Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / tools / perf / util / evsel.c
blobef351688b79798a1c46b95094fb078c6daee14aa
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
42 #include "sane_ctype.h"
44 struct perf_missing_features perf_missing_features;
46 static clockid_t clockid;
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
50 return 0;
53 void __weak test_attr__ready(void) { }
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
59 static struct {
60 size_t size;
61 int (*init)(struct perf_evsel *evsel);
62 void (*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 .size = sizeof(struct perf_evsel),
65 .init = perf_evsel__no_extra_init,
66 .fini = perf_evsel__no_extra_fini,
69 int perf_evsel__object_config(size_t object_size,
70 int (*init)(struct perf_evsel *evsel),
71 void (*fini)(struct perf_evsel *evsel))
74 if (object_size == 0)
75 goto set_methods;
77 if (perf_evsel__object.size > object_size)
78 return -EINVAL;
80 perf_evsel__object.size = object_size;
82 set_methods:
83 if (init != NULL)
84 perf_evsel__object.init = init;
86 if (fini != NULL)
87 perf_evsel__object.fini = fini;
89 return 0;
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
94 int __perf_evsel__sample_size(u64 sample_type)
96 u64 mask = sample_type & PERF_SAMPLE_MASK;
97 int size = 0;
98 int i;
100 for (i = 0; i < 64; i++) {
101 if (mask & (1ULL << i))
102 size++;
105 size *= sizeof(u64);
107 return size;
111 * __perf_evsel__calc_id_pos - calculate id_pos.
112 * @sample_type: sample type
114 * This function returns the position of the event id (PERF_SAMPLE_ID or
115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116 * sample_event.
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
120 int idx = 0;
122 if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 return 0;
125 if (!(sample_type & PERF_SAMPLE_ID))
126 return -1;
128 if (sample_type & PERF_SAMPLE_IP)
129 idx += 1;
131 if (sample_type & PERF_SAMPLE_TID)
132 idx += 1;
134 if (sample_type & PERF_SAMPLE_TIME)
135 idx += 1;
137 if (sample_type & PERF_SAMPLE_ADDR)
138 idx += 1;
140 return idx;
144 * __perf_evsel__calc_is_pos - calculate is_pos.
145 * @sample_type: sample type
147 * This function returns the position (counting backwards) of the event id
148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149 * sample_id_all is used there is an id sample appended to non-sample events.
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
153 int idx = 1;
155 if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 return 1;
158 if (!(sample_type & PERF_SAMPLE_ID))
159 return -1;
161 if (sample_type & PERF_SAMPLE_CPU)
162 idx += 1;
164 if (sample_type & PERF_SAMPLE_STREAM_ID)
165 idx += 1;
167 return idx;
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 enum perf_event_sample_format bit)
179 if (!(evsel->attr.sample_type & bit)) {
180 evsel->attr.sample_type |= bit;
181 evsel->sample_size += sizeof(u64);
182 perf_evsel__calc_id_pos(evsel);
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 enum perf_event_sample_format bit)
189 if (evsel->attr.sample_type & bit) {
190 evsel->attr.sample_type &= ~bit;
191 evsel->sample_size -= sizeof(u64);
192 perf_evsel__calc_id_pos(evsel);
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 bool can_sample_identifier)
199 if (can_sample_identifier) {
200 perf_evsel__reset_sample_bit(evsel, ID);
201 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 } else {
203 perf_evsel__set_sample_bit(evsel, ID);
205 evsel->attr.read_format |= PERF_FORMAT_ID;
209 * perf_evsel__is_function_event - Return whether given evsel is a function
210 * trace event
212 * @evsel - evsel selector to be tested
214 * Return %true if event is function trace event
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
218 #define FUNCTION_EVENT "ftrace:function"
220 return evsel->name &&
221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
223 #undef FUNCTION_EVENT
226 void perf_evsel__init(struct perf_evsel *evsel,
227 struct perf_event_attr *attr, int idx)
229 evsel->idx = idx;
230 evsel->tracking = !idx;
231 evsel->attr = *attr;
232 evsel->leader = evsel;
233 evsel->unit = "";
234 evsel->scale = 1.0;
235 evsel->evlist = NULL;
236 evsel->bpf_fd = -1;
237 INIT_LIST_HEAD(&evsel->node);
238 INIT_LIST_HEAD(&evsel->config_terms);
239 perf_evsel__object.init(evsel);
240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 perf_evsel__calc_id_pos(evsel);
242 evsel->cmdline_group_boundary = false;
243 evsel->metric_expr = NULL;
244 evsel->metric_name = NULL;
245 evsel->metric_events = NULL;
246 evsel->collect_stat = false;
249 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253 if (evsel != NULL)
254 perf_evsel__init(evsel, attr, idx);
256 if (perf_evsel__is_bpf_output(evsel)) {
257 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
258 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
259 evsel->attr.sample_period = 1;
262 return evsel;
265 static bool perf_event_can_profile_kernel(void)
267 return geteuid() == 0 || perf_event_paranoid() == -1;
270 struct perf_evsel *perf_evsel__new_cycles(bool precise)
272 struct perf_event_attr attr = {
273 .type = PERF_TYPE_HARDWARE,
274 .config = PERF_COUNT_HW_CPU_CYCLES,
275 .exclude_kernel = !perf_event_can_profile_kernel(),
277 struct perf_evsel *evsel;
279 event_attr_init(&attr);
281 if (!precise)
282 goto new_event;
284 * Unnamed union member, not supported as struct member named
285 * initializer in older compilers such as gcc 4.4.7
287 * Just for probing the precise_ip:
289 attr.sample_period = 1;
291 perf_event_attr__set_max_precise_ip(&attr);
293 * Now let the usual logic to set up the perf_event_attr defaults
294 * to kick in when we return and before perf_evsel__open() is called.
296 attr.sample_period = 0;
297 new_event:
298 evsel = perf_evsel__new(&attr);
299 if (evsel == NULL)
300 goto out;
302 /* use asprintf() because free(evsel) assumes name is allocated */
303 if (asprintf(&evsel->name, "cycles%s%s%.*s",
304 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
305 attr.exclude_kernel ? "u" : "",
306 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
307 goto error_free;
308 out:
309 return evsel;
310 error_free:
311 perf_evsel__delete(evsel);
312 evsel = NULL;
313 goto out;
317 * Returns pointer with encoded error via <linux/err.h> interface.
319 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
321 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
322 int err = -ENOMEM;
324 if (evsel == NULL) {
325 goto out_err;
326 } else {
327 struct perf_event_attr attr = {
328 .type = PERF_TYPE_TRACEPOINT,
329 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
330 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
333 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
334 goto out_free;
336 evsel->tp_format = trace_event__tp_format(sys, name);
337 if (IS_ERR(evsel->tp_format)) {
338 err = PTR_ERR(evsel->tp_format);
339 goto out_free;
342 event_attr_init(&attr);
343 attr.config = evsel->tp_format->id;
344 attr.sample_period = 1;
345 perf_evsel__init(evsel, &attr, idx);
348 return evsel;
350 out_free:
351 zfree(&evsel->name);
352 free(evsel);
353 out_err:
354 return ERR_PTR(err);
357 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
358 "cycles",
359 "instructions",
360 "cache-references",
361 "cache-misses",
362 "branches",
363 "branch-misses",
364 "bus-cycles",
365 "stalled-cycles-frontend",
366 "stalled-cycles-backend",
367 "ref-cycles",
370 static const char *__perf_evsel__hw_name(u64 config)
372 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
373 return perf_evsel__hw_names[config];
375 return "unknown-hardware";
378 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
380 int colon = 0, r = 0;
381 struct perf_event_attr *attr = &evsel->attr;
382 bool exclude_guest_default = false;
384 #define MOD_PRINT(context, mod) do { \
385 if (!attr->exclude_##context) { \
386 if (!colon) colon = ++r; \
387 r += scnprintf(bf + r, size - r, "%c", mod); \
388 } } while(0)
390 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
391 MOD_PRINT(kernel, 'k');
392 MOD_PRINT(user, 'u');
393 MOD_PRINT(hv, 'h');
394 exclude_guest_default = true;
397 if (attr->precise_ip) {
398 if (!colon)
399 colon = ++r;
400 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
401 exclude_guest_default = true;
404 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
405 MOD_PRINT(host, 'H');
406 MOD_PRINT(guest, 'G');
408 #undef MOD_PRINT
409 if (colon)
410 bf[colon - 1] = ':';
411 return r;
414 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
416 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
417 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
420 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
421 "cpu-clock",
422 "task-clock",
423 "page-faults",
424 "context-switches",
425 "cpu-migrations",
426 "minor-faults",
427 "major-faults",
428 "alignment-faults",
429 "emulation-faults",
430 "dummy",
433 static const char *__perf_evsel__sw_name(u64 config)
435 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
436 return perf_evsel__sw_names[config];
437 return "unknown-software";
440 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
442 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
443 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
446 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
448 int r;
450 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
452 if (type & HW_BREAKPOINT_R)
453 r += scnprintf(bf + r, size - r, "r");
455 if (type & HW_BREAKPOINT_W)
456 r += scnprintf(bf + r, size - r, "w");
458 if (type & HW_BREAKPOINT_X)
459 r += scnprintf(bf + r, size - r, "x");
461 return r;
464 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
466 struct perf_event_attr *attr = &evsel->attr;
467 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
468 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
471 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
472 [PERF_EVSEL__MAX_ALIASES] = {
473 { "L1-dcache", "l1-d", "l1d", "L1-data", },
474 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
475 { "LLC", "L2", },
476 { "dTLB", "d-tlb", "Data-TLB", },
477 { "iTLB", "i-tlb", "Instruction-TLB", },
478 { "branch", "branches", "bpu", "btb", "bpc", },
479 { "node", },
482 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
483 [PERF_EVSEL__MAX_ALIASES] = {
484 { "load", "loads", "read", },
485 { "store", "stores", "write", },
486 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
489 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
490 [PERF_EVSEL__MAX_ALIASES] = {
491 { "refs", "Reference", "ops", "access", },
492 { "misses", "miss", },
495 #define C(x) PERF_COUNT_HW_CACHE_##x
496 #define CACHE_READ (1 << C(OP_READ))
497 #define CACHE_WRITE (1 << C(OP_WRITE))
498 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
499 #define COP(x) (1 << x)
502 * cache operartion stat
503 * L1I : Read and prefetch only
504 * ITLB and BPU : Read-only
506 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
507 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
508 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
509 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
510 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
511 [C(ITLB)] = (CACHE_READ),
512 [C(BPU)] = (CACHE_READ),
513 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
516 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
518 if (perf_evsel__hw_cache_stat[type] & COP(op))
519 return true; /* valid */
520 else
521 return false; /* invalid */
524 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
525 char *bf, size_t size)
527 if (result) {
528 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
529 perf_evsel__hw_cache_op[op][0],
530 perf_evsel__hw_cache_result[result][0]);
533 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
534 perf_evsel__hw_cache_op[op][1]);
537 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
539 u8 op, result, type = (config >> 0) & 0xff;
540 const char *err = "unknown-ext-hardware-cache-type";
542 if (type >= PERF_COUNT_HW_CACHE_MAX)
543 goto out_err;
545 op = (config >> 8) & 0xff;
546 err = "unknown-ext-hardware-cache-op";
547 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
548 goto out_err;
550 result = (config >> 16) & 0xff;
551 err = "unknown-ext-hardware-cache-result";
552 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
553 goto out_err;
555 err = "invalid-cache";
556 if (!perf_evsel__is_cache_op_valid(type, op))
557 goto out_err;
559 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
560 out_err:
561 return scnprintf(bf, size, "%s", err);
564 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
566 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
567 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
570 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
572 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
573 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
576 const char *perf_evsel__name(struct perf_evsel *evsel)
578 char bf[128];
580 if (evsel->name)
581 return evsel->name;
583 switch (evsel->attr.type) {
584 case PERF_TYPE_RAW:
585 perf_evsel__raw_name(evsel, bf, sizeof(bf));
586 break;
588 case PERF_TYPE_HARDWARE:
589 perf_evsel__hw_name(evsel, bf, sizeof(bf));
590 break;
592 case PERF_TYPE_HW_CACHE:
593 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
594 break;
596 case PERF_TYPE_SOFTWARE:
597 perf_evsel__sw_name(evsel, bf, sizeof(bf));
598 break;
600 case PERF_TYPE_TRACEPOINT:
601 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
602 break;
604 case PERF_TYPE_BREAKPOINT:
605 perf_evsel__bp_name(evsel, bf, sizeof(bf));
606 break;
608 default:
609 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
610 evsel->attr.type);
611 break;
614 evsel->name = strdup(bf);
616 return evsel->name ?: "unknown";
619 const char *perf_evsel__group_name(struct perf_evsel *evsel)
621 return evsel->group_name ?: "anon group";
624 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
626 int ret;
627 struct perf_evsel *pos;
628 const char *group_name = perf_evsel__group_name(evsel);
630 ret = scnprintf(buf, size, "%s", group_name);
632 ret += scnprintf(buf + ret, size - ret, " { %s",
633 perf_evsel__name(evsel));
635 for_each_group_member(pos, evsel)
636 ret += scnprintf(buf + ret, size - ret, ", %s",
637 perf_evsel__name(pos));
639 ret += scnprintf(buf + ret, size - ret, " }");
641 return ret;
644 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
645 struct record_opts *opts,
646 struct callchain_param *param)
648 bool function = perf_evsel__is_function_event(evsel);
649 struct perf_event_attr *attr = &evsel->attr;
651 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
653 attr->sample_max_stack = param->max_stack;
655 if (param->record_mode == CALLCHAIN_LBR) {
656 if (!opts->branch_stack) {
657 if (attr->exclude_user) {
658 pr_warning("LBR callstack option is only available "
659 "to get user callchain information. "
660 "Falling back to framepointers.\n");
661 } else {
662 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
663 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
664 PERF_SAMPLE_BRANCH_CALL_STACK |
665 PERF_SAMPLE_BRANCH_NO_CYCLES |
666 PERF_SAMPLE_BRANCH_NO_FLAGS;
668 } else
669 pr_warning("Cannot use LBR callstack with branch stack. "
670 "Falling back to framepointers.\n");
673 if (param->record_mode == CALLCHAIN_DWARF) {
674 if (!function) {
675 perf_evsel__set_sample_bit(evsel, REGS_USER);
676 perf_evsel__set_sample_bit(evsel, STACK_USER);
677 attr->sample_regs_user |= PERF_REGS_MASK;
678 attr->sample_stack_user = param->dump_size;
679 attr->exclude_callchain_user = 1;
680 } else {
681 pr_info("Cannot use DWARF unwind for function trace event,"
682 " falling back to framepointers.\n");
686 if (function) {
687 pr_info("Disabling user space callchains for function trace event.\n");
688 attr->exclude_callchain_user = 1;
692 void perf_evsel__config_callchain(struct perf_evsel *evsel,
693 struct record_opts *opts,
694 struct callchain_param *param)
696 if (param->enabled)
697 return __perf_evsel__config_callchain(evsel, opts, param);
700 static void
701 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
702 struct callchain_param *param)
704 struct perf_event_attr *attr = &evsel->attr;
706 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
707 if (param->record_mode == CALLCHAIN_LBR) {
708 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
709 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
710 PERF_SAMPLE_BRANCH_CALL_STACK);
712 if (param->record_mode == CALLCHAIN_DWARF) {
713 perf_evsel__reset_sample_bit(evsel, REGS_USER);
714 perf_evsel__reset_sample_bit(evsel, STACK_USER);
718 static void apply_config_terms(struct perf_evsel *evsel,
719 struct record_opts *opts, bool track)
721 struct perf_evsel_config_term *term;
722 struct list_head *config_terms = &evsel->config_terms;
723 struct perf_event_attr *attr = &evsel->attr;
724 /* callgraph default */
725 struct callchain_param param = {
726 .record_mode = callchain_param.record_mode,
728 u32 dump_size = 0;
729 int max_stack = 0;
730 const char *callgraph_buf = NULL;
732 list_for_each_entry(term, config_terms, list) {
733 switch (term->type) {
734 case PERF_EVSEL__CONFIG_TERM_PERIOD:
735 if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
736 attr->sample_period = term->val.period;
737 attr->freq = 0;
738 perf_evsel__reset_sample_bit(evsel, PERIOD);
740 break;
741 case PERF_EVSEL__CONFIG_TERM_FREQ:
742 if (!(term->weak && opts->user_freq != UINT_MAX)) {
743 attr->sample_freq = term->val.freq;
744 attr->freq = 1;
745 perf_evsel__set_sample_bit(evsel, PERIOD);
747 break;
748 case PERF_EVSEL__CONFIG_TERM_TIME:
749 if (term->val.time)
750 perf_evsel__set_sample_bit(evsel, TIME);
751 else
752 perf_evsel__reset_sample_bit(evsel, TIME);
753 break;
754 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
755 callgraph_buf = term->val.callgraph;
756 break;
757 case PERF_EVSEL__CONFIG_TERM_BRANCH:
758 if (term->val.branch && strcmp(term->val.branch, "no")) {
759 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
760 parse_branch_str(term->val.branch,
761 &attr->branch_sample_type);
762 } else
763 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
764 break;
765 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
766 dump_size = term->val.stack_user;
767 break;
768 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
769 max_stack = term->val.max_stack;
770 break;
771 case PERF_EVSEL__CONFIG_TERM_INHERIT:
773 * attr->inherit should has already been set by
774 * perf_evsel__config. If user explicitly set
775 * inherit using config terms, override global
776 * opt->no_inherit setting.
778 attr->inherit = term->val.inherit ? 1 : 0;
779 break;
780 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
781 attr->write_backward = term->val.overwrite ? 1 : 0;
782 break;
783 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
784 break;
785 default:
786 break;
790 /* User explicitly set per-event callgraph, clear the old setting and reset. */
791 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
792 bool sample_address = false;
794 if (max_stack) {
795 param.max_stack = max_stack;
796 if (callgraph_buf == NULL)
797 callgraph_buf = "fp";
800 /* parse callgraph parameters */
801 if (callgraph_buf != NULL) {
802 if (!strcmp(callgraph_buf, "no")) {
803 param.enabled = false;
804 param.record_mode = CALLCHAIN_NONE;
805 } else {
806 param.enabled = true;
807 if (parse_callchain_record(callgraph_buf, &param)) {
808 pr_err("per-event callgraph setting for %s failed. "
809 "Apply callgraph global setting for it\n",
810 evsel->name);
811 return;
813 if (param.record_mode == CALLCHAIN_DWARF)
814 sample_address = true;
817 if (dump_size > 0) {
818 dump_size = round_up(dump_size, sizeof(u64));
819 param.dump_size = dump_size;
822 /* If global callgraph set, clear it */
823 if (callchain_param.enabled)
824 perf_evsel__reset_callgraph(evsel, &callchain_param);
826 /* set perf-event callgraph */
827 if (param.enabled) {
828 if (sample_address) {
829 perf_evsel__set_sample_bit(evsel, ADDR);
830 perf_evsel__set_sample_bit(evsel, DATA_SRC);
831 evsel->attr.mmap_data = track;
833 perf_evsel__config_callchain(evsel, opts, &param);
839 * The enable_on_exec/disabled value strategy:
841 * 1) For any type of traced program:
842 * - all independent events and group leaders are disabled
843 * - all group members are enabled
845 * Group members are ruled by group leaders. They need to
846 * be enabled, because the group scheduling relies on that.
848 * 2) For traced programs executed by perf:
849 * - all independent events and group leaders have
850 * enable_on_exec set
851 * - we don't specifically enable or disable any event during
852 * the record command
854 * Independent events and group leaders are initially disabled
855 * and get enabled by exec. Group members are ruled by group
856 * leaders as stated in 1).
858 * 3) For traced programs attached by perf (pid/tid):
859 * - we specifically enable or disable all events during
860 * the record command
862 * When attaching events to already running traced we
863 * enable/disable events specifically, as there's no
864 * initial traced exec call.
866 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
867 struct callchain_param *callchain)
869 struct perf_evsel *leader = evsel->leader;
870 struct perf_event_attr *attr = &evsel->attr;
871 int track = evsel->tracking;
872 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
874 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
875 attr->inherit = !opts->no_inherit;
876 attr->write_backward = opts->overwrite ? 1 : 0;
878 perf_evsel__set_sample_bit(evsel, IP);
879 perf_evsel__set_sample_bit(evsel, TID);
881 if (evsel->sample_read) {
882 perf_evsel__set_sample_bit(evsel, READ);
885 * We need ID even in case of single event, because
886 * PERF_SAMPLE_READ process ID specific data.
888 perf_evsel__set_sample_id(evsel, false);
891 * Apply group format only if we belong to group
892 * with more than one members.
894 if (leader->nr_members > 1) {
895 attr->read_format |= PERF_FORMAT_GROUP;
896 attr->inherit = 0;
901 * We default some events to have a default interval. But keep
902 * it a weak assumption overridable by the user.
904 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
905 opts->user_interval != ULLONG_MAX)) {
906 if (opts->freq) {
907 perf_evsel__set_sample_bit(evsel, PERIOD);
908 attr->freq = 1;
909 attr->sample_freq = opts->freq;
910 } else {
911 attr->sample_period = opts->default_interval;
916 * Disable sampling for all group members other
917 * than leader in case leader 'leads' the sampling.
919 if ((leader != evsel) && leader->sample_read) {
920 attr->sample_freq = 0;
921 attr->sample_period = 0;
924 if (opts->no_samples)
925 attr->sample_freq = 0;
927 if (opts->inherit_stat) {
928 evsel->attr.read_format |=
929 PERF_FORMAT_TOTAL_TIME_ENABLED |
930 PERF_FORMAT_TOTAL_TIME_RUNNING |
931 PERF_FORMAT_ID;
932 attr->inherit_stat = 1;
935 if (opts->sample_address) {
936 perf_evsel__set_sample_bit(evsel, ADDR);
937 attr->mmap_data = track;
941 * We don't allow user space callchains for function trace
942 * event, due to issues with page faults while tracing page
943 * fault handler and its overall trickiness nature.
945 if (perf_evsel__is_function_event(evsel))
946 evsel->attr.exclude_callchain_user = 1;
948 if (callchain && callchain->enabled && !evsel->no_aux_samples)
949 perf_evsel__config_callchain(evsel, opts, callchain);
951 if (opts->sample_intr_regs) {
952 attr->sample_regs_intr = opts->sample_intr_regs;
953 perf_evsel__set_sample_bit(evsel, REGS_INTR);
956 if (opts->sample_user_regs) {
957 attr->sample_regs_user |= opts->sample_user_regs;
958 perf_evsel__set_sample_bit(evsel, REGS_USER);
961 if (target__has_cpu(&opts->target) || opts->sample_cpu)
962 perf_evsel__set_sample_bit(evsel, CPU);
965 * When the user explicitly disabled time don't force it here.
967 if (opts->sample_time &&
968 (!perf_missing_features.sample_id_all &&
969 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
970 opts->sample_time_set)))
971 perf_evsel__set_sample_bit(evsel, TIME);
973 if (opts->raw_samples && !evsel->no_aux_samples) {
974 perf_evsel__set_sample_bit(evsel, TIME);
975 perf_evsel__set_sample_bit(evsel, RAW);
976 perf_evsel__set_sample_bit(evsel, CPU);
979 if (opts->sample_address)
980 perf_evsel__set_sample_bit(evsel, DATA_SRC);
982 if (opts->sample_phys_addr)
983 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
985 if (opts->no_buffering) {
986 attr->watermark = 0;
987 attr->wakeup_events = 1;
989 if (opts->branch_stack && !evsel->no_aux_samples) {
990 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
991 attr->branch_sample_type = opts->branch_stack;
994 if (opts->sample_weight)
995 perf_evsel__set_sample_bit(evsel, WEIGHT);
997 attr->task = track;
998 attr->mmap = track;
999 attr->mmap2 = track && !perf_missing_features.mmap2;
1000 attr->comm = track;
1002 if (opts->record_namespaces)
1003 attr->namespaces = track;
1005 if (opts->record_switch_events)
1006 attr->context_switch = track;
1008 if (opts->sample_transaction)
1009 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1011 if (opts->running_time) {
1012 evsel->attr.read_format |=
1013 PERF_FORMAT_TOTAL_TIME_ENABLED |
1014 PERF_FORMAT_TOTAL_TIME_RUNNING;
1018 * XXX see the function comment above
1020 * Disabling only independent events or group leaders,
1021 * keeping group members enabled.
1023 if (perf_evsel__is_group_leader(evsel))
1024 attr->disabled = 1;
1027 * Setting enable_on_exec for independent events and
1028 * group leaders for traced executed by perf.
1030 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1031 !opts->initial_delay)
1032 attr->enable_on_exec = 1;
1034 if (evsel->immediate) {
1035 attr->disabled = 0;
1036 attr->enable_on_exec = 0;
1039 clockid = opts->clockid;
1040 if (opts->use_clockid) {
1041 attr->use_clockid = 1;
1042 attr->clockid = opts->clockid;
1045 if (evsel->precise_max)
1046 perf_event_attr__set_max_precise_ip(attr);
1048 if (opts->all_user) {
1049 attr->exclude_kernel = 1;
1050 attr->exclude_user = 0;
1053 if (opts->all_kernel) {
1054 attr->exclude_kernel = 0;
1055 attr->exclude_user = 1;
1059 * Apply event specific term settings,
1060 * it overloads any global configuration.
1062 apply_config_terms(evsel, opts, track);
1064 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1066 /* The --period option takes the precedence. */
1067 if (opts->period_set) {
1068 if (opts->period)
1069 perf_evsel__set_sample_bit(evsel, PERIOD);
1070 else
1071 perf_evsel__reset_sample_bit(evsel, PERIOD);
1075 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1077 if (evsel->system_wide)
1078 nthreads = 1;
1080 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1082 if (evsel->fd) {
1083 int cpu, thread;
1084 for (cpu = 0; cpu < ncpus; cpu++) {
1085 for (thread = 0; thread < nthreads; thread++) {
1086 FD(evsel, cpu, thread) = -1;
1091 return evsel->fd != NULL ? 0 : -ENOMEM;
1094 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1095 int ioc, void *arg)
1097 int cpu, thread;
1099 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1100 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1101 int fd = FD(evsel, cpu, thread),
1102 err = ioctl(fd, ioc, arg);
1104 if (err)
1105 return err;
1109 return 0;
1112 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1114 return perf_evsel__run_ioctl(evsel,
1115 PERF_EVENT_IOC_SET_FILTER,
1116 (void *)filter);
1119 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1121 char *new_filter = strdup(filter);
1123 if (new_filter != NULL) {
1124 free(evsel->filter);
1125 evsel->filter = new_filter;
1126 return 0;
1129 return -1;
1132 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1133 const char *fmt, const char *filter)
1135 char *new_filter;
1137 if (evsel->filter == NULL)
1138 return perf_evsel__set_filter(evsel, filter);
1140 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1141 free(evsel->filter);
1142 evsel->filter = new_filter;
1143 return 0;
1146 return -1;
1149 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1151 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1154 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1156 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1159 int perf_evsel__enable(struct perf_evsel *evsel)
1161 return perf_evsel__run_ioctl(evsel,
1162 PERF_EVENT_IOC_ENABLE,
1166 int perf_evsel__disable(struct perf_evsel *evsel)
1168 return perf_evsel__run_ioctl(evsel,
1169 PERF_EVENT_IOC_DISABLE,
1173 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1175 if (ncpus == 0 || nthreads == 0)
1176 return 0;
1178 if (evsel->system_wide)
1179 nthreads = 1;
1181 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1182 if (evsel->sample_id == NULL)
1183 return -ENOMEM;
1185 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1186 if (evsel->id == NULL) {
1187 xyarray__delete(evsel->sample_id);
1188 evsel->sample_id = NULL;
1189 return -ENOMEM;
1192 return 0;
1195 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1197 xyarray__delete(evsel->fd);
1198 evsel->fd = NULL;
1201 static void perf_evsel__free_id(struct perf_evsel *evsel)
1203 xyarray__delete(evsel->sample_id);
1204 evsel->sample_id = NULL;
1205 zfree(&evsel->id);
1208 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1210 struct perf_evsel_config_term *term, *h;
1212 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1213 list_del(&term->list);
1214 free(term);
1218 void perf_evsel__close_fd(struct perf_evsel *evsel)
1220 int cpu, thread;
1222 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1223 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1224 close(FD(evsel, cpu, thread));
1225 FD(evsel, cpu, thread) = -1;
1229 void perf_evsel__exit(struct perf_evsel *evsel)
1231 assert(list_empty(&evsel->node));
1232 assert(evsel->evlist == NULL);
1233 perf_evsel__free_fd(evsel);
1234 perf_evsel__free_id(evsel);
1235 perf_evsel__free_config_terms(evsel);
1236 close_cgroup(evsel->cgrp);
1237 cpu_map__put(evsel->cpus);
1238 cpu_map__put(evsel->own_cpus);
1239 thread_map__put(evsel->threads);
1240 zfree(&evsel->group_name);
1241 zfree(&evsel->name);
1242 perf_evsel__object.fini(evsel);
1245 void perf_evsel__delete(struct perf_evsel *evsel)
1247 perf_evsel__exit(evsel);
1248 free(evsel);
1251 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1252 struct perf_counts_values *count)
1254 struct perf_counts_values tmp;
1256 if (!evsel->prev_raw_counts)
1257 return;
1259 if (cpu == -1) {
1260 tmp = evsel->prev_raw_counts->aggr;
1261 evsel->prev_raw_counts->aggr = *count;
1262 } else {
1263 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1264 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1267 count->val = count->val - tmp.val;
1268 count->ena = count->ena - tmp.ena;
1269 count->run = count->run - tmp.run;
1272 void perf_counts_values__scale(struct perf_counts_values *count,
1273 bool scale, s8 *pscaled)
1275 s8 scaled = 0;
1277 if (scale) {
1278 if (count->run == 0) {
1279 scaled = -1;
1280 count->val = 0;
1281 } else if (count->run < count->ena) {
1282 scaled = 1;
1283 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1285 } else
1286 count->ena = count->run = 0;
1288 if (pscaled)
1289 *pscaled = scaled;
1292 static int perf_evsel__read_size(struct perf_evsel *evsel)
1294 u64 read_format = evsel->attr.read_format;
1295 int entry = sizeof(u64); /* value */
1296 int size = 0;
1297 int nr = 1;
1299 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1300 size += sizeof(u64);
1302 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1303 size += sizeof(u64);
1305 if (read_format & PERF_FORMAT_ID)
1306 entry += sizeof(u64);
1308 if (read_format & PERF_FORMAT_GROUP) {
1309 nr = evsel->nr_members;
1310 size += sizeof(u64);
1313 size += entry * nr;
1314 return size;
1317 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1318 struct perf_counts_values *count)
1320 size_t size = perf_evsel__read_size(evsel);
1322 memset(count, 0, sizeof(*count));
1324 if (FD(evsel, cpu, thread) < 0)
1325 return -EINVAL;
1327 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1328 return -errno;
1330 return 0;
1333 static int
1334 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1336 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1338 return perf_evsel__read(evsel, cpu, thread, count);
1341 static void
1342 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1343 u64 val, u64 ena, u64 run)
1345 struct perf_counts_values *count;
1347 count = perf_counts(counter->counts, cpu, thread);
1349 count->val = val;
1350 count->ena = ena;
1351 count->run = run;
1352 count->loaded = true;
1355 static int
1356 perf_evsel__process_group_data(struct perf_evsel *leader,
1357 int cpu, int thread, u64 *data)
1359 u64 read_format = leader->attr.read_format;
1360 struct sample_read_value *v;
1361 u64 nr, ena = 0, run = 0, i;
1363 nr = *data++;
1365 if (nr != (u64) leader->nr_members)
1366 return -EINVAL;
1368 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1369 ena = *data++;
1371 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1372 run = *data++;
1374 v = (struct sample_read_value *) data;
1376 perf_evsel__set_count(leader, cpu, thread,
1377 v[0].value, ena, run);
1379 for (i = 1; i < nr; i++) {
1380 struct perf_evsel *counter;
1382 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1383 if (!counter)
1384 return -EINVAL;
1386 perf_evsel__set_count(counter, cpu, thread,
1387 v[i].value, ena, run);
1390 return 0;
1393 static int
1394 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1396 struct perf_stat_evsel *ps = leader->stats;
1397 u64 read_format = leader->attr.read_format;
1398 int size = perf_evsel__read_size(leader);
1399 u64 *data = ps->group_data;
1401 if (!(read_format & PERF_FORMAT_ID))
1402 return -EINVAL;
1404 if (!perf_evsel__is_group_leader(leader))
1405 return -EINVAL;
1407 if (!data) {
1408 data = zalloc(size);
1409 if (!data)
1410 return -ENOMEM;
1412 ps->group_data = data;
1415 if (FD(leader, cpu, thread) < 0)
1416 return -EINVAL;
1418 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1419 return -errno;
1421 return perf_evsel__process_group_data(leader, cpu, thread, data);
1424 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1426 u64 read_format = evsel->attr.read_format;
1428 if (read_format & PERF_FORMAT_GROUP)
1429 return perf_evsel__read_group(evsel, cpu, thread);
1430 else
1431 return perf_evsel__read_one(evsel, cpu, thread);
1434 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1435 int cpu, int thread, bool scale)
1437 struct perf_counts_values count;
1438 size_t nv = scale ? 3 : 1;
1440 if (FD(evsel, cpu, thread) < 0)
1441 return -EINVAL;
1443 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1444 return -ENOMEM;
1446 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1447 return -errno;
1449 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1450 perf_counts_values__scale(&count, scale, NULL);
1451 *perf_counts(evsel->counts, cpu, thread) = count;
1452 return 0;
1455 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1457 struct perf_evsel *leader = evsel->leader;
1458 int fd;
1460 if (perf_evsel__is_group_leader(evsel))
1461 return -1;
1464 * Leader must be already processed/open,
1465 * if not it's a bug.
1467 BUG_ON(!leader->fd);
1469 fd = FD(leader, cpu, thread);
1470 BUG_ON(fd == -1);
1472 return fd;
1475 struct bit_names {
1476 int bit;
1477 const char *name;
1480 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1482 bool first_bit = true;
1483 int i = 0;
1485 do {
1486 if (value & bits[i].bit) {
1487 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1488 first_bit = false;
1490 } while (bits[++i].name != NULL);
1493 static void __p_sample_type(char *buf, size_t size, u64 value)
1495 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1496 struct bit_names bits[] = {
1497 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1498 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1499 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1500 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1501 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1502 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1503 { .name = NULL, }
1505 #undef bit_name
1506 __p_bits(buf, size, value, bits);
1509 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1511 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1512 struct bit_names bits[] = {
1513 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1514 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1515 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1516 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1517 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1518 { .name = NULL, }
1520 #undef bit_name
1521 __p_bits(buf, size, value, bits);
1524 static void __p_read_format(char *buf, size_t size, u64 value)
1526 #define bit_name(n) { PERF_FORMAT_##n, #n }
1527 struct bit_names bits[] = {
1528 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1529 bit_name(ID), bit_name(GROUP),
1530 { .name = NULL, }
1532 #undef bit_name
1533 __p_bits(buf, size, value, bits);
1536 #define BUF_SIZE 1024
1538 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1539 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1540 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1541 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1542 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1543 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1545 #define PRINT_ATTRn(_n, _f, _p) \
1546 do { \
1547 if (attr->_f) { \
1548 _p(attr->_f); \
1549 ret += attr__fprintf(fp, _n, buf, priv);\
1551 } while (0)
1553 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1555 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1556 attr__fprintf_f attr__fprintf, void *priv)
1558 char buf[BUF_SIZE];
1559 int ret = 0;
1561 PRINT_ATTRf(type, p_unsigned);
1562 PRINT_ATTRf(size, p_unsigned);
1563 PRINT_ATTRf(config, p_hex);
1564 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1565 PRINT_ATTRf(sample_type, p_sample_type);
1566 PRINT_ATTRf(read_format, p_read_format);
1568 PRINT_ATTRf(disabled, p_unsigned);
1569 PRINT_ATTRf(inherit, p_unsigned);
1570 PRINT_ATTRf(pinned, p_unsigned);
1571 PRINT_ATTRf(exclusive, p_unsigned);
1572 PRINT_ATTRf(exclude_user, p_unsigned);
1573 PRINT_ATTRf(exclude_kernel, p_unsigned);
1574 PRINT_ATTRf(exclude_hv, p_unsigned);
1575 PRINT_ATTRf(exclude_idle, p_unsigned);
1576 PRINT_ATTRf(mmap, p_unsigned);
1577 PRINT_ATTRf(comm, p_unsigned);
1578 PRINT_ATTRf(freq, p_unsigned);
1579 PRINT_ATTRf(inherit_stat, p_unsigned);
1580 PRINT_ATTRf(enable_on_exec, p_unsigned);
1581 PRINT_ATTRf(task, p_unsigned);
1582 PRINT_ATTRf(watermark, p_unsigned);
1583 PRINT_ATTRf(precise_ip, p_unsigned);
1584 PRINT_ATTRf(mmap_data, p_unsigned);
1585 PRINT_ATTRf(sample_id_all, p_unsigned);
1586 PRINT_ATTRf(exclude_host, p_unsigned);
1587 PRINT_ATTRf(exclude_guest, p_unsigned);
1588 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1589 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1590 PRINT_ATTRf(mmap2, p_unsigned);
1591 PRINT_ATTRf(comm_exec, p_unsigned);
1592 PRINT_ATTRf(use_clockid, p_unsigned);
1593 PRINT_ATTRf(context_switch, p_unsigned);
1594 PRINT_ATTRf(write_backward, p_unsigned);
1595 PRINT_ATTRf(namespaces, p_unsigned);
1597 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1598 PRINT_ATTRf(bp_type, p_unsigned);
1599 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1600 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1601 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1602 PRINT_ATTRf(sample_regs_user, p_hex);
1603 PRINT_ATTRf(sample_stack_user, p_unsigned);
1604 PRINT_ATTRf(clockid, p_signed);
1605 PRINT_ATTRf(sample_regs_intr, p_hex);
1606 PRINT_ATTRf(aux_watermark, p_unsigned);
1607 PRINT_ATTRf(sample_max_stack, p_unsigned);
1609 return ret;
1612 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1613 void *priv __maybe_unused)
1615 return fprintf(fp, " %-32s %s\n", name, val);
1618 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1619 int nr_cpus, int nr_threads,
1620 int thread_idx)
1622 for (int cpu = 0; cpu < nr_cpus; cpu++)
1623 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1624 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1627 static int update_fds(struct perf_evsel *evsel,
1628 int nr_cpus, int cpu_idx,
1629 int nr_threads, int thread_idx)
1631 struct perf_evsel *pos;
1633 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1634 return -EINVAL;
1636 evlist__for_each_entry(evsel->evlist, pos) {
1637 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1639 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1642 * Since fds for next evsel has not been created,
1643 * there is no need to iterate whole event list.
1645 if (pos == evsel)
1646 break;
1648 return 0;
1651 static bool ignore_missing_thread(struct perf_evsel *evsel,
1652 int nr_cpus, int cpu,
1653 struct thread_map *threads,
1654 int thread, int err)
1656 pid_t ignore_pid = thread_map__pid(threads, thread);
1658 if (!evsel->ignore_missing_thread)
1659 return false;
1661 /* The system wide setup does not work with threads. */
1662 if (evsel->system_wide)
1663 return false;
1665 /* The -ESRCH is perf event syscall errno for pid's not found. */
1666 if (err != -ESRCH)
1667 return false;
1669 /* If there's only one thread, let it fail. */
1670 if (threads->nr == 1)
1671 return false;
1674 * We should remove fd for missing_thread first
1675 * because thread_map__remove() will decrease threads->nr.
1677 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1678 return false;
1680 if (thread_map__remove(threads, thread))
1681 return false;
1683 pr_warning("WARNING: Ignored open failure for pid %d\n",
1684 ignore_pid);
1685 return true;
1688 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1689 struct thread_map *threads)
1691 int cpu, thread, nthreads;
1692 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1693 int pid = -1, err;
1694 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1696 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1697 return -EINVAL;
1699 if (cpus == NULL) {
1700 static struct cpu_map *empty_cpu_map;
1702 if (empty_cpu_map == NULL) {
1703 empty_cpu_map = cpu_map__dummy_new();
1704 if (empty_cpu_map == NULL)
1705 return -ENOMEM;
1708 cpus = empty_cpu_map;
1711 if (threads == NULL) {
1712 static struct thread_map *empty_thread_map;
1714 if (empty_thread_map == NULL) {
1715 empty_thread_map = thread_map__new_by_tid(-1);
1716 if (empty_thread_map == NULL)
1717 return -ENOMEM;
1720 threads = empty_thread_map;
1723 if (evsel->system_wide)
1724 nthreads = 1;
1725 else
1726 nthreads = threads->nr;
1728 if (evsel->fd == NULL &&
1729 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1730 return -ENOMEM;
1732 if (evsel->cgrp) {
1733 flags |= PERF_FLAG_PID_CGROUP;
1734 pid = evsel->cgrp->fd;
1737 fallback_missing_features:
1738 if (perf_missing_features.clockid_wrong)
1739 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1740 if (perf_missing_features.clockid) {
1741 evsel->attr.use_clockid = 0;
1742 evsel->attr.clockid = 0;
1744 if (perf_missing_features.cloexec)
1745 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1746 if (perf_missing_features.mmap2)
1747 evsel->attr.mmap2 = 0;
1748 if (perf_missing_features.exclude_guest)
1749 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1750 if (perf_missing_features.lbr_flags)
1751 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1752 PERF_SAMPLE_BRANCH_NO_CYCLES);
1753 if (perf_missing_features.group_read && evsel->attr.inherit)
1754 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1755 retry_sample_id:
1756 if (perf_missing_features.sample_id_all)
1757 evsel->attr.sample_id_all = 0;
1759 if (verbose >= 2) {
1760 fprintf(stderr, "%.60s\n", graph_dotted_line);
1761 fprintf(stderr, "perf_event_attr:\n");
1762 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1763 fprintf(stderr, "%.60s\n", graph_dotted_line);
1766 for (cpu = 0; cpu < cpus->nr; cpu++) {
1768 for (thread = 0; thread < nthreads; thread++) {
1769 int fd, group_fd;
1771 if (!evsel->cgrp && !evsel->system_wide)
1772 pid = thread_map__pid(threads, thread);
1774 group_fd = get_group_fd(evsel, cpu, thread);
1775 retry_open:
1776 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1777 pid, cpus->map[cpu], group_fd, flags);
1779 test_attr__ready();
1781 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1782 group_fd, flags);
1784 FD(evsel, cpu, thread) = fd;
1786 if (fd < 0) {
1787 err = -errno;
1789 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1791 * We just removed 1 thread, so take a step
1792 * back on thread index and lower the upper
1793 * nthreads limit.
1795 nthreads--;
1796 thread--;
1798 /* ... and pretend like nothing have happened. */
1799 err = 0;
1800 continue;
1803 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1804 err);
1805 goto try_fallback;
1808 pr_debug2(" = %d\n", fd);
1810 if (evsel->bpf_fd >= 0) {
1811 int evt_fd = fd;
1812 int bpf_fd = evsel->bpf_fd;
1814 err = ioctl(evt_fd,
1815 PERF_EVENT_IOC_SET_BPF,
1816 bpf_fd);
1817 if (err && errno != EEXIST) {
1818 pr_err("failed to attach bpf fd %d: %s\n",
1819 bpf_fd, strerror(errno));
1820 err = -EINVAL;
1821 goto out_close;
1825 set_rlimit = NO_CHANGE;
1828 * If we succeeded but had to kill clockid, fail and
1829 * have perf_evsel__open_strerror() print us a nice
1830 * error.
1832 if (perf_missing_features.clockid ||
1833 perf_missing_features.clockid_wrong) {
1834 err = -EINVAL;
1835 goto out_close;
1840 return 0;
1842 try_fallback:
1844 * perf stat needs between 5 and 22 fds per CPU. When we run out
1845 * of them try to increase the limits.
1847 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1848 struct rlimit l;
1849 int old_errno = errno;
1851 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1852 if (set_rlimit == NO_CHANGE)
1853 l.rlim_cur = l.rlim_max;
1854 else {
1855 l.rlim_cur = l.rlim_max + 1000;
1856 l.rlim_max = l.rlim_cur;
1858 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1859 set_rlimit++;
1860 errno = old_errno;
1861 goto retry_open;
1864 errno = old_errno;
1867 if (err != -EINVAL || cpu > 0 || thread > 0)
1868 goto out_close;
1871 * Must probe features in the order they were added to the
1872 * perf_event_attr interface.
1874 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1875 perf_missing_features.write_backward = true;
1876 pr_debug2("switching off write_backward\n");
1877 goto out_close;
1878 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1879 perf_missing_features.clockid_wrong = true;
1880 pr_debug2("switching off clockid\n");
1881 goto fallback_missing_features;
1882 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1883 perf_missing_features.clockid = true;
1884 pr_debug2("switching off use_clockid\n");
1885 goto fallback_missing_features;
1886 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1887 perf_missing_features.cloexec = true;
1888 pr_debug2("switching off cloexec flag\n");
1889 goto fallback_missing_features;
1890 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1891 perf_missing_features.mmap2 = true;
1892 pr_debug2("switching off mmap2\n");
1893 goto fallback_missing_features;
1894 } else if (!perf_missing_features.exclude_guest &&
1895 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1896 perf_missing_features.exclude_guest = true;
1897 pr_debug2("switching off exclude_guest, exclude_host\n");
1898 goto fallback_missing_features;
1899 } else if (!perf_missing_features.sample_id_all) {
1900 perf_missing_features.sample_id_all = true;
1901 pr_debug2("switching off sample_id_all\n");
1902 goto retry_sample_id;
1903 } else if (!perf_missing_features.lbr_flags &&
1904 (evsel->attr.branch_sample_type &
1905 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1906 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1907 perf_missing_features.lbr_flags = true;
1908 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1909 goto fallback_missing_features;
1910 } else if (!perf_missing_features.group_read &&
1911 evsel->attr.inherit &&
1912 (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1913 perf_missing_features.group_read = true;
1914 pr_debug2("switching off group read\n");
1915 goto fallback_missing_features;
1917 out_close:
1918 do {
1919 while (--thread >= 0) {
1920 close(FD(evsel, cpu, thread));
1921 FD(evsel, cpu, thread) = -1;
1923 thread = nthreads;
1924 } while (--cpu >= 0);
1925 return err;
1928 void perf_evsel__close(struct perf_evsel *evsel)
1930 if (evsel->fd == NULL)
1931 return;
1933 perf_evsel__close_fd(evsel);
1934 perf_evsel__free_fd(evsel);
1937 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1938 struct cpu_map *cpus)
1940 return perf_evsel__open(evsel, cpus, NULL);
1943 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1944 struct thread_map *threads)
1946 return perf_evsel__open(evsel, NULL, threads);
1949 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1950 const union perf_event *event,
1951 struct perf_sample *sample)
1953 u64 type = evsel->attr.sample_type;
1954 const u64 *array = event->sample.array;
1955 bool swapped = evsel->needs_swap;
1956 union u64_swap u;
1958 array += ((event->header.size -
1959 sizeof(event->header)) / sizeof(u64)) - 1;
1961 if (type & PERF_SAMPLE_IDENTIFIER) {
1962 sample->id = *array;
1963 array--;
1966 if (type & PERF_SAMPLE_CPU) {
1967 u.val64 = *array;
1968 if (swapped) {
1969 /* undo swap of u64, then swap on individual u32s */
1970 u.val64 = bswap_64(u.val64);
1971 u.val32[0] = bswap_32(u.val32[0]);
1974 sample->cpu = u.val32[0];
1975 array--;
1978 if (type & PERF_SAMPLE_STREAM_ID) {
1979 sample->stream_id = *array;
1980 array--;
1983 if (type & PERF_SAMPLE_ID) {
1984 sample->id = *array;
1985 array--;
1988 if (type & PERF_SAMPLE_TIME) {
1989 sample->time = *array;
1990 array--;
1993 if (type & PERF_SAMPLE_TID) {
1994 u.val64 = *array;
1995 if (swapped) {
1996 /* undo swap of u64, then swap on individual u32s */
1997 u.val64 = bswap_64(u.val64);
1998 u.val32[0] = bswap_32(u.val32[0]);
1999 u.val32[1] = bswap_32(u.val32[1]);
2002 sample->pid = u.val32[0];
2003 sample->tid = u.val32[1];
2004 array--;
2007 return 0;
2010 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2011 u64 size)
2013 return size > max_size || offset + size > endp;
2016 #define OVERFLOW_CHECK(offset, size, max_size) \
2017 do { \
2018 if (overflow(endp, (max_size), (offset), (size))) \
2019 return -EFAULT; \
2020 } while (0)
2022 #define OVERFLOW_CHECK_u64(offset) \
2023 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2025 static int
2026 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2029 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2030 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2031 * check the format does not go past the end of the event.
2033 if (sample_size + sizeof(event->header) > event->header.size)
2034 return -EFAULT;
2036 return 0;
2039 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2040 struct perf_sample *data)
2042 u64 type = evsel->attr.sample_type;
2043 bool swapped = evsel->needs_swap;
2044 const u64 *array;
2045 u16 max_size = event->header.size;
2046 const void *endp = (void *)event + max_size;
2047 u64 sz;
2050 * used for cross-endian analysis. See git commit 65014ab3
2051 * for why this goofiness is needed.
2053 union u64_swap u;
2055 memset(data, 0, sizeof(*data));
2056 data->cpu = data->pid = data->tid = -1;
2057 data->stream_id = data->id = data->time = -1ULL;
2058 data->period = evsel->attr.sample_period;
2059 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2060 data->misc = event->header.misc;
2061 data->id = -1ULL;
2062 data->data_src = PERF_MEM_DATA_SRC_NONE;
2064 if (event->header.type != PERF_RECORD_SAMPLE) {
2065 if (!evsel->attr.sample_id_all)
2066 return 0;
2067 return perf_evsel__parse_id_sample(evsel, event, data);
2070 array = event->sample.array;
2072 if (perf_event__check_size(event, evsel->sample_size))
2073 return -EFAULT;
2075 if (type & PERF_SAMPLE_IDENTIFIER) {
2076 data->id = *array;
2077 array++;
2080 if (type & PERF_SAMPLE_IP) {
2081 data->ip = *array;
2082 array++;
2085 if (type & PERF_SAMPLE_TID) {
2086 u.val64 = *array;
2087 if (swapped) {
2088 /* undo swap of u64, then swap on individual u32s */
2089 u.val64 = bswap_64(u.val64);
2090 u.val32[0] = bswap_32(u.val32[0]);
2091 u.val32[1] = bswap_32(u.val32[1]);
2094 data->pid = u.val32[0];
2095 data->tid = u.val32[1];
2096 array++;
2099 if (type & PERF_SAMPLE_TIME) {
2100 data->time = *array;
2101 array++;
2104 if (type & PERF_SAMPLE_ADDR) {
2105 data->addr = *array;
2106 array++;
2109 if (type & PERF_SAMPLE_ID) {
2110 data->id = *array;
2111 array++;
2114 if (type & PERF_SAMPLE_STREAM_ID) {
2115 data->stream_id = *array;
2116 array++;
2119 if (type & PERF_SAMPLE_CPU) {
2121 u.val64 = *array;
2122 if (swapped) {
2123 /* undo swap of u64, then swap on individual u32s */
2124 u.val64 = bswap_64(u.val64);
2125 u.val32[0] = bswap_32(u.val32[0]);
2128 data->cpu = u.val32[0];
2129 array++;
2132 if (type & PERF_SAMPLE_PERIOD) {
2133 data->period = *array;
2134 array++;
2137 if (type & PERF_SAMPLE_READ) {
2138 u64 read_format = evsel->attr.read_format;
2140 OVERFLOW_CHECK_u64(array);
2141 if (read_format & PERF_FORMAT_GROUP)
2142 data->read.group.nr = *array;
2143 else
2144 data->read.one.value = *array;
2146 array++;
2148 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2149 OVERFLOW_CHECK_u64(array);
2150 data->read.time_enabled = *array;
2151 array++;
2154 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2155 OVERFLOW_CHECK_u64(array);
2156 data->read.time_running = *array;
2157 array++;
2160 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2161 if (read_format & PERF_FORMAT_GROUP) {
2162 const u64 max_group_nr = UINT64_MAX /
2163 sizeof(struct sample_read_value);
2165 if (data->read.group.nr > max_group_nr)
2166 return -EFAULT;
2167 sz = data->read.group.nr *
2168 sizeof(struct sample_read_value);
2169 OVERFLOW_CHECK(array, sz, max_size);
2170 data->read.group.values =
2171 (struct sample_read_value *)array;
2172 array = (void *)array + sz;
2173 } else {
2174 OVERFLOW_CHECK_u64(array);
2175 data->read.one.id = *array;
2176 array++;
2180 if (type & PERF_SAMPLE_CALLCHAIN) {
2181 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2183 OVERFLOW_CHECK_u64(array);
2184 data->callchain = (struct ip_callchain *)array++;
2185 if (data->callchain->nr > max_callchain_nr)
2186 return -EFAULT;
2187 sz = data->callchain->nr * sizeof(u64);
2188 OVERFLOW_CHECK(array, sz, max_size);
2189 array = (void *)array + sz;
2192 if (type & PERF_SAMPLE_RAW) {
2193 OVERFLOW_CHECK_u64(array);
2194 u.val64 = *array;
2197 * Undo swap of u64, then swap on individual u32s,
2198 * get the size of the raw area and undo all of the
2199 * swap. The pevent interface handles endianity by
2200 * itself.
2202 if (swapped) {
2203 u.val64 = bswap_64(u.val64);
2204 u.val32[0] = bswap_32(u.val32[0]);
2205 u.val32[1] = bswap_32(u.val32[1]);
2207 data->raw_size = u.val32[0];
2210 * The raw data is aligned on 64bits including the
2211 * u32 size, so it's safe to use mem_bswap_64.
2213 if (swapped)
2214 mem_bswap_64((void *) array, data->raw_size);
2216 array = (void *)array + sizeof(u32);
2218 OVERFLOW_CHECK(array, data->raw_size, max_size);
2219 data->raw_data = (void *)array;
2220 array = (void *)array + data->raw_size;
2223 if (type & PERF_SAMPLE_BRANCH_STACK) {
2224 const u64 max_branch_nr = UINT64_MAX /
2225 sizeof(struct branch_entry);
2227 OVERFLOW_CHECK_u64(array);
2228 data->branch_stack = (struct branch_stack *)array++;
2230 if (data->branch_stack->nr > max_branch_nr)
2231 return -EFAULT;
2232 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2233 OVERFLOW_CHECK(array, sz, max_size);
2234 array = (void *)array + sz;
2237 if (type & PERF_SAMPLE_REGS_USER) {
2238 OVERFLOW_CHECK_u64(array);
2239 data->user_regs.abi = *array;
2240 array++;
2242 if (data->user_regs.abi) {
2243 u64 mask = evsel->attr.sample_regs_user;
2245 sz = hweight_long(mask) * sizeof(u64);
2246 OVERFLOW_CHECK(array, sz, max_size);
2247 data->user_regs.mask = mask;
2248 data->user_regs.regs = (u64 *)array;
2249 array = (void *)array + sz;
2253 if (type & PERF_SAMPLE_STACK_USER) {
2254 OVERFLOW_CHECK_u64(array);
2255 sz = *array++;
2257 data->user_stack.offset = ((char *)(array - 1)
2258 - (char *) event);
2260 if (!sz) {
2261 data->user_stack.size = 0;
2262 } else {
2263 OVERFLOW_CHECK(array, sz, max_size);
2264 data->user_stack.data = (char *)array;
2265 array = (void *)array + sz;
2266 OVERFLOW_CHECK_u64(array);
2267 data->user_stack.size = *array++;
2268 if (WARN_ONCE(data->user_stack.size > sz,
2269 "user stack dump failure\n"))
2270 return -EFAULT;
2274 if (type & PERF_SAMPLE_WEIGHT) {
2275 OVERFLOW_CHECK_u64(array);
2276 data->weight = *array;
2277 array++;
2280 if (type & PERF_SAMPLE_DATA_SRC) {
2281 OVERFLOW_CHECK_u64(array);
2282 data->data_src = *array;
2283 array++;
2286 if (type & PERF_SAMPLE_TRANSACTION) {
2287 OVERFLOW_CHECK_u64(array);
2288 data->transaction = *array;
2289 array++;
2292 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2293 if (type & PERF_SAMPLE_REGS_INTR) {
2294 OVERFLOW_CHECK_u64(array);
2295 data->intr_regs.abi = *array;
2296 array++;
2298 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2299 u64 mask = evsel->attr.sample_regs_intr;
2301 sz = hweight_long(mask) * sizeof(u64);
2302 OVERFLOW_CHECK(array, sz, max_size);
2303 data->intr_regs.mask = mask;
2304 data->intr_regs.regs = (u64 *)array;
2305 array = (void *)array + sz;
2309 data->phys_addr = 0;
2310 if (type & PERF_SAMPLE_PHYS_ADDR) {
2311 data->phys_addr = *array;
2312 array++;
2315 return 0;
2318 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2319 union perf_event *event,
2320 u64 *timestamp)
2322 u64 type = evsel->attr.sample_type;
2323 const u64 *array;
2325 if (!(type & PERF_SAMPLE_TIME))
2326 return -1;
2328 if (event->header.type != PERF_RECORD_SAMPLE) {
2329 struct perf_sample data = {
2330 .time = -1ULL,
2333 if (!evsel->attr.sample_id_all)
2334 return -1;
2335 if (perf_evsel__parse_id_sample(evsel, event, &data))
2336 return -1;
2338 *timestamp = data.time;
2339 return 0;
2342 array = event->sample.array;
2344 if (perf_event__check_size(event, evsel->sample_size))
2345 return -EFAULT;
2347 if (type & PERF_SAMPLE_IDENTIFIER)
2348 array++;
2350 if (type & PERF_SAMPLE_IP)
2351 array++;
2353 if (type & PERF_SAMPLE_TID)
2354 array++;
2356 if (type & PERF_SAMPLE_TIME)
2357 *timestamp = *array;
2359 return 0;
2362 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2363 u64 read_format)
2365 size_t sz, result = sizeof(struct sample_event);
2367 if (type & PERF_SAMPLE_IDENTIFIER)
2368 result += sizeof(u64);
2370 if (type & PERF_SAMPLE_IP)
2371 result += sizeof(u64);
2373 if (type & PERF_SAMPLE_TID)
2374 result += sizeof(u64);
2376 if (type & PERF_SAMPLE_TIME)
2377 result += sizeof(u64);
2379 if (type & PERF_SAMPLE_ADDR)
2380 result += sizeof(u64);
2382 if (type & PERF_SAMPLE_ID)
2383 result += sizeof(u64);
2385 if (type & PERF_SAMPLE_STREAM_ID)
2386 result += sizeof(u64);
2388 if (type & PERF_SAMPLE_CPU)
2389 result += sizeof(u64);
2391 if (type & PERF_SAMPLE_PERIOD)
2392 result += sizeof(u64);
2394 if (type & PERF_SAMPLE_READ) {
2395 result += sizeof(u64);
2396 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2397 result += sizeof(u64);
2398 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2399 result += sizeof(u64);
2400 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2401 if (read_format & PERF_FORMAT_GROUP) {
2402 sz = sample->read.group.nr *
2403 sizeof(struct sample_read_value);
2404 result += sz;
2405 } else {
2406 result += sizeof(u64);
2410 if (type & PERF_SAMPLE_CALLCHAIN) {
2411 sz = (sample->callchain->nr + 1) * sizeof(u64);
2412 result += sz;
2415 if (type & PERF_SAMPLE_RAW) {
2416 result += sizeof(u32);
2417 result += sample->raw_size;
2420 if (type & PERF_SAMPLE_BRANCH_STACK) {
2421 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2422 sz += sizeof(u64);
2423 result += sz;
2426 if (type & PERF_SAMPLE_REGS_USER) {
2427 if (sample->user_regs.abi) {
2428 result += sizeof(u64);
2429 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2430 result += sz;
2431 } else {
2432 result += sizeof(u64);
2436 if (type & PERF_SAMPLE_STACK_USER) {
2437 sz = sample->user_stack.size;
2438 result += sizeof(u64);
2439 if (sz) {
2440 result += sz;
2441 result += sizeof(u64);
2445 if (type & PERF_SAMPLE_WEIGHT)
2446 result += sizeof(u64);
2448 if (type & PERF_SAMPLE_DATA_SRC)
2449 result += sizeof(u64);
2451 if (type & PERF_SAMPLE_TRANSACTION)
2452 result += sizeof(u64);
2454 if (type & PERF_SAMPLE_REGS_INTR) {
2455 if (sample->intr_regs.abi) {
2456 result += sizeof(u64);
2457 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2458 result += sz;
2459 } else {
2460 result += sizeof(u64);
2464 if (type & PERF_SAMPLE_PHYS_ADDR)
2465 result += sizeof(u64);
2467 return result;
2470 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2471 u64 read_format,
2472 const struct perf_sample *sample)
2474 u64 *array;
2475 size_t sz;
2477 * used for cross-endian analysis. See git commit 65014ab3
2478 * for why this goofiness is needed.
2480 union u64_swap u;
2482 array = event->sample.array;
2484 if (type & PERF_SAMPLE_IDENTIFIER) {
2485 *array = sample->id;
2486 array++;
2489 if (type & PERF_SAMPLE_IP) {
2490 *array = sample->ip;
2491 array++;
2494 if (type & PERF_SAMPLE_TID) {
2495 u.val32[0] = sample->pid;
2496 u.val32[1] = sample->tid;
2497 *array = u.val64;
2498 array++;
2501 if (type & PERF_SAMPLE_TIME) {
2502 *array = sample->time;
2503 array++;
2506 if (type & PERF_SAMPLE_ADDR) {
2507 *array = sample->addr;
2508 array++;
2511 if (type & PERF_SAMPLE_ID) {
2512 *array = sample->id;
2513 array++;
2516 if (type & PERF_SAMPLE_STREAM_ID) {
2517 *array = sample->stream_id;
2518 array++;
2521 if (type & PERF_SAMPLE_CPU) {
2522 u.val32[0] = sample->cpu;
2523 u.val32[1] = 0;
2524 *array = u.val64;
2525 array++;
2528 if (type & PERF_SAMPLE_PERIOD) {
2529 *array = sample->period;
2530 array++;
2533 if (type & PERF_SAMPLE_READ) {
2534 if (read_format & PERF_FORMAT_GROUP)
2535 *array = sample->read.group.nr;
2536 else
2537 *array = sample->read.one.value;
2538 array++;
2540 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2541 *array = sample->read.time_enabled;
2542 array++;
2545 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2546 *array = sample->read.time_running;
2547 array++;
2550 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2551 if (read_format & PERF_FORMAT_GROUP) {
2552 sz = sample->read.group.nr *
2553 sizeof(struct sample_read_value);
2554 memcpy(array, sample->read.group.values, sz);
2555 array = (void *)array + sz;
2556 } else {
2557 *array = sample->read.one.id;
2558 array++;
2562 if (type & PERF_SAMPLE_CALLCHAIN) {
2563 sz = (sample->callchain->nr + 1) * sizeof(u64);
2564 memcpy(array, sample->callchain, sz);
2565 array = (void *)array + sz;
2568 if (type & PERF_SAMPLE_RAW) {
2569 u.val32[0] = sample->raw_size;
2570 *array = u.val64;
2571 array = (void *)array + sizeof(u32);
2573 memcpy(array, sample->raw_data, sample->raw_size);
2574 array = (void *)array + sample->raw_size;
2577 if (type & PERF_SAMPLE_BRANCH_STACK) {
2578 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2579 sz += sizeof(u64);
2580 memcpy(array, sample->branch_stack, sz);
2581 array = (void *)array + sz;
2584 if (type & PERF_SAMPLE_REGS_USER) {
2585 if (sample->user_regs.abi) {
2586 *array++ = sample->user_regs.abi;
2587 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2588 memcpy(array, sample->user_regs.regs, sz);
2589 array = (void *)array + sz;
2590 } else {
2591 *array++ = 0;
2595 if (type & PERF_SAMPLE_STACK_USER) {
2596 sz = sample->user_stack.size;
2597 *array++ = sz;
2598 if (sz) {
2599 memcpy(array, sample->user_stack.data, sz);
2600 array = (void *)array + sz;
2601 *array++ = sz;
2605 if (type & PERF_SAMPLE_WEIGHT) {
2606 *array = sample->weight;
2607 array++;
2610 if (type & PERF_SAMPLE_DATA_SRC) {
2611 *array = sample->data_src;
2612 array++;
2615 if (type & PERF_SAMPLE_TRANSACTION) {
2616 *array = sample->transaction;
2617 array++;
2620 if (type & PERF_SAMPLE_REGS_INTR) {
2621 if (sample->intr_regs.abi) {
2622 *array++ = sample->intr_regs.abi;
2623 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2624 memcpy(array, sample->intr_regs.regs, sz);
2625 array = (void *)array + sz;
2626 } else {
2627 *array++ = 0;
2631 if (type & PERF_SAMPLE_PHYS_ADDR) {
2632 *array = sample->phys_addr;
2633 array++;
2636 return 0;
2639 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2641 return pevent_find_field(evsel->tp_format, name);
2644 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2645 const char *name)
2647 struct format_field *field = perf_evsel__field(evsel, name);
2648 int offset;
2650 if (!field)
2651 return NULL;
2653 offset = field->offset;
2655 if (field->flags & FIELD_IS_DYNAMIC) {
2656 offset = *(int *)(sample->raw_data + field->offset);
2657 offset &= 0xffff;
2660 return sample->raw_data + offset;
2663 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2664 bool needs_swap)
2666 u64 value;
2667 void *ptr = sample->raw_data + field->offset;
2669 switch (field->size) {
2670 case 1:
2671 return *(u8 *)ptr;
2672 case 2:
2673 value = *(u16 *)ptr;
2674 break;
2675 case 4:
2676 value = *(u32 *)ptr;
2677 break;
2678 case 8:
2679 memcpy(&value, ptr, sizeof(u64));
2680 break;
2681 default:
2682 return 0;
2685 if (!needs_swap)
2686 return value;
2688 switch (field->size) {
2689 case 2:
2690 return bswap_16(value);
2691 case 4:
2692 return bswap_32(value);
2693 case 8:
2694 return bswap_64(value);
2695 default:
2696 return 0;
2699 return 0;
2702 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2703 const char *name)
2705 struct format_field *field = perf_evsel__field(evsel, name);
2707 if (!field)
2708 return 0;
2710 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2713 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2714 char *msg, size_t msgsize)
2716 int paranoid;
2718 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2719 evsel->attr.type == PERF_TYPE_HARDWARE &&
2720 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2722 * If it's cycles then fall back to hrtimer based
2723 * cpu-clock-tick sw counter, which is always available even if
2724 * no PMU support.
2726 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2727 * b0a873e).
2729 scnprintf(msg, msgsize, "%s",
2730 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2732 evsel->attr.type = PERF_TYPE_SOFTWARE;
2733 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2735 zfree(&evsel->name);
2736 return true;
2737 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2738 (paranoid = perf_event_paranoid()) > 1) {
2739 const char *name = perf_evsel__name(evsel);
2740 char *new_name;
2742 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2743 return false;
2745 if (evsel->name)
2746 free(evsel->name);
2747 evsel->name = new_name;
2748 scnprintf(msg, msgsize,
2749 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2750 evsel->attr.exclude_kernel = 1;
2752 return true;
2755 return false;
2758 static bool find_process(const char *name)
2760 size_t len = strlen(name);
2761 DIR *dir;
2762 struct dirent *d;
2763 int ret = -1;
2765 dir = opendir(procfs__mountpoint());
2766 if (!dir)
2767 return false;
2769 /* Walk through the directory. */
2770 while (ret && (d = readdir(dir)) != NULL) {
2771 char path[PATH_MAX];
2772 char *data;
2773 size_t size;
2775 if ((d->d_type != DT_DIR) ||
2776 !strcmp(".", d->d_name) ||
2777 !strcmp("..", d->d_name))
2778 continue;
2780 scnprintf(path, sizeof(path), "%s/%s/comm",
2781 procfs__mountpoint(), d->d_name);
2783 if (filename__read_str(path, &data, &size))
2784 continue;
2786 ret = strncmp(name, data, len);
2787 free(data);
2790 closedir(dir);
2791 return ret ? false : true;
2794 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2795 int err, char *msg, size_t size)
2797 char sbuf[STRERR_BUFSIZE];
2798 int printed = 0;
2800 switch (err) {
2801 case EPERM:
2802 case EACCES:
2803 if (err == EPERM)
2804 printed = scnprintf(msg, size,
2805 "No permission to enable %s event.\n\n",
2806 perf_evsel__name(evsel));
2808 return scnprintf(msg + printed, size - printed,
2809 "You may not have permission to collect %sstats.\n\n"
2810 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2811 "which controls use of the performance events system by\n"
2812 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2813 "The current value is %d:\n\n"
2814 " -1: Allow use of (almost) all events by all users\n"
2815 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2816 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2817 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2818 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2819 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2820 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2821 " kernel.perf_event_paranoid = -1\n" ,
2822 target->system_wide ? "system-wide " : "",
2823 perf_event_paranoid());
2824 case ENOENT:
2825 return scnprintf(msg, size, "The %s event is not supported.",
2826 perf_evsel__name(evsel));
2827 case EMFILE:
2828 return scnprintf(msg, size, "%s",
2829 "Too many events are opened.\n"
2830 "Probably the maximum number of open file descriptors has been reached.\n"
2831 "Hint: Try again after reducing the number of events.\n"
2832 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2833 case ENOMEM:
2834 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2835 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2836 return scnprintf(msg, size,
2837 "Not enough memory to setup event with callchain.\n"
2838 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2839 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2840 break;
2841 case ENODEV:
2842 if (target->cpu_list)
2843 return scnprintf(msg, size, "%s",
2844 "No such device - did you specify an out-of-range profile CPU?");
2845 break;
2846 case EOPNOTSUPP:
2847 if (evsel->attr.sample_period != 0)
2848 return scnprintf(msg, size,
2849 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2850 perf_evsel__name(evsel));
2851 if (evsel->attr.precise_ip)
2852 return scnprintf(msg, size, "%s",
2853 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2854 #if defined(__i386__) || defined(__x86_64__)
2855 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2856 return scnprintf(msg, size, "%s",
2857 "No hardware sampling interrupt available.\n"
2858 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2859 #endif
2860 break;
2861 case EBUSY:
2862 if (find_process("oprofiled"))
2863 return scnprintf(msg, size,
2864 "The PMU counters are busy/taken by another profiler.\n"
2865 "We found oprofile daemon running, please stop it and try again.");
2866 break;
2867 case EINVAL:
2868 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2869 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2870 if (perf_missing_features.clockid)
2871 return scnprintf(msg, size, "clockid feature not supported.");
2872 if (perf_missing_features.clockid_wrong)
2873 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2874 break;
2875 default:
2876 break;
2879 return scnprintf(msg, size,
2880 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2881 "/bin/dmesg may provide additional information.\n"
2882 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2883 err, str_error_r(err, sbuf, sizeof(sbuf)),
2884 perf_evsel__name(evsel));
2887 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2889 if (evsel && evsel->evlist)
2890 return evsel->evlist->env;
2891 return NULL;