return state;
646 rcu_read_unlock();
647 return AUDIT_BUILD_CONTEXT;
650 /* At syscall entry and exit time, this filter is called if the
651 * audit_state is not low enough that auditing cannot take place, but is
652 * also not high enough that we already know we have to write an audit
653 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
655 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
656 struct audit_context *ctx,
657 struct list_head *list)
659 struct audit_entry *e;
660 enum audit_state state;
662 if (audit_pid && tsk->tgid == audit_pid)
663 return AUDIT_DISABLED;
665 rcu_read_lock();
666 if (!list_empty(list)) {
667 int word = AUDIT_WORD(ctx->major);
668 int bit = AUDIT_BIT(ctx->major);
670 list_for_each_entry_rcu(e, list, list) {
671 if ((e->rule.mask[word] & bit) == bit &&
672 audit_filter_rules(tsk, &e->rule, ctx, NULL,
673 &state)) {
674 rcu_read_unlock();
675 return state;
679 rcu_read_unlock();
680 return AUDIT_BUILD_CONTEXT;
683 /* At syscall exit time, this filter is called if any audit_names[] have been
684 * collected during syscall processing. We only check rules in sublists at hash
685 * buckets applicable to the inode numbers in audit_names[].
686 * Regarding audit_state, same rules apply as for audit_filter_syscall().
688 enum audit_state audit_filter_inodes(struct task_struct *tsk,
689 struct audit_context *ctx)
691 int i;
692 struct audit_entry *e;
693 enum audit_state state;
695 if (audit_pid && tsk->tgid == audit_pid)
696 return AUDIT_DISABLED;
698 rcu_read_lock();
699 for (i = 0; i < ctx->name_count; i++) {
700 int word = AUDIT_WORD(ctx->major);
701 int bit = AUDIT_BIT(ctx->major);
702 struct audit_names *n = &ctx->names[i];
703 int h = audit_hash_ino((u32)n->ino);
704 struct list_head *list = &audit_inode_hash[h];
706 if (list_empty(list))
707 continue;
709 list_for_each_entry_rcu(e, list, list) {
710 if ((e->rule.mask[word] & bit) == bit &&
711 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
712 rcu_read_unlock();
713 return state;
717 rcu_read_unlock();
718 return AUDIT_BUILD_CONTEXT;
721 void audit_set_auditable(struct audit_context *ctx)
723 ctx->auditable = 1;
726 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
727 int return_valid,
728 int return_code)
730 struct audit_context *context = tsk->audit_context;
732 if (likely(!context))
733 return NULL;
734 context->return_valid = return_valid;
737 * we need to fix up the return code in the audit logs if the actual
738 * return codes are later going to be fixed up by the arch specific
739 * signal handlers
741 * This is actually a test for:
742 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
743 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
745 * but is faster than a bunch of ||
747 if (unlikely(return_code <= -ERESTARTSYS) &&
748 (return_code >= -ERESTART_RESTARTBLOCK) &&
749 (return_code != -ENOIOCTLCMD))
750 context->return_code = -EINTR;
751 else
752 context->return_code = return_code;
754 if (context->in_syscall && !context->dummy && !context->auditable) {
755 enum audit_state state;
757 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
758 if (state == AUDIT_RECORD_CONTEXT) {
759 context->auditable = 1;
760 goto get_context;
763 state = audit_filter_inodes(tsk, context);
764 if (state == AUDIT_RECORD_CONTEXT)
765 context->auditable = 1;
769 get_context:
771 tsk->audit_context = NULL;
772 return context;
775 static inline void audit_free_names(struct audit_context *context)
777 int i;
779 #if AUDIT_DEBUG == 2
780 if (context->auditable
781 ||context->put_count + context->ino_count != context->name_count) {
782 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
783 " name_count=%d put_count=%d"
784 " ino_count=%d [NOT freeing]\n",
785 __FILE__, __LINE__,
786 context->serial, context->major, context->in_syscall,
787 context->name_count, context->put_count,
788 context->ino_count);
789 for (i = 0; i < context->name_count; i++) {
790 printk(KERN_ERR "names[%d] = %p = %s\n", i,
791 context->names[i].name,
792 context->names[i].name ?: "(null)");
794 dump_stack();
795 return;
797 #endif
798 #if AUDIT_DEBUG
799 context->put_count = 0;
800 context->ino_count = 0;
801 #endif
803 for (i = 0; i < context->name_count; i++) {
804 if (context->names[i].name && context->names[i].name_put)
805 __putname(context->names[i].name);
807 context->name_count = 0;
808 path_put(&context->pwd);
809 context->pwd.dentry = NULL;
810 context->pwd.mnt = NULL;
813 static inline void audit_free_aux(struct audit_context *context)
815 struct audit_aux_data *aux;
817 while ((aux = context->aux)) {
818 context->aux = aux->next;
819 kfree(aux);
821 while ((aux = context->aux_pids)) {
822 context->aux_pids = aux->next;
823 kfree(aux);
827 static inline void audit_zero_context(struct audit_context *context,
828 enum audit_state state)
830 memset(context, 0, sizeof(*context));
831 context->state = state;
834 static inline struct audit_context *audit_alloc_context(enum audit_state state)
836 struct audit_context *context;
838 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
839 return NULL;
840 audit_zero_context(context, state);
841 return context;
845 * audit_alloc - allocate an audit context block for a task
846 * @tsk: task
848 * Filter on the task information and allocate a per-task audit context
849 * if necessary. Doing so turns on system call auditing for the
850 * specified task. This is called from copy_process, so no lock is
851 * needed.
853 int audit_alloc(struct task_struct *tsk)
855 struct audit_context *context;
856 enum audit_state state;
858 if (likely(!audit_ever_enabled))
859 return 0; /* Return if not auditing. */
861 state = audit_filter_task(tsk);
862 if (likely(state == AUDIT_DISABLED))
863 return 0;
865 if (!(context = audit_alloc_context(state))) {
866 audit_log_lost("out of memory in audit_alloc");
867 return -ENOMEM;
870 tsk->audit_context = context;
871 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
872 return 0;
875 static inline void audit_free_context(struct audit_context *context)
877 struct audit_context *previous;
878 int count = 0;
880 do {
881 previous = context->previous;
882 if (previous || (count && count < 10)) {
883 ++count;
884 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
885 " freeing multiple contexts (%d)\n",
886 context->serial, context->major,
887 context->name_count, count);
889 audit_free_names(context);
890 unroll_tree_refs(context, NULL, 0);
891 free_tree_refs(context);
892 audit_free_aux(context);
893 kfree(context->filterkey);
894 kfree(context);
895 context = previous;
896 } while (context);
897 if (count >= 10)
898 printk(KERN_ERR "audit: freed %d contexts\n", count);
901 void audit_log_task_context(struct audit_buffer *ab)
903 char *ctx = NULL;
904 unsigned len;
905 int error;
906 u32 sid;
908 security_task_getsecid(current, &sid);
909 if (!sid)
910 return;
912 error = security_secid_to_secctx(sid, &ctx, &len);
913 if (error) {
914 if (error != -EINVAL)
915 goto error_path;
916 return;
919 audit_log_format(ab, " subj=%s", ctx);
920 security_release_secctx(ctx, len);
921 return;
923 error_path:
924 audit_panic("error in audit_log_task_context");
925 return;
928 EXPORT_SYMBOL(audit_log_task_context);
930 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
932 char name[sizeof(tsk->comm)];
933 struct mm_struct *mm = tsk->mm;
934 struct vm_area_struct *vma;
936 /* tsk == current */
938 get_task_comm(name, tsk);
939 audit_log_format(ab, " comm=");
940 audit_log_untrustedstring(ab, name);
942 if (mm) {
943 down_read(&mm->mmap_sem);
944 vma = mm->mmap;
945 while (vma) {
946 if ((vma->vm_flags & VM_EXECUTABLE) &&
947 vma->vm_file) {
948 audit_log_d_path(ab, "exe=",
949 &vma->vm_file->f_path);
950 break;
952 vma = vma->vm_next;
954 up_read(&mm->mmap_sem);
956 audit_log_task_context(ab);
959 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
960 uid_t auid, uid_t uid, unsigned int sessionid,
961 u32 sid, char *comm)
963 struct audit_buffer *ab;
964 char *ctx = NULL;
965 u32 len;
966 int rc = 0;
968 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
969 if (!ab)
970 return rc;
972 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
973 uid, sessionid);
974 if (security_secid_to_secctx(sid, &ctx, &len)) {
975 audit_log_format(ab, " obj=(none)");
976 rc = 1;
977 } else {
978 audit_log_format(ab, " obj=%s", ctx);
979 security_release_secctx(ctx, len);
981 audit_log_format(ab, " ocomm=");
982 audit_log_untrustedstring(ab, comm);
983 audit_log_end(ab);
985 return rc;
989 * to_send and len_sent accounting are very loose estimates. We aren't
990 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
991 * within about 500 bytes (next page boundry)
993 * why snprintf? an int is up to 12 digits long. if we just assumed when
994 * logging that a[%d]= was going to be 16 characters long we would be wasting
995 * space in every audit message. In one 7500 byte message we can log up to
996 * about 1000 min size arguments. That comes down to about 50% waste of space
997 * if we didn't do the snprintf to find out how long arg_num_len was.
999 static int audit_log_single_execve_arg(struct audit_context *context,
1000 struct audit_buffer **ab,
1001 int arg_num,
1002 size_t *len_sent,
1003 const char __user *p,
1004 char *buf)
1006 char arg_num_len_buf[12];
1007 const char __user *tmp_p = p;
1008 /* how many digits are in arg_num? 3 is the length of a=\n */
1009 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1010 size_t len, len_left, to_send;
1011 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1012 unsigned int i, has_cntl = 0, too_long = 0;
1013 int ret;
1015 /* strnlen_user includes the null we don't want to send */
1016 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1019 * We just created this mm, if we can't find the strings
1020 * we just copied into it something is _very_ wrong. Similar
1021 * for strings that are too long, we should not have created
1022 * any.
1024 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1025 WARN_ON(1);
1026 send_sig(SIGKILL, current, 0);
1027 return -1;
1030 /* walk the whole argument looking for non-ascii chars */
1031 do {
1032 if (len_left > MAX_EXECVE_AUDIT_LEN)
1033 to_send = MAX_EXECVE_AUDIT_LEN;
1034 else
1035 to_send = len_left;
1036 ret = copy_from_user(buf, tmp_p, to_send);
1038 * There is no reason for this copy to be short. We just
1039 * copied them here, and the mm hasn't been exposed to user-
1040 * space yet.
1042 if (ret) {
1043 WARN_ON(1);
1044 send_sig(SIGKILL, current, 0);
1045 return -1;
1047 buf[to_send] = '\0';
1048 has_cntl = audit_string_contains_control(buf, to_send);
1049 if (has_cntl) {
1051 * hex messages get logged as 2 bytes, so we can only
1052 * send half as much in each message
1054 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1055 break;
1057 len_left -= to_send;
1058 tmp_p += to_send;
1059 } while (len_left > 0);
1061 len_left = len;
1063 if (len > max_execve_audit_len)
1064 too_long = 1;
1066 /* rewalk the argument actually logging the message */
1067 for (i = 0; len_left > 0; i++) {
1068 int room_left;
1070 if (len_left > max_execve_audit_len)
1071 to_send = max_execve_audit_len;
1072 else
1073 to_send = len_left;
1075 /* do we have space left to send this argument in this ab? */
1076 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1077 if (has_cntl)
1078 room_left -= (to_send * 2);
1079 else
1080 room_left -= to_send;
1081 if (room_left < 0) {
1082 *len_sent = 0;
1083 audit_log_end(*ab);
1084 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1085 if (!*ab)
1086 return 0;
1090 * first record needs to say how long the original string was
1091 * so we can be sure nothing was lost.
1093 if ((i == 0) && (too_long))
1094 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1095 has_cntl ? 2*len : len);
1098 * normally arguments are small enough to fit and we already
1099 * filled buf above when we checked for control characters
1100 * so don't bother with another copy_from_user
1102 if (len >= max_execve_audit_len)
1103 ret = copy_from_user(buf, p, to_send);
1104 else
1105 ret = 0;
1106 if (ret) {
1107 WARN_ON(1);
1108 send_sig(SIGKILL, current, 0);
1109 return -1;
1111 buf[to_send] = '\0';
1113 /* actually log it */
1114 audit_log_format(*ab, "a%d", arg_num);
1115 if (too_long)
1116 audit_log_format(*ab, "[%d]", i);
1117 audit_log_format(*ab, "=");
1118 if (has_cntl)
1119 audit_log_n_hex(*ab, buf, to_send);
1120 else
1121 audit_log_format(*ab, "\"%s\"", buf);
1122 audit_log_format(*ab, "\n");
1124 p += to_send;
1125 len_left -= to_send;
1126 *len_sent += arg_num_len;
1127 if (has_cntl)
1128 *len_sent += to_send * 2;
1129 else
1130 *len_sent += to_send;
1132 /* include the null we didn't log */
1133 return len + 1;
1136 static void audit_log_execve_info(struct audit_context *context,
1137 struct audit_buffer **ab,
1138 struct audit_aux_data_execve *axi)
1140 int i;
1141 size_t len, len_sent = 0;
1142 const char __user *p;
1143 char *buf;
1145 if (axi->mm != current->mm)
1146 return; /* execve failed, no additional info */
1148 p = (const char __user *)axi->mm->arg_start;
1150 audit_log_format(*ab, "argc=%d ", axi->argc);
1153 * we need some kernel buffer to hold the userspace args. Just
1154 * allocate one big one rather than allocating one of the right size
1155 * for every single argument inside audit_log_single_execve_arg()
1156 * should be <8k allocation so should be pretty safe.
1158 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1159 if (!buf) {
1160 audit_panic("out of memory for argv string\n");
1161 return;
1164 for (i = 0; i < axi->argc; i++) {
1165 len = audit_log_single_execve_arg(context, ab, i,
1166 &len_sent, p, buf);
1167 if (len <= 0)
1168 break;
1169 p += len;
1171 kfree(buf);
1174 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1176 int i, call_panic = 0;
1177 struct audit_buffer *ab;
1178 struct audit_aux_data *aux;
1179 const char *tty;
1181 /* tsk == current */
1182 context->pid = tsk->pid;
1183 if (!context->ppid)
1184 context->ppid = sys_getppid();
1185 context->uid = tsk->uid;
1186 context->gid = tsk->gid;
1187 context->euid = tsk->euid;
1188 context->suid = tsk->suid;
1189 context->fsuid = tsk->fsuid;
1190 context->egid = tsk->egid;
1191 context->sgid = tsk->sgid;
1192 context->fsgid = tsk->fsgid;
1193 context->personality = tsk->personality;
1195 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1196 if (!ab)
1197 return; /* audit_panic has been called */
1198 audit_log_format(ab, "arch=%x syscall=%d",
1199 context->arch, context->major);
1200 if (context->personality != PER_LINUX)
1201 audit_log_format(ab, " per=%lx", context->personality);
1202 if (context->return_valid)
1203 audit_log_format(ab, " success=%s exit=%ld",
1204 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1205 context->return_code);
1207 spin_lock_irq(&tsk->sighand->siglock);
1208 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1209 tty = tsk->signal->tty->name;
1210 else
1211 tty = "(none)";
1212 spin_unlock_irq(&tsk->sighand->siglock);
1214 audit_log_format(ab,
1215 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1216 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1217 " euid=%u suid=%u fsuid=%u"
1218 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1219 context->argv[0],
1220 context->argv[1],
1221 context->argv[2],
1222 context->argv[3],
1223 context->name_count,
1224 context->ppid,
1225 context->pid,
1226 tsk->loginuid,
1227 context->uid,
1228 context->gid,
1229 context->euid, context->suid, context->fsuid,
1230 context->egid, context->sgid, context->fsgid, tty,
1231 tsk->sessionid);
1234 audit_log_task_info(ab, tsk);
1235 if (context->filterkey) {
1236 audit_log_format(ab, " key=");
1237 audit_log_untrustedstring(ab, context->filterkey);
1238 } else
1239 audit_log_format(ab, " key=(null)");
1240 audit_log_end(ab);
1242 for (aux = context->aux; aux; aux = aux->next) {
1244 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1245 if (!ab)
1246 continue; /* audit_panic has been called */
1248 switch (aux->type) {
1249 case AUDIT_MQ_OPEN: {
1250 struct audit_aux_data_mq_open *axi = (void *)aux;
1251 audit_log_format(ab,
1252 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1253 "mq_msgsize=%ld mq_curmsgs=%ld",
1254 axi->oflag, axi->mode, axi->attr.mq_flags,
1255 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1256 axi->attr.mq_curmsgs);
1257 break; }
1259 case AUDIT_MQ_SENDRECV: {
1260 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1261 audit_log_format(ab,
1262 "mqdes=%d msg_len=%zd msg_prio=%u "
1263 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1264 axi->mqdes, axi->msg_len, axi->msg_prio,
1265 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1266 break; }
1268 case AUDIT_MQ_NOTIFY: {
1269 struct audit_aux_data_mq_notify *axi = (void *)aux;
1270 audit_log_format(ab,
1271 "mqdes=%d sigev_signo=%d",
1272 axi->mqdes,
1273 axi->notification.sigev_signo);
1274 break; }
1276 case AUDIT_MQ_GETSETATTR: {
1277 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1278 audit_log_format(ab,
1279 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1280 "mq_curmsgs=%ld ",
1281 axi->mqdes,
1282 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1283 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1284 break; }
1286 case AUDIT_IPC: {
1287 struct audit_aux_data_ipcctl *axi = (void *)aux;
1288 audit_log_format(ab,
1289 "ouid=%u ogid=%u mode=%#o",
1290 axi->uid, axi->gid, axi->mode);
1291 if (axi->osid != 0) {
1292 char *ctx = NULL;
1293 u32 len;
1294 if (security_secid_to_secctx(
1295 axi->osid, &ctx, &len)) {
1296 audit_log_format(ab, " osid=%u",
1297 axi->osid);
1298 call_panic = 1;
1299 } else {
1300 audit_log_format(ab, " obj=%s", ctx);
1301 security_release_secctx(ctx, len);
1304 break; }
1306 case AUDIT_IPC_SET_PERM: {
1307 struct audit_aux_data_ipcctl *axi = (void *)aux;
1308 audit_log_format(ab,
1309 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1310 axi->qbytes, axi->uid, axi->gid, axi->mode);
1311 break; }
1313 case AUDIT_EXECVE: {
1314 struct audit_aux_data_execve *axi = (void *)aux;
1315 audit_log_execve_info(context, &ab, axi);
1316 break; }
1318 case AUDIT_SOCKETCALL: {
1319 struct audit_aux_data_socketcall *axs = (void *)aux;
1320 audit_log_format(ab, "nargs=%d", axs->nargs);
1321 for (i=0; i<axs->nargs; i++)
1322 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1323 break; }
1325 case AUDIT_SOCKADDR: {
1326 struct audit_aux_data_sockaddr *axs = (void *)aux;
1328 audit_log_format(ab, "saddr=");
1329 audit_log_n_hex(ab, axs->a, axs->len);
1330 break; }
1332 case AUDIT_FD_PAIR: {
1333 struct audit_aux_data_fd_pair *axs = (void *)aux;
1334 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1335 break; }
1338 audit_log_end(ab);
1341 for (aux = context->aux_pids; aux; aux = aux->next) {
1342 struct audit_aux_data_pids *axs = (void *)aux;
1344 for (i = 0; i < axs->pid_count; i++)
1345 if (audit_log_pid_context(context, axs->target_pid[i],
1346 axs->target_auid[i],
1347 axs->target_uid[i],
1348 axs->target_sessionid[i],
1349 axs->target_sid[i],
1350 axs->target_comm[i]))
1351 call_panic = 1;
1354 if (context->target_pid &&
1355 audit_log_pid_context(context, context->target_pid,
1356 context->target_auid, context->target_uid,
1357 context->target_sessionid,
1358 context->target_sid, context->target_comm))
1359 call_panic = 1;
1361 if (context->pwd.dentry && context->pwd.mnt) {
1362 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1363 if (ab) {
1364 audit_log_d_path(ab, "cwd=", &context->pwd);
1365 audit_log_end(ab);
1368 for (i = 0; i < context->name_count; i++) {
1369 struct audit_names *n = &context->names[i];
1371 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1372 if (!ab)
1373 continue; /* audit_panic has been called */
1375 audit_log_format(ab, "item=%d", i);
1377 if (n->name) {
1378 switch(n->name_len) {
1379 case AUDIT_NAME_FULL:
1380 /* log the full path */
1381 audit_log_format(ab, " name=");
1382 audit_log_untrustedstring(ab, n->name);
1383 break;
1384 case 0:
1385 /* name was specified as a relative path and the
1386 * directory component is the cwd */
1387 audit_log_d_path(ab, " name=", &context->pwd);
1388 break;
1389 default:
1390 /* log the name's directory component */
1391 audit_log_format(ab, " name=");
1392 audit_log_n_untrustedstring(ab, n->name,
1393 n->name_len);
1395 } else
1396 audit_log_format(ab, " name=(null)");
1398 if (n->ino != (unsigned long)-1) {
1399 audit_log_format(ab, " inode=%lu"
1400 " dev=%02x:%02x mode=%#o"
1401 " ouid=%u ogid=%u rdev=%02x:%02x",
1402 n->ino,
1403 MAJOR(n->dev),
1404 MINOR(n->dev),
1405 n->mode,
1406 n->uid,
1407 n->gid,
1408 MAJOR(n->rdev),
1409 MINOR(n->rdev));
1411 if (n->osid != 0) {
1412 char *ctx = NULL;
1413 u32 len;
1414 if (security_secid_to_secctx(
1415 n->osid, &ctx, &len)) {
1416 audit_log_format(ab, " osid=%u", n->osid);
1417 call_panic = 2;
1418 } else {
1419 audit_log_format(ab, " obj=%s", ctx);
1420 security_release_secctx(ctx, len);
1424 audit_log_end(ab);
1427 /* Send end of event record to help user space know we are finished */
1428 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1429 if (ab)
1430 audit_log_end(ab);
1431 if (call_panic)
1432 audit_panic("error converting sid to string");
1436 * audit_free - free a per-task audit context
1437 * @tsk: task whose audit context block to free
1439 * Called from copy_process and do_exit
1441 void audit_free(struct task_struct *tsk)
1443 struct audit_context *context;
1445 context = audit_get_context(tsk, 0, 0);
1446 if (likely(!context))
1447 return;
1449 /* Check for system calls that do not go through the exit
1450 * function (e.g., exit_group), then free context block.
1451 * We use GFP_ATOMIC here because we might be doing this
1452 * in the context of the idle thread */
1453 /* that can happen only if we are called from do_exit() */
1454 if (context->in_syscall && context->auditable)
1455 audit_log_exit(context, tsk);
1457 audit_free_context(context);
1461 * audit_syscall_entry - fill in an audit record at syscall entry
1462 * @tsk: task being audited
1463 * @arch: architecture type
1464 * @major: major syscall type (function)
1465 * @a1: additional syscall register 1
1466 * @a2: additional syscall register 2
1467 * @a3: additional syscall register 3
1468 * @a4: additional syscall register 4
1470 * Fill in audit context at syscall entry. This only happens if the
1471 * audit context was created when the task was created and the state or
1472 * filters demand the audit context be built. If the state from the
1473 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1474 * then the record will be written at syscall exit time (otherwise, it
1475 * will only be written if another part of the kernel requests that it
1476 * be written).
1478 void audit_syscall_entry(int arch, int major,
1479 unsigned long a1, unsigned long a2,
1480 unsigned long a3, unsigned long a4)
1482 struct task_struct *tsk = current;
1483 struct audit_context *context = tsk->audit_context;
1484 enum audit_state state;
1486 if (unlikely(!context))
1487 return;
1490 * This happens only on certain architectures that make system
1491 * calls in kernel_thread via the entry.S interface, instead of
1492 * with direct calls. (If you are porting to a new
1493 * architecture, hitting this condition can indicate that you
1494 * got the _exit/_leave calls backward in entry.S.)
1496 * i386 no
1497 * x86_64 no
1498 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1500 * This also happens with vm86 emulation in a non-nested manner
1501 * (entries without exits), so this case must be caught.
1503 if (context->in_syscall) {
1504 struct audit_context *newctx;
1506 #if AUDIT_DEBUG
1507 printk(KERN_ERR
1508 "audit(:%d) pid=%d in syscall=%d;"
1509 " entering syscall=%d\n",
1510 context->serial, tsk->pid, context->major, major);
1511 #endif
1512 newctx = audit_alloc_context(context->state);
1513 if (newctx) {
1514 newctx->previous = context;
1515 context = newctx;
1516 tsk->audit_context = newctx;
1517 } else {
1518 /* If we can't alloc a new context, the best we
1519 * can do is to leak memory (any pending putname
1520 * will be lost). The only other alternative is
1521 * to abandon auditing. */
1522 audit_zero_context(context, context->state);
1525 BUG_ON(context->in_syscall || context->name_count);
1527 if (!audit_enabled)
1528 return;
1530 context->arch = arch;
1531 context->major = major;
1532 context->argv[0] = a1;
1533 context->argv[1] = a2;
1534 context->argv[2] = a3;
1535 context->argv[3] = a4;
1537 state = context->state;
1538 context->dummy = !audit_n_rules;
1539 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1540 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1541 if (likely(state == AUDIT_DISABLED))
1542 return;
1544 context->serial = 0;
1545 context->ctime = CURRENT_TIME;
1546 context->in_syscall = 1;
1547 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1548 context->ppid = 0;
1552 * audit_syscall_exit - deallocate audit context after a system call
1553 * @tsk: task being audited
1554 * @valid: success/failure flag
1555 * @return_code: syscall return value
1557 * Tear down after system call. If the audit context has been marked as
1558 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1559 * filtering, or because some other part of the kernel write an audit
1560 * message), then write out the syscall information. In call cases,
1561 * free the names stored from getname().
1563 void audit_syscall_exit(int valid, long return_code)
1565 struct task_struct *tsk = current;
1566 struct audit_context *context;
1568 context = audit_get_context(tsk, valid, return_code);
1570 if (likely(!context))
1571 return;
1573 if (context->in_syscall && context->auditable)
1574 audit_log_exit(context, tsk);
1576 context->in_syscall = 0;
1577 context->auditable = 0;
1579 if (context->previous) {
1580 struct audit_context *new_context = context->previous;
1581 context->previous = NULL;
1582 audit_free_context(context);
1583 tsk->audit_context = new_context;
1584 } else {
1585 audit_free_names(context);
1586 unroll_tree_refs(context, NULL, 0);
1587 audit_free_aux(context);
1588 context->aux = NULL;
1589 context->aux_pids = NULL;
1590 context->target_pid = 0;
1591 context->target_sid = 0;
1592 kfree(context->filterkey);
1593 context->filterkey = NULL;
1594 tsk->audit_context = context;
1598 static inline void handle_one(const struct inode *inode)
1600 #ifdef CONFIG_AUDIT_TREE
1601 struct audit_context *context;
1602 struct audit_tree_refs *p;
1603 struct audit_chunk *chunk;
1604 int count;
1605 if (likely(list_empty(&inode->inotify_watches)))
1606 return;
1607 context = current->audit_context;
1608 p = context->trees;
1609 count = context->tree_count;
1610 rcu_read_lock();
1611 chunk = audit_tree_lookup(inode);
1612 rcu_read_unlock();
1613 if (!chunk)
1614 return;
1615 if (likely(put_tree_ref(context, chunk)))
1616 return;
1617 if (unlikely(!grow_tree_refs(context))) {
1618 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1619 audit_set_auditable(context);
1620 audit_put_chunk(chunk);
1621 unroll_tree_refs(context, p, count);
1622 return;
1624 put_tree_ref(context, chunk);
1625 #endif
1628 static void handle_path(const struct dentry *dentry)
1630 #ifdef CONFIG_AUDIT_TREE
1631 struct audit_context *context;
1632 struct audit_tree_refs *p;
1633 const struct dentry *d, *parent;
1634 struct audit_chunk *drop;
1635 unsigned long seq;
1636 int count;
1638 context = current->audit_context;
1639 p = context->trees;
1640 count = context->tree_count;
1641 retry:
1642 drop = NULL;
1643 d = dentry;
1644 rcu_read_lock();
1645 seq = read_seqbegin(&rename_lock);
1646 for(;;) {
1647 struct inode *inode = d->d_inode;
1648 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1649 struct audit_chunk *chunk;
1650 chunk = audit_tree_lookup(inode);
1651 if (chunk) {
1652 if (unlikely(!put_tree_ref(context, chunk))) {
1653 drop = chunk;
1654 break;
1658 parent = d->d_parent;
1659 if (parent == d)
1660 break;
1661 d = parent;
1663 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1664 rcu_read_unlock();
1665 if (!drop) {
1666 /* just a race with rename */
1667 unroll_tree_refs(context, p, count);
1668 goto retry;
1670 audit_put_chunk(drop);
1671 if (grow_tree_refs(context)) {
1672 /* OK, got more space */
1673 unroll_tree_refs(context, p, count);
1674 goto retry;
1676 /* too bad */
1677 printk(KERN_WARNING
1678 "out of memory, audit has lost a tree reference\n");
1679 unroll_tree_refs(context, p, count);
1680 audit_set_auditable(context);
1681 return;
1683 rcu_read_unlock();
1684 #endif
1688 * audit_getname - add a name to the list
1689 * @name: name to add
1691 * Add a name to the list of audit names for this context.
1692 * Called from fs/namei.c:getname().
1694 void __audit_getname(const char *name)
1696 struct audit_context *context = current->audit_context;
1698 if (IS_ERR(name) || !name)
1699 return;
1701 if (!context->in_syscall) {
1702 #if AUDIT_DEBUG == 2
1703 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1704 __FILE__, __LINE__, context->serial, name);
1705 dump_stack();
1706 #endif
1707 return;
1709 BUG_ON(context->name_count >= AUDIT_NAMES);
1710 context->names[context->name_count].name = name;
1711 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1712 context->names[context->name_count].name_put = 1;
1713 context->names[context->name_count].ino = (unsigned long)-1;
1714 context->names[context->name_count].osid = 0;
1715 ++context->name_count;
1716 if (!context->pwd.dentry) {
1717 read_lock(&current->fs->lock);
1718 context->pwd = current->fs->pwd;
1719 path_get(&current->fs->pwd);
1720 read_unlock(&current->fs->lock);
1725 /* audit_putname - intercept a putname request
1726 * @name: name to intercept and delay for putname
1728 * If we have stored the name from getname in the audit context,
1729 * then we delay the putname until syscall exit.
1730 * Called from include/linux/fs.h:putname().
1732 void audit_putname(const char *name)
1734 struct audit_context *context = current->audit_context;
1736 BUG_ON(!context);
1737 if (!context->in_syscall) {
1738 #if AUDIT_DEBUG == 2
1739 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1740 __FILE__, __LINE__, context->serial, name);
1741 if (context->name_count) {
1742 int i;
1743 for (i = 0; i < context->name_count; i++)
1744 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1745 context->names[i].name,
1746 context->names[i].name ?: "(null)");
1748 #endif
1749 __putname(name);
1751 #if AUDIT_DEBUG
1752 else {
1753 ++context->put_count;
1754 if (context->put_count > context->name_count) {
1755 printk(KERN_ERR "%s:%d(:%d): major=%d"
1756 " in_syscall=%d putname(%p) name_count=%d"
1757 " put_count=%d\n",
1758 __FILE__, __LINE__,
1759 context->serial, context->major,
1760 context->in_syscall, name, context->name_count,
1761 context->put_count);
1762 dump_stack();
1765 #endif
1768 static int audit_inc_name_count(struct audit_context *context,
1769 const struct inode *inode)
1771 if (context->name_count >= AUDIT_NAMES) {
1772 if (inode)
1773 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1774 "dev=%02x:%02x, inode=%lu\n",
1775 MAJOR(inode->i_sb->s_dev),
1776 MINOR(inode->i_sb->s_dev),
1777 inode->i_ino);
1779 else
1780 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1781 return 1;
1783 context->name_count++;
1784 #if AUDIT_DEBUG
1785 context->ino_count++;
1786 #endif
1787 return 0;
1790 /* Copy inode data into an audit_names. */
1791 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1793 name->ino = inode->i_ino;
1794 name->dev = inode->i_sb->s_dev;
1795 name->mode = inode->i_mode;
1796 name->uid = inode->i_uid;
1797 name->gid = inode->i_gid;
1798 name->rdev = inode->i_rdev;
1799 security_inode_getsecid(inode, &name->osid);
1803 * audit_inode - store the inode and device from a lookup
1804 * @name: name being audited
1805 * @dentry: dentry being audited
1807 * Called from fs/namei.c:path_lookup().
1809 void __audit_inode(const char *name, const struct dentry *dentry)
1811 int idx;
1812 struct audit_context *context = current->audit_context;
1813 const struct inode *inode = dentry->d_inode;
1815 if (!context->in_syscall)
1816 return;
1817 if (context->name_count
1818 && context->names[context->name_count-1].name
1819 && context->names[context->name_count-1].name == name)
1820 idx = context->name_count - 1;
1821 else if (context->name_count > 1
1822 && context->names[context->name_count-2].name
1823 && context->names[context->name_count-2].name == name)
1824 idx = context->name_count - 2;
1825 else {
1826 /* FIXME: how much do we care about inodes that have no
1827 * associated name? */
1828 if (audit_inc_name_count(context, inode))
1829 return;
1830 idx = context->name_count - 1;
1831 context->names[idx].name = NULL;
1833 handle_path(dentry);
1834 audit_copy_inode(&context->names[idx], inode);
1838 * audit_inode_child - collect inode info for created/removed objects
1839 * @dname: inode's dentry name
1840 * @dentry: dentry being audited
1841 * @parent: inode of dentry parent
1843 * For syscalls that create or remove filesystem objects, audit_inode
1844 * can only collect information for the filesystem object's parent.
1845 * This call updates the audit context with the child's information.
1846 * Syscalls that create a new filesystem object must be hooked after
1847 * the object is created. Syscalls that remove a filesystem object
1848 * must be hooked prior, in order to capture the target inode during
1849 * unsuccessful attempts.
1851 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1852 const struct inode *parent)
1854 int idx;
1855 struct audit_context *context = current->audit_context;
1856 const char *found_parent = NULL, *found_child = NULL;
1857 const struct inode *inode = dentry->d_inode;
1858 int dirlen = 0;
1860 if (!context->in_syscall)
1861 return;
1863 if (inode)
1864 handle_one(inode);
1865 /* determine matching parent */
1866 if (!dname)
1867 goto add_names;
1869 /* parent is more likely, look for it first */
1870 for (idx = 0; idx < context->name_count; idx++) {
1871 struct audit_names *n = &context->names[idx];
1873 if (!n->name)
1874 continue;
1876 if (n->ino == parent->i_ino &&
1877 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1878 n->name_len = dirlen; /* update parent data in place */
1879 found_parent = n->name;
1880 goto add_names;
1884 /* no matching parent, look for matching child */
1885 for (idx = 0; idx < context->name_count; idx++) {
1886 struct audit_names *n = &context->names[idx];
1888 if (!n->name)
1889 continue;
1891 /* strcmp() is the more likely scenario */
1892 if (!strcmp(dname, n->name) ||
1893 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1894 if (inode)
1895 audit_copy_inode(n, inode);
1896 else
1897 n->ino = (unsigned long)-1;
1898 found_child = n->name;
1899 goto add_names;
1903 add_names:
1904 if (!found_parent) {
1905 if (audit_inc_name_count(context, parent))
1906 return;
1907 idx = context->name_count - 1;
1908 context->names[idx].name = NULL;
1909 audit_copy_inode(&context->names[idx], parent);
1912 if (!found_child) {
1913 if (audit_inc_name_count(context, inode))
1914 return;
1915 idx = context->name_count - 1;
1917 /* Re-use the name belonging to the slot for a matching parent
1918 * directory. All names for this context are relinquished in
1919 * audit_free_names() */
1920 if (found_parent) {
1921 context->names[idx].name = found_parent;
1922 context->names[idx].name_len = AUDIT_NAME_FULL;
1923 /* don't call __putname() */
1924 context->names[idx].name_put = 0;
1925 } else {
1926 context->names[idx].name = NULL;
1929 if (inode)
1930 audit_copy_inode(&context->names[idx], inode);
1931 else
1932 context->names[idx].ino = (unsigned long)-1;
1935 EXPORT_SYMBOL_GPL(__audit_inode_child);
1938 * auditsc_get_stamp - get local copies of audit_context values
1939 * @ctx: audit_context for the task
1940 * @t: timespec to store time recorded in the audit_context
1941 * @serial: serial value that is recorded in the audit_context
1943 * Also sets the context as auditable.
1945 void auditsc_get_stamp(struct audit_context *ctx,
1946 struct timespec *t, unsigned int *serial)
1948 if (!ctx->serial)
1949 ctx->serial = audit_serial();
1950 t->tv_sec = ctx->ctime.tv_sec;
1951 t->tv_nsec = ctx->ctime.tv_nsec;
1952 *serial = ctx->serial;
1953 ctx->auditable = 1;
1956 /* global counter which is incremented every time something logs in */
1957 static atomic_t session_id = ATOMIC_INIT(0);
1960 * audit_set_loginuid - set a task's audit_context loginuid
1961 * @task: task whose audit context is being modified
1962 * @loginuid: loginuid value
1964 * Returns 0.
1966 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1968 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1970 unsigned int sessionid = atomic_inc_return(&session_id);
1971 struct audit_context *context = task->audit_context;
1973 if (context && context->in_syscall) {
1974 struct audit_buffer *ab;
1976 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1977 if (ab) {
1978 audit_log_format(ab, "login pid=%d uid=%u "
1979 "old auid=%u new auid=%u"
1980 " old ses=%u new ses=%u",
1981 task->pid, task->uid,
1982 task->loginuid, loginuid,
1983 task->sessionid, sessionid);
1984 audit_log_end(ab);
1987 task->sessionid = sessionid;
1988 task->loginuid = loginuid;
1989 return 0;
1993 * __audit_mq_open - record audit data for a POSIX MQ open
1994 * @oflag: open flag
1995 * @mode: mode bits
1996 * @u_attr: queue attributes
1998 * Returns 0 for success or NULL context or < 0 on error.
2000 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2002 struct audit_aux_data_mq_open *ax;
2003 struct audit_context *context = current->audit_context;
2005 if (!audit_enabled)
2006 return 0;
2008 if (likely(!context))
2009 return 0;
2011 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2012 if (!ax)
2013 return -ENOMEM;
2015 if (u_attr != NULL) {
2016 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2017 kfree(ax);
2018 return -EFAULT;
2020 } else
2021 memset(&ax->attr, 0, sizeof(ax->attr));
2023 ax->oflag = oflag;
2024 ax->mode = mode;
2026 ax->d.type = AUDIT_MQ_OPEN;
2027 ax->d.next = context->aux;
2028 context->aux = (void *)ax;
2029 return 0;
2033 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2034 * @mqdes: MQ descriptor
2035 * @msg_len: Message length
2036 * @msg_prio: Message priority
2037 * @u_abs_timeout: Message timeout in absolute time
2039 * Returns 0 for success or NULL context or < 0 on error.
2041 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2042 const struct timespec __user *u_abs_timeout)
2044 struct audit_aux_data_mq_sendrecv *ax;
2045 struct audit_context *context = current->audit_context;
2047 if (!audit_enabled)
2048 return 0;
2050 if (likely(!context))
2051 return 0;
2053 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2054 if (!ax)
2055 return -ENOMEM;
2057 if (u_abs_timeout != NULL) {
2058 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2059 kfree(ax);
2060 return -EFAULT;
2062 } else
2063 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2065 ax->mqdes = mqdes;
2066 ax->msg_len = msg_len;
2067 ax->msg_prio = msg_prio;
2069 ax->d.type = AUDIT_MQ_SENDRECV;
2070 ax->d.next = context->aux;
2071 context->aux = (void *)ax;
2072 return 0;
2076 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2077 * @mqdes: MQ descriptor
2078 * @msg_len: Message length
2079 * @u_msg_prio: Message priority
2080 * @u_abs_timeout: Message timeout in absolute time
2082 * Returns 0 for success or NULL context or < 0 on error.
2084 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2085 unsigned int __user *u_msg_prio,
2086 const struct timespec __user *u_abs_timeout)
2088 struct audit_aux_data_mq_sendrecv *ax;
2089 struct audit_context *context = current->audit_context;
2091 if (!audit_enabled)
2092 return 0;
2094 if (likely(!context))
2095 return 0;
2097 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2098 if (!ax)
2099 return -ENOMEM;
2101 if (u_msg_prio != NULL) {
2102 if (get_user(ax->msg_prio, u_msg_prio)) {
2103 kfree(ax);
2104 return -EFAULT;
2106 } else
2107 ax->msg_prio = 0;
2109 if (u_abs_timeout != NULL) {
2110 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2111 kfree(ax);
2112 return -EFAULT;
2114 } else
2115 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2117 ax->mqdes = mqdes;
2118 ax->msg_len = msg_len;
2120 ax->d.type = AUDIT_MQ_SENDRECV;
2121 ax->d.next = context->aux;
2122 context->aux = (void *)ax;
2123 return 0;
2127 * __audit_mq_notify - record audit data for a POSIX MQ notify
2128 * @mqdes: MQ descriptor
2129 * @u_notification: Notification event
2131 * Returns 0 for success or NULL context or < 0 on error.
2134 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2136 struct audit_aux_data_mq_notify *ax;
2137 struct audit_context *context = current->audit_context;
2139 if (!audit_enabled)
2140 return 0;
2142 if (likely(!context))
2143 return 0;
2145 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2146 if (!ax)
2147 return -ENOMEM;
2149 if (u_notification != NULL) {
2150 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2151 kfree(ax);
2152 return -EFAULT;
2154 } else
2155 memset(&ax->notification, 0, sizeof(ax->notification));
2157 ax->mqdes = mqdes;
2159 ax->d.type = AUDIT_MQ_NOTIFY;
2160 ax->d.next = context->aux;
2161 context->aux = (void *)ax;
2162 return 0;
2166 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2167 * @mqdes: MQ descriptor
2168 * @mqstat: MQ flags
2170 * Returns 0 for success or NULL context or < 0 on error.
2172 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2174 struct audit_aux_data_mq_getsetattr *ax;
2175 struct audit_context *context = current->audit_context;
2177 if (!audit_enabled)
2178 return 0;
2180 if (likely(!context))
2181 return 0;
2183 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2184 if (!ax)
2185 return -ENOMEM;
2187 ax->mqdes = mqdes;
2188 ax->mqstat = *mqstat;
2190 ax->d.type = AUDIT_MQ_GETSETATTR;
2191 ax->d.next = context->aux;
2192 context->aux = (void *)ax;
2193 return 0;
2197 * audit_ipc_obj - record audit data for ipc object
2198 * @ipcp: ipc permissions
2200 * Returns 0 for success or NULL context or < 0 on error.
2202 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2204 struct audit_aux_data_ipcctl *ax;
2205 struct audit_context *context = current->audit_context;
2207 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2208 if (!ax)
2209 return -ENOMEM;
2211 ax->uid = ipcp->uid;
2212 ax->gid = ipcp->gid;
2213 ax->mode = ipcp->mode;
2214 security_ipc_getsecid(ipcp, &ax->osid);
2215 ax->d.type = AUDIT_IPC;
2216 ax->d.next = context->aux;
2217 context->aux = (void *)ax;
2218 return 0;
2222 * audit_ipc_set_perm - record audit data for new ipc permissions
2223 * @qbytes: msgq bytes
2224 * @uid: msgq user id
2225 * @gid: msgq group id
2226 * @mode: msgq mode (permissions)
2228 * Returns 0 for success or NULL context or < 0 on error.
2230 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2232 struct audit_aux_data_ipcctl *ax;
2233 struct audit_context *context = current->audit_context;
2235 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2236 if (!ax)
2237 return -ENOMEM;
2239 ax->qbytes = qbytes;
2240 ax->uid = uid;
2241 ax->gid = gid;
2242 ax->mode = mode;
2244 ax->d.type = AUDIT_IPC_SET_PERM;
2245 ax->d.next = context->aux;
2246 context->aux = (void *)ax;
2247 return 0;
2250 int audit_bprm(struct linux_binprm *bprm)
2252 struct audit_aux_data_execve *ax;
2253 struct audit_context *context = current->audit_context;
2255 if (likely(!audit_enabled || !context || context->dummy))
2256 return 0;
2258 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2259 if (!ax)
2260 return -ENOMEM;
2262 ax->argc = bprm->argc;
2263 ax->envc = bprm->envc;
2264 ax->mm = bprm->mm;
2265 ax->d.type = AUDIT_EXECVE;
2266 ax->d.next = context->aux;
2267 context->aux = (void *)ax;
2268 return 0;
2273 * audit_socketcall - record audit data for sys_socketcall
2274 * @nargs: number of args
2275 * @args: args array
2277 * Returns 0 for success or NULL context or < 0 on error.
2279 int audit_socketcall(int nargs, unsigned long *args)
2281 struct audit_aux_data_socketcall *ax;
2282 struct audit_context *context = current->audit_context;
2284 if (likely(!context || context->dummy))
2285 return 0;
2287 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2288 if (!ax)
2289 return -ENOMEM;
2291 ax->nargs = nargs;
2292 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2294 ax->d.type = AUDIT_SOCKETCALL;
2295 ax->d.next = context->aux;
2296 context->aux = (void *)ax;
2297 return 0;
2301 * __audit_fd_pair - record audit data for pipe and socketpair
2302 * @fd1: the first file descriptor
2303 * @fd2: the second file descriptor
2305 * Returns 0 for success or NULL context or < 0 on error.
2307 int __audit_fd_pair(int fd1, int fd2)
2309 struct audit_context *context = current->audit_context;
2310 struct audit_aux_data_fd_pair *ax;
2312 if (likely(!context)) {
2313 return 0;
2316 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2317 if (!ax) {
2318 return -ENOMEM;
2321 ax->fd[0] = fd1;
2322 ax->fd[1] = fd2;
2324 ax->d.type = AUDIT_FD_PAIR;
2325 ax->d.next = context->aux;
2326 context->aux = (void *)ax;
2327 return 0;
2331 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2332 * @len: data length in user space
2333 * @a: data address in kernel space
2335 * Returns 0 for success or NULL context or < 0 on error.
2337 int audit_sockaddr(int len, void *a)
2339 struct audit_aux_data_sockaddr *ax;
2340 struct audit_context *context = current->audit_context;
2342 if (likely(!context || context->dummy))
2343 return 0;
2345 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2346 if (!ax)
2347 return -ENOMEM;
2349 ax->len = len;
2350 memcpy(ax->a, a, len);
2352 ax->d.type = AUDIT_SOCKADDR;
2353 ax->d.next = context->aux;
2354 context->aux = (void *)ax;
2355 return 0;
2358 void __audit_ptrace(struct task_struct *t)
2360 struct audit_context *context = current->audit_context;
2362 context->target_pid = t->pid;
2363 context->target_auid = audit_get_loginuid(t);
2364 context->target_uid = t->uid;
2365 context->target_sessionid = audit_get_sessionid(t);
2366 security_task_getsecid(t, &context->target_sid);
2367 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2371 * audit_signal_info - record signal info for shutting down audit subsystem
2372 * @sig: signal value
2373 * @t: task being signaled
2375 * If the audit subsystem is being terminated, record the task (pid)
2376 * and uid that is doing that.
2378 int __audit_signal_info(int sig, struct task_struct *t)
2380 struct audit_aux_data_pids *axp;
2381 struct task_struct *tsk = current;
2382 struct audit_context *ctx = tsk->audit_context;
2384 if (audit_pid && t->tgid == audit_pid) {
2385 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2386 audit_sig_pid = tsk->pid;
2387 if (tsk->loginuid != -1)
2388 audit_sig_uid = tsk->loginuid;
2389 else
2390 audit_sig_uid = tsk->uid;
2391 security_task_getsecid(tsk, &audit_sig_sid);
2393 if (!audit_signals || audit_dummy_context())
2394 return 0;
2397 /* optimize the common case by putting first signal recipient directly
2398 * in audit_context */
2399 if (!ctx->target_pid) {
2400 ctx->target_pid = t->tgid;
2401 ctx->target_auid = audit_get_loginuid(t);
2402 ctx->target_uid = t->uid;
2403 ctx->target_sessionid = audit_get_sessionid(t);
2404 security_task_getsecid(t, &ctx->target_sid);
2405 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2406 return 0;
2409 axp = (void *)ctx->aux_pids;
2410 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2411 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2412 if (!axp)
2413 return -ENOMEM;
2415 axp->d.type = AUDIT_OBJ_PID;
2416 axp->d.next = ctx->aux_pids;
2417 ctx->aux_pids = (void *)axp;
2419 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2421 axp->target_pid[axp->pid_count] = t->tgid;
2422 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2423 axp->target_uid[axp->pid_count] = t->uid;
2424 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2425 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2426 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2427 axp->pid_count++;
2429 return 0;
2433 * audit_core_dumps - record information about processes that end abnormally
2434 * @signr: signal value
2436 * If a process ends with a core dump, something fishy is going on and we
2437 * should record the event for investigation.
2439 void audit_core_dumps(long signr)
2441 struct audit_buffer *ab;
2442 u32 sid;
2443 uid_t auid = audit_get_loginuid(current);
2444 unsigned int sessionid = audit_get_sessionid(current);
2446 if (!audit_enabled)
2447 return;
2449 if (signr == SIGQUIT) /* don't care for those */
2450 return;
2452 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2453 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2454 auid, current->uid, current->gid, sessionid);
2455 security_task_getsecid(current, &sid);
2456 if (sid) {
2457 char *ctx = NULL;
2458 u32 len;
2460 if (security_secid_to_secctx(sid, &ctx, &len))
2461 audit_log_format(ab, " ssid=%u", sid);
2462 else {
2463 audit_log_format(ab, " subj=%s", ctx);
2464 security_release_secctx(ctx, len);
2467 audit_log_format(ab, " pid=%d comm=", current->pid);
2468 audit_log_untrustedstring(ab, current->comm);
2469 audit_log_format(ab, " sig=%ld", signr);
2470 audit_log_end(ab);