2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_asm.h>
35 #include <asm/kvm_coproc.h>
36 #include <asm/kvm_emulate.h>
37 #include <asm/kvm_host.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/perf_event.h>
40 #include <asm/sysreg.h>
42 #include <trace/events/kvm.h>
49 * All of this file is extremly similar to the ARM coproc.c, but the
50 * types are different. My gut feeling is that it should be pretty
51 * easy to merge, but that would be an ABI breakage -- again. VFP
52 * would also need to be abstracted.
54 * For AArch32, we only take care of what is being trapped. Anything
55 * that has to do with init and userspace access has to go via the
59 static bool read_from_write_only(struct kvm_vcpu
*vcpu
,
60 struct sys_reg_params
*params
,
61 const struct sys_reg_desc
*r
)
63 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64 print_sys_reg_instr(params
);
65 kvm_inject_undefined(vcpu
);
69 static bool write_to_read_only(struct kvm_vcpu
*vcpu
,
70 struct sys_reg_params
*params
,
71 const struct sys_reg_desc
*r
)
73 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74 print_sys_reg_instr(params
);
75 kvm_inject_undefined(vcpu
);
79 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
80 static u32 cache_levels
;
82 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
85 /* Which cache CCSIDR represents depends on CSSELR value. */
86 static u32
get_ccsidr(u32 csselr
)
90 /* Make sure noone else changes CSSELR during this! */
92 write_sysreg(csselr
, csselr_el1
);
94 ccsidr
= read_sysreg(ccsidr_el1
);
101 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
103 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
104 struct sys_reg_params
*p
,
105 const struct sys_reg_desc
*r
)
108 return read_from_write_only(vcpu
, p
, r
);
110 kvm_set_way_flush(vcpu
);
115 * Generic accessor for VM registers. Only called as long as HCR_TVM
116 * is set. If the guest enables the MMU, we stop trapping the VM
117 * sys_regs and leave it in complete control of the caches.
119 static bool access_vm_reg(struct kvm_vcpu
*vcpu
,
120 struct sys_reg_params
*p
,
121 const struct sys_reg_desc
*r
)
123 bool was_enabled
= vcpu_has_cache_enabled(vcpu
);
125 BUG_ON(!p
->is_write
);
127 if (!p
->is_aarch32
) {
128 vcpu_sys_reg(vcpu
, r
->reg
) = p
->regval
;
131 vcpu_cp15_64_high(vcpu
, r
->reg
) = upper_32_bits(p
->regval
);
132 vcpu_cp15_64_low(vcpu
, r
->reg
) = lower_32_bits(p
->regval
);
135 kvm_toggle_cache(vcpu
, was_enabled
);
140 * Trap handler for the GICv3 SGI generation system register.
141 * Forward the request to the VGIC emulation.
142 * The cp15_64 code makes sure this automatically works
143 * for both AArch64 and AArch32 accesses.
145 static bool access_gic_sgi(struct kvm_vcpu
*vcpu
,
146 struct sys_reg_params
*p
,
147 const struct sys_reg_desc
*r
)
150 return read_from_write_only(vcpu
, p
, r
);
152 vgic_v3_dispatch_sgi(vcpu
, p
->regval
);
157 static bool access_gic_sre(struct kvm_vcpu
*vcpu
,
158 struct sys_reg_params
*p
,
159 const struct sys_reg_desc
*r
)
162 return ignore_write(vcpu
, p
);
164 p
->regval
= vcpu
->arch
.vgic_cpu
.vgic_v3
.vgic_sre
;
168 static bool trap_raz_wi(struct kvm_vcpu
*vcpu
,
169 struct sys_reg_params
*p
,
170 const struct sys_reg_desc
*r
)
173 return ignore_write(vcpu
, p
);
175 return read_zero(vcpu
, p
);
178 static bool trap_oslsr_el1(struct kvm_vcpu
*vcpu
,
179 struct sys_reg_params
*p
,
180 const struct sys_reg_desc
*r
)
183 return ignore_write(vcpu
, p
);
185 p
->regval
= (1 << 3);
190 static bool trap_dbgauthstatus_el1(struct kvm_vcpu
*vcpu
,
191 struct sys_reg_params
*p
,
192 const struct sys_reg_desc
*r
)
195 return ignore_write(vcpu
, p
);
197 p
->regval
= read_sysreg(dbgauthstatus_el1
);
203 * We want to avoid world-switching all the DBG registers all the
206 * - If we've touched any debug register, it is likely that we're
207 * going to touch more of them. It then makes sense to disable the
208 * traps and start doing the save/restore dance
209 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
210 * then mandatory to save/restore the registers, as the guest
213 * For this, we use a DIRTY bit, indicating the guest has modified the
214 * debug registers, used as follow:
217 * - If the dirty bit is set (because we're coming back from trapping),
218 * disable the traps, save host registers, restore guest registers.
219 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
220 * set the dirty bit, disable the traps, save host registers,
221 * restore guest registers.
222 * - Otherwise, enable the traps
225 * - If the dirty bit is set, save guest registers, restore host
226 * registers and clear the dirty bit. This ensure that the host can
227 * now use the debug registers.
229 static bool trap_debug_regs(struct kvm_vcpu
*vcpu
,
230 struct sys_reg_params
*p
,
231 const struct sys_reg_desc
*r
)
234 vcpu_sys_reg(vcpu
, r
->reg
) = p
->regval
;
235 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
237 p
->regval
= vcpu_sys_reg(vcpu
, r
->reg
);
240 trace_trap_reg(__func__
, r
->reg
, p
->is_write
, p
->regval
);
246 * reg_to_dbg/dbg_to_reg
248 * A 32 bit write to a debug register leave top bits alone
249 * A 32 bit read from a debug register only returns the bottom bits
251 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
252 * hyp.S code switches between host and guest values in future.
254 static void reg_to_dbg(struct kvm_vcpu
*vcpu
,
255 struct sys_reg_params
*p
,
262 val
|= ((*dbg_reg
>> 32) << 32);
266 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
269 static void dbg_to_reg(struct kvm_vcpu
*vcpu
,
270 struct sys_reg_params
*p
,
273 p
->regval
= *dbg_reg
;
275 p
->regval
&= 0xffffffffUL
;
278 static bool trap_bvr(struct kvm_vcpu
*vcpu
,
279 struct sys_reg_params
*p
,
280 const struct sys_reg_desc
*rd
)
282 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
285 reg_to_dbg(vcpu
, p
, dbg_reg
);
287 dbg_to_reg(vcpu
, p
, dbg_reg
);
289 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
294 static int set_bvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
295 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
297 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
299 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
304 static int get_bvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
305 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
307 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
309 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
314 static void reset_bvr(struct kvm_vcpu
*vcpu
,
315 const struct sys_reg_desc
*rd
)
317 vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
] = rd
->val
;
320 static bool trap_bcr(struct kvm_vcpu
*vcpu
,
321 struct sys_reg_params
*p
,
322 const struct sys_reg_desc
*rd
)
324 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
327 reg_to_dbg(vcpu
, p
, dbg_reg
);
329 dbg_to_reg(vcpu
, p
, dbg_reg
);
331 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
336 static int set_bcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
337 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
339 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
341 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
347 static int get_bcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
348 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
350 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
352 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
357 static void reset_bcr(struct kvm_vcpu
*vcpu
,
358 const struct sys_reg_desc
*rd
)
360 vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
] = rd
->val
;
363 static bool trap_wvr(struct kvm_vcpu
*vcpu
,
364 struct sys_reg_params
*p
,
365 const struct sys_reg_desc
*rd
)
367 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
370 reg_to_dbg(vcpu
, p
, dbg_reg
);
372 dbg_to_reg(vcpu
, p
, dbg_reg
);
374 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
,
375 vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
]);
380 static int set_wvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
381 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
383 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
385 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
390 static int get_wvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
391 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
393 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
395 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
400 static void reset_wvr(struct kvm_vcpu
*vcpu
,
401 const struct sys_reg_desc
*rd
)
403 vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
] = rd
->val
;
406 static bool trap_wcr(struct kvm_vcpu
*vcpu
,
407 struct sys_reg_params
*p
,
408 const struct sys_reg_desc
*rd
)
410 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
413 reg_to_dbg(vcpu
, p
, dbg_reg
);
415 dbg_to_reg(vcpu
, p
, dbg_reg
);
417 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
422 static int set_wcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
423 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
425 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
427 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
432 static int get_wcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
433 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
435 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
437 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
442 static void reset_wcr(struct kvm_vcpu
*vcpu
,
443 const struct sys_reg_desc
*rd
)
445 vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
] = rd
->val
;
448 static void reset_amair_el1(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
450 vcpu_sys_reg(vcpu
, AMAIR_EL1
) = read_sysreg(amair_el1
);
453 static void reset_mpidr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
458 * Map the vcpu_id into the first three affinity level fields of
459 * the MPIDR. We limit the number of VCPUs in level 0 due to a
460 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
461 * of the GICv3 to be able to address each CPU directly when
464 mpidr
= (vcpu
->vcpu_id
& 0x0f) << MPIDR_LEVEL_SHIFT(0);
465 mpidr
|= ((vcpu
->vcpu_id
>> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
466 mpidr
|= ((vcpu
->vcpu_id
>> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
467 vcpu_sys_reg(vcpu
, MPIDR_EL1
) = (1ULL << 31) | mpidr
;
470 static void reset_pmcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
474 pmcr
= read_sysreg(pmcr_el0
);
476 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
477 * except PMCR.E resetting to zero.
479 val
= ((pmcr
& ~ARMV8_PMU_PMCR_MASK
)
480 | (ARMV8_PMU_PMCR_MASK
& 0xdecafbad)) & (~ARMV8_PMU_PMCR_E
);
481 vcpu_sys_reg(vcpu
, PMCR_EL0
) = val
;
484 static bool check_pmu_access_disabled(struct kvm_vcpu
*vcpu
, u64 flags
)
486 u64 reg
= vcpu_sys_reg(vcpu
, PMUSERENR_EL0
);
487 bool enabled
= (reg
& flags
) || vcpu_mode_priv(vcpu
);
490 kvm_inject_undefined(vcpu
);
495 static bool pmu_access_el0_disabled(struct kvm_vcpu
*vcpu
)
497 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_EN
);
500 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu
*vcpu
)
502 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_SW
| ARMV8_PMU_USERENR_EN
);
505 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu
*vcpu
)
507 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_CR
| ARMV8_PMU_USERENR_EN
);
510 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu
*vcpu
)
512 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_ER
| ARMV8_PMU_USERENR_EN
);
515 static bool access_pmcr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
516 const struct sys_reg_desc
*r
)
520 if (!kvm_arm_pmu_v3_ready(vcpu
))
521 return trap_raz_wi(vcpu
, p
, r
);
523 if (pmu_access_el0_disabled(vcpu
))
527 /* Only update writeable bits of PMCR */
528 val
= vcpu_sys_reg(vcpu
, PMCR_EL0
);
529 val
&= ~ARMV8_PMU_PMCR_MASK
;
530 val
|= p
->regval
& ARMV8_PMU_PMCR_MASK
;
531 vcpu_sys_reg(vcpu
, PMCR_EL0
) = val
;
532 kvm_pmu_handle_pmcr(vcpu
, val
);
534 /* PMCR.P & PMCR.C are RAZ */
535 val
= vcpu_sys_reg(vcpu
, PMCR_EL0
)
536 & ~(ARMV8_PMU_PMCR_P
| ARMV8_PMU_PMCR_C
);
543 static bool access_pmselr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
544 const struct sys_reg_desc
*r
)
546 if (!kvm_arm_pmu_v3_ready(vcpu
))
547 return trap_raz_wi(vcpu
, p
, r
);
549 if (pmu_access_event_counter_el0_disabled(vcpu
))
553 vcpu_sys_reg(vcpu
, PMSELR_EL0
) = p
->regval
;
555 /* return PMSELR.SEL field */
556 p
->regval
= vcpu_sys_reg(vcpu
, PMSELR_EL0
)
557 & ARMV8_PMU_COUNTER_MASK
;
562 static bool access_pmceid(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
563 const struct sys_reg_desc
*r
)
567 if (!kvm_arm_pmu_v3_ready(vcpu
))
568 return trap_raz_wi(vcpu
, p
, r
);
572 if (pmu_access_el0_disabled(vcpu
))
576 pmceid
= read_sysreg(pmceid0_el0
);
578 pmceid
= read_sysreg(pmceid1_el0
);
585 static bool pmu_counter_idx_valid(struct kvm_vcpu
*vcpu
, u64 idx
)
589 pmcr
= vcpu_sys_reg(vcpu
, PMCR_EL0
);
590 val
= (pmcr
>> ARMV8_PMU_PMCR_N_SHIFT
) & ARMV8_PMU_PMCR_N_MASK
;
591 if (idx
>= val
&& idx
!= ARMV8_PMU_CYCLE_IDX
) {
592 kvm_inject_undefined(vcpu
);
599 static bool access_pmu_evcntr(struct kvm_vcpu
*vcpu
,
600 struct sys_reg_params
*p
,
601 const struct sys_reg_desc
*r
)
605 if (!kvm_arm_pmu_v3_ready(vcpu
))
606 return trap_raz_wi(vcpu
, p
, r
);
608 if (r
->CRn
== 9 && r
->CRm
== 13) {
611 if (pmu_access_event_counter_el0_disabled(vcpu
))
614 idx
= vcpu_sys_reg(vcpu
, PMSELR_EL0
)
615 & ARMV8_PMU_COUNTER_MASK
;
616 } else if (r
->Op2
== 0) {
618 if (pmu_access_cycle_counter_el0_disabled(vcpu
))
621 idx
= ARMV8_PMU_CYCLE_IDX
;
625 } else if (r
->CRn
== 0 && r
->CRm
== 9) {
627 if (pmu_access_event_counter_el0_disabled(vcpu
))
630 idx
= ARMV8_PMU_CYCLE_IDX
;
631 } else if (r
->CRn
== 14 && (r
->CRm
& 12) == 8) {
633 if (pmu_access_event_counter_el0_disabled(vcpu
))
636 idx
= ((r
->CRm
& 3) << 3) | (r
->Op2
& 7);
641 if (!pmu_counter_idx_valid(vcpu
, idx
))
645 if (pmu_access_el0_disabled(vcpu
))
648 kvm_pmu_set_counter_value(vcpu
, idx
, p
->regval
);
650 p
->regval
= kvm_pmu_get_counter_value(vcpu
, idx
);
656 static bool access_pmu_evtyper(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
657 const struct sys_reg_desc
*r
)
661 if (!kvm_arm_pmu_v3_ready(vcpu
))
662 return trap_raz_wi(vcpu
, p
, r
);
664 if (pmu_access_el0_disabled(vcpu
))
667 if (r
->CRn
== 9 && r
->CRm
== 13 && r
->Op2
== 1) {
669 idx
= vcpu_sys_reg(vcpu
, PMSELR_EL0
) & ARMV8_PMU_COUNTER_MASK
;
670 reg
= PMEVTYPER0_EL0
+ idx
;
671 } else if (r
->CRn
== 14 && (r
->CRm
& 12) == 12) {
672 idx
= ((r
->CRm
& 3) << 3) | (r
->Op2
& 7);
673 if (idx
== ARMV8_PMU_CYCLE_IDX
)
677 reg
= PMEVTYPER0_EL0
+ idx
;
682 if (!pmu_counter_idx_valid(vcpu
, idx
))
686 kvm_pmu_set_counter_event_type(vcpu
, p
->regval
, idx
);
687 vcpu_sys_reg(vcpu
, reg
) = p
->regval
& ARMV8_PMU_EVTYPE_MASK
;
689 p
->regval
= vcpu_sys_reg(vcpu
, reg
) & ARMV8_PMU_EVTYPE_MASK
;
695 static bool access_pmcnten(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
696 const struct sys_reg_desc
*r
)
700 if (!kvm_arm_pmu_v3_ready(vcpu
))
701 return trap_raz_wi(vcpu
, p
, r
);
703 if (pmu_access_el0_disabled(vcpu
))
706 mask
= kvm_pmu_valid_counter_mask(vcpu
);
708 val
= p
->regval
& mask
;
710 /* accessing PMCNTENSET_EL0 */
711 vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) |= val
;
712 kvm_pmu_enable_counter(vcpu
, val
);
714 /* accessing PMCNTENCLR_EL0 */
715 vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) &= ~val
;
716 kvm_pmu_disable_counter(vcpu
, val
);
719 p
->regval
= vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) & mask
;
725 static bool access_pminten(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
726 const struct sys_reg_desc
*r
)
728 u64 mask
= kvm_pmu_valid_counter_mask(vcpu
);
730 if (!kvm_arm_pmu_v3_ready(vcpu
))
731 return trap_raz_wi(vcpu
, p
, r
);
733 if (!vcpu_mode_priv(vcpu
)) {
734 kvm_inject_undefined(vcpu
);
739 u64 val
= p
->regval
& mask
;
742 /* accessing PMINTENSET_EL1 */
743 vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) |= val
;
745 /* accessing PMINTENCLR_EL1 */
746 vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) &= ~val
;
748 p
->regval
= vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) & mask
;
754 static bool access_pmovs(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
755 const struct sys_reg_desc
*r
)
757 u64 mask
= kvm_pmu_valid_counter_mask(vcpu
);
759 if (!kvm_arm_pmu_v3_ready(vcpu
))
760 return trap_raz_wi(vcpu
, p
, r
);
762 if (pmu_access_el0_disabled(vcpu
))
767 /* accessing PMOVSSET_EL0 */
768 vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) |= (p
->regval
& mask
);
770 /* accessing PMOVSCLR_EL0 */
771 vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) &= ~(p
->regval
& mask
);
773 p
->regval
= vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) & mask
;
779 static bool access_pmswinc(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
780 const struct sys_reg_desc
*r
)
784 if (!kvm_arm_pmu_v3_ready(vcpu
))
785 return trap_raz_wi(vcpu
, p
, r
);
788 return read_from_write_only(vcpu
, p
, r
);
790 if (pmu_write_swinc_el0_disabled(vcpu
))
793 mask
= kvm_pmu_valid_counter_mask(vcpu
);
794 kvm_pmu_software_increment(vcpu
, p
->regval
& mask
);
798 static bool access_pmuserenr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
799 const struct sys_reg_desc
*r
)
801 if (!kvm_arm_pmu_v3_ready(vcpu
))
802 return trap_raz_wi(vcpu
, p
, r
);
805 if (!vcpu_mode_priv(vcpu
)) {
806 kvm_inject_undefined(vcpu
);
810 vcpu_sys_reg(vcpu
, PMUSERENR_EL0
) = p
->regval
811 & ARMV8_PMU_USERENR_MASK
;
813 p
->regval
= vcpu_sys_reg(vcpu
, PMUSERENR_EL0
)
814 & ARMV8_PMU_USERENR_MASK
;
820 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
821 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
822 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
823 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
824 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
825 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
826 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
827 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
828 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
829 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
831 /* Macro to expand the PMEVCNTRn_EL0 register */
832 #define PMU_PMEVCNTR_EL0(n) \
833 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
834 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
836 /* Macro to expand the PMEVTYPERn_EL0 register */
837 #define PMU_PMEVTYPER_EL0(n) \
838 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
839 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
841 static bool access_cntp_tval(struct kvm_vcpu
*vcpu
,
842 struct sys_reg_params
*p
,
843 const struct sys_reg_desc
*r
)
845 u64 now
= kvm_phys_timer_read();
849 kvm_arm_timer_set_reg(vcpu
, KVM_REG_ARM_PTIMER_CVAL
,
852 cval
= kvm_arm_timer_get_reg(vcpu
, KVM_REG_ARM_PTIMER_CVAL
);
853 p
->regval
= cval
- now
;
859 static bool access_cntp_ctl(struct kvm_vcpu
*vcpu
,
860 struct sys_reg_params
*p
,
861 const struct sys_reg_desc
*r
)
864 kvm_arm_timer_set_reg(vcpu
, KVM_REG_ARM_PTIMER_CTL
, p
->regval
);
866 p
->regval
= kvm_arm_timer_get_reg(vcpu
, KVM_REG_ARM_PTIMER_CTL
);
871 static bool access_cntp_cval(struct kvm_vcpu
*vcpu
,
872 struct sys_reg_params
*p
,
873 const struct sys_reg_desc
*r
)
876 kvm_arm_timer_set_reg(vcpu
, KVM_REG_ARM_PTIMER_CVAL
, p
->regval
);
878 p
->regval
= kvm_arm_timer_get_reg(vcpu
, KVM_REG_ARM_PTIMER_CVAL
);
883 /* Read a sanitised cpufeature ID register by sys_reg_desc */
884 static u64
read_id_reg(struct sys_reg_desc
const *r
, bool raz
)
886 u32 id
= sys_reg((u32
)r
->Op0
, (u32
)r
->Op1
,
887 (u32
)r
->CRn
, (u32
)r
->CRm
, (u32
)r
->Op2
);
888 u64 val
= raz
? 0 : read_sanitised_ftr_reg(id
);
890 if (id
== SYS_ID_AA64PFR0_EL1
) {
891 if (val
& (0xfUL
<< ID_AA64PFR0_SVE_SHIFT
))
892 pr_err_once("kvm [%i]: SVE unsupported for guests, suppressing\n",
893 task_pid_nr(current
));
895 val
&= ~(0xfUL
<< ID_AA64PFR0_SVE_SHIFT
);
901 /* cpufeature ID register access trap handlers */
903 static bool __access_id_reg(struct kvm_vcpu
*vcpu
,
904 struct sys_reg_params
*p
,
905 const struct sys_reg_desc
*r
,
909 return write_to_read_only(vcpu
, p
, r
);
911 p
->regval
= read_id_reg(r
, raz
);
915 static bool access_id_reg(struct kvm_vcpu
*vcpu
,
916 struct sys_reg_params
*p
,
917 const struct sys_reg_desc
*r
)
919 return __access_id_reg(vcpu
, p
, r
, false);
922 static bool access_raz_id_reg(struct kvm_vcpu
*vcpu
,
923 struct sys_reg_params
*p
,
924 const struct sys_reg_desc
*r
)
926 return __access_id_reg(vcpu
, p
, r
, true);
929 static int reg_from_user(u64
*val
, const void __user
*uaddr
, u64 id
);
930 static int reg_to_user(void __user
*uaddr
, const u64
*val
, u64 id
);
931 static u64
sys_reg_to_index(const struct sys_reg_desc
*reg
);
934 * cpufeature ID register user accessors
936 * For now, these registers are immutable for userspace, so no values
937 * are stored, and for set_id_reg() we don't allow the effective value
940 static int __get_id_reg(const struct sys_reg_desc
*rd
, void __user
*uaddr
,
943 const u64 id
= sys_reg_to_index(rd
);
944 const u64 val
= read_id_reg(rd
, raz
);
946 return reg_to_user(uaddr
, &val
, id
);
949 static int __set_id_reg(const struct sys_reg_desc
*rd
, void __user
*uaddr
,
952 const u64 id
= sys_reg_to_index(rd
);
956 err
= reg_from_user(&val
, uaddr
, id
);
960 /* This is what we mean by invariant: you can't change it. */
961 if (val
!= read_id_reg(rd
, raz
))
967 static int get_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
968 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
970 return __get_id_reg(rd
, uaddr
, false);
973 static int set_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
974 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
976 return __set_id_reg(rd
, uaddr
, false);
979 static int get_raz_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
980 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
982 return __get_id_reg(rd
, uaddr
, true);
985 static int set_raz_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
986 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
988 return __set_id_reg(rd
, uaddr
, true);
991 /* sys_reg_desc initialiser for known cpufeature ID registers */
992 #define ID_SANITISED(name) { \
993 SYS_DESC(SYS_##name), \
994 .access = access_id_reg, \
995 .get_user = get_id_reg, \
996 .set_user = set_id_reg, \
1000 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1001 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1002 * (1 <= crm < 8, 0 <= Op2 < 8).
1004 #define ID_UNALLOCATED(crm, op2) { \
1005 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1006 .access = access_raz_id_reg, \
1007 .get_user = get_raz_id_reg, \
1008 .set_user = set_raz_id_reg, \
1012 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1013 * For now, these are exposed just like unallocated ID regs: they appear
1014 * RAZ for the guest.
1016 #define ID_HIDDEN(name) { \
1017 SYS_DESC(SYS_##name), \
1018 .access = access_raz_id_reg, \
1019 .get_user = get_raz_id_reg, \
1020 .set_user = set_raz_id_reg, \
1024 * Architected system registers.
1025 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1027 * Debug handling: We do trap most, if not all debug related system
1028 * registers. The implementation is good enough to ensure that a guest
1029 * can use these with minimal performance degradation. The drawback is
1030 * that we don't implement any of the external debug, none of the
1031 * OSlock protocol. This should be revisited if we ever encounter a
1032 * more demanding guest...
1034 static const struct sys_reg_desc sys_reg_descs
[] = {
1035 { SYS_DESC(SYS_DC_ISW
), access_dcsw
},
1036 { SYS_DESC(SYS_DC_CSW
), access_dcsw
},
1037 { SYS_DESC(SYS_DC_CISW
), access_dcsw
},
1039 DBG_BCR_BVR_WCR_WVR_EL1(0),
1040 DBG_BCR_BVR_WCR_WVR_EL1(1),
1041 { SYS_DESC(SYS_MDCCINT_EL1
), trap_debug_regs
, reset_val
, MDCCINT_EL1
, 0 },
1042 { SYS_DESC(SYS_MDSCR_EL1
), trap_debug_regs
, reset_val
, MDSCR_EL1
, 0 },
1043 DBG_BCR_BVR_WCR_WVR_EL1(2),
1044 DBG_BCR_BVR_WCR_WVR_EL1(3),
1045 DBG_BCR_BVR_WCR_WVR_EL1(4),
1046 DBG_BCR_BVR_WCR_WVR_EL1(5),
1047 DBG_BCR_BVR_WCR_WVR_EL1(6),
1048 DBG_BCR_BVR_WCR_WVR_EL1(7),
1049 DBG_BCR_BVR_WCR_WVR_EL1(8),
1050 DBG_BCR_BVR_WCR_WVR_EL1(9),
1051 DBG_BCR_BVR_WCR_WVR_EL1(10),
1052 DBG_BCR_BVR_WCR_WVR_EL1(11),
1053 DBG_BCR_BVR_WCR_WVR_EL1(12),
1054 DBG_BCR_BVR_WCR_WVR_EL1(13),
1055 DBG_BCR_BVR_WCR_WVR_EL1(14),
1056 DBG_BCR_BVR_WCR_WVR_EL1(15),
1058 { SYS_DESC(SYS_MDRAR_EL1
), trap_raz_wi
},
1059 { SYS_DESC(SYS_OSLAR_EL1
), trap_raz_wi
},
1060 { SYS_DESC(SYS_OSLSR_EL1
), trap_oslsr_el1
},
1061 { SYS_DESC(SYS_OSDLR_EL1
), trap_raz_wi
},
1062 { SYS_DESC(SYS_DBGPRCR_EL1
), trap_raz_wi
},
1063 { SYS_DESC(SYS_DBGCLAIMSET_EL1
), trap_raz_wi
},
1064 { SYS_DESC(SYS_DBGCLAIMCLR_EL1
), trap_raz_wi
},
1065 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1
), trap_dbgauthstatus_el1
},
1067 { SYS_DESC(SYS_MDCCSR_EL0
), trap_raz_wi
},
1068 { SYS_DESC(SYS_DBGDTR_EL0
), trap_raz_wi
},
1069 // DBGDTR[TR]X_EL0 share the same encoding
1070 { SYS_DESC(SYS_DBGDTRTX_EL0
), trap_raz_wi
},
1072 { SYS_DESC(SYS_DBGVCR32_EL2
), NULL
, reset_val
, DBGVCR32_EL2
, 0 },
1074 { SYS_DESC(SYS_MPIDR_EL1
), NULL
, reset_mpidr
, MPIDR_EL1
},
1077 * ID regs: all ID_SANITISED() entries here must have corresponding
1078 * entries in arm64_ftr_regs[].
1081 /* AArch64 mappings of the AArch32 ID registers */
1083 ID_SANITISED(ID_PFR0_EL1
),
1084 ID_SANITISED(ID_PFR1_EL1
),
1085 ID_SANITISED(ID_DFR0_EL1
),
1086 ID_HIDDEN(ID_AFR0_EL1
),
1087 ID_SANITISED(ID_MMFR0_EL1
),
1088 ID_SANITISED(ID_MMFR1_EL1
),
1089 ID_SANITISED(ID_MMFR2_EL1
),
1090 ID_SANITISED(ID_MMFR3_EL1
),
1093 ID_SANITISED(ID_ISAR0_EL1
),
1094 ID_SANITISED(ID_ISAR1_EL1
),
1095 ID_SANITISED(ID_ISAR2_EL1
),
1096 ID_SANITISED(ID_ISAR3_EL1
),
1097 ID_SANITISED(ID_ISAR4_EL1
),
1098 ID_SANITISED(ID_ISAR5_EL1
),
1099 ID_SANITISED(ID_MMFR4_EL1
),
1100 ID_UNALLOCATED(2,7),
1103 ID_SANITISED(MVFR0_EL1
),
1104 ID_SANITISED(MVFR1_EL1
),
1105 ID_SANITISED(MVFR2_EL1
),
1106 ID_UNALLOCATED(3,3),
1107 ID_UNALLOCATED(3,4),
1108 ID_UNALLOCATED(3,5),
1109 ID_UNALLOCATED(3,6),
1110 ID_UNALLOCATED(3,7),
1112 /* AArch64 ID registers */
1114 ID_SANITISED(ID_AA64PFR0_EL1
),
1115 ID_SANITISED(ID_AA64PFR1_EL1
),
1116 ID_UNALLOCATED(4,2),
1117 ID_UNALLOCATED(4,3),
1118 ID_UNALLOCATED(4,4),
1119 ID_UNALLOCATED(4,5),
1120 ID_UNALLOCATED(4,6),
1121 ID_UNALLOCATED(4,7),
1124 ID_SANITISED(ID_AA64DFR0_EL1
),
1125 ID_SANITISED(ID_AA64DFR1_EL1
),
1126 ID_UNALLOCATED(5,2),
1127 ID_UNALLOCATED(5,3),
1128 ID_HIDDEN(ID_AA64AFR0_EL1
),
1129 ID_HIDDEN(ID_AA64AFR1_EL1
),
1130 ID_UNALLOCATED(5,6),
1131 ID_UNALLOCATED(5,7),
1134 ID_SANITISED(ID_AA64ISAR0_EL1
),
1135 ID_SANITISED(ID_AA64ISAR1_EL1
),
1136 ID_UNALLOCATED(6,2),
1137 ID_UNALLOCATED(6,3),
1138 ID_UNALLOCATED(6,4),
1139 ID_UNALLOCATED(6,5),
1140 ID_UNALLOCATED(6,6),
1141 ID_UNALLOCATED(6,7),
1144 ID_SANITISED(ID_AA64MMFR0_EL1
),
1145 ID_SANITISED(ID_AA64MMFR1_EL1
),
1146 ID_SANITISED(ID_AA64MMFR2_EL1
),
1147 ID_UNALLOCATED(7,3),
1148 ID_UNALLOCATED(7,4),
1149 ID_UNALLOCATED(7,5),
1150 ID_UNALLOCATED(7,6),
1151 ID_UNALLOCATED(7,7),
1153 { SYS_DESC(SYS_SCTLR_EL1
), access_vm_reg
, reset_val
, SCTLR_EL1
, 0x00C50078 },
1154 { SYS_DESC(SYS_CPACR_EL1
), NULL
, reset_val
, CPACR_EL1
, 0 },
1155 { SYS_DESC(SYS_TTBR0_EL1
), access_vm_reg
, reset_unknown
, TTBR0_EL1
},
1156 { SYS_DESC(SYS_TTBR1_EL1
), access_vm_reg
, reset_unknown
, TTBR1_EL1
},
1157 { SYS_DESC(SYS_TCR_EL1
), access_vm_reg
, reset_val
, TCR_EL1
, 0 },
1159 { SYS_DESC(SYS_AFSR0_EL1
), access_vm_reg
, reset_unknown
, AFSR0_EL1
},
1160 { SYS_DESC(SYS_AFSR1_EL1
), access_vm_reg
, reset_unknown
, AFSR1_EL1
},
1161 { SYS_DESC(SYS_ESR_EL1
), access_vm_reg
, reset_unknown
, ESR_EL1
},
1163 { SYS_DESC(SYS_ERRIDR_EL1
), trap_raz_wi
},
1164 { SYS_DESC(SYS_ERRSELR_EL1
), trap_raz_wi
},
1165 { SYS_DESC(SYS_ERXFR_EL1
), trap_raz_wi
},
1166 { SYS_DESC(SYS_ERXCTLR_EL1
), trap_raz_wi
},
1167 { SYS_DESC(SYS_ERXSTATUS_EL1
), trap_raz_wi
},
1168 { SYS_DESC(SYS_ERXADDR_EL1
), trap_raz_wi
},
1169 { SYS_DESC(SYS_ERXMISC0_EL1
), trap_raz_wi
},
1170 { SYS_DESC(SYS_ERXMISC1_EL1
), trap_raz_wi
},
1172 { SYS_DESC(SYS_FAR_EL1
), access_vm_reg
, reset_unknown
, FAR_EL1
},
1173 { SYS_DESC(SYS_PAR_EL1
), NULL
, reset_unknown
, PAR_EL1
},
1175 { SYS_DESC(SYS_PMINTENSET_EL1
), access_pminten
, reset_unknown
, PMINTENSET_EL1
},
1176 { SYS_DESC(SYS_PMINTENCLR_EL1
), access_pminten
, NULL
, PMINTENSET_EL1
},
1178 { SYS_DESC(SYS_MAIR_EL1
), access_vm_reg
, reset_unknown
, MAIR_EL1
},
1179 { SYS_DESC(SYS_AMAIR_EL1
), access_vm_reg
, reset_amair_el1
, AMAIR_EL1
},
1181 { SYS_DESC(SYS_VBAR_EL1
), NULL
, reset_val
, VBAR_EL1
, 0 },
1182 { SYS_DESC(SYS_DISR_EL1
), NULL
, reset_val
, DISR_EL1
, 0 },
1184 { SYS_DESC(SYS_ICC_IAR0_EL1
), write_to_read_only
},
1185 { SYS_DESC(SYS_ICC_EOIR0_EL1
), read_from_write_only
},
1186 { SYS_DESC(SYS_ICC_HPPIR0_EL1
), write_to_read_only
},
1187 { SYS_DESC(SYS_ICC_DIR_EL1
), read_from_write_only
},
1188 { SYS_DESC(SYS_ICC_RPR_EL1
), write_to_read_only
},
1189 { SYS_DESC(SYS_ICC_SGI1R_EL1
), access_gic_sgi
},
1190 { SYS_DESC(SYS_ICC_IAR1_EL1
), write_to_read_only
},
1191 { SYS_DESC(SYS_ICC_EOIR1_EL1
), read_from_write_only
},
1192 { SYS_DESC(SYS_ICC_HPPIR1_EL1
), write_to_read_only
},
1193 { SYS_DESC(SYS_ICC_SRE_EL1
), access_gic_sre
},
1195 { SYS_DESC(SYS_CONTEXTIDR_EL1
), access_vm_reg
, reset_val
, CONTEXTIDR_EL1
, 0 },
1196 { SYS_DESC(SYS_TPIDR_EL1
), NULL
, reset_unknown
, TPIDR_EL1
},
1198 { SYS_DESC(SYS_CNTKCTL_EL1
), NULL
, reset_val
, CNTKCTL_EL1
, 0},
1200 { SYS_DESC(SYS_CSSELR_EL1
), NULL
, reset_unknown
, CSSELR_EL1
},
1202 { SYS_DESC(SYS_PMCR_EL0
), access_pmcr
, reset_pmcr
, },
1203 { SYS_DESC(SYS_PMCNTENSET_EL0
), access_pmcnten
, reset_unknown
, PMCNTENSET_EL0
},
1204 { SYS_DESC(SYS_PMCNTENCLR_EL0
), access_pmcnten
, NULL
, PMCNTENSET_EL0
},
1205 { SYS_DESC(SYS_PMOVSCLR_EL0
), access_pmovs
, NULL
, PMOVSSET_EL0
},
1206 { SYS_DESC(SYS_PMSWINC_EL0
), access_pmswinc
, reset_unknown
, PMSWINC_EL0
},
1207 { SYS_DESC(SYS_PMSELR_EL0
), access_pmselr
, reset_unknown
, PMSELR_EL0
},
1208 { SYS_DESC(SYS_PMCEID0_EL0
), access_pmceid
},
1209 { SYS_DESC(SYS_PMCEID1_EL0
), access_pmceid
},
1210 { SYS_DESC(SYS_PMCCNTR_EL0
), access_pmu_evcntr
, reset_unknown
, PMCCNTR_EL0
},
1211 { SYS_DESC(SYS_PMXEVTYPER_EL0
), access_pmu_evtyper
},
1212 { SYS_DESC(SYS_PMXEVCNTR_EL0
), access_pmu_evcntr
},
1214 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1215 * in 32bit mode. Here we choose to reset it as zero for consistency.
1217 { SYS_DESC(SYS_PMUSERENR_EL0
), access_pmuserenr
, reset_val
, PMUSERENR_EL0
, 0 },
1218 { SYS_DESC(SYS_PMOVSSET_EL0
), access_pmovs
, reset_unknown
, PMOVSSET_EL0
},
1220 { SYS_DESC(SYS_TPIDR_EL0
), NULL
, reset_unknown
, TPIDR_EL0
},
1221 { SYS_DESC(SYS_TPIDRRO_EL0
), NULL
, reset_unknown
, TPIDRRO_EL0
},
1223 { SYS_DESC(SYS_CNTP_TVAL_EL0
), access_cntp_tval
},
1224 { SYS_DESC(SYS_CNTP_CTL_EL0
), access_cntp_ctl
},
1225 { SYS_DESC(SYS_CNTP_CVAL_EL0
), access_cntp_cval
},
1228 PMU_PMEVCNTR_EL0(0),
1229 PMU_PMEVCNTR_EL0(1),
1230 PMU_PMEVCNTR_EL0(2),
1231 PMU_PMEVCNTR_EL0(3),
1232 PMU_PMEVCNTR_EL0(4),
1233 PMU_PMEVCNTR_EL0(5),
1234 PMU_PMEVCNTR_EL0(6),
1235 PMU_PMEVCNTR_EL0(7),
1236 PMU_PMEVCNTR_EL0(8),
1237 PMU_PMEVCNTR_EL0(9),
1238 PMU_PMEVCNTR_EL0(10),
1239 PMU_PMEVCNTR_EL0(11),
1240 PMU_PMEVCNTR_EL0(12),
1241 PMU_PMEVCNTR_EL0(13),
1242 PMU_PMEVCNTR_EL0(14),
1243 PMU_PMEVCNTR_EL0(15),
1244 PMU_PMEVCNTR_EL0(16),
1245 PMU_PMEVCNTR_EL0(17),
1246 PMU_PMEVCNTR_EL0(18),
1247 PMU_PMEVCNTR_EL0(19),
1248 PMU_PMEVCNTR_EL0(20),
1249 PMU_PMEVCNTR_EL0(21),
1250 PMU_PMEVCNTR_EL0(22),
1251 PMU_PMEVCNTR_EL0(23),
1252 PMU_PMEVCNTR_EL0(24),
1253 PMU_PMEVCNTR_EL0(25),
1254 PMU_PMEVCNTR_EL0(26),
1255 PMU_PMEVCNTR_EL0(27),
1256 PMU_PMEVCNTR_EL0(28),
1257 PMU_PMEVCNTR_EL0(29),
1258 PMU_PMEVCNTR_EL0(30),
1259 /* PMEVTYPERn_EL0 */
1260 PMU_PMEVTYPER_EL0(0),
1261 PMU_PMEVTYPER_EL0(1),
1262 PMU_PMEVTYPER_EL0(2),
1263 PMU_PMEVTYPER_EL0(3),
1264 PMU_PMEVTYPER_EL0(4),
1265 PMU_PMEVTYPER_EL0(5),
1266 PMU_PMEVTYPER_EL0(6),
1267 PMU_PMEVTYPER_EL0(7),
1268 PMU_PMEVTYPER_EL0(8),
1269 PMU_PMEVTYPER_EL0(9),
1270 PMU_PMEVTYPER_EL0(10),
1271 PMU_PMEVTYPER_EL0(11),
1272 PMU_PMEVTYPER_EL0(12),
1273 PMU_PMEVTYPER_EL0(13),
1274 PMU_PMEVTYPER_EL0(14),
1275 PMU_PMEVTYPER_EL0(15),
1276 PMU_PMEVTYPER_EL0(16),
1277 PMU_PMEVTYPER_EL0(17),
1278 PMU_PMEVTYPER_EL0(18),
1279 PMU_PMEVTYPER_EL0(19),
1280 PMU_PMEVTYPER_EL0(20),
1281 PMU_PMEVTYPER_EL0(21),
1282 PMU_PMEVTYPER_EL0(22),
1283 PMU_PMEVTYPER_EL0(23),
1284 PMU_PMEVTYPER_EL0(24),
1285 PMU_PMEVTYPER_EL0(25),
1286 PMU_PMEVTYPER_EL0(26),
1287 PMU_PMEVTYPER_EL0(27),
1288 PMU_PMEVTYPER_EL0(28),
1289 PMU_PMEVTYPER_EL0(29),
1290 PMU_PMEVTYPER_EL0(30),
1292 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1293 * in 32bit mode. Here we choose to reset it as zero for consistency.
1295 { SYS_DESC(SYS_PMCCFILTR_EL0
), access_pmu_evtyper
, reset_val
, PMCCFILTR_EL0
, 0 },
1297 { SYS_DESC(SYS_DACR32_EL2
), NULL
, reset_unknown
, DACR32_EL2
},
1298 { SYS_DESC(SYS_IFSR32_EL2
), NULL
, reset_unknown
, IFSR32_EL2
},
1299 { SYS_DESC(SYS_FPEXC32_EL2
), NULL
, reset_val
, FPEXC32_EL2
, 0x70 },
1302 static bool trap_dbgidr(struct kvm_vcpu
*vcpu
,
1303 struct sys_reg_params
*p
,
1304 const struct sys_reg_desc
*r
)
1307 return ignore_write(vcpu
, p
);
1309 u64 dfr
= read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1
);
1310 u64 pfr
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
1311 u32 el3
= !!cpuid_feature_extract_unsigned_field(pfr
, ID_AA64PFR0_EL3_SHIFT
);
1313 p
->regval
= ((((dfr
>> ID_AA64DFR0_WRPS_SHIFT
) & 0xf) << 28) |
1314 (((dfr
>> ID_AA64DFR0_BRPS_SHIFT
) & 0xf) << 24) |
1315 (((dfr
>> ID_AA64DFR0_CTX_CMPS_SHIFT
) & 0xf) << 20)
1316 | (6 << 16) | (el3
<< 14) | (el3
<< 12));
1321 static bool trap_debug32(struct kvm_vcpu
*vcpu
,
1322 struct sys_reg_params
*p
,
1323 const struct sys_reg_desc
*r
)
1326 vcpu_cp14(vcpu
, r
->reg
) = p
->regval
;
1327 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
1329 p
->regval
= vcpu_cp14(vcpu
, r
->reg
);
1335 /* AArch32 debug register mappings
1337 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1338 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1340 * All control registers and watchpoint value registers are mapped to
1341 * the lower 32 bits of their AArch64 equivalents. We share the trap
1342 * handlers with the above AArch64 code which checks what mode the
1346 static bool trap_xvr(struct kvm_vcpu
*vcpu
,
1347 struct sys_reg_params
*p
,
1348 const struct sys_reg_desc
*rd
)
1350 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
1355 val
&= 0xffffffffUL
;
1356 val
|= p
->regval
<< 32;
1359 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
1361 p
->regval
= *dbg_reg
>> 32;
1364 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
1369 #define DBG_BCR_BVR_WCR_WVR(n) \
1371 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1373 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1375 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1377 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1379 #define DBGBXVR(n) \
1380 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1383 * Trapped cp14 registers. We generally ignore most of the external
1384 * debug, on the principle that they don't really make sense to a
1385 * guest. Revisit this one day, would this principle change.
1387 static const struct sys_reg_desc cp14_regs
[] = {
1389 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr
},
1391 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi
},
1393 DBG_BCR_BVR_WCR_WVR(0),
1395 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi
},
1396 DBG_BCR_BVR_WCR_WVR(1),
1398 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32
},
1400 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32
},
1401 DBG_BCR_BVR_WCR_WVR(2),
1402 /* DBGDTR[RT]Xint */
1403 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi
},
1404 /* DBGDTR[RT]Xext */
1405 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi
},
1406 DBG_BCR_BVR_WCR_WVR(3),
1407 DBG_BCR_BVR_WCR_WVR(4),
1408 DBG_BCR_BVR_WCR_WVR(5),
1410 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi
},
1412 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi
},
1413 DBG_BCR_BVR_WCR_WVR(6),
1415 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32
},
1416 DBG_BCR_BVR_WCR_WVR(7),
1417 DBG_BCR_BVR_WCR_WVR(8),
1418 DBG_BCR_BVR_WCR_WVR(9),
1419 DBG_BCR_BVR_WCR_WVR(10),
1420 DBG_BCR_BVR_WCR_WVR(11),
1421 DBG_BCR_BVR_WCR_WVR(12),
1422 DBG_BCR_BVR_WCR_WVR(13),
1423 DBG_BCR_BVR_WCR_WVR(14),
1424 DBG_BCR_BVR_WCR_WVR(15),
1426 /* DBGDRAR (32bit) */
1427 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi
},
1431 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi
},
1434 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1
},
1438 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi
},
1441 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi
},
1454 /* DBGDSAR (32bit) */
1455 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi
},
1458 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi
},
1460 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi
},
1462 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi
},
1464 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi
},
1466 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi
},
1468 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1
},
1471 /* Trapped cp14 64bit registers */
1472 static const struct sys_reg_desc cp14_64_regs
[] = {
1473 /* DBGDRAR (64bit) */
1474 { Op1( 0), CRm( 1), .access
= trap_raz_wi
},
1476 /* DBGDSAR (64bit) */
1477 { Op1( 0), CRm( 2), .access
= trap_raz_wi
},
1480 /* Macro to expand the PMEVCNTRn register */
1481 #define PMU_PMEVCNTR(n) \
1483 { Op1(0), CRn(0b1110), \
1484 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1487 /* Macro to expand the PMEVTYPERn register */
1488 #define PMU_PMEVTYPER(n) \
1490 { Op1(0), CRn(0b1110), \
1491 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1492 access_pmu_evtyper }
1495 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1496 * depending on the way they are accessed (as a 32bit or a 64bit
1499 static const struct sys_reg_desc cp15_regs
[] = {
1500 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
},
1502 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c1_SCTLR
},
1503 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c2_TTBR0
},
1504 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c2_TTBR1
},
1505 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg
, NULL
, c2_TTBCR
},
1506 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c3_DACR
},
1507 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c5_DFSR
},
1508 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c5_IFSR
},
1509 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg
, NULL
, c5_ADFSR
},
1510 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg
, NULL
, c5_AIFSR
},
1511 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c6_DFAR
},
1512 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg
, NULL
, c6_IFAR
},
1515 * DC{C,I,CI}SW operations:
1517 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw
},
1518 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw
},
1519 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw
},
1522 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr
},
1523 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten
},
1524 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten
},
1525 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs
},
1526 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc
},
1527 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr
},
1528 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid
},
1529 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid
},
1530 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr
},
1531 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper
},
1532 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr
},
1533 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr
},
1534 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten
},
1535 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten
},
1536 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs
},
1538 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c10_PRRR
},
1539 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg
, NULL
, c10_NMRR
},
1540 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg
, NULL
, c10_AMAIR0
},
1541 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg
, NULL
, c10_AMAIR1
},
1544 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre
},
1546 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c13_CID
},
1613 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper
},
1616 static const struct sys_reg_desc cp15_64_regs
[] = {
1617 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c2_TTBR0
},
1618 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr
},
1619 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
},
1620 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c2_TTBR1
},
1623 /* Target specific emulation tables */
1624 static struct kvm_sys_reg_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
1626 void kvm_register_target_sys_reg_table(unsigned int target
,
1627 struct kvm_sys_reg_target_table
*table
)
1629 target_tables
[target
] = table
;
1632 /* Get specific register table for this target. */
1633 static const struct sys_reg_desc
*get_target_table(unsigned target
,
1637 struct kvm_sys_reg_target_table
*table
;
1639 table
= target_tables
[target
];
1641 *num
= table
->table64
.num
;
1642 return table
->table64
.table
;
1644 *num
= table
->table32
.num
;
1645 return table
->table32
.table
;
1649 #define reg_to_match_value(x) \
1651 unsigned long val; \
1652 val = (x)->Op0 << 14; \
1653 val |= (x)->Op1 << 11; \
1654 val |= (x)->CRn << 7; \
1655 val |= (x)->CRm << 3; \
1660 static int match_sys_reg(const void *key
, const void *elt
)
1662 const unsigned long pval
= (unsigned long)key
;
1663 const struct sys_reg_desc
*r
= elt
;
1665 return pval
- reg_to_match_value(r
);
1668 static const struct sys_reg_desc
*find_reg(const struct sys_reg_params
*params
,
1669 const struct sys_reg_desc table
[],
1672 unsigned long pval
= reg_to_match_value(params
);
1674 return bsearch((void *)pval
, table
, num
, sizeof(table
[0]), match_sys_reg
);
1677 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1679 kvm_inject_undefined(vcpu
);
1683 static void perform_access(struct kvm_vcpu
*vcpu
,
1684 struct sys_reg_params
*params
,
1685 const struct sys_reg_desc
*r
)
1688 * Not having an accessor means that we have configured a trap
1689 * that we don't know how to handle. This certainly qualifies
1690 * as a gross bug that should be fixed right away.
1694 /* Skip instruction if instructed so */
1695 if (likely(r
->access(vcpu
, params
, r
)))
1696 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
1700 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1701 * call the corresponding trap handler.
1703 * @params: pointer to the descriptor of the access
1704 * @table: array of trap descriptors
1705 * @num: size of the trap descriptor array
1707 * Return 0 if the access has been handled, and -1 if not.
1709 static int emulate_cp(struct kvm_vcpu
*vcpu
,
1710 struct sys_reg_params
*params
,
1711 const struct sys_reg_desc
*table
,
1714 const struct sys_reg_desc
*r
;
1717 return -1; /* Not handled */
1719 r
= find_reg(params
, table
, num
);
1722 perform_access(vcpu
, params
, r
);
1730 static void unhandled_cp_access(struct kvm_vcpu
*vcpu
,
1731 struct sys_reg_params
*params
)
1733 u8 hsr_ec
= kvm_vcpu_trap_get_class(vcpu
);
1737 case ESR_ELx_EC_CP15_32
:
1738 case ESR_ELx_EC_CP15_64
:
1741 case ESR_ELx_EC_CP14_MR
:
1742 case ESR_ELx_EC_CP14_64
:
1749 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1750 cp
, *vcpu_pc(vcpu
));
1751 print_sys_reg_instr(params
);
1752 kvm_inject_undefined(vcpu
);
1756 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1757 * @vcpu: The VCPU pointer
1758 * @run: The kvm_run struct
1760 static int kvm_handle_cp_64(struct kvm_vcpu
*vcpu
,
1761 const struct sys_reg_desc
*global
,
1763 const struct sys_reg_desc
*target_specific
,
1766 struct sys_reg_params params
;
1767 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
1768 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
1769 int Rt2
= (hsr
>> 10) & 0x1f;
1771 params
.is_aarch32
= true;
1772 params
.is_32bit
= false;
1773 params
.CRm
= (hsr
>> 1) & 0xf;
1774 params
.is_write
= ((hsr
& 1) == 0);
1777 params
.Op1
= (hsr
>> 16) & 0xf;
1782 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1783 * backends between AArch32 and AArch64, we get away with it.
1785 if (params
.is_write
) {
1786 params
.regval
= vcpu_get_reg(vcpu
, Rt
) & 0xffffffff;
1787 params
.regval
|= vcpu_get_reg(vcpu
, Rt2
) << 32;
1791 * Try to emulate the coprocessor access using the target
1792 * specific table first, and using the global table afterwards.
1793 * If either of the tables contains a handler, handle the
1794 * potential register operation in the case of a read and return
1797 if (!emulate_cp(vcpu
, ¶ms
, target_specific
, nr_specific
) ||
1798 !emulate_cp(vcpu
, ¶ms
, global
, nr_global
)) {
1799 /* Split up the value between registers for the read side */
1800 if (!params
.is_write
) {
1801 vcpu_set_reg(vcpu
, Rt
, lower_32_bits(params
.regval
));
1802 vcpu_set_reg(vcpu
, Rt2
, upper_32_bits(params
.regval
));
1808 unhandled_cp_access(vcpu
, ¶ms
);
1813 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1814 * @vcpu: The VCPU pointer
1815 * @run: The kvm_run struct
1817 static int kvm_handle_cp_32(struct kvm_vcpu
*vcpu
,
1818 const struct sys_reg_desc
*global
,
1820 const struct sys_reg_desc
*target_specific
,
1823 struct sys_reg_params params
;
1824 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
1825 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
1827 params
.is_aarch32
= true;
1828 params
.is_32bit
= true;
1829 params
.CRm
= (hsr
>> 1) & 0xf;
1830 params
.regval
= vcpu_get_reg(vcpu
, Rt
);
1831 params
.is_write
= ((hsr
& 1) == 0);
1832 params
.CRn
= (hsr
>> 10) & 0xf;
1834 params
.Op1
= (hsr
>> 14) & 0x7;
1835 params
.Op2
= (hsr
>> 17) & 0x7;
1837 if (!emulate_cp(vcpu
, ¶ms
, target_specific
, nr_specific
) ||
1838 !emulate_cp(vcpu
, ¶ms
, global
, nr_global
)) {
1839 if (!params
.is_write
)
1840 vcpu_set_reg(vcpu
, Rt
, params
.regval
);
1844 unhandled_cp_access(vcpu
, ¶ms
);
1848 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1850 const struct sys_reg_desc
*target_specific
;
1853 target_specific
= get_target_table(vcpu
->arch
.target
, false, &num
);
1854 return kvm_handle_cp_64(vcpu
,
1855 cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
),
1856 target_specific
, num
);
1859 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1861 const struct sys_reg_desc
*target_specific
;
1864 target_specific
= get_target_table(vcpu
->arch
.target
, false, &num
);
1865 return kvm_handle_cp_32(vcpu
,
1866 cp15_regs
, ARRAY_SIZE(cp15_regs
),
1867 target_specific
, num
);
1870 int kvm_handle_cp14_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1872 return kvm_handle_cp_64(vcpu
,
1873 cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
),
1877 int kvm_handle_cp14_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1879 return kvm_handle_cp_32(vcpu
,
1880 cp14_regs
, ARRAY_SIZE(cp14_regs
),
1884 static int emulate_sys_reg(struct kvm_vcpu
*vcpu
,
1885 struct sys_reg_params
*params
)
1888 const struct sys_reg_desc
*table
, *r
;
1890 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
1892 /* Search target-specific then generic table. */
1893 r
= find_reg(params
, table
, num
);
1895 r
= find_reg(params
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
1898 perform_access(vcpu
, params
, r
);
1900 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1902 print_sys_reg_instr(params
);
1903 kvm_inject_undefined(vcpu
);
1908 static void reset_sys_reg_descs(struct kvm_vcpu
*vcpu
,
1909 const struct sys_reg_desc
*table
, size_t num
)
1913 for (i
= 0; i
< num
; i
++)
1915 table
[i
].reset(vcpu
, &table
[i
]);
1919 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1920 * @vcpu: The VCPU pointer
1921 * @run: The kvm_run struct
1923 int kvm_handle_sys_reg(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1925 struct sys_reg_params params
;
1926 unsigned long esr
= kvm_vcpu_get_hsr(vcpu
);
1927 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
1930 trace_kvm_handle_sys_reg(esr
);
1932 params
.is_aarch32
= false;
1933 params
.is_32bit
= false;
1934 params
.Op0
= (esr
>> 20) & 3;
1935 params
.Op1
= (esr
>> 14) & 0x7;
1936 params
.CRn
= (esr
>> 10) & 0xf;
1937 params
.CRm
= (esr
>> 1) & 0xf;
1938 params
.Op2
= (esr
>> 17) & 0x7;
1939 params
.regval
= vcpu_get_reg(vcpu
, Rt
);
1940 params
.is_write
= !(esr
& 1);
1942 ret
= emulate_sys_reg(vcpu
, ¶ms
);
1944 if (!params
.is_write
)
1945 vcpu_set_reg(vcpu
, Rt
, params
.regval
);
1949 /******************************************************************************
1951 *****************************************************************************/
1953 static bool index_to_params(u64 id
, struct sys_reg_params
*params
)
1955 switch (id
& KVM_REG_SIZE_MASK
) {
1956 case KVM_REG_SIZE_U64
:
1957 /* Any unused index bits means it's not valid. */
1958 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
1959 | KVM_REG_ARM_COPROC_MASK
1960 | KVM_REG_ARM64_SYSREG_OP0_MASK
1961 | KVM_REG_ARM64_SYSREG_OP1_MASK
1962 | KVM_REG_ARM64_SYSREG_CRN_MASK
1963 | KVM_REG_ARM64_SYSREG_CRM_MASK
1964 | KVM_REG_ARM64_SYSREG_OP2_MASK
))
1966 params
->Op0
= ((id
& KVM_REG_ARM64_SYSREG_OP0_MASK
)
1967 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT
);
1968 params
->Op1
= ((id
& KVM_REG_ARM64_SYSREG_OP1_MASK
)
1969 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT
);
1970 params
->CRn
= ((id
& KVM_REG_ARM64_SYSREG_CRN_MASK
)
1971 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT
);
1972 params
->CRm
= ((id
& KVM_REG_ARM64_SYSREG_CRM_MASK
)
1973 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT
);
1974 params
->Op2
= ((id
& KVM_REG_ARM64_SYSREG_OP2_MASK
)
1975 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT
);
1982 const struct sys_reg_desc
*find_reg_by_id(u64 id
,
1983 struct sys_reg_params
*params
,
1984 const struct sys_reg_desc table
[],
1987 if (!index_to_params(id
, params
))
1990 return find_reg(params
, table
, num
);
1993 /* Decode an index value, and find the sys_reg_desc entry. */
1994 static const struct sys_reg_desc
*index_to_sys_reg_desc(struct kvm_vcpu
*vcpu
,
1998 const struct sys_reg_desc
*table
, *r
;
1999 struct sys_reg_params params
;
2001 /* We only do sys_reg for now. */
2002 if ((id
& KVM_REG_ARM_COPROC_MASK
) != KVM_REG_ARM64_SYSREG
)
2005 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
2006 r
= find_reg_by_id(id
, ¶ms
, table
, num
);
2008 r
= find_reg(¶ms
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
2010 /* Not saved in the sys_reg array and not otherwise accessible? */
2011 if (r
&& !(r
->reg
|| r
->get_user
))
2018 * These are the invariant sys_reg registers: we let the guest see the
2019 * host versions of these, so they're part of the guest state.
2021 * A future CPU may provide a mechanism to present different values to
2022 * the guest, or a future kvm may trap them.
2025 #define FUNCTION_INVARIANT(reg) \
2026 static void get_##reg(struct kvm_vcpu *v, \
2027 const struct sys_reg_desc *r) \
2029 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2032 FUNCTION_INVARIANT(midr_el1
)
2033 FUNCTION_INVARIANT(ctr_el0
)
2034 FUNCTION_INVARIANT(revidr_el1
)
2035 FUNCTION_INVARIANT(clidr_el1
)
2036 FUNCTION_INVARIANT(aidr_el1
)
2038 /* ->val is filled in by kvm_sys_reg_table_init() */
2039 static struct sys_reg_desc invariant_sys_regs
[] = {
2040 { SYS_DESC(SYS_MIDR_EL1
), NULL
, get_midr_el1
},
2041 { SYS_DESC(SYS_REVIDR_EL1
), NULL
, get_revidr_el1
},
2042 { SYS_DESC(SYS_CLIDR_EL1
), NULL
, get_clidr_el1
},
2043 { SYS_DESC(SYS_AIDR_EL1
), NULL
, get_aidr_el1
},
2044 { SYS_DESC(SYS_CTR_EL0
), NULL
, get_ctr_el0
},
2047 static int reg_from_user(u64
*val
, const void __user
*uaddr
, u64 id
)
2049 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
2054 static int reg_to_user(void __user
*uaddr
, const u64
*val
, u64 id
)
2056 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
2061 static int get_invariant_sys_reg(u64 id
, void __user
*uaddr
)
2063 struct sys_reg_params params
;
2064 const struct sys_reg_desc
*r
;
2066 r
= find_reg_by_id(id
, ¶ms
, invariant_sys_regs
,
2067 ARRAY_SIZE(invariant_sys_regs
));
2071 return reg_to_user(uaddr
, &r
->val
, id
);
2074 static int set_invariant_sys_reg(u64 id
, void __user
*uaddr
)
2076 struct sys_reg_params params
;
2077 const struct sys_reg_desc
*r
;
2079 u64 val
= 0; /* Make sure high bits are 0 for 32-bit regs */
2081 r
= find_reg_by_id(id
, ¶ms
, invariant_sys_regs
,
2082 ARRAY_SIZE(invariant_sys_regs
));
2086 err
= reg_from_user(&val
, uaddr
, id
);
2090 /* This is what we mean by invariant: you can't change it. */
2097 static bool is_valid_cache(u32 val
)
2101 if (val
>= CSSELR_MAX
)
2104 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2106 ctype
= (cache_levels
>> (level
* 3)) & 7;
2109 case 0: /* No cache */
2111 case 1: /* Instruction cache only */
2113 case 2: /* Data cache only */
2114 case 4: /* Unified cache */
2116 case 3: /* Separate instruction and data caches */
2118 default: /* Reserved: we can't know instruction or data. */
2123 static int demux_c15_get(u64 id
, void __user
*uaddr
)
2126 u32 __user
*uval
= uaddr
;
2128 /* Fail if we have unknown bits set. */
2129 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
2130 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
2133 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
2134 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
2135 if (KVM_REG_SIZE(id
) != 4)
2137 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
2138 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
2139 if (!is_valid_cache(val
))
2142 return put_user(get_ccsidr(val
), uval
);
2148 static int demux_c15_set(u64 id
, void __user
*uaddr
)
2151 u32 __user
*uval
= uaddr
;
2153 /* Fail if we have unknown bits set. */
2154 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
2155 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
2158 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
2159 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
2160 if (KVM_REG_SIZE(id
) != 4)
2162 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
2163 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
2164 if (!is_valid_cache(val
))
2167 if (get_user(newval
, uval
))
2170 /* This is also invariant: you can't change it. */
2171 if (newval
!= get_ccsidr(val
))
2179 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
2181 const struct sys_reg_desc
*r
;
2182 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
2184 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
2185 return demux_c15_get(reg
->id
, uaddr
);
2187 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
2190 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
2192 return get_invariant_sys_reg(reg
->id
, uaddr
);
2195 return (r
->get_user
)(vcpu
, r
, reg
, uaddr
);
2197 return reg_to_user(uaddr
, &vcpu_sys_reg(vcpu
, r
->reg
), reg
->id
);
2200 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
2202 const struct sys_reg_desc
*r
;
2203 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
2205 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
2206 return demux_c15_set(reg
->id
, uaddr
);
2208 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
2211 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
2213 return set_invariant_sys_reg(reg
->id
, uaddr
);
2216 return (r
->set_user
)(vcpu
, r
, reg
, uaddr
);
2218 return reg_from_user(&vcpu_sys_reg(vcpu
, r
->reg
), uaddr
, reg
->id
);
2221 static unsigned int num_demux_regs(void)
2223 unsigned int i
, count
= 0;
2225 for (i
= 0; i
< CSSELR_MAX
; i
++)
2226 if (is_valid_cache(i
))
2232 static int write_demux_regids(u64 __user
*uindices
)
2234 u64 val
= KVM_REG_ARM64
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
2237 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
2238 for (i
= 0; i
< CSSELR_MAX
; i
++) {
2239 if (!is_valid_cache(i
))
2241 if (put_user(val
| i
, uindices
))
2248 static u64
sys_reg_to_index(const struct sys_reg_desc
*reg
)
2250 return (KVM_REG_ARM64
| KVM_REG_SIZE_U64
|
2251 KVM_REG_ARM64_SYSREG
|
2252 (reg
->Op0
<< KVM_REG_ARM64_SYSREG_OP0_SHIFT
) |
2253 (reg
->Op1
<< KVM_REG_ARM64_SYSREG_OP1_SHIFT
) |
2254 (reg
->CRn
<< KVM_REG_ARM64_SYSREG_CRN_SHIFT
) |
2255 (reg
->CRm
<< KVM_REG_ARM64_SYSREG_CRM_SHIFT
) |
2256 (reg
->Op2
<< KVM_REG_ARM64_SYSREG_OP2_SHIFT
));
2259 static bool copy_reg_to_user(const struct sys_reg_desc
*reg
, u64 __user
**uind
)
2264 if (put_user(sys_reg_to_index(reg
), *uind
))
2271 static int walk_one_sys_reg(const struct sys_reg_desc
*rd
,
2273 unsigned int *total
)
2276 * Ignore registers we trap but don't save,
2277 * and for which no custom user accessor is provided.
2279 if (!(rd
->reg
|| rd
->get_user
))
2282 if (!copy_reg_to_user(rd
, uind
))
2289 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2290 static int walk_sys_regs(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
2292 const struct sys_reg_desc
*i1
, *i2
, *end1
, *end2
;
2293 unsigned int total
= 0;
2297 /* We check for duplicates here, to allow arch-specific overrides. */
2298 i1
= get_target_table(vcpu
->arch
.target
, true, &num
);
2301 end2
= sys_reg_descs
+ ARRAY_SIZE(sys_reg_descs
);
2303 BUG_ON(i1
== end1
|| i2
== end2
);
2305 /* Walk carefully, as both tables may refer to the same register. */
2307 int cmp
= cmp_sys_reg(i1
, i2
);
2308 /* target-specific overrides generic entry. */
2310 err
= walk_one_sys_reg(i1
, &uind
, &total
);
2312 err
= walk_one_sys_reg(i2
, &uind
, &total
);
2317 if (cmp
<= 0 && ++i1
== end1
)
2319 if (cmp
>= 0 && ++i2
== end2
)
2325 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu
*vcpu
)
2327 return ARRAY_SIZE(invariant_sys_regs
)
2329 + walk_sys_regs(vcpu
, (u64 __user
*)NULL
);
2332 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
2337 /* Then give them all the invariant registers' indices. */
2338 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++) {
2339 if (put_user(sys_reg_to_index(&invariant_sys_regs
[i
]), uindices
))
2344 err
= walk_sys_regs(vcpu
, uindices
);
2349 return write_demux_regids(uindices
);
2352 static int check_sysreg_table(const struct sys_reg_desc
*table
, unsigned int n
)
2356 for (i
= 1; i
< n
; i
++) {
2357 if (cmp_sys_reg(&table
[i
-1], &table
[i
]) >= 0) {
2358 kvm_err("sys_reg table %p out of order (%d)\n", table
, i
- 1);
2366 void kvm_sys_reg_table_init(void)
2369 struct sys_reg_desc clidr
;
2371 /* Make sure tables are unique and in order. */
2372 BUG_ON(check_sysreg_table(sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
)));
2373 BUG_ON(check_sysreg_table(cp14_regs
, ARRAY_SIZE(cp14_regs
)));
2374 BUG_ON(check_sysreg_table(cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
)));
2375 BUG_ON(check_sysreg_table(cp15_regs
, ARRAY_SIZE(cp15_regs
)));
2376 BUG_ON(check_sysreg_table(cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
)));
2377 BUG_ON(check_sysreg_table(invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
)));
2379 /* We abuse the reset function to overwrite the table itself. */
2380 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++)
2381 invariant_sys_regs
[i
].reset(NULL
, &invariant_sys_regs
[i
]);
2384 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2386 * If software reads the Cache Type fields from Ctype1
2387 * upwards, once it has seen a value of 0b000, no caches
2388 * exist at further-out levels of the hierarchy. So, for
2389 * example, if Ctype3 is the first Cache Type field with a
2390 * value of 0b000, the values of Ctype4 to Ctype7 must be
2393 get_clidr_el1(NULL
, &clidr
); /* Ugly... */
2394 cache_levels
= clidr
.val
;
2395 for (i
= 0; i
< 7; i
++)
2396 if (((cache_levels
>> (i
*3)) & 7) == 0)
2398 /* Clear all higher bits. */
2399 cache_levels
&= (1 << (i
*3))-1;
2403 * kvm_reset_sys_regs - sets system registers to reset value
2404 * @vcpu: The VCPU pointer
2406 * This function finds the right table above and sets the registers on the
2407 * virtual CPU struct to their architecturally defined reset values.
2409 void kvm_reset_sys_regs(struct kvm_vcpu
*vcpu
)
2412 const struct sys_reg_desc
*table
;
2414 /* Catch someone adding a register without putting in reset entry. */
2415 memset(&vcpu
->arch
.ctxt
.sys_regs
, 0x42, sizeof(vcpu
->arch
.ctxt
.sys_regs
));
2417 /* Generic chip reset first (so target could override). */
2418 reset_sys_reg_descs(vcpu
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
2420 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
2421 reset_sys_reg_descs(vcpu
, table
, num
);
2423 for (num
= 1; num
< NR_SYS_REGS
; num
++)
2424 if (vcpu_sys_reg(vcpu
, num
) == 0x4242424242424242)
2425 panic("Didn't reset vcpu_sys_reg(%zi)", num
);