Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / arm64 / mm / fault.c
blobbff11553eb050306dfa9df7fec0682f6a03cbf61
1 /*
2 * Based on arch/arm/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
36 #include <asm/bug.h>
37 #include <asm/cmpxchg.h>
38 #include <asm/cpufeature.h>
39 #include <asm/exception.h>
40 #include <asm/debug-monitors.h>
41 #include <asm/esr.h>
42 #include <asm/sysreg.h>
43 #include <asm/system_misc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
47 #include <acpi/ghes.h>
49 struct fault_info {
50 int (*fn)(unsigned long addr, unsigned int esr,
51 struct pt_regs *regs);
52 int sig;
53 int code;
54 const char *name;
57 static const struct fault_info fault_info[];
59 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
61 return fault_info + (esr & 63);
64 #ifdef CONFIG_KPROBES
65 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
67 int ret = 0;
69 /* kprobe_running() needs smp_processor_id() */
70 if (!user_mode(regs)) {
71 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, esr))
73 ret = 1;
74 preempt_enable();
77 return ret;
79 #else
80 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
82 return 0;
84 #endif
86 static void data_abort_decode(unsigned int esr)
88 pr_alert("Data abort info:\n");
90 if (esr & ESR_ELx_ISV) {
91 pr_alert(" Access size = %u byte(s)\n",
92 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
93 pr_alert(" SSE = %lu, SRT = %lu\n",
94 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
95 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
96 pr_alert(" SF = %lu, AR = %lu\n",
97 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
98 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
99 } else {
100 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
103 pr_alert(" CM = %lu, WnR = %lu\n",
104 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
105 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
108 static void mem_abort_decode(unsigned int esr)
110 pr_alert("Mem abort info:\n");
112 pr_alert(" ESR = 0x%08x\n", esr);
113 pr_alert(" Exception class = %s, IL = %u bits\n",
114 esr_get_class_string(esr),
115 (esr & ESR_ELx_IL) ? 32 : 16);
116 pr_alert(" SET = %lu, FnV = %lu\n",
117 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
118 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
119 pr_alert(" EA = %lu, S1PTW = %lu\n",
120 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
121 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
123 if (esr_is_data_abort(esr))
124 data_abort_decode(esr);
128 * Dump out the page tables associated with 'addr' in the currently active mm.
130 void show_pte(unsigned long addr)
132 struct mm_struct *mm;
133 pgd_t *pgdp;
134 pgd_t pgd;
136 if (addr < TASK_SIZE) {
137 /* TTBR0 */
138 mm = current->active_mm;
139 if (mm == &init_mm) {
140 pr_alert("[%016lx] user address but active_mm is swapper\n",
141 addr);
142 return;
144 } else if (addr >= VA_START) {
145 /* TTBR1 */
146 mm = &init_mm;
147 } else {
148 pr_alert("[%016lx] address between user and kernel address ranges\n",
149 addr);
150 return;
153 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
154 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
155 VA_BITS, mm->pgd);
156 pgdp = pgd_offset(mm, addr);
157 pgd = READ_ONCE(*pgdp);
158 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
160 do {
161 pud_t *pudp, pud;
162 pmd_t *pmdp, pmd;
163 pte_t *ptep, pte;
165 if (pgd_none(pgd) || pgd_bad(pgd))
166 break;
168 pudp = pud_offset(pgdp, addr);
169 pud = READ_ONCE(*pudp);
170 pr_cont(", pud=%016llx", pud_val(pud));
171 if (pud_none(pud) || pud_bad(pud))
172 break;
174 pmdp = pmd_offset(pudp, addr);
175 pmd = READ_ONCE(*pmdp);
176 pr_cont(", pmd=%016llx", pmd_val(pmd));
177 if (pmd_none(pmd) || pmd_bad(pmd))
178 break;
180 ptep = pte_offset_map(pmdp, addr);
181 pte = READ_ONCE(*ptep);
182 pr_cont(", pte=%016llx", pte_val(pte));
183 pte_unmap(ptep);
184 } while(0);
186 pr_cont("\n");
190 * This function sets the access flags (dirty, accessed), as well as write
191 * permission, and only to a more permissive setting.
193 * It needs to cope with hardware update of the accessed/dirty state by other
194 * agents in the system and can safely skip the __sync_icache_dcache() call as,
195 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
197 * Returns whether or not the PTE actually changed.
199 int ptep_set_access_flags(struct vm_area_struct *vma,
200 unsigned long address, pte_t *ptep,
201 pte_t entry, int dirty)
203 pteval_t old_pteval, pteval;
204 pte_t pte = READ_ONCE(*ptep);
206 if (pte_same(pte, entry))
207 return 0;
209 /* only preserve the access flags and write permission */
210 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
213 * Setting the flags must be done atomically to avoid racing with the
214 * hardware update of the access/dirty state. The PTE_RDONLY bit must
215 * be set to the most permissive (lowest value) of *ptep and entry
216 * (calculated as: a & b == ~(~a | ~b)).
218 pte_val(entry) ^= PTE_RDONLY;
219 pteval = pte_val(pte);
220 do {
221 old_pteval = pteval;
222 pteval ^= PTE_RDONLY;
223 pteval |= pte_val(entry);
224 pteval ^= PTE_RDONLY;
225 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
226 } while (pteval != old_pteval);
228 flush_tlb_fix_spurious_fault(vma, address);
229 return 1;
232 static bool is_el1_instruction_abort(unsigned int esr)
234 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
237 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
238 unsigned long addr)
240 unsigned int ec = ESR_ELx_EC(esr);
241 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
243 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
244 return false;
246 if (fsc_type == ESR_ELx_FSC_PERM)
247 return true;
249 if (addr < TASK_SIZE && system_uses_ttbr0_pan())
250 return fsc_type == ESR_ELx_FSC_FAULT &&
251 (regs->pstate & PSR_PAN_BIT);
253 return false;
256 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
257 struct pt_regs *regs)
259 const char *msg;
262 * Are we prepared to handle this kernel fault?
263 * We are almost certainly not prepared to handle instruction faults.
265 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
266 return;
268 bust_spinlocks(1);
270 if (is_permission_fault(esr, regs, addr)) {
271 if (esr & ESR_ELx_WNR)
272 msg = "write to read-only memory";
273 else
274 msg = "read from unreadable memory";
275 } else if (addr < PAGE_SIZE) {
276 msg = "NULL pointer dereference";
277 } else {
278 msg = "paging request";
281 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
282 addr);
284 mem_abort_decode(esr);
286 show_pte(addr);
287 die("Oops", regs, esr);
288 bust_spinlocks(0);
289 do_exit(SIGKILL);
292 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
293 unsigned int esr, unsigned int sig, int code,
294 struct pt_regs *regs, int fault)
296 struct siginfo si;
297 const struct fault_info *inf;
298 unsigned int lsb = 0;
300 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
301 inf = esr_to_fault_info(esr);
302 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
303 tsk->comm, task_pid_nr(tsk), inf->name, sig,
304 addr, esr);
305 print_vma_addr(KERN_CONT ", in ", regs->pc);
306 pr_cont("\n");
307 __show_regs(regs);
310 tsk->thread.fault_address = addr;
311 tsk->thread.fault_code = esr;
312 si.si_signo = sig;
313 si.si_errno = 0;
314 si.si_code = code;
315 si.si_addr = (void __user *)addr;
317 * Either small page or large page may be poisoned.
318 * In other words, VM_FAULT_HWPOISON_LARGE and
319 * VM_FAULT_HWPOISON are mutually exclusive.
321 if (fault & VM_FAULT_HWPOISON_LARGE)
322 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
323 else if (fault & VM_FAULT_HWPOISON)
324 lsb = PAGE_SHIFT;
325 si.si_addr_lsb = lsb;
327 force_sig_info(sig, &si, tsk);
330 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
332 struct task_struct *tsk = current;
333 const struct fault_info *inf;
336 * If we are in kernel mode at this point, we have no context to
337 * handle this fault with.
339 if (user_mode(regs)) {
340 inf = esr_to_fault_info(esr);
341 __do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
342 } else
343 __do_kernel_fault(addr, esr, regs);
346 #define VM_FAULT_BADMAP 0x010000
347 #define VM_FAULT_BADACCESS 0x020000
349 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
350 unsigned int mm_flags, unsigned long vm_flags,
351 struct task_struct *tsk)
353 struct vm_area_struct *vma;
354 int fault;
356 vma = find_vma(mm, addr);
357 fault = VM_FAULT_BADMAP;
358 if (unlikely(!vma))
359 goto out;
360 if (unlikely(vma->vm_start > addr))
361 goto check_stack;
364 * Ok, we have a good vm_area for this memory access, so we can handle
365 * it.
367 good_area:
369 * Check that the permissions on the VMA allow for the fault which
370 * occurred.
372 if (!(vma->vm_flags & vm_flags)) {
373 fault = VM_FAULT_BADACCESS;
374 goto out;
377 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
379 check_stack:
380 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
381 goto good_area;
382 out:
383 return fault;
386 static bool is_el0_instruction_abort(unsigned int esr)
388 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
391 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
392 struct pt_regs *regs)
394 struct task_struct *tsk;
395 struct mm_struct *mm;
396 int fault, sig, code, major = 0;
397 unsigned long vm_flags = VM_READ | VM_WRITE;
398 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
400 if (notify_page_fault(regs, esr))
401 return 0;
403 tsk = current;
404 mm = tsk->mm;
407 * If we're in an interrupt or have no user context, we must not take
408 * the fault.
410 if (faulthandler_disabled() || !mm)
411 goto no_context;
413 if (user_mode(regs))
414 mm_flags |= FAULT_FLAG_USER;
416 if (is_el0_instruction_abort(esr)) {
417 vm_flags = VM_EXEC;
418 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
419 vm_flags = VM_WRITE;
420 mm_flags |= FAULT_FLAG_WRITE;
423 if (addr < TASK_SIZE && is_permission_fault(esr, regs, addr)) {
424 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
425 if (regs->orig_addr_limit == KERNEL_DS)
426 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
428 if (is_el1_instruction_abort(esr))
429 die("Attempting to execute userspace memory", regs, esr);
431 if (!search_exception_tables(regs->pc))
432 die("Accessing user space memory outside uaccess.h routines", regs, esr);
435 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
438 * As per x86, we may deadlock here. However, since the kernel only
439 * validly references user space from well defined areas of the code,
440 * we can bug out early if this is from code which shouldn't.
442 if (!down_read_trylock(&mm->mmap_sem)) {
443 if (!user_mode(regs) && !search_exception_tables(regs->pc))
444 goto no_context;
445 retry:
446 down_read(&mm->mmap_sem);
447 } else {
449 * The above down_read_trylock() might have succeeded in which
450 * case, we'll have missed the might_sleep() from down_read().
452 might_sleep();
453 #ifdef CONFIG_DEBUG_VM
454 if (!user_mode(regs) && !search_exception_tables(regs->pc))
455 goto no_context;
456 #endif
459 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
460 major |= fault & VM_FAULT_MAJOR;
462 if (fault & VM_FAULT_RETRY) {
464 * If we need to retry but a fatal signal is pending,
465 * handle the signal first. We do not need to release
466 * the mmap_sem because it would already be released
467 * in __lock_page_or_retry in mm/filemap.c.
469 if (fatal_signal_pending(current)) {
470 if (!user_mode(regs))
471 goto no_context;
472 return 0;
476 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
477 * starvation.
479 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
480 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
481 mm_flags |= FAULT_FLAG_TRIED;
482 goto retry;
485 up_read(&mm->mmap_sem);
488 * Handle the "normal" (no error) case first.
490 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
491 VM_FAULT_BADACCESS)))) {
493 * Major/minor page fault accounting is only done
494 * once. If we go through a retry, it is extremely
495 * likely that the page will be found in page cache at
496 * that point.
498 if (major) {
499 tsk->maj_flt++;
500 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
501 addr);
502 } else {
503 tsk->min_flt++;
504 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
505 addr);
508 return 0;
512 * If we are in kernel mode at this point, we have no context to
513 * handle this fault with.
515 if (!user_mode(regs))
516 goto no_context;
518 if (fault & VM_FAULT_OOM) {
520 * We ran out of memory, call the OOM killer, and return to
521 * userspace (which will retry the fault, or kill us if we got
522 * oom-killed).
524 pagefault_out_of_memory();
525 return 0;
528 if (fault & VM_FAULT_SIGBUS) {
530 * We had some memory, but were unable to successfully fix up
531 * this page fault.
533 sig = SIGBUS;
534 code = BUS_ADRERR;
535 } else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
536 sig = SIGBUS;
537 code = BUS_MCEERR_AR;
538 } else {
540 * Something tried to access memory that isn't in our memory
541 * map.
543 sig = SIGSEGV;
544 code = fault == VM_FAULT_BADACCESS ?
545 SEGV_ACCERR : SEGV_MAPERR;
548 __do_user_fault(tsk, addr, esr, sig, code, regs, fault);
549 return 0;
551 no_context:
552 __do_kernel_fault(addr, esr, regs);
553 return 0;
556 static int __kprobes do_translation_fault(unsigned long addr,
557 unsigned int esr,
558 struct pt_regs *regs)
560 if (addr < TASK_SIZE)
561 return do_page_fault(addr, esr, regs);
563 do_bad_area(addr, esr, regs);
564 return 0;
567 static int do_alignment_fault(unsigned long addr, unsigned int esr,
568 struct pt_regs *regs)
570 do_bad_area(addr, esr, regs);
571 return 0;
574 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
576 return 1; /* "fault" */
579 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
581 struct siginfo info;
582 const struct fault_info *inf;
584 inf = esr_to_fault_info(esr);
585 pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
586 inf->name, esr, addr);
589 * Synchronous aborts may interrupt code which had interrupts masked.
590 * Before calling out into the wider kernel tell the interested
591 * subsystems.
593 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
594 if (interrupts_enabled(regs))
595 nmi_enter();
597 ghes_notify_sea();
599 if (interrupts_enabled(regs))
600 nmi_exit();
603 info.si_signo = SIGBUS;
604 info.si_errno = 0;
605 info.si_code = BUS_FIXME;
606 if (esr & ESR_ELx_FnV)
607 info.si_addr = NULL;
608 else
609 info.si_addr = (void __user *)addr;
610 arm64_notify_die("", regs, &info, esr);
612 return 0;
615 static const struct fault_info fault_info[] = {
616 { do_bad, SIGBUS, BUS_FIXME, "ttbr address size fault" },
617 { do_bad, SIGBUS, BUS_FIXME, "level 1 address size fault" },
618 { do_bad, SIGBUS, BUS_FIXME, "level 2 address size fault" },
619 { do_bad, SIGBUS, BUS_FIXME, "level 3 address size fault" },
620 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
621 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
622 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
623 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
624 { do_bad, SIGBUS, BUS_FIXME, "unknown 8" },
625 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
626 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
627 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
628 { do_bad, SIGBUS, BUS_FIXME, "unknown 12" },
629 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
630 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
631 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
632 { do_sea, SIGBUS, BUS_FIXME, "synchronous external abort" },
633 { do_bad, SIGBUS, BUS_FIXME, "unknown 17" },
634 { do_bad, SIGBUS, BUS_FIXME, "unknown 18" },
635 { do_bad, SIGBUS, BUS_FIXME, "unknown 19" },
636 { do_sea, SIGBUS, BUS_FIXME, "level 0 (translation table walk)" },
637 { do_sea, SIGBUS, BUS_FIXME, "level 1 (translation table walk)" },
638 { do_sea, SIGBUS, BUS_FIXME, "level 2 (translation table walk)" },
639 { do_sea, SIGBUS, BUS_FIXME, "level 3 (translation table walk)" },
640 { do_sea, SIGBUS, BUS_FIXME, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
641 { do_bad, SIGBUS, BUS_FIXME, "unknown 25" },
642 { do_bad, SIGBUS, BUS_FIXME, "unknown 26" },
643 { do_bad, SIGBUS, BUS_FIXME, "unknown 27" },
644 { do_sea, SIGBUS, BUS_FIXME, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
645 { do_sea, SIGBUS, BUS_FIXME, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
646 { do_sea, SIGBUS, BUS_FIXME, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
647 { do_sea, SIGBUS, BUS_FIXME, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
648 { do_bad, SIGBUS, BUS_FIXME, "unknown 32" },
649 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
650 { do_bad, SIGBUS, BUS_FIXME, "unknown 34" },
651 { do_bad, SIGBUS, BUS_FIXME, "unknown 35" },
652 { do_bad, SIGBUS, BUS_FIXME, "unknown 36" },
653 { do_bad, SIGBUS, BUS_FIXME, "unknown 37" },
654 { do_bad, SIGBUS, BUS_FIXME, "unknown 38" },
655 { do_bad, SIGBUS, BUS_FIXME, "unknown 39" },
656 { do_bad, SIGBUS, BUS_FIXME, "unknown 40" },
657 { do_bad, SIGBUS, BUS_FIXME, "unknown 41" },
658 { do_bad, SIGBUS, BUS_FIXME, "unknown 42" },
659 { do_bad, SIGBUS, BUS_FIXME, "unknown 43" },
660 { do_bad, SIGBUS, BUS_FIXME, "unknown 44" },
661 { do_bad, SIGBUS, BUS_FIXME, "unknown 45" },
662 { do_bad, SIGBUS, BUS_FIXME, "unknown 46" },
663 { do_bad, SIGBUS, BUS_FIXME, "unknown 47" },
664 { do_bad, SIGBUS, BUS_FIXME, "TLB conflict abort" },
665 { do_bad, SIGBUS, BUS_FIXME, "Unsupported atomic hardware update fault" },
666 { do_bad, SIGBUS, BUS_FIXME, "unknown 50" },
667 { do_bad, SIGBUS, BUS_FIXME, "unknown 51" },
668 { do_bad, SIGBUS, BUS_FIXME, "implementation fault (lockdown abort)" },
669 { do_bad, SIGBUS, BUS_FIXME, "implementation fault (unsupported exclusive)" },
670 { do_bad, SIGBUS, BUS_FIXME, "unknown 54" },
671 { do_bad, SIGBUS, BUS_FIXME, "unknown 55" },
672 { do_bad, SIGBUS, BUS_FIXME, "unknown 56" },
673 { do_bad, SIGBUS, BUS_FIXME, "unknown 57" },
674 { do_bad, SIGBUS, BUS_FIXME, "unknown 58" },
675 { do_bad, SIGBUS, BUS_FIXME, "unknown 59" },
676 { do_bad, SIGBUS, BUS_FIXME, "unknown 60" },
677 { do_bad, SIGBUS, BUS_FIXME, "section domain fault" },
678 { do_bad, SIGBUS, BUS_FIXME, "page domain fault" },
679 { do_bad, SIGBUS, BUS_FIXME, "unknown 63" },
682 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
684 int ret = -ENOENT;
686 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
687 ret = ghes_notify_sea();
689 return ret;
692 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
693 struct pt_regs *regs)
695 const struct fault_info *inf = esr_to_fault_info(esr);
696 struct siginfo info;
698 if (!inf->fn(addr, esr, regs))
699 return;
701 pr_alert("Unhandled fault: %s at 0x%016lx\n",
702 inf->name, addr);
704 mem_abort_decode(esr);
706 if (!user_mode(regs))
707 show_pte(addr);
709 info.si_signo = inf->sig;
710 info.si_errno = 0;
711 info.si_code = inf->code;
712 info.si_addr = (void __user *)addr;
713 arm64_notify_die("", regs, &info, esr);
716 asmlinkage void __exception do_el0_irq_bp_hardening(void)
718 /* PC has already been checked in entry.S */
719 arm64_apply_bp_hardening();
722 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
723 unsigned int esr,
724 struct pt_regs *regs)
727 * We've taken an instruction abort from userspace and not yet
728 * re-enabled IRQs. If the address is a kernel address, apply
729 * BP hardening prior to enabling IRQs and pre-emption.
731 if (addr > TASK_SIZE)
732 arm64_apply_bp_hardening();
734 local_irq_enable();
735 do_mem_abort(addr, esr, regs);
739 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
740 unsigned int esr,
741 struct pt_regs *regs)
743 struct siginfo info;
744 struct task_struct *tsk = current;
746 if (user_mode(regs)) {
747 if (instruction_pointer(regs) > TASK_SIZE)
748 arm64_apply_bp_hardening();
749 local_irq_enable();
752 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
753 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
754 tsk->comm, task_pid_nr(tsk),
755 esr_get_class_string(esr), (void *)regs->pc,
756 (void *)regs->sp);
758 info.si_signo = SIGBUS;
759 info.si_errno = 0;
760 info.si_code = BUS_ADRALN;
761 info.si_addr = (void __user *)addr;
762 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
765 int __init early_brk64(unsigned long addr, unsigned int esr,
766 struct pt_regs *regs);
769 * __refdata because early_brk64 is __init, but the reference to it is
770 * clobbered at arch_initcall time.
771 * See traps.c and debug-monitors.c:debug_traps_init().
773 static struct fault_info __refdata debug_fault_info[] = {
774 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
775 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
776 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
777 { do_bad, SIGBUS, BUS_FIXME, "unknown 3" },
778 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
779 { do_bad, SIGTRAP, TRAP_FIXME, "aarch32 vector catch" },
780 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
781 { do_bad, SIGBUS, BUS_FIXME, "unknown 7" },
784 void __init hook_debug_fault_code(int nr,
785 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
786 int sig, int code, const char *name)
788 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
790 debug_fault_info[nr].fn = fn;
791 debug_fault_info[nr].sig = sig;
792 debug_fault_info[nr].code = code;
793 debug_fault_info[nr].name = name;
796 asmlinkage int __exception do_debug_exception(unsigned long addr,
797 unsigned int esr,
798 struct pt_regs *regs)
800 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
801 struct siginfo info;
802 int rv;
805 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
806 * already disabled to preserve the last enabled/disabled addresses.
808 if (interrupts_enabled(regs))
809 trace_hardirqs_off();
811 if (user_mode(regs) && instruction_pointer(regs) > TASK_SIZE)
812 arm64_apply_bp_hardening();
814 if (!inf->fn(addr, esr, regs)) {
815 rv = 1;
816 } else {
817 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
818 inf->name, esr, addr);
820 info.si_signo = inf->sig;
821 info.si_errno = 0;
822 info.si_code = inf->code;
823 info.si_addr = (void __user *)addr;
824 arm64_notify_die("", regs, &info, 0);
825 rv = 0;
828 if (interrupts_enabled(regs))
829 trace_hardirqs_on();
831 return rv;
833 NOKPROBE_SYMBOL(do_debug_exception);
835 #ifdef CONFIG_ARM64_PAN
836 int cpu_enable_pan(void *__unused)
839 * We modify PSTATE. This won't work from irq context as the PSTATE
840 * is discarded once we return from the exception.
842 WARN_ON_ONCE(in_interrupt());
844 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
845 asm(SET_PSTATE_PAN(1));
846 return 0;
848 #endif /* CONFIG_ARM64_PAN */