Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / tools / testing / selftests / bpf / test_lpm_map.c
blob2be87e9ee28d2c24594ff1d7540084e9dcf459d0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Randomized tests for eBPF longest-prefix-match maps
5 * This program runs randomized tests against the lpm-bpf-map. It implements a
6 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked
7 * lists. The implementation should be pretty straightforward.
9 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies
10 * the trie-based bpf-map implementation behaves the same way as tlpm.
13 #include <assert.h>
14 #include <errno.h>
15 #include <inttypes.h>
16 #include <linux/bpf.h>
17 #include <pthread.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <time.h>
22 #include <unistd.h>
23 #include <arpa/inet.h>
24 #include <sys/time.h>
25 #include <sys/resource.h>
27 #include <bpf/bpf.h>
28 #include "bpf_util.h"
30 struct tlpm_node {
31 struct tlpm_node *next;
32 size_t n_bits;
33 uint8_t key[];
36 static struct tlpm_node *tlpm_match(struct tlpm_node *list,
37 const uint8_t *key,
38 size_t n_bits);
40 static struct tlpm_node *tlpm_add(struct tlpm_node *list,
41 const uint8_t *key,
42 size_t n_bits)
44 struct tlpm_node *node;
45 size_t n;
47 n = (n_bits + 7) / 8;
49 /* 'overwrite' an equivalent entry if one already exists */
50 node = tlpm_match(list, key, n_bits);
51 if (node && node->n_bits == n_bits) {
52 memcpy(node->key, key, n);
53 return list;
56 /* add new entry with @key/@n_bits to @list and return new head */
58 node = malloc(sizeof(*node) + n);
59 assert(node);
61 node->next = list;
62 node->n_bits = n_bits;
63 memcpy(node->key, key, n);
65 return node;
68 static void tlpm_clear(struct tlpm_node *list)
70 struct tlpm_node *node;
72 /* free all entries in @list */
74 while ((node = list)) {
75 list = list->next;
76 free(node);
80 static struct tlpm_node *tlpm_match(struct tlpm_node *list,
81 const uint8_t *key,
82 size_t n_bits)
84 struct tlpm_node *best = NULL;
85 size_t i;
87 /* Perform longest prefix-match on @key/@n_bits. That is, iterate all
88 * entries and match each prefix against @key. Remember the "best"
89 * entry we find (i.e., the longest prefix that matches) and return it
90 * to the caller when done.
93 for ( ; list; list = list->next) {
94 for (i = 0; i < n_bits && i < list->n_bits; ++i) {
95 if ((key[i / 8] & (1 << (7 - i % 8))) !=
96 (list->key[i / 8] & (1 << (7 - i % 8))))
97 break;
100 if (i >= list->n_bits) {
101 if (!best || i > best->n_bits)
102 best = list;
106 return best;
109 static struct tlpm_node *tlpm_delete(struct tlpm_node *list,
110 const uint8_t *key,
111 size_t n_bits)
113 struct tlpm_node *best = tlpm_match(list, key, n_bits);
114 struct tlpm_node *node;
116 if (!best || best->n_bits != n_bits)
117 return list;
119 if (best == list) {
120 node = best->next;
121 free(best);
122 return node;
125 for (node = list; node; node = node->next) {
126 if (node->next == best) {
127 node->next = best->next;
128 free(best);
129 return list;
132 /* should never get here */
133 assert(0);
134 return list;
137 static void test_lpm_basic(void)
139 struct tlpm_node *list = NULL, *t1, *t2;
141 /* very basic, static tests to verify tlpm works as expected */
143 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
145 t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8);
146 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
147 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
148 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16));
149 assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8));
150 assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8));
151 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7));
153 t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16);
154 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
155 assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
156 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15));
157 assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16));
159 list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16);
160 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
161 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
163 list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8);
164 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
166 tlpm_clear(list);
169 static void test_lpm_order(void)
171 struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL;
172 size_t i, j;
174 /* Verify the tlpm implementation works correctly regardless of the
175 * order of entries. Insert a random set of entries into @l1, and copy
176 * the same data in reverse order into @l2. Then verify a lookup of
177 * random keys will yield the same result in both sets.
180 for (i = 0; i < (1 << 12); ++i)
181 l1 = tlpm_add(l1, (uint8_t[]){
182 rand() % 0xff,
183 rand() % 0xff,
184 }, rand() % 16 + 1);
186 for (t1 = l1; t1; t1 = t1->next)
187 l2 = tlpm_add(l2, t1->key, t1->n_bits);
189 for (i = 0; i < (1 << 8); ++i) {
190 uint8_t key[] = { rand() % 0xff, rand() % 0xff };
192 t1 = tlpm_match(l1, key, 16);
193 t2 = tlpm_match(l2, key, 16);
195 assert(!t1 == !t2);
196 if (t1) {
197 assert(t1->n_bits == t2->n_bits);
198 for (j = 0; j < t1->n_bits; ++j)
199 assert((t1->key[j / 8] & (1 << (7 - j % 8))) ==
200 (t2->key[j / 8] & (1 << (7 - j % 8))));
204 tlpm_clear(l1);
205 tlpm_clear(l2);
208 static void test_lpm_map(int keysize)
210 size_t i, j, n_matches, n_matches_after_delete, n_nodes, n_lookups;
211 struct tlpm_node *t, *list = NULL;
212 struct bpf_lpm_trie_key *key;
213 uint8_t *data, *value;
214 int r, map;
216 /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of
217 * prefixes and insert it into both tlpm and bpf-lpm. Then run some
218 * randomized lookups and verify both maps return the same result.
221 n_matches = 0;
222 n_matches_after_delete = 0;
223 n_nodes = 1 << 8;
224 n_lookups = 1 << 16;
226 data = alloca(keysize);
227 memset(data, 0, keysize);
229 value = alloca(keysize + 1);
230 memset(value, 0, keysize + 1);
232 key = alloca(sizeof(*key) + keysize);
233 memset(key, 0, sizeof(*key) + keysize);
235 map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
236 sizeof(*key) + keysize,
237 keysize + 1,
238 4096,
239 BPF_F_NO_PREALLOC);
240 assert(map >= 0);
242 for (i = 0; i < n_nodes; ++i) {
243 for (j = 0; j < keysize; ++j)
244 value[j] = rand() & 0xff;
245 value[keysize] = rand() % (8 * keysize + 1);
247 list = tlpm_add(list, value, value[keysize]);
249 key->prefixlen = value[keysize];
250 memcpy(key->data, value, keysize);
251 r = bpf_map_update_elem(map, key, value, 0);
252 assert(!r);
255 for (i = 0; i < n_lookups; ++i) {
256 for (j = 0; j < keysize; ++j)
257 data[j] = rand() & 0xff;
259 t = tlpm_match(list, data, 8 * keysize);
261 key->prefixlen = 8 * keysize;
262 memcpy(key->data, data, keysize);
263 r = bpf_map_lookup_elem(map, key, value);
264 assert(!r || errno == ENOENT);
265 assert(!t == !!r);
267 if (t) {
268 ++n_matches;
269 assert(t->n_bits == value[keysize]);
270 for (j = 0; j < t->n_bits; ++j)
271 assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
272 (value[j / 8] & (1 << (7 - j % 8))));
276 /* Remove the first half of the elements in the tlpm and the
277 * corresponding nodes from the bpf-lpm. Then run the same
278 * large number of random lookups in both and make sure they match.
279 * Note: we need to count the number of nodes actually inserted
280 * since there may have been duplicates.
282 for (i = 0, t = list; t; i++, t = t->next)
284 for (j = 0; j < i / 2; ++j) {
285 key->prefixlen = list->n_bits;
286 memcpy(key->data, list->key, keysize);
287 r = bpf_map_delete_elem(map, key);
288 assert(!r);
289 list = tlpm_delete(list, list->key, list->n_bits);
290 assert(list);
292 for (i = 0; i < n_lookups; ++i) {
293 for (j = 0; j < keysize; ++j)
294 data[j] = rand() & 0xff;
296 t = tlpm_match(list, data, 8 * keysize);
298 key->prefixlen = 8 * keysize;
299 memcpy(key->data, data, keysize);
300 r = bpf_map_lookup_elem(map, key, value);
301 assert(!r || errno == ENOENT);
302 assert(!t == !!r);
304 if (t) {
305 ++n_matches_after_delete;
306 assert(t->n_bits == value[keysize]);
307 for (j = 0; j < t->n_bits; ++j)
308 assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
309 (value[j / 8] & (1 << (7 - j % 8))));
313 close(map);
314 tlpm_clear(list);
316 /* With 255 random nodes in the map, we are pretty likely to match
317 * something on every lookup. For statistics, use this:
319 * printf(" nodes: %zu\n"
320 * " lookups: %zu\n"
321 * " matches: %zu\n"
322 * "matches(delete): %zu\n",
323 * n_nodes, n_lookups, n_matches, n_matches_after_delete);
327 /* Test the implementation with some 'real world' examples */
329 static void test_lpm_ipaddr(void)
331 struct bpf_lpm_trie_key *key_ipv4;
332 struct bpf_lpm_trie_key *key_ipv6;
333 size_t key_size_ipv4;
334 size_t key_size_ipv6;
335 int map_fd_ipv4;
336 int map_fd_ipv6;
337 __u64 value;
339 key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32);
340 key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4;
341 key_ipv4 = alloca(key_size_ipv4);
342 key_ipv6 = alloca(key_size_ipv6);
344 map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
345 key_size_ipv4, sizeof(value),
346 100, BPF_F_NO_PREALLOC);
347 assert(map_fd_ipv4 >= 0);
349 map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
350 key_size_ipv6, sizeof(value),
351 100, BPF_F_NO_PREALLOC);
352 assert(map_fd_ipv6 >= 0);
354 /* Fill data some IPv4 and IPv6 address ranges */
355 value = 1;
356 key_ipv4->prefixlen = 16;
357 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
358 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
360 value = 2;
361 key_ipv4->prefixlen = 24;
362 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
363 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
365 value = 3;
366 key_ipv4->prefixlen = 24;
367 inet_pton(AF_INET, "192.168.128.0", key_ipv4->data);
368 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
370 value = 5;
371 key_ipv4->prefixlen = 24;
372 inet_pton(AF_INET, "192.168.1.0", key_ipv4->data);
373 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
375 value = 4;
376 key_ipv4->prefixlen = 23;
377 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
378 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
380 value = 0xdeadbeef;
381 key_ipv6->prefixlen = 64;
382 inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data);
383 assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0);
385 /* Set tprefixlen to maximum for lookups */
386 key_ipv4->prefixlen = 32;
387 key_ipv6->prefixlen = 128;
389 /* Test some lookups that should come back with a value */
390 inet_pton(AF_INET, "192.168.128.23", key_ipv4->data);
391 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
392 assert(value == 3);
394 inet_pton(AF_INET, "192.168.0.1", key_ipv4->data);
395 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
396 assert(value == 2);
398 inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data);
399 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
400 assert(value == 0xdeadbeef);
402 inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data);
403 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
404 assert(value == 0xdeadbeef);
406 /* Test some lookups that should not match any entry */
407 inet_pton(AF_INET, "10.0.0.1", key_ipv4->data);
408 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 &&
409 errno == ENOENT);
411 inet_pton(AF_INET, "11.11.11.11", key_ipv4->data);
412 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 &&
413 errno == ENOENT);
415 inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data);
416 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 &&
417 errno == ENOENT);
419 close(map_fd_ipv4);
420 close(map_fd_ipv6);
423 static void test_lpm_delete(void)
425 struct bpf_lpm_trie_key *key;
426 size_t key_size;
427 int map_fd;
428 __u64 value;
430 key_size = sizeof(*key) + sizeof(__u32);
431 key = alloca(key_size);
433 map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
434 key_size, sizeof(value),
435 100, BPF_F_NO_PREALLOC);
436 assert(map_fd >= 0);
438 /* Add nodes:
439 * 192.168.0.0/16 (1)
440 * 192.168.0.0/24 (2)
441 * 192.168.128.0/24 (3)
442 * 192.168.1.0/24 (4)
444 * (1)
445 * / \
446 * (IM) (3)
447 * / \
448 * (2) (4)
450 value = 1;
451 key->prefixlen = 16;
452 inet_pton(AF_INET, "192.168.0.0", key->data);
453 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
455 value = 2;
456 key->prefixlen = 24;
457 inet_pton(AF_INET, "192.168.0.0", key->data);
458 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
460 value = 3;
461 key->prefixlen = 24;
462 inet_pton(AF_INET, "192.168.128.0", key->data);
463 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
465 value = 4;
466 key->prefixlen = 24;
467 inet_pton(AF_INET, "192.168.1.0", key->data);
468 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
470 /* remove non-existent node */
471 key->prefixlen = 32;
472 inet_pton(AF_INET, "10.0.0.1", key->data);
473 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 &&
474 errno == ENOENT);
476 /* assert initial lookup */
477 key->prefixlen = 32;
478 inet_pton(AF_INET, "192.168.0.1", key->data);
479 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
480 assert(value == 2);
482 /* remove leaf node */
483 key->prefixlen = 24;
484 inet_pton(AF_INET, "192.168.0.0", key->data);
485 assert(bpf_map_delete_elem(map_fd, key) == 0);
487 key->prefixlen = 32;
488 inet_pton(AF_INET, "192.168.0.1", key->data);
489 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
490 assert(value == 1);
492 /* remove leaf (and intermediary) node */
493 key->prefixlen = 24;
494 inet_pton(AF_INET, "192.168.1.0", key->data);
495 assert(bpf_map_delete_elem(map_fd, key) == 0);
497 key->prefixlen = 32;
498 inet_pton(AF_INET, "192.168.1.1", key->data);
499 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
500 assert(value == 1);
502 /* remove root node */
503 key->prefixlen = 16;
504 inet_pton(AF_INET, "192.168.0.0", key->data);
505 assert(bpf_map_delete_elem(map_fd, key) == 0);
507 key->prefixlen = 32;
508 inet_pton(AF_INET, "192.168.128.1", key->data);
509 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
510 assert(value == 3);
512 /* remove last node */
513 key->prefixlen = 24;
514 inet_pton(AF_INET, "192.168.128.0", key->data);
515 assert(bpf_map_delete_elem(map_fd, key) == 0);
517 key->prefixlen = 32;
518 inet_pton(AF_INET, "192.168.128.1", key->data);
519 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 &&
520 errno == ENOENT);
522 close(map_fd);
525 static void test_lpm_get_next_key(void)
527 struct bpf_lpm_trie_key *key_p, *next_key_p;
528 size_t key_size;
529 __u32 value = 0;
530 int map_fd;
532 key_size = sizeof(*key_p) + sizeof(__u32);
533 key_p = alloca(key_size);
534 next_key_p = alloca(key_size);
536 map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, sizeof(value),
537 100, BPF_F_NO_PREALLOC);
538 assert(map_fd >= 0);
540 /* empty tree. get_next_key should return ENOENT */
541 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -1 &&
542 errno == ENOENT);
544 /* get and verify the first key, get the second one should fail. */
545 key_p->prefixlen = 16;
546 inet_pton(AF_INET, "192.168.0.0", key_p->data);
547 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
549 memset(key_p, 0, key_size);
550 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
551 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
552 key_p->data[1] == 168);
554 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
555 errno == ENOENT);
557 /* no exact matching key should get the first one in post order. */
558 key_p->prefixlen = 8;
559 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
560 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
561 key_p->data[1] == 168);
563 /* add one more element (total two) */
564 key_p->prefixlen = 24;
565 inet_pton(AF_INET, "192.168.0.0", key_p->data);
566 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
568 memset(key_p, 0, key_size);
569 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
570 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
571 key_p->data[1] == 168 && key_p->data[2] == 0);
573 memset(next_key_p, 0, key_size);
574 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
575 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
576 next_key_p->data[1] == 168);
578 memcpy(key_p, next_key_p, key_size);
579 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
580 errno == ENOENT);
582 /* Add one more element (total three) */
583 key_p->prefixlen = 24;
584 inet_pton(AF_INET, "192.168.128.0", key_p->data);
585 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
587 memset(key_p, 0, key_size);
588 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
589 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
590 key_p->data[1] == 168 && key_p->data[2] == 0);
592 memset(next_key_p, 0, key_size);
593 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
594 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
595 next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
597 memcpy(key_p, next_key_p, key_size);
598 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
599 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
600 next_key_p->data[1] == 168);
602 memcpy(key_p, next_key_p, key_size);
603 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
604 errno == ENOENT);
606 /* Add one more element (total four) */
607 key_p->prefixlen = 24;
608 inet_pton(AF_INET, "192.168.1.0", key_p->data);
609 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
611 memset(key_p, 0, key_size);
612 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
613 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
614 key_p->data[1] == 168 && key_p->data[2] == 0);
616 memset(next_key_p, 0, key_size);
617 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
618 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
619 next_key_p->data[1] == 168 && next_key_p->data[2] == 1);
621 memcpy(key_p, next_key_p, key_size);
622 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
623 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
624 next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
626 memcpy(key_p, next_key_p, key_size);
627 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
628 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
629 next_key_p->data[1] == 168);
631 memcpy(key_p, next_key_p, key_size);
632 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
633 errno == ENOENT);
635 /* no exact matching key should return the first one in post order */
636 key_p->prefixlen = 22;
637 inet_pton(AF_INET, "192.168.1.0", key_p->data);
638 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
639 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
640 next_key_p->data[1] == 168 && next_key_p->data[2] == 0);
642 close(map_fd);
645 #define MAX_TEST_KEYS 4
646 struct lpm_mt_test_info {
647 int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */
648 int iter;
649 int map_fd;
650 struct {
651 __u32 prefixlen;
652 __u32 data;
653 } key[MAX_TEST_KEYS];
656 static void *lpm_test_command(void *arg)
658 int i, j, ret, iter, key_size;
659 struct lpm_mt_test_info *info = arg;
660 struct bpf_lpm_trie_key *key_p;
662 key_size = sizeof(struct bpf_lpm_trie_key) + sizeof(__u32);
663 key_p = alloca(key_size);
664 for (iter = 0; iter < info->iter; iter++)
665 for (i = 0; i < MAX_TEST_KEYS; i++) {
666 /* first half of iterations in forward order,
667 * and second half in backward order.
669 j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1;
670 key_p->prefixlen = info->key[j].prefixlen;
671 memcpy(key_p->data, &info->key[j].data, sizeof(__u32));
672 if (info->cmd == 0) {
673 __u32 value = j;
674 /* update must succeed */
675 assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0);
676 } else if (info->cmd == 1) {
677 ret = bpf_map_delete_elem(info->map_fd, key_p);
678 assert(ret == 0 || errno == ENOENT);
679 } else if (info->cmd == 2) {
680 __u32 value;
681 ret = bpf_map_lookup_elem(info->map_fd, key_p, &value);
682 assert(ret == 0 || errno == ENOENT);
683 } else {
684 struct bpf_lpm_trie_key *next_key_p = alloca(key_size);
685 ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p);
686 assert(ret == 0 || errno == ENOENT || errno == ENOMEM);
690 // Pass successful exit info back to the main thread
691 pthread_exit((void *)info);
694 static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd)
696 info->iter = 2000;
697 info->map_fd = map_fd;
698 info->key[0].prefixlen = 16;
699 inet_pton(AF_INET, "192.168.0.0", &info->key[0].data);
700 info->key[1].prefixlen = 24;
701 inet_pton(AF_INET, "192.168.0.0", &info->key[1].data);
702 info->key[2].prefixlen = 24;
703 inet_pton(AF_INET, "192.168.128.0", &info->key[2].data);
704 info->key[3].prefixlen = 24;
705 inet_pton(AF_INET, "192.168.1.0", &info->key[3].data);
708 static void test_lpm_multi_thread(void)
710 struct lpm_mt_test_info info[4];
711 size_t key_size, value_size;
712 pthread_t thread_id[4];
713 int i, map_fd;
714 void *ret;
716 /* create a trie */
717 value_size = sizeof(__u32);
718 key_size = sizeof(struct bpf_lpm_trie_key) + value_size;
719 map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, value_size,
720 100, BPF_F_NO_PREALLOC);
722 /* create 4 threads to test update, delete, lookup and get_next_key */
723 setup_lpm_mt_test_info(&info[0], map_fd);
724 for (i = 0; i < 4; i++) {
725 if (i != 0)
726 memcpy(&info[i], &info[0], sizeof(info[i]));
727 info[i].cmd = i;
728 assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0);
731 for (i = 0; i < 4; i++)
732 assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]);
734 close(map_fd);
737 int main(void)
739 struct rlimit limit = { RLIM_INFINITY, RLIM_INFINITY };
740 int i, ret;
742 /* we want predictable, pseudo random tests */
743 srand(0xf00ba1);
745 /* allow unlimited locked memory */
746 ret = setrlimit(RLIMIT_MEMLOCK, &limit);
747 if (ret < 0)
748 perror("Unable to lift memlock rlimit");
750 test_lpm_basic();
751 test_lpm_order();
753 /* Test with 8, 16, 24, 32, ... 128 bit prefix length */
754 for (i = 1; i <= 16; ++i)
755 test_lpm_map(i);
757 test_lpm_ipaddr();
759 test_lpm_delete();
761 test_lpm_get_next_key();
763 test_lpm_multi_thread();
765 printf("test_lpm: OK\n");
766 return 0;