Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / Documentation / driver-model / devres.txt
blob7c1bb3d0c2229363fcc2eb5d729f911f59c258d9
1 Devres - Managed Device Resource
2 ================================
4 Tejun Heo       <teheo@suse.de>
6 First draft     10 January 2007
9 1. Intro                        : Huh? Devres?
10 2. Devres                       : Devres in a nutshell
11 3. Devres Group                 : Group devres'es and release them together
12 4. Details                      : Life time rules, calling context, ...
13 5. Overhead                     : How much do we have to pay for this?
14 6. List of managed interfaces   : Currently implemented managed interfaces
17   1. Intro
18   --------
20 devres came up while trying to convert libata to use iomap.  Each
21 iomapped address should be kept and unmapped on driver detach.  For
22 example, a plain SFF ATA controller (that is, good old PCI IDE) in
23 native mode makes use of 5 PCI BARs and all of them should be
24 maintained.
26 As with many other device drivers, libata low level drivers have
27 sufficient bugs in ->remove and ->probe failure path.  Well, yes,
28 that's probably because libata low level driver developers are lazy
29 bunch, but aren't all low level driver developers?  After spending a
30 day fiddling with braindamaged hardware with no document or
31 braindamaged document, if it's finally working, well, it's working.
33 For one reason or another, low level drivers don't receive as much
34 attention or testing as core code, and bugs on driver detach or
35 initialization failure don't happen often enough to be noticeable.
36 Init failure path is worse because it's much less travelled while
37 needs to handle multiple entry points.
39 So, many low level drivers end up leaking resources on driver detach
40 and having half broken failure path implementation in ->probe() which
41 would leak resources or even cause oops when failure occurs.  iomap
42 adds more to this mix.  So do msi and msix.
45   2. Devres
46   ---------
48 devres is basically linked list of arbitrarily sized memory areas
49 associated with a struct device.  Each devres entry is associated with
50 a release function.  A devres can be released in several ways.  No
51 matter what, all devres entries are released on driver detach.  On
52 release, the associated release function is invoked and then the
53 devres entry is freed.
55 Managed interface is created for resources commonly used by device
56 drivers using devres.  For example, coherent DMA memory is acquired
57 using dma_alloc_coherent().  The managed version is called
58 dmam_alloc_coherent().  It is identical to dma_alloc_coherent() except
59 for the DMA memory allocated using it is managed and will be
60 automatically released on driver detach.  Implementation looks like
61 the following.
63   struct dma_devres {
64         size_t          size;
65         void            *vaddr;
66         dma_addr_t      dma_handle;
67   };
69   static void dmam_coherent_release(struct device *dev, void *res)
70   {
71         struct dma_devres *this = res;
73         dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
74   }
76   dmam_alloc_coherent(dev, size, dma_handle, gfp)
77   {
78         struct dma_devres *dr;
79         void *vaddr;
81         dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
82         ...
84         /* alloc DMA memory as usual */
85         vaddr = dma_alloc_coherent(...);
86         ...
88         /* record size, vaddr, dma_handle in dr */
89         dr->vaddr = vaddr;
90         ...
92         devres_add(dev, dr);
94         return vaddr;
95   }
97 If a driver uses dmam_alloc_coherent(), the area is guaranteed to be
98 freed whether initialization fails half-way or the device gets
99 detached.  If most resources are acquired using managed interface, a
100 driver can have much simpler init and exit code.  Init path basically
101 looks like the following.
103   my_init_one()
104   {
105         struct mydev *d;
107         d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
108         if (!d)
109                 return -ENOMEM;
111         d->ring = dmam_alloc_coherent(...);
112         if (!d->ring)
113                 return -ENOMEM;
115         if (check something)
116                 return -EINVAL;
117         ...
119         return register_to_upper_layer(d);
120   }
122 And exit path,
124   my_remove_one()
125   {
126         unregister_from_upper_layer(d);
127         shutdown_my_hardware();
128   }
130 As shown above, low level drivers can be simplified a lot by using
131 devres.  Complexity is shifted from less maintained low level drivers
132 to better maintained higher layer.  Also, as init failure path is
133 shared with exit path, both can get more testing.
136   3. Devres group
137   ---------------
139 Devres entries can be grouped using devres group.  When a group is
140 released, all contained normal devres entries and properly nested
141 groups are released.  One usage is to rollback series of acquired
142 resources on failure.  For example,
144   if (!devres_open_group(dev, NULL, GFP_KERNEL))
145         return -ENOMEM;
147   acquire A;
148   if (failed)
149         goto err;
151   acquire B;
152   if (failed)
153         goto err;
154   ...
156   devres_remove_group(dev, NULL);
157   return 0;
159  err:
160   devres_release_group(dev, NULL);
161   return err_code;
163 As resource acquisition failure usually means probe failure, constructs
164 like above are usually useful in midlayer driver (e.g. libata core
165 layer) where interface function shouldn't have side effect on failure.
166 For LLDs, just returning error code suffices in most cases.
168 Each group is identified by void *id.  It can either be explicitly
169 specified by @id argument to devres_open_group() or automatically
170 created by passing NULL as @id as in the above example.  In both
171 cases, devres_open_group() returns the group's id.  The returned id
172 can be passed to other devres functions to select the target group.
173 If NULL is given to those functions, the latest open group is
174 selected.
176 For example, you can do something like the following.
178   int my_midlayer_create_something()
179   {
180         if (!devres_open_group(dev, my_midlayer_create_something, GFP_KERNEL))
181                 return -ENOMEM;
183         ...
185         devres_close_group(dev, my_midlayer_create_something);
186         return 0;
187   }
189   void my_midlayer_destroy_something()
190   {
191         devres_release_group(dev, my_midlayer_create_something);
192   }
195   4. Details
196   ----------
198 Lifetime of a devres entry begins on devres allocation and finishes
199 when it is released or destroyed (removed and freed) - no reference
200 counting.
202 devres core guarantees atomicity to all basic devres operations and
203 has support for single-instance devres types (atomic
204 lookup-and-add-if-not-found).  Other than that, synchronizing
205 concurrent accesses to allocated devres data is caller's
206 responsibility.  This is usually non-issue because bus ops and
207 resource allocations already do the job.
209 For an example of single-instance devres type, read pcim_iomap_table()
210 in lib/devres.c.
212 All devres interface functions can be called without context if the
213 right gfp mask is given.
216   5. Overhead
217   -----------
219 Each devres bookkeeping info is allocated together with requested data
220 area.  With debug option turned off, bookkeeping info occupies 16
221 bytes on 32bit machines and 24 bytes on 64bit (three pointers rounded
222 up to ull alignment).  If singly linked list is used, it can be
223 reduced to two pointers (8 bytes on 32bit, 16 bytes on 64bit).
225 Each devres group occupies 8 pointers.  It can be reduced to 6 if
226 singly linked list is used.
228 Memory space overhead on ahci controller with two ports is between 300
229 and 400 bytes on 32bit machine after naive conversion (we can
230 certainly invest a bit more effort into libata core layer).
233   6. List of managed interfaces
234   -----------------------------
236 CLOCK
237   devm_clk_get()
238   devm_clk_put()
239   devm_clk_hw_register()
240   devm_of_clk_add_hw_provider()
243   dmam_alloc_coherent()
244   dmam_alloc_attrs()
245   dmam_declare_coherent_memory()
246   dmam_free_coherent()
247   dmam_pool_create()
248   dmam_pool_destroy()
250 GPIO
251   devm_gpiod_get()
252   devm_gpiod_get_index()
253   devm_gpiod_get_index_optional()
254   devm_gpiod_get_optional()
255   devm_gpiod_put()
256   devm_gpiochip_add_data()
257   devm_gpiochip_remove()
258   devm_gpio_request()
259   devm_gpio_request_one()
260   devm_gpio_free()
263   devm_iio_device_alloc()
264   devm_iio_device_free()
265   devm_iio_device_register()
266   devm_iio_device_unregister()
267   devm_iio_kfifo_allocate()
268   devm_iio_kfifo_free()
269   devm_iio_triggered_buffer_setup()
270   devm_iio_triggered_buffer_cleanup()
271   devm_iio_trigger_alloc()
272   devm_iio_trigger_free()
273   devm_iio_trigger_register()
274   devm_iio_trigger_unregister()
275   devm_iio_channel_get()
276   devm_iio_channel_release()
277   devm_iio_channel_get_all()
278   devm_iio_channel_release_all()
280 INPUT
281   devm_input_allocate_device()
283 IO region
284   devm_release_mem_region()
285   devm_release_region()
286   devm_release_resource()
287   devm_request_mem_region()
288   devm_request_region()
289   devm_request_resource()
291 IOMAP
292   devm_ioport_map()
293   devm_ioport_unmap()
294   devm_ioremap()
295   devm_ioremap_nocache()
296   devm_ioremap_wc()
297   devm_ioremap_resource() : checks resource, requests memory region, ioremaps
298   devm_iounmap()
299   pcim_iomap()
300   pcim_iomap_regions()  : do request_region() and iomap() on multiple BARs
301   pcim_iomap_table()    : array of mapped addresses indexed by BAR
302   pcim_iounmap()
305   devm_free_irq()
306   devm_request_any_context_irq()
307   devm_request_irq()
308   devm_request_threaded_irq()
309   devm_irq_alloc_descs()
310   devm_irq_alloc_desc()
311   devm_irq_alloc_desc_at()
312   devm_irq_alloc_desc_from()
313   devm_irq_alloc_descs_from()
314   devm_irq_alloc_generic_chip()
315   devm_irq_setup_generic_chip()
316   devm_irq_sim_init()
319   devm_led_classdev_register()
320   devm_led_classdev_unregister()
322 MDIO
323   devm_mdiobus_alloc()
324   devm_mdiobus_alloc_size()
325   devm_mdiobus_free()
328   devm_free_pages()
329   devm_get_free_pages()
330   devm_kasprintf()
331   devm_kcalloc()
332   devm_kfree()
333   devm_kmalloc()
334   devm_kmalloc_array()
335   devm_kmemdup()
336   devm_kstrdup()
337   devm_kvasprintf()
338   devm_kzalloc()
341   devm_mfd_add_devices()
344   devm_mux_chip_alloc()
345   devm_mux_chip_register()
346   devm_mux_control_get()
348 PER-CPU MEM
349   devm_alloc_percpu()
350   devm_free_percpu()
353   devm_pci_alloc_host_bridge()  : managed PCI host bridge allocation
354   devm_pci_remap_cfgspace()     : ioremap PCI configuration space
355   devm_pci_remap_cfg_resource() : ioremap PCI configuration space resource
356   pcim_enable_device()          : after success, all PCI ops become managed
357   pcim_pin_device()             : keep PCI device enabled after release
360   devm_usb_get_phy()
361   devm_usb_put_phy()
363 PINCTRL
364   devm_pinctrl_get()
365   devm_pinctrl_put()
366   devm_pinctrl_register()
367   devm_pinctrl_unregister()
369 POWER
370   devm_reboot_mode_register()
371   devm_reboot_mode_unregister()
374   devm_pwm_get()
375   devm_pwm_put()
377 REGULATOR
378   devm_regulator_bulk_get()
379   devm_regulator_get()
380   devm_regulator_put()
381   devm_regulator_register()
383 RESET
384   devm_reset_control_get()
385   devm_reset_controller_register()
387 SERDEV
388   devm_serdev_device_open()
390 SLAVE DMA ENGINE
391   devm_acpi_dma_controller_register()
394   devm_spi_register_master()
396 WATCHDOG
397   devm_watchdog_register_device()