Linux 2.6.28-rc5
[cris-mirror.git] / net / mac80211 / tx.c
blob1460537faf3335c64824ddd61704a212a43655de
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 * Transmit and frame generation functions.
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "wme.h"
33 #include "rate.h"
35 #define IEEE80211_TX_OK 0
36 #define IEEE80211_TX_AGAIN 1
37 #define IEEE80211_TX_FRAG_AGAIN 2
39 /* misc utils */
41 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
42 int next_frag_len)
44 int rate, mrate, erp, dur, i;
45 struct ieee80211_rate *txrate;
46 struct ieee80211_local *local = tx->local;
47 struct ieee80211_supported_band *sband;
48 struct ieee80211_hdr *hdr;
50 sband = local->hw.wiphy->bands[tx->channel->band];
51 txrate = &sband->bitrates[tx->rate_idx];
53 erp = 0;
54 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
55 erp = txrate->flags & IEEE80211_RATE_ERP_G;
58 * data and mgmt (except PS Poll):
59 * - during CFP: 32768
60 * - during contention period:
61 * if addr1 is group address: 0
62 * if more fragments = 0 and addr1 is individual address: time to
63 * transmit one ACK plus SIFS
64 * if more fragments = 1 and addr1 is individual address: time to
65 * transmit next fragment plus 2 x ACK plus 3 x SIFS
67 * IEEE 802.11, 9.6:
68 * - control response frame (CTS or ACK) shall be transmitted using the
69 * same rate as the immediately previous frame in the frame exchange
70 * sequence, if this rate belongs to the PHY mandatory rates, or else
71 * at the highest possible rate belonging to the PHY rates in the
72 * BSSBasicRateSet
74 hdr = (struct ieee80211_hdr *)tx->skb->data;
75 if (ieee80211_is_ctl(hdr->frame_control)) {
76 /* TODO: These control frames are not currently sent by
77 * mac80211, but should they be implemented, this function
78 * needs to be updated to support duration field calculation.
80 * RTS: time needed to transmit pending data/mgmt frame plus
81 * one CTS frame plus one ACK frame plus 3 x SIFS
82 * CTS: duration of immediately previous RTS minus time
83 * required to transmit CTS and its SIFS
84 * ACK: 0 if immediately previous directed data/mgmt had
85 * more=0, with more=1 duration in ACK frame is duration
86 * from previous frame minus time needed to transmit ACK
87 * and its SIFS
88 * PS Poll: BIT(15) | BIT(14) | aid
90 return 0;
93 /* data/mgmt */
94 if (0 /* FIX: data/mgmt during CFP */)
95 return cpu_to_le16(32768);
97 if (group_addr) /* Group address as the destination - no ACK */
98 return 0;
100 /* Individual destination address:
101 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
102 * CTS and ACK frames shall be transmitted using the highest rate in
103 * basic rate set that is less than or equal to the rate of the
104 * immediately previous frame and that is using the same modulation
105 * (CCK or OFDM). If no basic rate set matches with these requirements,
106 * the highest mandatory rate of the PHY that is less than or equal to
107 * the rate of the previous frame is used.
108 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
110 rate = -1;
111 /* use lowest available if everything fails */
112 mrate = sband->bitrates[0].bitrate;
113 for (i = 0; i < sband->n_bitrates; i++) {
114 struct ieee80211_rate *r = &sband->bitrates[i];
116 if (r->bitrate > txrate->bitrate)
117 break;
119 if (tx->sdata->bss_conf.basic_rates & BIT(i))
120 rate = r->bitrate;
122 switch (sband->band) {
123 case IEEE80211_BAND_2GHZ: {
124 u32 flag;
125 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
126 flag = IEEE80211_RATE_MANDATORY_G;
127 else
128 flag = IEEE80211_RATE_MANDATORY_B;
129 if (r->flags & flag)
130 mrate = r->bitrate;
131 break;
133 case IEEE80211_BAND_5GHZ:
134 if (r->flags & IEEE80211_RATE_MANDATORY_A)
135 mrate = r->bitrate;
136 break;
137 case IEEE80211_NUM_BANDS:
138 WARN_ON(1);
139 break;
142 if (rate == -1) {
143 /* No matching basic rate found; use highest suitable mandatory
144 * PHY rate */
145 rate = mrate;
148 /* Time needed to transmit ACK
149 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
150 * to closest integer */
152 dur = ieee80211_frame_duration(local, 10, rate, erp,
153 tx->sdata->bss_conf.use_short_preamble);
155 if (next_frag_len) {
156 /* Frame is fragmented: duration increases with time needed to
157 * transmit next fragment plus ACK and 2 x SIFS. */
158 dur *= 2; /* ACK + SIFS */
159 /* next fragment */
160 dur += ieee80211_frame_duration(local, next_frag_len,
161 txrate->bitrate, erp,
162 tx->sdata->bss_conf.use_short_preamble);
165 return cpu_to_le16(dur);
168 static int inline is_ieee80211_device(struct ieee80211_local *local,
169 struct net_device *dev)
171 return local == wdev_priv(dev->ieee80211_ptr);
174 /* tx handlers */
176 static ieee80211_tx_result debug_noinline
177 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
180 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
181 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
182 u32 sta_flags;
184 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
185 return TX_CONTINUE;
187 if (unlikely(tx->local->sw_scanning) &&
188 !ieee80211_is_probe_req(hdr->frame_control))
189 return TX_DROP;
191 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
192 return TX_CONTINUE;
194 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
195 return TX_CONTINUE;
197 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
199 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
200 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
201 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
202 ieee80211_is_data(hdr->frame_control))) {
203 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
204 DECLARE_MAC_BUF(mac);
205 printk(KERN_DEBUG "%s: dropped data frame to not "
206 "associated station %s\n",
207 tx->dev->name, print_mac(mac, hdr->addr1));
208 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
209 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
210 return TX_DROP;
212 } else {
213 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
214 tx->local->num_sta == 0 &&
215 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
217 * No associated STAs - no need to send multicast
218 * frames.
220 return TX_DROP;
222 return TX_CONTINUE;
225 return TX_CONTINUE;
228 /* This function is called whenever the AP is about to exceed the maximum limit
229 * of buffered frames for power saving STAs. This situation should not really
230 * happen often during normal operation, so dropping the oldest buffered packet
231 * from each queue should be OK to make some room for new frames. */
232 static void purge_old_ps_buffers(struct ieee80211_local *local)
234 int total = 0, purged = 0;
235 struct sk_buff *skb;
236 struct ieee80211_sub_if_data *sdata;
237 struct sta_info *sta;
240 * virtual interfaces are protected by RCU
242 rcu_read_lock();
244 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
245 struct ieee80211_if_ap *ap;
246 if (sdata->vif.type != NL80211_IFTYPE_AP)
247 continue;
248 ap = &sdata->u.ap;
249 skb = skb_dequeue(&ap->ps_bc_buf);
250 if (skb) {
251 purged++;
252 dev_kfree_skb(skb);
254 total += skb_queue_len(&ap->ps_bc_buf);
257 list_for_each_entry_rcu(sta, &local->sta_list, list) {
258 skb = skb_dequeue(&sta->ps_tx_buf);
259 if (skb) {
260 purged++;
261 dev_kfree_skb(skb);
263 total += skb_queue_len(&sta->ps_tx_buf);
266 rcu_read_unlock();
268 local->total_ps_buffered = total;
269 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
270 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
271 wiphy_name(local->hw.wiphy), purged);
272 #endif
275 static ieee80211_tx_result
276 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
278 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
279 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
282 * broadcast/multicast frame
284 * If any of the associated stations is in power save mode,
285 * the frame is buffered to be sent after DTIM beacon frame.
286 * This is done either by the hardware or us.
289 /* powersaving STAs only in AP/VLAN mode */
290 if (!tx->sdata->bss)
291 return TX_CONTINUE;
293 /* no buffering for ordered frames */
294 if (ieee80211_has_order(hdr->frame_control))
295 return TX_CONTINUE;
297 /* no stations in PS mode */
298 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
299 return TX_CONTINUE;
301 /* buffered in mac80211 */
302 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) {
303 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
304 purge_old_ps_buffers(tx->local);
305 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
306 AP_MAX_BC_BUFFER) {
307 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
308 if (net_ratelimit()) {
309 printk(KERN_DEBUG "%s: BC TX buffer full - "
310 "dropping the oldest frame\n",
311 tx->dev->name);
313 #endif
314 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
315 } else
316 tx->local->total_ps_buffered++;
317 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
318 return TX_QUEUED;
321 /* buffered in hardware */
322 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
324 return TX_CONTINUE;
327 static ieee80211_tx_result
328 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
330 struct sta_info *sta = tx->sta;
331 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
333 u32 staflags;
334 DECLARE_MAC_BUF(mac);
336 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control)))
337 return TX_CONTINUE;
339 staflags = get_sta_flags(sta);
341 if (unlikely((staflags & WLAN_STA_PS) &&
342 !(staflags & WLAN_STA_PSPOLL))) {
343 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
344 printk(KERN_DEBUG "STA %s aid %d: PS buffer (entries "
345 "before %d)\n",
346 print_mac(mac, sta->sta.addr), sta->sta.aid,
347 skb_queue_len(&sta->ps_tx_buf));
348 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
349 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
350 purge_old_ps_buffers(tx->local);
351 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
352 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
353 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
354 if (net_ratelimit()) {
355 printk(KERN_DEBUG "%s: STA %s TX "
356 "buffer full - dropping oldest frame\n",
357 tx->dev->name, print_mac(mac, sta->sta.addr));
359 #endif
360 dev_kfree_skb(old);
361 } else
362 tx->local->total_ps_buffered++;
364 /* Queue frame to be sent after STA sends an PS Poll frame */
365 if (skb_queue_empty(&sta->ps_tx_buf))
366 sta_info_set_tim_bit(sta);
368 info->control.jiffies = jiffies;
369 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
370 return TX_QUEUED;
372 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
373 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) {
374 printk(KERN_DEBUG "%s: STA %s in PS mode, but pspoll "
375 "set -> send frame\n", tx->dev->name,
376 print_mac(mac, sta->sta.addr));
378 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
379 clear_sta_flags(sta, WLAN_STA_PSPOLL);
381 return TX_CONTINUE;
384 static ieee80211_tx_result debug_noinline
385 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
387 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
388 return TX_CONTINUE;
390 if (tx->flags & IEEE80211_TX_UNICAST)
391 return ieee80211_tx_h_unicast_ps_buf(tx);
392 else
393 return ieee80211_tx_h_multicast_ps_buf(tx);
396 static ieee80211_tx_result debug_noinline
397 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
399 struct ieee80211_key *key;
400 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
401 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
403 if (unlikely(tx->skb->do_not_encrypt))
404 tx->key = NULL;
405 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
406 tx->key = key;
407 else if ((key = rcu_dereference(tx->sdata->default_key)))
408 tx->key = key;
409 else if (tx->sdata->drop_unencrypted &&
410 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
411 !(info->flags & IEEE80211_TX_CTL_INJECTED)) {
412 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
413 return TX_DROP;
414 } else
415 tx->key = NULL;
417 if (tx->key) {
418 tx->key->tx_rx_count++;
419 /* TODO: add threshold stuff again */
421 switch (tx->key->conf.alg) {
422 case ALG_WEP:
423 if (ieee80211_is_auth(hdr->frame_control))
424 break;
425 case ALG_TKIP:
426 case ALG_CCMP:
427 if (!ieee80211_is_data_present(hdr->frame_control))
428 tx->key = NULL;
429 break;
433 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
434 tx->skb->do_not_encrypt = 1;
436 return TX_CONTINUE;
439 static ieee80211_tx_result debug_noinline
440 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
442 struct rate_selection rsel;
443 struct ieee80211_supported_band *sband;
444 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
446 sband = tx->local->hw.wiphy->bands[tx->channel->band];
448 if (likely(tx->rate_idx < 0)) {
449 rate_control_get_rate(tx->sdata, sband, tx->sta,
450 tx->skb, &rsel);
451 if (tx->sta)
452 tx->sta->last_txrate_idx = rsel.rate_idx;
453 tx->rate_idx = rsel.rate_idx;
454 if (unlikely(rsel.probe_idx >= 0)) {
455 info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
456 tx->flags |= IEEE80211_TX_PROBE_LAST_FRAG;
457 info->control.retries[0].rate_idx = tx->rate_idx;
458 info->control.retries[0].limit = tx->local->hw.max_altrate_tries;
459 tx->rate_idx = rsel.probe_idx;
460 } else if (info->control.retries[0].limit == 0)
461 info->control.retries[0].rate_idx = -1;
463 if (unlikely(tx->rate_idx < 0))
464 return TX_DROP;
465 } else
466 info->control.retries[0].rate_idx = -1;
468 if (tx->sdata->bss_conf.use_cts_prot &&
469 (tx->flags & IEEE80211_TX_FRAGMENTED) && (rsel.nonerp_idx >= 0)) {
470 tx->last_frag_rate_idx = tx->rate_idx;
471 if (rsel.probe_idx >= 0)
472 tx->flags &= ~IEEE80211_TX_PROBE_LAST_FRAG;
473 else
474 tx->flags |= IEEE80211_TX_PROBE_LAST_FRAG;
475 tx->rate_idx = rsel.nonerp_idx;
476 info->tx_rate_idx = rsel.nonerp_idx;
477 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
478 } else {
479 tx->last_frag_rate_idx = tx->rate_idx;
480 info->tx_rate_idx = tx->rate_idx;
482 info->tx_rate_idx = tx->rate_idx;
484 return TX_CONTINUE;
487 static ieee80211_tx_result debug_noinline
488 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
490 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
491 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
492 struct ieee80211_supported_band *sband;
494 sband = tx->local->hw.wiphy->bands[tx->channel->band];
496 if (tx->sta)
497 info->control.sta = &tx->sta->sta;
499 if (!info->control.retry_limit) {
500 if (!is_multicast_ether_addr(hdr->addr1)) {
501 int len = min_t(int, tx->skb->len + FCS_LEN,
502 tx->local->fragmentation_threshold);
503 if (len > tx->local->rts_threshold
504 && tx->local->rts_threshold <
505 IEEE80211_MAX_RTS_THRESHOLD) {
506 info->flags |= IEEE80211_TX_CTL_USE_RTS_CTS;
507 info->flags |=
508 IEEE80211_TX_CTL_LONG_RETRY_LIMIT;
509 info->control.retry_limit =
510 tx->local->long_retry_limit;
511 } else {
512 info->control.retry_limit =
513 tx->local->short_retry_limit;
515 } else {
516 info->control.retry_limit = 1;
520 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
521 /* Do not use multiple retry rates when sending fragmented
522 * frames.
523 * TODO: The last fragment could still use multiple retry
524 * rates. */
525 info->control.retries[0].rate_idx = -1;
528 /* Use CTS protection for unicast frames sent using extended rates if
529 * there are associated non-ERP stations and RTS/CTS is not configured
530 * for the frame. */
531 if ((tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) &&
532 (sband->bitrates[tx->rate_idx].flags & IEEE80211_RATE_ERP_G) &&
533 (tx->flags & IEEE80211_TX_UNICAST) &&
534 tx->sdata->bss_conf.use_cts_prot &&
535 !(info->flags & IEEE80211_TX_CTL_USE_RTS_CTS))
536 info->flags |= IEEE80211_TX_CTL_USE_CTS_PROTECT;
538 /* Transmit data frames using short preambles if the driver supports
539 * short preambles at the selected rate and short preambles are
540 * available on the network at the current point in time. */
541 if (ieee80211_is_data(hdr->frame_control) &&
542 (sband->bitrates[tx->rate_idx].flags & IEEE80211_RATE_SHORT_PREAMBLE) &&
543 tx->sdata->bss_conf.use_short_preamble &&
544 (!tx->sta || test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))) {
545 info->flags |= IEEE80211_TX_CTL_SHORT_PREAMBLE;
548 if ((info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) ||
549 (info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT)) {
550 struct ieee80211_rate *rate;
551 s8 baserate = -1;
552 int idx;
554 /* Do not use multiple retry rates when using RTS/CTS */
555 info->control.retries[0].rate_idx = -1;
557 /* Use min(data rate, max base rate) as CTS/RTS rate */
558 rate = &sband->bitrates[tx->rate_idx];
560 for (idx = 0; idx < sband->n_bitrates; idx++) {
561 if (sband->bitrates[idx].bitrate > rate->bitrate)
562 continue;
563 if (tx->sdata->bss_conf.basic_rates & BIT(idx) &&
564 (baserate < 0 ||
565 (sband->bitrates[baserate].bitrate
566 < sband->bitrates[idx].bitrate)))
567 baserate = idx;
570 if (baserate >= 0)
571 info->control.rts_cts_rate_idx = baserate;
572 else
573 info->control.rts_cts_rate_idx = 0;
576 if (tx->sta)
577 info->control.sta = &tx->sta->sta;
579 return TX_CONTINUE;
582 static ieee80211_tx_result debug_noinline
583 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
585 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
586 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
587 u16 *seq;
588 u8 *qc;
589 int tid;
592 * Packet injection may want to control the sequence
593 * number, if we have no matching interface then we
594 * neither assign one ourselves nor ask the driver to.
596 if (unlikely(!info->control.vif))
597 return TX_CONTINUE;
599 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
600 return TX_CONTINUE;
602 if (ieee80211_hdrlen(hdr->frame_control) < 24)
603 return TX_CONTINUE;
605 if (!ieee80211_is_data_qos(hdr->frame_control)) {
606 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
607 return TX_CONTINUE;
611 * This should be true for injected/management frames only, for
612 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
613 * above since they are not QoS-data frames.
615 if (!tx->sta)
616 return TX_CONTINUE;
618 /* include per-STA, per-TID sequence counter */
620 qc = ieee80211_get_qos_ctl(hdr);
621 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
622 seq = &tx->sta->tid_seq[tid];
624 hdr->seq_ctrl = cpu_to_le16(*seq);
626 /* Increase the sequence number. */
627 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
629 return TX_CONTINUE;
632 static ieee80211_tx_result debug_noinline
633 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
635 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
636 size_t hdrlen, per_fragm, num_fragm, payload_len, left;
637 struct sk_buff **frags, *first, *frag;
638 int i;
639 u16 seq;
640 u8 *pos;
641 int frag_threshold = tx->local->fragmentation_threshold;
643 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
644 return TX_CONTINUE;
647 * Warn when submitting a fragmented A-MPDU frame and drop it.
648 * This scenario is handled in __ieee80211_tx_prepare but extra
649 * caution taken here as fragmented ampdu may cause Tx stop.
651 if (WARN_ON(tx->flags & IEEE80211_TX_CTL_AMPDU ||
652 skb_get_queue_mapping(tx->skb) >=
653 ieee80211_num_regular_queues(&tx->local->hw)))
654 return TX_DROP;
656 first = tx->skb;
658 hdrlen = ieee80211_hdrlen(hdr->frame_control);
659 payload_len = first->len - hdrlen;
660 per_fragm = frag_threshold - hdrlen - FCS_LEN;
661 num_fragm = DIV_ROUND_UP(payload_len, per_fragm);
663 frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC);
664 if (!frags)
665 goto fail;
667 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
668 seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ;
669 pos = first->data + hdrlen + per_fragm;
670 left = payload_len - per_fragm;
671 for (i = 0; i < num_fragm - 1; i++) {
672 struct ieee80211_hdr *fhdr;
673 size_t copylen;
675 if (left <= 0)
676 goto fail;
678 /* reserve enough extra head and tail room for possible
679 * encryption */
680 frag = frags[i] =
681 dev_alloc_skb(tx->local->tx_headroom +
682 frag_threshold +
683 IEEE80211_ENCRYPT_HEADROOM +
684 IEEE80211_ENCRYPT_TAILROOM);
685 if (!frag)
686 goto fail;
687 /* Make sure that all fragments use the same priority so
688 * that they end up using the same TX queue */
689 frag->priority = first->priority;
690 skb_reserve(frag, tx->local->tx_headroom +
691 IEEE80211_ENCRYPT_HEADROOM);
692 fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen);
693 memcpy(fhdr, first->data, hdrlen);
694 if (i == num_fragm - 2)
695 fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS);
696 fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG));
697 copylen = left > per_fragm ? per_fragm : left;
698 memcpy(skb_put(frag, copylen), pos, copylen);
699 memcpy(frag->cb, first->cb, sizeof(frag->cb));
700 skb_copy_queue_mapping(frag, first);
701 frag->do_not_encrypt = first->do_not_encrypt;
703 pos += copylen;
704 left -= copylen;
706 skb_trim(first, hdrlen + per_fragm);
708 tx->num_extra_frag = num_fragm - 1;
709 tx->extra_frag = frags;
711 return TX_CONTINUE;
713 fail:
714 if (frags) {
715 for (i = 0; i < num_fragm - 1; i++)
716 if (frags[i])
717 dev_kfree_skb(frags[i]);
718 kfree(frags);
720 I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment);
721 return TX_DROP;
724 static ieee80211_tx_result debug_noinline
725 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
727 if (!tx->key)
728 return TX_CONTINUE;
730 switch (tx->key->conf.alg) {
731 case ALG_WEP:
732 return ieee80211_crypto_wep_encrypt(tx);
733 case ALG_TKIP:
734 return ieee80211_crypto_tkip_encrypt(tx);
735 case ALG_CCMP:
736 return ieee80211_crypto_ccmp_encrypt(tx);
739 /* not reached */
740 WARN_ON(1);
741 return TX_DROP;
744 static ieee80211_tx_result debug_noinline
745 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
747 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
748 int next_len, i;
749 int group_addr = is_multicast_ether_addr(hdr->addr1);
751 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) {
752 hdr->duration_id = ieee80211_duration(tx, group_addr, 0);
753 return TX_CONTINUE;
756 hdr->duration_id = ieee80211_duration(tx, group_addr,
757 tx->extra_frag[0]->len);
759 for (i = 0; i < tx->num_extra_frag; i++) {
760 if (i + 1 < tx->num_extra_frag) {
761 next_len = tx->extra_frag[i + 1]->len;
762 } else {
763 next_len = 0;
764 tx->rate_idx = tx->last_frag_rate_idx;
767 hdr = (struct ieee80211_hdr *)tx->extra_frag[i]->data;
768 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
771 return TX_CONTINUE;
774 static ieee80211_tx_result debug_noinline
775 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
777 int i;
779 if (!tx->sta)
780 return TX_CONTINUE;
782 tx->sta->tx_packets++;
783 tx->sta->tx_fragments++;
784 tx->sta->tx_bytes += tx->skb->len;
785 if (tx->extra_frag) {
786 tx->sta->tx_fragments += tx->num_extra_frag;
787 for (i = 0; i < tx->num_extra_frag; i++)
788 tx->sta->tx_bytes += tx->extra_frag[i]->len;
791 return TX_CONTINUE;
795 /* actual transmit path */
798 * deal with packet injection down monitor interface
799 * with Radiotap Header -- only called for monitor mode interface
801 static ieee80211_tx_result
802 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
803 struct sk_buff *skb)
806 * this is the moment to interpret and discard the radiotap header that
807 * must be at the start of the packet injected in Monitor mode
809 * Need to take some care with endian-ness since radiotap
810 * args are little-endian
813 struct ieee80211_radiotap_iterator iterator;
814 struct ieee80211_radiotap_header *rthdr =
815 (struct ieee80211_radiotap_header *) skb->data;
816 struct ieee80211_supported_band *sband;
817 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
818 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
820 sband = tx->local->hw.wiphy->bands[tx->channel->band];
822 skb->do_not_encrypt = 1;
823 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
826 * for every radiotap entry that is present
827 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
828 * entries present, or -EINVAL on error)
831 while (!ret) {
832 int i, target_rate;
834 ret = ieee80211_radiotap_iterator_next(&iterator);
836 if (ret)
837 continue;
839 /* see if this argument is something we can use */
840 switch (iterator.this_arg_index) {
842 * You must take care when dereferencing iterator.this_arg
843 * for multibyte types... the pointer is not aligned. Use
844 * get_unaligned((type *)iterator.this_arg) to dereference
845 * iterator.this_arg for type "type" safely on all arches.
847 case IEEE80211_RADIOTAP_RATE:
849 * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps
850 * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps
852 target_rate = (*iterator.this_arg) * 5;
853 for (i = 0; i < sband->n_bitrates; i++) {
854 struct ieee80211_rate *r;
856 r = &sband->bitrates[i];
858 if (r->bitrate == target_rate) {
859 tx->rate_idx = i;
860 break;
863 break;
865 case IEEE80211_RADIOTAP_ANTENNA:
867 * radiotap uses 0 for 1st ant, mac80211 is 1 for
868 * 1st ant
870 info->antenna_sel_tx = (*iterator.this_arg) + 1;
871 break;
873 #if 0
874 case IEEE80211_RADIOTAP_DBM_TX_POWER:
875 control->power_level = *iterator.this_arg;
876 break;
877 #endif
879 case IEEE80211_RADIOTAP_FLAGS:
880 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
882 * this indicates that the skb we have been
883 * handed has the 32-bit FCS CRC at the end...
884 * we should react to that by snipping it off
885 * because it will be recomputed and added
886 * on transmission
888 if (skb->len < (iterator.max_length + FCS_LEN))
889 return TX_DROP;
891 skb_trim(skb, skb->len - FCS_LEN);
893 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
894 tx->skb->do_not_encrypt = 0;
895 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
896 tx->flags |= IEEE80211_TX_FRAGMENTED;
897 break;
900 * Please update the file
901 * Documentation/networking/mac80211-injection.txt
902 * when parsing new fields here.
905 default:
906 break;
910 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
911 return TX_DROP;
914 * remove the radiotap header
915 * iterator->max_length was sanity-checked against
916 * skb->len by iterator init
918 skb_pull(skb, iterator.max_length);
920 return TX_CONTINUE;
924 * initialises @tx
926 static ieee80211_tx_result
927 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx,
928 struct sk_buff *skb,
929 struct net_device *dev)
931 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
932 struct ieee80211_hdr *hdr;
933 struct ieee80211_sub_if_data *sdata;
934 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
936 int hdrlen;
938 memset(tx, 0, sizeof(*tx));
939 tx->skb = skb;
940 tx->dev = dev; /* use original interface */
941 tx->local = local;
942 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
943 tx->channel = local->hw.conf.channel;
944 tx->rate_idx = -1;
945 tx->last_frag_rate_idx = -1;
947 * Set this flag (used below to indicate "automatic fragmentation"),
948 * it will be cleared/left by radiotap as desired.
950 tx->flags |= IEEE80211_TX_FRAGMENTED;
952 /* process and remove the injection radiotap header */
953 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
954 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
955 if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP)
956 return TX_DROP;
959 * __ieee80211_parse_tx_radiotap has now removed
960 * the radiotap header that was present and pre-filled
961 * 'tx' with tx control information.
965 hdr = (struct ieee80211_hdr *) skb->data;
967 tx->sta = sta_info_get(local, hdr->addr1);
969 if (is_multicast_ether_addr(hdr->addr1)) {
970 tx->flags &= ~IEEE80211_TX_UNICAST;
971 info->flags |= IEEE80211_TX_CTL_NO_ACK;
972 } else {
973 tx->flags |= IEEE80211_TX_UNICAST;
974 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
977 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
978 if ((tx->flags & IEEE80211_TX_UNICAST) &&
979 skb->len + FCS_LEN > local->fragmentation_threshold &&
980 !local->ops->set_frag_threshold &&
981 !(info->flags & IEEE80211_TX_CTL_AMPDU))
982 tx->flags |= IEEE80211_TX_FRAGMENTED;
983 else
984 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
987 if (!tx->sta)
988 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
989 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
990 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
992 hdrlen = ieee80211_hdrlen(hdr->frame_control);
993 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
994 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
995 tx->ethertype = (pos[0] << 8) | pos[1];
997 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
999 return TX_CONTINUE;
1003 * NB: @tx is uninitialised when passed in here
1005 static int ieee80211_tx_prepare(struct ieee80211_local *local,
1006 struct ieee80211_tx_data *tx,
1007 struct sk_buff *skb)
1009 struct net_device *dev;
1011 dev = dev_get_by_index(&init_net, skb->iif);
1012 if (unlikely(dev && !is_ieee80211_device(local, dev))) {
1013 dev_put(dev);
1014 dev = NULL;
1016 if (unlikely(!dev))
1017 return -ENODEV;
1018 /* initialises tx with control */
1019 __ieee80211_tx_prepare(tx, skb, dev);
1020 dev_put(dev);
1021 return 0;
1024 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb,
1025 struct ieee80211_tx_data *tx)
1027 struct ieee80211_tx_info *info;
1028 int ret, i;
1030 if (skb) {
1031 if (netif_subqueue_stopped(local->mdev, skb))
1032 return IEEE80211_TX_AGAIN;
1033 info = IEEE80211_SKB_CB(skb);
1035 ret = local->ops->tx(local_to_hw(local), skb);
1036 if (ret)
1037 return IEEE80211_TX_AGAIN;
1038 local->mdev->trans_start = jiffies;
1039 ieee80211_led_tx(local, 1);
1041 if (tx->extra_frag) {
1042 for (i = 0; i < tx->num_extra_frag; i++) {
1043 if (!tx->extra_frag[i])
1044 continue;
1045 info = IEEE80211_SKB_CB(tx->extra_frag[i]);
1046 info->flags &= ~(IEEE80211_TX_CTL_USE_RTS_CTS |
1047 IEEE80211_TX_CTL_USE_CTS_PROTECT |
1048 IEEE80211_TX_CTL_CLEAR_PS_FILT |
1049 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1050 if (netif_subqueue_stopped(local->mdev,
1051 tx->extra_frag[i]))
1052 return IEEE80211_TX_FRAG_AGAIN;
1053 if (i == tx->num_extra_frag) {
1054 info->tx_rate_idx = tx->last_frag_rate_idx;
1056 if (tx->flags & IEEE80211_TX_PROBE_LAST_FRAG)
1057 info->flags |=
1058 IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1059 else
1060 info->flags &=
1061 ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1064 ret = local->ops->tx(local_to_hw(local),
1065 tx->extra_frag[i]);
1066 if (ret)
1067 return IEEE80211_TX_FRAG_AGAIN;
1068 local->mdev->trans_start = jiffies;
1069 ieee80211_led_tx(local, 1);
1070 tx->extra_frag[i] = NULL;
1072 kfree(tx->extra_frag);
1073 tx->extra_frag = NULL;
1075 return IEEE80211_TX_OK;
1079 * Invoke TX handlers, return 0 on success and non-zero if the
1080 * frame was dropped or queued.
1082 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1084 struct sk_buff *skb = tx->skb;
1085 ieee80211_tx_result res = TX_DROP;
1086 int i;
1088 #define CALL_TXH(txh) \
1089 res = txh(tx); \
1090 if (res != TX_CONTINUE) \
1091 goto txh_done;
1093 CALL_TXH(ieee80211_tx_h_check_assoc)
1094 CALL_TXH(ieee80211_tx_h_ps_buf)
1095 CALL_TXH(ieee80211_tx_h_select_key)
1096 CALL_TXH(ieee80211_tx_h_michael_mic_add)
1097 CALL_TXH(ieee80211_tx_h_rate_ctrl)
1098 CALL_TXH(ieee80211_tx_h_misc)
1099 CALL_TXH(ieee80211_tx_h_sequence)
1100 CALL_TXH(ieee80211_tx_h_fragment)
1101 /* handlers after fragment must be aware of tx info fragmentation! */
1102 CALL_TXH(ieee80211_tx_h_encrypt)
1103 CALL_TXH(ieee80211_tx_h_calculate_duration)
1104 CALL_TXH(ieee80211_tx_h_stats)
1105 #undef CALL_TXH
1107 txh_done:
1108 if (unlikely(res == TX_DROP)) {
1109 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1110 dev_kfree_skb(skb);
1111 for (i = 0; i < tx->num_extra_frag; i++)
1112 if (tx->extra_frag[i])
1113 dev_kfree_skb(tx->extra_frag[i]);
1114 kfree(tx->extra_frag);
1115 return -1;
1116 } else if (unlikely(res == TX_QUEUED)) {
1117 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1118 return -1;
1121 return 0;
1124 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb)
1126 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1127 struct sta_info *sta;
1128 struct ieee80211_tx_data tx;
1129 ieee80211_tx_result res_prepare;
1130 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1131 int ret, i;
1132 u16 queue;
1134 queue = skb_get_queue_mapping(skb);
1136 WARN_ON(test_bit(queue, local->queues_pending));
1138 if (unlikely(skb->len < 10)) {
1139 dev_kfree_skb(skb);
1140 return 0;
1143 rcu_read_lock();
1145 /* initialises tx */
1146 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev);
1148 if (res_prepare == TX_DROP) {
1149 dev_kfree_skb(skb);
1150 rcu_read_unlock();
1151 return 0;
1154 sta = tx.sta;
1155 tx.channel = local->hw.conf.channel;
1156 info->band = tx.channel->band;
1158 if (invoke_tx_handlers(&tx))
1159 goto out;
1161 retry:
1162 ret = __ieee80211_tx(local, skb, &tx);
1163 if (ret) {
1164 struct ieee80211_tx_stored_packet *store;
1167 * Since there are no fragmented frames on A-MPDU
1168 * queues, there's no reason for a driver to reject
1169 * a frame there, warn and drop it.
1171 if (WARN_ON(queue >= ieee80211_num_regular_queues(&local->hw)))
1172 goto drop;
1174 store = &local->pending_packet[queue];
1176 if (ret == IEEE80211_TX_FRAG_AGAIN)
1177 skb = NULL;
1179 set_bit(queue, local->queues_pending);
1180 smp_mb();
1182 * When the driver gets out of buffers during sending of
1183 * fragments and calls ieee80211_stop_queue, the netif
1184 * subqueue is stopped. There is, however, a small window
1185 * in which the PENDING bit is not yet set. If a buffer
1186 * gets available in that window (i.e. driver calls
1187 * ieee80211_wake_queue), we would end up with ieee80211_tx
1188 * called with the PENDING bit still set. Prevent this by
1189 * continuing transmitting here when that situation is
1190 * possible to have happened.
1192 if (!__netif_subqueue_stopped(local->mdev, queue)) {
1193 clear_bit(queue, local->queues_pending);
1194 goto retry;
1196 store->skb = skb;
1197 store->extra_frag = tx.extra_frag;
1198 store->num_extra_frag = tx.num_extra_frag;
1199 store->last_frag_rate_idx = tx.last_frag_rate_idx;
1200 store->last_frag_rate_ctrl_probe =
1201 !!(tx.flags & IEEE80211_TX_PROBE_LAST_FRAG);
1203 out:
1204 rcu_read_unlock();
1205 return 0;
1207 drop:
1208 if (skb)
1209 dev_kfree_skb(skb);
1210 for (i = 0; i < tx.num_extra_frag; i++)
1211 if (tx.extra_frag[i])
1212 dev_kfree_skb(tx.extra_frag[i]);
1213 kfree(tx.extra_frag);
1214 rcu_read_unlock();
1215 return 0;
1218 /* device xmit handlers */
1220 static int ieee80211_skb_resize(struct ieee80211_local *local,
1221 struct sk_buff *skb,
1222 int head_need, bool may_encrypt)
1224 int tail_need = 0;
1227 * This could be optimised, devices that do full hardware
1228 * crypto (including TKIP MMIC) need no tailroom... But we
1229 * have no drivers for such devices currently.
1231 if (may_encrypt) {
1232 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1233 tail_need -= skb_tailroom(skb);
1234 tail_need = max_t(int, tail_need, 0);
1237 if (head_need || tail_need) {
1238 /* Sorry. Can't account for this any more */
1239 skb_orphan(skb);
1242 if (skb_header_cloned(skb))
1243 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1244 else
1245 I802_DEBUG_INC(local->tx_expand_skb_head);
1247 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1248 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1249 wiphy_name(local->hw.wiphy));
1250 return -ENOMEM;
1253 /* update truesize too */
1254 skb->truesize += head_need + tail_need;
1256 return 0;
1259 int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev)
1261 struct ieee80211_master_priv *mpriv = netdev_priv(dev);
1262 struct ieee80211_local *local = mpriv->local;
1263 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1264 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1265 struct net_device *odev = NULL;
1266 struct ieee80211_sub_if_data *osdata;
1267 int headroom;
1268 bool may_encrypt;
1269 enum {
1270 NOT_MONITOR,
1271 FOUND_SDATA,
1272 UNKNOWN_ADDRESS,
1273 } monitor_iface = NOT_MONITOR;
1274 int ret;
1276 if (skb->iif)
1277 odev = dev_get_by_index(&init_net, skb->iif);
1278 if (unlikely(odev && !is_ieee80211_device(local, odev))) {
1279 dev_put(odev);
1280 odev = NULL;
1282 if (unlikely(!odev)) {
1283 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1284 printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
1285 "originating device\n", dev->name);
1286 #endif
1287 dev_kfree_skb(skb);
1288 return 0;
1291 memset(info, 0, sizeof(*info));
1293 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1295 osdata = IEEE80211_DEV_TO_SUB_IF(odev);
1297 if (ieee80211_vif_is_mesh(&osdata->vif) &&
1298 ieee80211_is_data(hdr->frame_control)) {
1299 if (is_multicast_ether_addr(hdr->addr3))
1300 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN);
1301 else
1302 if (mesh_nexthop_lookup(skb, osdata))
1303 return 0;
1304 if (memcmp(odev->dev_addr, hdr->addr4, ETH_ALEN) != 0)
1305 IEEE80211_IFSTA_MESH_CTR_INC(&osdata->u.mesh,
1306 fwded_frames);
1307 } else if (unlikely(osdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1308 struct ieee80211_sub_if_data *sdata;
1309 int hdrlen;
1310 u16 len_rthdr;
1312 info->flags |= IEEE80211_TX_CTL_INJECTED;
1313 monitor_iface = UNKNOWN_ADDRESS;
1315 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1316 hdr = (struct ieee80211_hdr *)skb->data + len_rthdr;
1317 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1319 /* check the header is complete in the frame */
1320 if (likely(skb->len >= len_rthdr + hdrlen)) {
1322 * We process outgoing injected frames that have a
1323 * local address we handle as though they are our
1324 * own frames.
1325 * This code here isn't entirely correct, the local
1326 * MAC address is not necessarily enough to find
1327 * the interface to use; for that proper VLAN/WDS
1328 * support we will need a different mechanism.
1331 rcu_read_lock();
1332 list_for_each_entry_rcu(sdata, &local->interfaces,
1333 list) {
1334 if (!netif_running(sdata->dev))
1335 continue;
1336 if (compare_ether_addr(sdata->dev->dev_addr,
1337 hdr->addr2)) {
1338 dev_hold(sdata->dev);
1339 dev_put(odev);
1340 osdata = sdata;
1341 odev = osdata->dev;
1342 skb->iif = sdata->dev->ifindex;
1343 monitor_iface = FOUND_SDATA;
1344 break;
1347 rcu_read_unlock();
1351 may_encrypt = !skb->do_not_encrypt;
1353 headroom = osdata->local->tx_headroom;
1354 if (may_encrypt)
1355 headroom += IEEE80211_ENCRYPT_HEADROOM;
1356 headroom -= skb_headroom(skb);
1357 headroom = max_t(int, 0, headroom);
1359 if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) {
1360 dev_kfree_skb(skb);
1361 dev_put(odev);
1362 return 0;
1365 if (osdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1366 osdata = container_of(osdata->bss,
1367 struct ieee80211_sub_if_data,
1368 u.ap);
1369 if (likely(monitor_iface != UNKNOWN_ADDRESS))
1370 info->control.vif = &osdata->vif;
1371 ret = ieee80211_tx(odev, skb);
1372 dev_put(odev);
1374 return ret;
1377 int ieee80211_monitor_start_xmit(struct sk_buff *skb,
1378 struct net_device *dev)
1380 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1381 struct ieee80211_radiotap_header *prthdr =
1382 (struct ieee80211_radiotap_header *)skb->data;
1383 u16 len_rthdr;
1385 /* check for not even having the fixed radiotap header part */
1386 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1387 goto fail; /* too short to be possibly valid */
1389 /* is it a header version we can trust to find length from? */
1390 if (unlikely(prthdr->it_version))
1391 goto fail; /* only version 0 is supported */
1393 /* then there must be a radiotap header with a length we can use */
1394 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1396 /* does the skb contain enough to deliver on the alleged length? */
1397 if (unlikely(skb->len < len_rthdr))
1398 goto fail; /* skb too short for claimed rt header extent */
1400 skb->dev = local->mdev;
1402 /* needed because we set skb device to master */
1403 skb->iif = dev->ifindex;
1405 /* sometimes we do encrypt injected frames, will be fixed
1406 * up in radiotap parser if not wanted */
1407 skb->do_not_encrypt = 0;
1410 * fix up the pointers accounting for the radiotap
1411 * header still being in there. We are being given
1412 * a precooked IEEE80211 header so no need for
1413 * normal processing
1415 skb_set_mac_header(skb, len_rthdr);
1417 * these are just fixed to the end of the rt area since we
1418 * don't have any better information and at this point, nobody cares
1420 skb_set_network_header(skb, len_rthdr);
1421 skb_set_transport_header(skb, len_rthdr);
1423 /* pass the radiotap header up to the next stage intact */
1424 dev_queue_xmit(skb);
1425 return NETDEV_TX_OK;
1427 fail:
1428 dev_kfree_skb(skb);
1429 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1433 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1434 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1435 * @skb: packet to be sent
1436 * @dev: incoming interface
1438 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1439 * not be freed, and caller is responsible for either retrying later or freeing
1440 * skb).
1442 * This function takes in an Ethernet header and encapsulates it with suitable
1443 * IEEE 802.11 header based on which interface the packet is coming in. The
1444 * encapsulated packet will then be passed to master interface, wlan#.11, for
1445 * transmission (through low-level driver).
1447 int ieee80211_subif_start_xmit(struct sk_buff *skb,
1448 struct net_device *dev)
1450 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1451 struct ieee80211_local *local = sdata->local;
1452 int ret = 1, head_need;
1453 u16 ethertype, hdrlen, meshhdrlen = 0;
1454 __le16 fc;
1455 struct ieee80211_hdr hdr;
1456 struct ieee80211s_hdr mesh_hdr;
1457 const u8 *encaps_data;
1458 int encaps_len, skip_header_bytes;
1459 int nh_pos, h_pos;
1460 struct sta_info *sta;
1461 u32 sta_flags = 0;
1463 if (unlikely(skb->len < ETH_HLEN)) {
1464 ret = 0;
1465 goto fail;
1468 nh_pos = skb_network_header(skb) - skb->data;
1469 h_pos = skb_transport_header(skb) - skb->data;
1471 /* convert Ethernet header to proper 802.11 header (based on
1472 * operation mode) */
1473 ethertype = (skb->data[12] << 8) | skb->data[13];
1474 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1476 switch (sdata->vif.type) {
1477 case NL80211_IFTYPE_AP:
1478 case NL80211_IFTYPE_AP_VLAN:
1479 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1480 /* DA BSSID SA */
1481 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1482 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1483 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1484 hdrlen = 24;
1485 break;
1486 case NL80211_IFTYPE_WDS:
1487 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1488 /* RA TA DA SA */
1489 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1490 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1491 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1492 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1493 hdrlen = 30;
1494 break;
1495 #ifdef CONFIG_MAC80211_MESH
1496 case NL80211_IFTYPE_MESH_POINT:
1497 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1498 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1499 /* Do not send frames with mesh_ttl == 0 */
1500 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1501 ret = 0;
1502 goto fail;
1504 memset(&mesh_hdr, 0, sizeof(mesh_hdr));
1506 if (compare_ether_addr(dev->dev_addr,
1507 skb->data + ETH_ALEN) == 0) {
1508 /* RA TA DA SA */
1509 memset(hdr.addr1, 0, ETH_ALEN);
1510 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1511 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1512 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1513 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata);
1514 } else {
1515 /* packet from other interface */
1516 struct mesh_path *mppath;
1518 memset(hdr.addr1, 0, ETH_ALEN);
1519 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1520 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN);
1522 if (is_multicast_ether_addr(skb->data))
1523 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1524 else {
1525 rcu_read_lock();
1526 mppath = mpp_path_lookup(skb->data, sdata);
1527 if (mppath)
1528 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN);
1529 else
1530 memset(hdr.addr3, 0xff, ETH_ALEN);
1531 rcu_read_unlock();
1534 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6;
1535 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
1536 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum);
1537 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN);
1538 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN);
1539 sdata->u.mesh.mesh_seqnum++;
1540 meshhdrlen = 18;
1542 hdrlen = 30;
1543 break;
1544 #endif
1545 case NL80211_IFTYPE_STATION:
1546 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1547 /* BSSID SA DA */
1548 memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN);
1549 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1550 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1551 hdrlen = 24;
1552 break;
1553 case NL80211_IFTYPE_ADHOC:
1554 /* DA SA BSSID */
1555 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1556 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1557 memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN);
1558 hdrlen = 24;
1559 break;
1560 default:
1561 ret = 0;
1562 goto fail;
1566 * There's no need to try to look up the destination
1567 * if it is a multicast address (which can only happen
1568 * in AP mode)
1570 if (!is_multicast_ether_addr(hdr.addr1)) {
1571 rcu_read_lock();
1572 sta = sta_info_get(local, hdr.addr1);
1573 if (sta)
1574 sta_flags = get_sta_flags(sta);
1575 rcu_read_unlock();
1578 /* receiver and we are QoS enabled, use a QoS type frame */
1579 if (sta_flags & WLAN_STA_WME &&
1580 ieee80211_num_regular_queues(&local->hw) >= 4) {
1581 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1582 hdrlen += 2;
1586 * Drop unicast frames to unauthorised stations unless they are
1587 * EAPOL frames from the local station.
1589 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1590 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1591 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1592 !(ethertype == ETH_P_PAE &&
1593 compare_ether_addr(dev->dev_addr,
1594 skb->data + ETH_ALEN) == 0))) {
1595 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1596 DECLARE_MAC_BUF(mac);
1598 if (net_ratelimit())
1599 printk(KERN_DEBUG "%s: dropped frame to %s"
1600 " (unauthorized port)\n", dev->name,
1601 print_mac(mac, hdr.addr1));
1602 #endif
1604 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1606 ret = 0;
1607 goto fail;
1610 hdr.frame_control = fc;
1611 hdr.duration_id = 0;
1612 hdr.seq_ctrl = 0;
1614 skip_header_bytes = ETH_HLEN;
1615 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1616 encaps_data = bridge_tunnel_header;
1617 encaps_len = sizeof(bridge_tunnel_header);
1618 skip_header_bytes -= 2;
1619 } else if (ethertype >= 0x600) {
1620 encaps_data = rfc1042_header;
1621 encaps_len = sizeof(rfc1042_header);
1622 skip_header_bytes -= 2;
1623 } else {
1624 encaps_data = NULL;
1625 encaps_len = 0;
1628 skb_pull(skb, skip_header_bytes);
1629 nh_pos -= skip_header_bytes;
1630 h_pos -= skip_header_bytes;
1632 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1635 * So we need to modify the skb header and hence need a copy of
1636 * that. The head_need variable above doesn't, so far, include
1637 * the needed header space that we don't need right away. If we
1638 * can, then we don't reallocate right now but only after the
1639 * frame arrives at the master device (if it does...)
1641 * If we cannot, however, then we will reallocate to include all
1642 * the ever needed space. Also, if we need to reallocate it anyway,
1643 * make it big enough for everything we may ever need.
1646 if (head_need > 0 || skb_cloned(skb)) {
1647 head_need += IEEE80211_ENCRYPT_HEADROOM;
1648 head_need += local->tx_headroom;
1649 head_need = max_t(int, 0, head_need);
1650 if (ieee80211_skb_resize(local, skb, head_need, true))
1651 goto fail;
1654 if (encaps_data) {
1655 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1656 nh_pos += encaps_len;
1657 h_pos += encaps_len;
1660 if (meshhdrlen > 0) {
1661 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1662 nh_pos += meshhdrlen;
1663 h_pos += meshhdrlen;
1666 if (ieee80211_is_data_qos(fc)) {
1667 __le16 *qos_control;
1669 qos_control = (__le16*) skb_push(skb, 2);
1670 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1672 * Maybe we could actually set some fields here, for now just
1673 * initialise to zero to indicate no special operation.
1675 *qos_control = 0;
1676 } else
1677 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1679 nh_pos += hdrlen;
1680 h_pos += hdrlen;
1682 skb->iif = dev->ifindex;
1684 skb->dev = local->mdev;
1685 dev->stats.tx_packets++;
1686 dev->stats.tx_bytes += skb->len;
1688 /* Update skb pointers to various headers since this modified frame
1689 * is going to go through Linux networking code that may potentially
1690 * need things like pointer to IP header. */
1691 skb_set_mac_header(skb, 0);
1692 skb_set_network_header(skb, nh_pos);
1693 skb_set_transport_header(skb, h_pos);
1695 dev->trans_start = jiffies;
1696 dev_queue_xmit(skb);
1698 return 0;
1700 fail:
1701 if (!ret)
1702 dev_kfree_skb(skb);
1704 return ret;
1709 * ieee80211_clear_tx_pending may not be called in a context where
1710 * it is possible that it packets could come in again.
1712 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1714 int i, j;
1715 struct ieee80211_tx_stored_packet *store;
1717 for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) {
1718 if (!test_bit(i, local->queues_pending))
1719 continue;
1720 store = &local->pending_packet[i];
1721 kfree_skb(store->skb);
1722 for (j = 0; j < store->num_extra_frag; j++)
1723 kfree_skb(store->extra_frag[j]);
1724 kfree(store->extra_frag);
1725 clear_bit(i, local->queues_pending);
1730 * Transmit all pending packets. Called from tasklet, locks master device
1731 * TX lock so that no new packets can come in.
1733 void ieee80211_tx_pending(unsigned long data)
1735 struct ieee80211_local *local = (struct ieee80211_local *)data;
1736 struct net_device *dev = local->mdev;
1737 struct ieee80211_tx_stored_packet *store;
1738 struct ieee80211_tx_data tx;
1739 int i, ret;
1741 netif_tx_lock_bh(dev);
1742 for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) {
1743 /* Check that this queue is ok */
1744 if (__netif_subqueue_stopped(local->mdev, i) &&
1745 !test_bit(i, local->queues_pending_run))
1746 continue;
1748 if (!test_bit(i, local->queues_pending)) {
1749 clear_bit(i, local->queues_pending_run);
1750 ieee80211_wake_queue(&local->hw, i);
1751 continue;
1754 clear_bit(i, local->queues_pending_run);
1755 netif_start_subqueue(local->mdev, i);
1757 store = &local->pending_packet[i];
1758 tx.extra_frag = store->extra_frag;
1759 tx.num_extra_frag = store->num_extra_frag;
1760 tx.last_frag_rate_idx = store->last_frag_rate_idx;
1761 tx.flags = 0;
1762 if (store->last_frag_rate_ctrl_probe)
1763 tx.flags |= IEEE80211_TX_PROBE_LAST_FRAG;
1764 ret = __ieee80211_tx(local, store->skb, &tx);
1765 if (ret) {
1766 if (ret == IEEE80211_TX_FRAG_AGAIN)
1767 store->skb = NULL;
1768 } else {
1769 clear_bit(i, local->queues_pending);
1770 ieee80211_wake_queue(&local->hw, i);
1773 netif_tx_unlock_bh(dev);
1776 /* functions for drivers to get certain frames */
1778 static void ieee80211_beacon_add_tim(struct ieee80211_local *local,
1779 struct ieee80211_if_ap *bss,
1780 struct sk_buff *skb,
1781 struct beacon_data *beacon)
1783 u8 *pos, *tim;
1784 int aid0 = 0;
1785 int i, have_bits = 0, n1, n2;
1787 /* Generate bitmap for TIM only if there are any STAs in power save
1788 * mode. */
1789 if (atomic_read(&bss->num_sta_ps) > 0)
1790 /* in the hope that this is faster than
1791 * checking byte-for-byte */
1792 have_bits = !bitmap_empty((unsigned long*)bss->tim,
1793 IEEE80211_MAX_AID+1);
1795 if (bss->dtim_count == 0)
1796 bss->dtim_count = beacon->dtim_period - 1;
1797 else
1798 bss->dtim_count--;
1800 tim = pos = (u8 *) skb_put(skb, 6);
1801 *pos++ = WLAN_EID_TIM;
1802 *pos++ = 4;
1803 *pos++ = bss->dtim_count;
1804 *pos++ = beacon->dtim_period;
1806 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
1807 aid0 = 1;
1809 if (have_bits) {
1810 /* Find largest even number N1 so that bits numbered 1 through
1811 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
1812 * (N2 + 1) x 8 through 2007 are 0. */
1813 n1 = 0;
1814 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
1815 if (bss->tim[i]) {
1816 n1 = i & 0xfe;
1817 break;
1820 n2 = n1;
1821 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
1822 if (bss->tim[i]) {
1823 n2 = i;
1824 break;
1828 /* Bitmap control */
1829 *pos++ = n1 | aid0;
1830 /* Part Virt Bitmap */
1831 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
1833 tim[1] = n2 - n1 + 4;
1834 skb_put(skb, n2 - n1);
1835 } else {
1836 *pos++ = aid0; /* Bitmap control */
1837 *pos++ = 0; /* Part Virt Bitmap */
1841 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1842 struct ieee80211_vif *vif)
1844 struct ieee80211_local *local = hw_to_local(hw);
1845 struct sk_buff *skb = NULL;
1846 struct ieee80211_tx_info *info;
1847 struct net_device *bdev;
1848 struct ieee80211_sub_if_data *sdata = NULL;
1849 struct ieee80211_if_ap *ap = NULL;
1850 struct ieee80211_if_sta *ifsta = NULL;
1851 struct rate_selection rsel;
1852 struct beacon_data *beacon;
1853 struct ieee80211_supported_band *sband;
1854 enum ieee80211_band band = local->hw.conf.channel->band;
1856 sband = local->hw.wiphy->bands[band];
1858 rcu_read_lock();
1860 sdata = vif_to_sdata(vif);
1861 bdev = sdata->dev;
1863 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1864 ap = &sdata->u.ap;
1865 beacon = rcu_dereference(ap->beacon);
1866 if (ap && beacon) {
1868 * headroom, head length,
1869 * tail length and maximum TIM length
1871 skb = dev_alloc_skb(local->tx_headroom +
1872 beacon->head_len +
1873 beacon->tail_len + 256);
1874 if (!skb)
1875 goto out;
1877 skb_reserve(skb, local->tx_headroom);
1878 memcpy(skb_put(skb, beacon->head_len), beacon->head,
1879 beacon->head_len);
1882 * Not very nice, but we want to allow the driver to call
1883 * ieee80211_beacon_get() as a response to the set_tim()
1884 * callback. That, however, is already invoked under the
1885 * sta_lock to guarantee consistent and race-free update
1886 * of the tim bitmap in mac80211 and the driver.
1888 if (local->tim_in_locked_section) {
1889 ieee80211_beacon_add_tim(local, ap, skb, beacon);
1890 } else {
1891 unsigned long flags;
1893 spin_lock_irqsave(&local->sta_lock, flags);
1894 ieee80211_beacon_add_tim(local, ap, skb, beacon);
1895 spin_unlock_irqrestore(&local->sta_lock, flags);
1898 if (beacon->tail)
1899 memcpy(skb_put(skb, beacon->tail_len),
1900 beacon->tail, beacon->tail_len);
1901 } else
1902 goto out;
1903 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1904 struct ieee80211_hdr *hdr;
1905 ifsta = &sdata->u.sta;
1907 if (!ifsta->probe_resp)
1908 goto out;
1910 skb = skb_copy(ifsta->probe_resp, GFP_ATOMIC);
1911 if (!skb)
1912 goto out;
1914 hdr = (struct ieee80211_hdr *) skb->data;
1915 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1916 IEEE80211_STYPE_BEACON);
1918 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
1919 struct ieee80211_mgmt *mgmt;
1920 u8 *pos;
1922 /* headroom, head length, tail length and maximum TIM length */
1923 skb = dev_alloc_skb(local->tx_headroom + 400);
1924 if (!skb)
1925 goto out;
1927 skb_reserve(skb, local->hw.extra_tx_headroom);
1928 mgmt = (struct ieee80211_mgmt *)
1929 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
1930 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
1931 mgmt->frame_control =
1932 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
1933 memset(mgmt->da, 0xff, ETH_ALEN);
1934 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
1935 /* BSSID is left zeroed, wildcard value */
1936 mgmt->u.beacon.beacon_int =
1937 cpu_to_le16(local->hw.conf.beacon_int);
1938 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
1940 pos = skb_put(skb, 2);
1941 *pos++ = WLAN_EID_SSID;
1942 *pos++ = 0x0;
1944 mesh_mgmt_ies_add(skb, sdata);
1945 } else {
1946 WARN_ON(1);
1947 goto out;
1950 info = IEEE80211_SKB_CB(skb);
1952 skb->do_not_encrypt = 1;
1954 info->band = band;
1955 rate_control_get_rate(sdata, sband, NULL, skb, &rsel);
1957 if (unlikely(rsel.rate_idx < 0)) {
1958 if (net_ratelimit()) {
1959 printk(KERN_DEBUG "%s: ieee80211_beacon_get: "
1960 "no rate found\n",
1961 wiphy_name(local->hw.wiphy));
1963 dev_kfree_skb_any(skb);
1964 skb = NULL;
1965 goto out;
1968 info->control.vif = vif;
1969 info->tx_rate_idx = rsel.rate_idx;
1971 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1972 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1973 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
1974 if (sdata->bss_conf.use_short_preamble &&
1975 sband->bitrates[rsel.rate_idx].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1976 info->flags |= IEEE80211_TX_CTL_SHORT_PREAMBLE;
1978 info->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
1979 info->control.retry_limit = 1;
1981 out:
1982 rcu_read_unlock();
1983 return skb;
1985 EXPORT_SYMBOL(ieee80211_beacon_get);
1987 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1988 const void *frame, size_t frame_len,
1989 const struct ieee80211_tx_info *frame_txctl,
1990 struct ieee80211_rts *rts)
1992 const struct ieee80211_hdr *hdr = frame;
1994 rts->frame_control =
1995 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
1996 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
1997 frame_txctl);
1998 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
1999 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2001 EXPORT_SYMBOL(ieee80211_rts_get);
2003 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2004 const void *frame, size_t frame_len,
2005 const struct ieee80211_tx_info *frame_txctl,
2006 struct ieee80211_cts *cts)
2008 const struct ieee80211_hdr *hdr = frame;
2010 cts->frame_control =
2011 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2012 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2013 frame_len, frame_txctl);
2014 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2016 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2018 struct sk_buff *
2019 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2020 struct ieee80211_vif *vif)
2022 struct ieee80211_local *local = hw_to_local(hw);
2023 struct sk_buff *skb = NULL;
2024 struct sta_info *sta;
2025 struct ieee80211_tx_data tx;
2026 struct net_device *bdev;
2027 struct ieee80211_sub_if_data *sdata;
2028 struct ieee80211_if_ap *bss = NULL;
2029 struct beacon_data *beacon;
2030 struct ieee80211_tx_info *info;
2032 sdata = vif_to_sdata(vif);
2033 bdev = sdata->dev;
2034 bss = &sdata->u.ap;
2036 if (!bss)
2037 return NULL;
2039 rcu_read_lock();
2040 beacon = rcu_dereference(bss->beacon);
2042 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2043 goto out;
2045 if (bss->dtim_count != 0)
2046 goto out; /* send buffered bc/mc only after DTIM beacon */
2048 while (1) {
2049 skb = skb_dequeue(&bss->ps_bc_buf);
2050 if (!skb)
2051 goto out;
2052 local->total_ps_buffered--;
2054 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2055 struct ieee80211_hdr *hdr =
2056 (struct ieee80211_hdr *) skb->data;
2057 /* more buffered multicast/broadcast frames ==> set
2058 * MoreData flag in IEEE 802.11 header to inform PS
2059 * STAs */
2060 hdr->frame_control |=
2061 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2064 if (!ieee80211_tx_prepare(local, &tx, skb))
2065 break;
2066 dev_kfree_skb_any(skb);
2069 info = IEEE80211_SKB_CB(skb);
2071 sta = tx.sta;
2072 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2073 tx.channel = local->hw.conf.channel;
2074 info->band = tx.channel->band;
2076 if (invoke_tx_handlers(&tx))
2077 skb = NULL;
2078 out:
2079 rcu_read_unlock();
2081 return skb;
2083 EXPORT_SYMBOL(ieee80211_get_buffered_bc);