1 // SPDX-License-Identifier: GPL-2.0
3 * linux/arch/alpha/kernel/core_t2.c
5 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
8 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
10 * Code common to all T2 core logic chips.
13 #define __EXTERN_INLINE
15 #include <asm/core_t2.h>
16 #undef __EXTERN_INLINE
18 #include <linux/types.h>
19 #include <linux/pci.h>
20 #include <linux/sched.h>
21 #include <linux/init.h>
23 #include <asm/ptrace.h>
24 #include <asm/delay.h>
30 /* For dumping initial DMA window settings. */
31 #define DEBUG_PRINT_INITIAL_SETTINGS 0
33 /* For dumping final DMA window settings. */
34 #define DEBUG_PRINT_FINAL_SETTINGS 0
37 * By default, we direct-map starting at 2GB, in order to allow the
38 * maximum size direct-map window (2GB) to match the maximum amount of
39 * memory (2GB) that can be present on SABLEs. But that limits the
40 * floppy to DMA only via the scatter/gather window set up for 8MB
41 * ISA DMA, since the maximum ISA DMA address is 2GB-1.
43 * For now, this seems a reasonable trade-off: even though most SABLEs
44 * have less than 1GB of memory, floppy usage/performance will not
45 * really be affected by forcing it to go via scatter/gather...
47 #define T2_DIRECTMAP_2G 1
50 # define T2_DIRECTMAP_START 0x80000000UL
51 # define T2_DIRECTMAP_LENGTH 0x80000000UL
53 # define T2_DIRECTMAP_START 0x40000000UL
54 # define T2_DIRECTMAP_LENGTH 0x40000000UL
57 /* The ISA scatter/gather window settings. */
58 #define T2_ISA_SG_START 0x00800000UL
59 #define T2_ISA_SG_LENGTH 0x00800000UL
62 * NOTE: Herein lie back-to-back mb instructions. They are magic.
63 * One plausible explanation is that the i/o controller does not properly
64 * handle the system transaction. Another involves timing. Ho hum.
68 * BIOS32-style PCI interface:
71 #define DEBUG_CONFIG 0
74 # define DBG(args) printk args
79 static volatile unsigned int t2_mcheck_any_expected
;
80 static volatile unsigned int t2_mcheck_last_taken
;
82 /* Place to save the DMA Window registers as set up by SRM
83 for restoration during shutdown. */
96 } t2_saved_config
__attribute((common
));
99 * Given a bus, device, and function number, compute resulting
100 * configuration space address and setup the T2_HAXR2 register
101 * accordingly. It is therefore not safe to have concurrent
102 * invocations to configuration space access routines, but there
103 * really shouldn't be any need for this.
107 * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1
108 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
109 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
110 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
111 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
113 * 31:11 Device select bit.
114 * 10:8 Function number
115 * 7:2 Register number
119 * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1
120 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
121 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
122 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
123 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
126 * 23:16 bus number (8 bits = 128 possible buses)
127 * 15:11 Device number (5 bits)
128 * 10:8 function number
129 * 7:2 register number
132 * The function number selects which function of a multi-function device
133 * (e.g., SCSI and Ethernet).
135 * The register selects a DWORD (32 bit) register offset. Hence it
136 * doesn't get shifted by 2 bits as we want to "drop" the bottom two
141 mk_conf_addr(struct pci_bus
*pbus
, unsigned int device_fn
, int where
,
142 unsigned long *pci_addr
, unsigned char *type1
)
145 u8 bus
= pbus
->number
;
147 DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
148 " addr=0x%lx, type1=0x%x)\n",
149 bus
, device_fn
, where
, pci_addr
, type1
));
152 int device
= device_fn
>> 3;
154 /* Type 0 configuration cycle. */
157 DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
163 addr
= (0x0800L
<< device
) | ((device_fn
& 7) << 8) | (where
);
165 /* Type 1 configuration cycle. */
167 addr
= (bus
<< 16) | (device_fn
<< 8) | (where
);
170 DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr
));
175 * NOTE: both conf_read() and conf_write() may set HAE_3 when needing
176 * to do type1 access. This is protected by the use of spinlock IRQ
177 * primitives in the wrapper functions pci_{read,write}_config_*()
178 * defined in drivers/pci/pci.c.
181 conf_read(unsigned long addr
, unsigned char type1
)
183 unsigned int value
, cpu
, taken
;
184 unsigned long t2_cfg
= 0;
186 cpu
= smp_processor_id();
188 DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr
, type1
));
190 /* If Type1 access, must set T2 CFG. */
192 t2_cfg
= *(vulp
)T2_HAE_3
& ~0xc0000000UL
;
193 *(vulp
)T2_HAE_3
= 0x40000000UL
| t2_cfg
;
199 mcheck_expected(cpu
) = 1;
200 mcheck_taken(cpu
) = 0;
201 t2_mcheck_any_expected
|= (1 << cpu
);
204 /* Access configuration space. */
209 /* Wait for possible mcheck. Also, this lets other CPUs clear
210 their mchecks as well, as they can reliably tell when
211 another CPU is in the midst of handling a real mcheck via
212 the "taken" function. */
215 if ((taken
= mcheck_taken(cpu
))) {
216 mcheck_taken(cpu
) = 0;
217 t2_mcheck_last_taken
|= (1 << cpu
);
221 mcheck_expected(cpu
) = 0;
222 t2_mcheck_any_expected
= 0;
225 /* If Type1 access, must reset T2 CFG so normal IO space ops work. */
227 *(vulp
)T2_HAE_3
= t2_cfg
;
235 conf_write(unsigned long addr
, unsigned int value
, unsigned char type1
)
237 unsigned int cpu
, taken
;
238 unsigned long t2_cfg
= 0;
240 cpu
= smp_processor_id();
242 /* If Type1 access, must set T2 CFG. */
244 t2_cfg
= *(vulp
)T2_HAE_3
& ~0xc0000000UL
;
245 *(vulp
)T2_HAE_3
= t2_cfg
| 0x40000000UL
;
251 mcheck_expected(cpu
) = 1;
252 mcheck_taken(cpu
) = 0;
253 t2_mcheck_any_expected
|= (1 << cpu
);
256 /* Access configuration space. */
261 /* Wait for possible mcheck. Also, this lets other CPUs clear
262 their mchecks as well, as they can reliably tell when
263 this CPU is in the midst of handling a real mcheck via
264 the "taken" function. */
267 if ((taken
= mcheck_taken(cpu
))) {
268 mcheck_taken(cpu
) = 0;
269 t2_mcheck_last_taken
|= (1 << cpu
);
272 mcheck_expected(cpu
) = 0;
273 t2_mcheck_any_expected
= 0;
276 /* If Type1 access, must reset T2 CFG so normal IO space ops work. */
278 *(vulp
)T2_HAE_3
= t2_cfg
;
284 t2_read_config(struct pci_bus
*bus
, unsigned int devfn
, int where
,
285 int size
, u32
*value
)
287 unsigned long addr
, pci_addr
;
292 if (mk_conf_addr(bus
, devfn
, where
, &pci_addr
, &type1
))
293 return PCIBIOS_DEVICE_NOT_FOUND
;
295 mask
= (size
- 1) * 8;
296 shift
= (where
& 3) * 8;
297 addr
= (pci_addr
<< 5) + mask
+ T2_CONF
;
298 *value
= conf_read(addr
, type1
) >> (shift
);
299 return PCIBIOS_SUCCESSFUL
;
303 t2_write_config(struct pci_bus
*bus
, unsigned int devfn
, int where
, int size
,
306 unsigned long addr
, pci_addr
;
310 if (mk_conf_addr(bus
, devfn
, where
, &pci_addr
, &type1
))
311 return PCIBIOS_DEVICE_NOT_FOUND
;
313 mask
= (size
- 1) * 8;
314 addr
= (pci_addr
<< 5) + mask
+ T2_CONF
;
315 conf_write(addr
, value
<< ((where
& 3) * 8), type1
);
316 return PCIBIOS_SUCCESSFUL
;
319 struct pci_ops t2_pci_ops
=
321 .read
= t2_read_config
,
322 .write
= t2_write_config
,
326 t2_direct_map_window1(unsigned long base
, unsigned long length
)
330 __direct_map_base
= base
;
331 __direct_map_size
= length
;
333 temp
= (base
& 0xfff00000UL
) | ((base
+ length
- 1) >> 20);
334 *(vulp
)T2_WBASE1
= temp
| 0x80000UL
; /* OR in ENABLE bit */
335 temp
= (length
- 1) & 0xfff00000UL
;
336 *(vulp
)T2_WMASK1
= temp
;
337 *(vulp
)T2_TBASE1
= 0;
339 #if DEBUG_PRINT_FINAL_SETTINGS
340 printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
341 __func__
, *(vulp
)T2_WBASE1
, *(vulp
)T2_WMASK1
, *(vulp
)T2_TBASE1
);
346 t2_sg_map_window2(struct pci_controller
*hose
,
348 unsigned long length
)
352 /* Note we can only do 1 SG window, as the other is for direct, so
353 do an ISA SG area, especially for the floppy. */
354 hose
->sg_isa
= iommu_arena_new(hose
, base
, length
, 0);
357 temp
= (base
& 0xfff00000UL
) | ((base
+ length
- 1) >> 20);
358 *(vulp
)T2_WBASE2
= temp
| 0xc0000UL
; /* OR in ENABLE/SG bits */
359 temp
= (length
- 1) & 0xfff00000UL
;
360 *(vulp
)T2_WMASK2
= temp
;
361 *(vulp
)T2_TBASE2
= virt_to_phys(hose
->sg_isa
->ptes
) >> 1;
364 t2_pci_tbi(hose
, 0, -1); /* flush TLB all */
366 #if DEBUG_PRINT_FINAL_SETTINGS
367 printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
368 __func__
, *(vulp
)T2_WBASE2
, *(vulp
)T2_WMASK2
, *(vulp
)T2_TBASE2
);
373 t2_save_configuration(void)
375 #if DEBUG_PRINT_INITIAL_SETTINGS
376 printk("%s: HAE_1 was 0x%lx\n", __func__
, srm_hae
); /* HW is 0 */
377 printk("%s: HAE_2 was 0x%lx\n", __func__
, *(vulp
)T2_HAE_2
);
378 printk("%s: HAE_3 was 0x%lx\n", __func__
, *(vulp
)T2_HAE_3
);
379 printk("%s: HAE_4 was 0x%lx\n", __func__
, *(vulp
)T2_HAE_4
);
380 printk("%s: HBASE was 0x%lx\n", __func__
, *(vulp
)T2_HBASE
);
382 printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__
,
383 *(vulp
)T2_WBASE1
, *(vulp
)T2_WMASK1
, *(vulp
)T2_TBASE1
);
384 printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__
,
385 *(vulp
)T2_WBASE2
, *(vulp
)T2_WMASK2
, *(vulp
)T2_TBASE2
);
389 * Save the DMA Window registers.
391 t2_saved_config
.window
[0].wbase
= *(vulp
)T2_WBASE1
;
392 t2_saved_config
.window
[0].wmask
= *(vulp
)T2_WMASK1
;
393 t2_saved_config
.window
[0].tbase
= *(vulp
)T2_TBASE1
;
394 t2_saved_config
.window
[1].wbase
= *(vulp
)T2_WBASE2
;
395 t2_saved_config
.window
[1].wmask
= *(vulp
)T2_WMASK2
;
396 t2_saved_config
.window
[1].tbase
= *(vulp
)T2_TBASE2
;
398 t2_saved_config
.hae_1
= srm_hae
; /* HW is already set to 0 */
399 t2_saved_config
.hae_2
= *(vulp
)T2_HAE_2
;
400 t2_saved_config
.hae_3
= *(vulp
)T2_HAE_3
;
401 t2_saved_config
.hae_4
= *(vulp
)T2_HAE_4
;
402 t2_saved_config
.hbase
= *(vulp
)T2_HBASE
;
408 struct pci_controller
*hose
;
409 struct resource
*hae_mem
;
413 for (i
= 0; i
< NR_CPUS
; i
++) {
414 mcheck_expected(i
) = 0;
417 t2_mcheck_any_expected
= 0;
418 t2_mcheck_last_taken
= 0;
420 /* Enable scatter/gather TLB use. */
421 temp
= *(vulp
)T2_IOCSR
;
422 if (!(temp
& (0x1UL
<< 26))) {
423 printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n",
425 *(vulp
)T2_IOCSR
= temp
| (0x1UL
<< 26);
427 *(vulp
)T2_IOCSR
; /* read it back to make sure */
430 t2_save_configuration();
433 * Create our single hose.
435 pci_isa_hose
= hose
= alloc_pci_controller();
436 hose
->io_space
= &ioport_resource
;
437 hae_mem
= alloc_resource();
439 hae_mem
->end
= T2_MEM_R1_MASK
;
440 hae_mem
->name
= pci_hae0_name
;
441 if (request_resource(&iomem_resource
, hae_mem
) < 0)
442 printk(KERN_ERR
"Failed to request HAE_MEM\n");
443 hose
->mem_space
= hae_mem
;
446 hose
->sparse_mem_base
= T2_SPARSE_MEM
- IDENT_ADDR
;
447 hose
->dense_mem_base
= T2_DENSE_MEM
- IDENT_ADDR
;
448 hose
->sparse_io_base
= T2_IO
- IDENT_ADDR
;
449 hose
->dense_io_base
= 0;
452 * Set up the PCI->physical memory translation windows.
454 * Window 1 is direct mapped.
455 * Window 2 is scatter/gather (for ISA).
458 t2_direct_map_window1(T2_DIRECTMAP_START
, T2_DIRECTMAP_LENGTH
);
460 /* Always make an ISA DMA window. */
461 t2_sg_map_window2(hose
, T2_ISA_SG_START
, T2_ISA_SG_LENGTH
);
463 *(vulp
)T2_HBASE
= 0x0; /* Disable HOLES. */
466 *(vulp
)T2_HAE_1
= 0; mb(); /* Sparse MEM HAE */
467 *(vulp
)T2_HAE_2
= 0; mb(); /* Sparse I/O HAE */
468 *(vulp
)T2_HAE_3
= 0; mb(); /* Config Space HAE */
471 * We also now zero out HAE_4, the dense memory HAE, so that
472 * we need not account for its "offset" when accessing dense
473 * memory resources which we allocated in our normal way. This
474 * HAE would need to stay untouched were we to keep the SRM
477 * Thus we can now run standard X servers on SABLE/LYNX. :-)
479 *(vulp
)T2_HAE_4
= 0; mb();
483 t2_kill_arch(int mode
)
486 * Restore the DMA Window registers.
488 *(vulp
)T2_WBASE1
= t2_saved_config
.window
[0].wbase
;
489 *(vulp
)T2_WMASK1
= t2_saved_config
.window
[0].wmask
;
490 *(vulp
)T2_TBASE1
= t2_saved_config
.window
[0].tbase
;
491 *(vulp
)T2_WBASE2
= t2_saved_config
.window
[1].wbase
;
492 *(vulp
)T2_WMASK2
= t2_saved_config
.window
[1].wmask
;
493 *(vulp
)T2_TBASE2
= t2_saved_config
.window
[1].tbase
;
496 *(vulp
)T2_HAE_1
= srm_hae
;
497 *(vulp
)T2_HAE_2
= t2_saved_config
.hae_2
;
498 *(vulp
)T2_HAE_3
= t2_saved_config
.hae_3
;
499 *(vulp
)T2_HAE_4
= t2_saved_config
.hae_4
;
500 *(vulp
)T2_HBASE
= t2_saved_config
.hbase
;
502 *(vulp
)T2_HBASE
; /* READ it back to ensure WRITE occurred. */
506 t2_pci_tbi(struct pci_controller
*hose
, dma_addr_t start
, dma_addr_t end
)
508 unsigned long t2_iocsr
;
510 t2_iocsr
= *(vulp
)T2_IOCSR
;
512 /* set the TLB Clear bit */
513 *(vulp
)T2_IOCSR
= t2_iocsr
| (0x1UL
<< 28);
515 *(vulp
)T2_IOCSR
; /* read it back to make sure */
517 /* clear the TLB Clear bit */
518 *(vulp
)T2_IOCSR
= t2_iocsr
& ~(0x1UL
<< 28);
520 *(vulp
)T2_IOCSR
; /* read it back to make sure */
523 #define SIC_SEIC (1UL << 33) /* System Event Clear */
526 t2_clear_errors(int cpu
)
528 struct sable_cpu_csr
*cpu_regs
;
530 cpu_regs
= (struct sable_cpu_csr
*)T2_CPUn_BASE(cpu
);
532 cpu_regs
->sic
&= ~SIC_SEIC
;
534 /* Clear CPU errors. */
535 cpu_regs
->bcce
|= cpu_regs
->bcce
;
536 cpu_regs
->cbe
|= cpu_regs
->cbe
;
537 cpu_regs
->bcue
|= cpu_regs
->bcue
;
538 cpu_regs
->dter
|= cpu_regs
->dter
;
540 *(vulp
)T2_CERR1
|= *(vulp
)T2_CERR1
;
541 *(vulp
)T2_PERR1
|= *(vulp
)T2_PERR1
;
548 * SABLE seems to have a "broadcast" style machine check, in that all
549 * CPUs receive it. And, the issuing CPU, in the case of PCI Config
550 * space read/write faults, will also receive a second mcheck, upon
551 * lowering IPL during completion processing in pci_read_config_byte()
554 * Hence all the taken/expected/any_expected/last_taken stuff...
557 t2_machine_check(unsigned long vector
, unsigned long la_ptr
)
559 int cpu
= smp_processor_id();
560 #ifdef CONFIG_VERBOSE_MCHECK
561 struct el_common
*mchk_header
= (struct el_common
*)la_ptr
;
564 /* Clear the error before any reporting. */
568 t2_clear_errors(cpu
);
570 /* This should not actually be done until the logout frame is
571 examined, but, since we don't do that, go on and do this... */
575 /* Now, do testing for the anomalous conditions. */
576 if (!mcheck_expected(cpu
) && t2_mcheck_any_expected
) {
578 * FUNKY: Received mcheck on a CPU and not
579 * expecting it, but another CPU is expecting one.
581 * Just dismiss it for now on this CPU...
583 #ifdef CONFIG_VERBOSE_MCHECK
584 if (alpha_verbose_mcheck
> 1) {
585 printk("t2_machine_check(cpu%d): any_expected 0x%x -"
586 " (assumed) spurious -"
587 " code 0x%x\n", cpu
, t2_mcheck_any_expected
,
588 (unsigned int)mchk_header
->code
);
594 if (!mcheck_expected(cpu
) && !t2_mcheck_any_expected
) {
595 if (t2_mcheck_last_taken
& (1 << cpu
)) {
596 #ifdef CONFIG_VERBOSE_MCHECK
597 if (alpha_verbose_mcheck
> 1) {
598 printk("t2_machine_check(cpu%d): last_taken 0x%x - "
599 "unexpected mcheck - code 0x%x\n",
600 cpu
, t2_mcheck_last_taken
,
601 (unsigned int)mchk_header
->code
);
604 t2_mcheck_last_taken
= 0;
608 t2_mcheck_last_taken
= 0;
613 #ifdef CONFIG_VERBOSE_MCHECK
614 if (alpha_verbose_mcheck
> 1) {
615 printk("%s t2_mcheck(cpu%d): last_taken 0x%x - "
616 "any_expected 0x%x - code 0x%x\n",
617 (mcheck_expected(cpu
) ? "EX" : "UN"), cpu
,
618 t2_mcheck_last_taken
, t2_mcheck_any_expected
,
619 (unsigned int)mchk_header
->code
);
623 process_mcheck_info(vector
, la_ptr
, "T2", mcheck_expected(cpu
));